
Over the past two decades, various methods have emerged to infer cell type proportions from bulk transcriptomics data (i.e. deconvolution methods), including those using single-cell RNA sequencing as a reference scaffold.
Developing these methods faces several challenges: building standardized reference datasets, standardizing cell type annotation and marker selection, and improving algorithm and signature atlas generalizability to new bulk sample
conditions. Our goal is to implement a pipeline addressing these challenges. Using a single-cell RNA-seq reference panel, we aim to perform gene expression imputation at the cell type level, inspired by "genotype imputation" in
GWAS [1]. Here we present our approach to create a standardized and generalized single-cell reference panel with consistent annotation to serve as ground truth for the deconvolution algorithm, to ultimately obtain cell type-level
data from bulk gene expression.
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Fig 1: Pipeline workflow. a) Overview of the deconvolution pipeline: starting from a bulk RNA sample, a single cell panel is used as reference to
characterize the heterogeneous tissue. After the deconvolution phase we obtain single-cell-like data in the form of an inferred gene expression matrix;
b) Detail of the single cell reference panel creation procedure.
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Fig 2: UMAP representation of a) the integrated reference panel with cell type annotation and b) cell sub-type annotation. c)
UMAP representation of GSE149614 with cell type annotation and d) of GSE243981 with cell type annotation. Grey dots
represent mismatched labels between the integrated panel and the original ones.

Fig 3: Heatmap of original annotations compared with 
annotations assigned by sc-type.

Table 4: Percentage of mislabeled cells for each
cell type in the integrated reference panel.

Deconvolution test:
Deconvolution results of liver bulk RNA-seq samples and PHH sample resulted in the expected transfer of the
“Hepatocyte” label for all generated cells. To have a better grasp on the performance of our resource, we compared
deconvolution results of 10 pseudo-bulk RNA-seq samples with their original assigned cell types. We achieved a high
correlation between the original and transferred annotation labels (Fig. 4a). We used unsupervised clustering to
assess the impact of the deconvolution process on the pseudo-bulk test samples. Figure 4c represents the original
single-cell samples clustering, while Figure 4d shows the clustering results after the deconvolution: we can see that
the two main clusters are preserved.
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Our integration and annotation workflow for the reference panel created a standardized and replicable resource. We observed that the common Seurat/harmony-integration approach still results in “unknown” cell line profiles when
re-labeling our integrated dataset using a marker-based annotation strategy (Fig. 2c, 2d). This issue may arise from the normalization procedure, which can introduce artifacts while addressing batch effects during dataset integration.
Comparing the integrated and re-annotated dataset with the original annotation, provided an additional quality control (QC) step, minimizing false positives. Preliminary tests on RNA-seq bulk datasets validate that our resource,
using the chosen deconvolution method, accurately recovers major cell type labels in matched tissue samples. It also retrieves a significant proportion of cell type labels in pseudo-bulk RNA-seq samples of non-represented etiologies
(Fig. 4). This suggests that a multi-purpose reference panel, not oriented towards a specific disease/function, could adapt to new bulk samples with varying conditions or phenotypes. Increasing the number of diverse samples will
capture greater variability and offer a more comprehensive representation of different cell populations. This expansion will also improve the applicability of our reference panel to diverse bulk RNA samples. Moreover, we will apply
the same 2-step annotation procedure to the deconvoluted bulk RNA-seq results, better characterizing the generated data for further single-cell-like analyses.

Integration and annotation:
We successfully set up a reproducible workflow for single-cell data integration and annotation. The
marker-based annotation approach resulted in a 91% concordance of the integrated dataset annotation
with the original cell type annotation (Fig. 3, Table 4). We removed the 9% of discordantly annotated cells
after the integration step to reduce the possible sources of noise for downstream analyses. UMAP plot of
the annotated datasets are shown in Figure 2.

Integration:
For the construction of the reference panel, we included 2 liver-based datasets: GSE149614 [2]
and a subset of GSE243981 [3] (details in Table 1), to create a balanced resource without a
focus on function/disease. The integration of the two datasets was performed using the
Seurat/harmony pipeline [3] and resulted in a panel of 96.159 cells and 16 samples (Table 1).

Dataset ID Description

GSE149614
71.915 cells, 3 non-viral tumour samples,
7 HBV or HCV related tumour samples

GSE243981 24.242 cells, 6 healthy samples
Table 1: Description of the datasets used
for the integration step.

Cell type n° of genes

Hepatocyte 95

T Cell 84

B Cell 23

Endothelial 27

Fibroblast 19

Myeloid 87

Table 2: Number of signature
genes for each cell type.

Type Tissue N Description

Bulk RNA-seq Normal liver 2 GteX; internal HCC dataset

Bulk RNA-seq Tumor liver 1 Internal HCC dataset

Bulk RNA-seq PHH 1 Liver resection

Pseudo-Bulk RNA-seq Normal liver 5 Liver based single sell dataset [8]

Pseudo-Bulk RNA-seq Cirrhotic liver 5 Liver based single cell dataset [8]

Table 3: Bulk and pseudo-bulk RNA-seq data used in deconvolution tests.

Fig 4: Deconvolution test results. a) correlation heatmap of the original single cell annotation compared with the label transfer performed
by the deconvolution. b) UMAP representation of one deconvoluted pseudo-bulk test sample (Cirrhotic1). c) Unsupervised clustering
result of the original single-cell sample-to-sample distance matrix. d) Unsupervised clustering result of the sample-to-sample distance
matrix after deconvolution of pseudo-bulk RNA obtained from single-cell samples.
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Annotation:
To maximize the standardization of our workflow we performed marker-based annotation of
the integrated panel using the software sc-type [5] with a curated list of signatures from
GSE149614, GSE243981, and a subset of the CellMarker 2.0 database [6].
The number of genes for each cell type signature is summarized in Table 2. The annotation
follows a 2-step approach: 1) initial annotation by main cell type, 2) sub-type identification for
each cell type. After the first annotation step, we compared the assigned labels with the labels
in the original datasets, and only cells with matching annotations were selected for the second
step.

Deconvolution test:
Deconvolution was executed using the b-VAE implementation provided by the bulk2space
software (Fig. 1) [7], to generate single-cell-like expression data. Various types of bulk RNA-seq
data were used to assess the resource capabilities (Table 3).
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