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Abstract: Blockchain technology has been successfully applied in recent years to promote the im-
mutability, traceability, and authenticity of previously collected and stored data. However, the amount
of data stored in the blockchain is usually limited for economic and technological issues. Namely, the
blockchain usually stores only a fingerprint of data, such as the hash of data, while full, raw infor-
mation is stored off-chain. This is generally enough to guarantee immutability and traceability, but
misses to support another important property, that is, data availability. This is particularly true when
a traditional, centralized database is chosen for off-chain storage. For this reason, many proposals
try to properly combine blockchain with decentralized IPFS storage. However, the storage of data
on IPFS could pose some privacy problems. This paper proposes a solution that properly combines
blockchain, IPFS, and encryption techniques to guarantee immutability, traceability, availability, and
data privacy.
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1. Introduction

In the digital information age, the exponential growth in data volume has posed
significant challenges in terms of efficiency and scalability. Indeed, traditional centralized
data storage and retrieval systems act as a single computational node, which consequently
become a trust bottleneck and a single point of failure. To overcome these challenges,
data storage is shifting to distributed systems, where data spread across multiple public
nodes. In distributed systems, the decentralized peer-to-peer nodes can synchronize with
each other without the need for a central authority. For instance, a torrent file-sharing
protocol [1] uses a peer-to-peer network to connect all participating computers, allowing
them to share files in a decentralized manner.

More recently, blockchain technology has emerged as an innovative solution for
reaching a consensus about a global state in a decentralized manner, without the need for
a central authority. It allows a decentralized network of untrustworthy nodes to agree
on the content and state of the blockchain, independently from each other. Furthermore,
the information stored in blockchain is also immutable, since the content of a block cannot
be modified without invalidating the content of all the subsequent blocks. In blockchain,
smart contracts play a vital role in developing decentralized applications on top of the
blockchain. In this context, a smart contract is a piece of code deployed in blockchain to
execute predefined actions, enabling automated execution by ensuring the immutability
and transparency of agreements in a trustless environment [2]. Therefore, smart contracts
can significantly contribute to the spread of blockchain technology in several application
domains, such as healthcare [3], tourism [4], energy and water management [5], identity
management [6], supply chains [7], and so on.

In contrast to traditional centralized solutions that lack data traceability and trans-
parency, blockchain and smart contract technology could help to overcome these challenges.
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Indeed, blockchain technology inherently provides traceability, immutability, and trust-
worthiness [8]. These properties can secure and tamper-proof critical information in many
domains. The final aim is to increase the trust of end users by issuing non-repudiable
certificates. On the other hand, storing large amounts of data in blockchain is not feasible,
due to scalability and transaction cost challenges. Indeed, increasing data volume increases
the transaction cost and decreases the blockchain throughput (scalability). Therefore, as the
volume of data grows, blockchain solutions become increasingly inefficient and economi-
cally unviable. However, a solution, called off-chain data storage [9], has been proposed to
address the challenges of efficient data storage strategies, minimizing on-chain data while
ensuring integrity. The idea is to develop proper solutions that guarantee the consistency
and immutability of off-chain data from those of the on-chain data.

The Interplanetary File System (IPFS) is a peer-to-peer distributed system for stor-
ing, accessing, and sharing files, websites, applications, and data. First introduced in
2015, IPFS developed upon a decentralized environment and incorporates distributed and
bandwidth-saving techniques from torrent [10]. Blockchain and IPFS function as decentral-
ized technologies but serve different purposes and have distinctive characteristics. IPFS
offers an efficient, peer-to-peer decentralized public network for large distributed data
storage and access. It aims to improve the efficiency and resilience of traditional web
protocols by allowing files to be stored in multiple locations, making them resistant to
censorship and ensuring availability, even if some nodes go offline. On the other hand,
blockchain serves primarily as a decentralized ledger, recording transactions or data trans-
parently and in a tamper-proof way. Integrating these technologies represents an efficient
solution to the challenges mentioned above related to scalability, efficiency, immutability,
and data availability.

One of the main characteristics of IPFS is that anyone can access the data stored on
this public network. Therefore, this can limit its usability if the stored data present privacy
concerns. In the domain of digital data security, hashing and encryption are considered
sophisticated cryptographic practices. Hashing, the process of generating a unique fixed-
size hash value from any input data, of any size, serves as a critical tool in ensuring data
integrity. This procedure is deterministic, providing that any change in the data, no matter
how small, results in a significantly modified hash value, allowing the effective detection of
data tampering or corruption. Encryption, on the other hand, converts original data, known
as plaintext, into an encoded version known as ciphertext. This transformation, controlled
by sophisticated algorithms and cryptographic keys, ensures that unauthorized entities
cannot access the data, providing data confidentiality. In distributed data storage systems,
combining hashing and encryption offers a robust framework for data security, effectively
tackling two critical aspects of data security: integrity and confidentiality. Indeed, hashing
values can be used to provide a unique fingerprint for the data that allows one to check data
integrity without the need to decrypt data and compare the original contents. Conversely,
the sole use of encryption techniques requires the decryption of the retrieved data, namely,
the inverse transformation from ciphertext to plaintext, exposing private keys and posing a
significant security risk.

The solution proposed in this paper integrates IPFS with blockchain technology to
solve all the problems above. In particular, we propose to exploit the decentralized and
efficient architecture of IPFS for large data storage, significantly reducing costs while
improving scalability. We propose a dual-layer security mechanism that combines hashing
and encryption to ensure robust data security and privacy. We propose a novel approach
for verifying data integrity, which detects and handles any modifications to the data by
generating and comparing hashes of the retrieved and stored information. Furthermore,
we eliminate the need for decryption during data retrieval and querying, thus mitigating
the risks of exposing private keys and improving overall system security. The proposed
approach is developed with reference to a real-world scenario in which a set of IoT devices
periodically produces several information records that need to be stored in an immutable
and tamper-proof way, as well as preserving their confidentiality.
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The remainder of the paper is organized as follows: Section 2 summarizes some
previous results in combining IPFS, blockchain, and encryption techniques for distributed
data storage and security. Section 3 formalizes the considered problem, while Section 4
illustrates the proposed solution. Section 5 discusses the implementation of the solution
and the performed experiments. Finally, Section 6 concludes the work.

2. Related Work

The integration of IPFS and blockchain technology offers a significant advancement in
distributed data storage and security. This section reviews existing research on blockchain-
based data storage, using IPFS, encryption, and hashing techniques to ensure data security
and privacy.

2.1. Blockchain and IPFS for Data Storage

Blockchain technology is receiving a lot of attention due to its potential for secure and
decentralized data storage. The studies on blockchain mainly explored the blockchain’s
immutable ledger system for data storage; however, they frequently emphasized the limits
associated with the high costs and inefficiencies of keeping large volumes of raw data
directly in the blockchain. In [11], the authors propose an in-depth analysis of these
challenges, emphasizing the need for more effective data storage solutions within the
blockchain framework. In this regard, IPFS is becoming increasingly common as a large
data storage solution, thanks to its decentralized and effective design. In [12], the authors
employ blockchain technology to transmit data in a peer-to-peer network and IPFS as
data-sharing infrastructure to share pre-trained deep learning models to stakeholders.
Meanwhile, in [13], the authors propose a blockchain and cloud-based decentralized secure
storage for data availability, privacy, and efficient resource utilization. The work in [14]
proposes the integration of blockchain and IPFS, showing the potential for secure data
retrieval and storage. The proposed approach leverages different privacy modes for data
privacy and security by storing nonsensitive data on IPFS without encryption and sensitive
data with two-layered encryption. This approach mitigates the risk of a single point of
failure and data tampering. However, data retrieval and query require the decryption of
data stored on IPFS, which may introduce additional security and privacy risks associated
with the exposure of private keys.

2.2. Data Security and Privacy Methods

Data privacy has been a significant challenge in decentralized systems. Encryption
and hashing have been pivotal in securing data within the blockchain and IPFS frame-
works. The literature on various encryption algorithms and hashing techniques studied
by [15] shows the advancement in these methods in maintaining data integrity and se-
curity. Furthermore, ref. [16] focuses on the role of these techniques in preserving data
privacy in decentralized systems and on the importance of a balance between accessibil-
ity and security. In [17], the authors delve into privacy-preserving approaches such as
zero-knowledge proofs and homomorphic encryption. These studies emphasize the de-
velopment of techniques that secure data without compromising privacy. However, these
techniques can provide solutions for data security and privacy but often fall short in terms
of balancing data security with system efficiency, such as computation overhead, scalability,
and dynamic data handling. In addition, relying on encryption inadvertently exposes
private keys during decryption processes, making it a substantial security risk. The work
in [18] proposes a blockchain-based framework for privacy preservation and secure access
control in cloud storage. The proposed scheme combines the Ethereum blockchain and
ciphertext-policy attribute-based encryption (CP-ABE) for user data security and privacy.
However, due to privacy issues and data leakage, the cloud might not be a trustworthy
source for data storage.
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2.3. Query Optimization Techniques

Leveraging blockchain and IPFS in decentralized storage systems has transformed
data storage and retrieval, particularly in sectors demanding high integrity and efficiency.
These studies illustrate how blockchain and IPFS can improve query optimization, security,
and scalability in distributed storage systems. In [19], the authors focus on agricultural
product traceability, using IPFS to store multiple data types and blockchain for securing
IPFS hash addresses to improve query efficiency and data authenticity. However, the sensor
data are collected and processed on a centralized private server before storing data on IPFS.
Therefore, this approach may pose security risks related to a single point of failure, data
loss, or compromised server. In [20], the authors integrate blockchain, IPFS, and Elastic-
search to address big data storage challenges in distributed systems, resulting in reduced
storage overhead, search latency, and access control. The proposed approach relies on
blockchain’s inherent security features. Moreover, the elastic search approach focuses
primarily on search latency and precision, without considering the security implications of
query handling mechanisms. The work in [21] proposes a secure and decentralized frame-
work for managing cloud data provenance by integrating blockchain technology with the
IPFS. The proposed solution ensures provenance data availability, security, and integrity by
utilizing decentralized storage and blockchain for immutability. The method for verifying
data integrity is secure; however, it might be computationally intensive, particularly in
scenarios where the frequent validation of large data sets is necessary.

Despite these advancements, existing solutions have faced challenges, particularly in
their reliance on decryption, which has associated security risks. Namely, the exposure of
private keys remains a major concern, as discussed in [22]. This justifies the importance
of a solution that could ensure data security and privacy without relying on decryption.
The solution proposed in this paper addresses these challenges by optimizing and securing
data storage on IPFS without relying on decryption. This novel approach, based on storing
only the Content Identifier (CID) in blockchain and the actual data on IPFS, along with
sophisticated encryption and hashing techniques, is a significant step forward from tradi-
tional methods. This innovation enhances data privacy and improves query optimization,
as detailed in our methodology.

3. Problem Statement and Formalization

In a typical IoT scenario, several IoT devices or sensors produce a set of data every
day that needs to be stored and certified to ensure immutability, traceability, and tamper-
proofing. In this scenario, it is crucial for the produced data to be stored permanently
without any subsequent modification or deletion.

Given such premises, we can formalize the following properties that one wants to ensure
by using blockchain and smart contract technology in conjunction with the IPFS protocol.

Property 1 (data immutability). Given a piece of data d stored in a database or file system, we
say that d is immutable if it cannot be modified after its storage, or otherwise, any subsequent
modification of d can be easily identified.

Blockchain technology ensures the immutability of data stored inside its blocks. In-
deed, block confirmation ensures that there are no further data modifications to the block.
Typically, the amount of data stored in blockchain is minimal due to technological chal-
lenges and cost constraints. However, blockchain can ensure the immutability of data
stored off-chain by essentially storing a fingerprint (or hash) of the data. Such a fingerprint
is enough to identify if some information stored outside the blockchain has been modified.

In many real-world scenarios, immutability can be considered too strict since data
could need to be updated or rectified due to some missing or erroneous parts. Therefore,
we consider immutability together with another property called traceability.
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Property 2 (data traceability). Data traceability refers to the ability to follow the data transforma-
tions back to their origin, verifying the authenticity and integrity of the data. It can also be intended
as the degree to which a system or a data provider can record the changes made to the data.

Combined with immutability, traceability can lead to a more robust system where
each stage of the data life can be stored immutably. Instead of preventing the possibility of
modifying data, these two properties together allow the registration of several subsequent
evolutions of the data, like in a versioning system. Blockchain has emerged as a possible
solution to implement data traceability by creating an information trail that ensures security
and data availability [7].

The last requirement is related to the system used to store data off-chain.

Property 3 (data availability). Data availability refers to a user’s confidence that the stored data
and all the information required to verify specific properties of that (such as immutability) are
available in a given period.

Given such desired properties, we can contextualize the considered problem as follows:
Suppose we have a set of IoT devices that continuously produce a set of measurements of a
predefined quantity, for instance, the amount of water that flows through a pump, or the
temperature in a greenhouse, or the quantity of precipitation. These pieces of data are
collected through a Message Queuing Telemetry Transport (MQTT) broker, which stores
the received data in centralized storage, such as a relational database, a set of log files,
and so on. In this scenario, the problem we want to solve is making such information
immutable and tamper-proof, providing the traceability properties mentioned above and
ensuring their availability.

The following section illustrates the proposed solution, which integrates blockchain,
smart contract technology, and the IPFS decentralized storage.

4. Proposed Solution

Figure 1 illustrates the general architecture of the proposed solution. It includes at its
core a decentralized application (dApp), which interacts with the traditional centralized
storage for retrieving the data to be persisted, made immutable through the blockchain
by using a set of smart contracts, and the IPFS. It is important to note that the main idea
is to store data efficiently on IPFS rather than directly in blockchain, which can be costly
and inefficient. However, since data are supposed to be sensitive and subject to privacy
concerns, it undergoes a process of encryption before being stored on IPFS. At the same
time, the data hashing technique generates a fingerprint of each row and allows the fast
detection of data manipulation without the need to decrypt the data. Moreover, the IPFS
returns a CID as the result of storing data, and the CID is permanently stored in blockchain
for traceability. The CID is a unique identifier for the data and essentially a hash of the
data stored on IPFS. While in a centralized web service, content or data can be accessed
through location-based uniform resource locators (URLs); in IPFS, content or data are stored
and retrieved based on hash, which makes it more challenging to censor or manipulate.
Moreover, there is no need for trust in IPFS data hosting entities.

The proposed solution achieves data privacy, integrity, and query optimization by
properly integrating the hashing and encryption of data. In the future, any modification can
be detected by simply comparing the previous hash stored on IPFS and newly generated
hashes of modified data. Consequently, this approach eliminates the need for decryption,
which often depends on revealing private keys and poses security risks, limiting this
possibility only to the case in which previous data need to be effectively restored. Moreover,
this scheme allows for the easy separation of concerns since an integrity check can be
performed without revealing the content.
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Figure 1. The architecture of the proposed solution.

Algorithm 1 illustrates how the data from the centralized storage are prepared for
storage in IPFS. The function CREATEDATAFORIPFS receives as input a list of records
corresponding to the database rows in Figure 1. For each row, the function computes
the hash of the row content (see line 4) and includes the tuples ⟨idi, H(recordi)⟩ in a list,
where H() represents the application of the hashing function. After that, the function
encrypts the overall content through the function E() (see line 6). The content stored on
the IPFS is the union of these two elements, as reported in line 7. We employ the SHA-56
algorithm [23] for hashing, which maps the given data to a 256-bit fixed-size cryptographic
hash. The characteristic of a hash is that all unique input data produce a unique hash value.
Even minor changes in the input data result in a significant change in the hash output. This
property of hashing is known as the avalanche effect.

Algorithm 1 Creation of the data to be stored in IPFS

1: procedure CREATEDATAFORIPFS(rawData = {⟨idi, recordi⟩}n
i=1)

2: hashedData = {}
3: for d ∈ rawData do
4: hashedData = hashedData ∪ {⟨idi, H(recordi)⟩}
5: end for
6: encryptedData = E(rawData)
7: return combinedData = {hashedData, encryptedData}
8: end procedure

Definition 1 (Hashing). Let D be the data entry and H be the hash function implementing the
SHA-256 algorithm. The hashing process can be represented as

H(D) = h (1)

where h is the unique hash result.

For encryption, we employ Password-Based Key Derivation Function 2 (PBKDF2) [24],
a key derivation function with a sliding computational cost to reduce vulnerability to brute-
force attacks. It generates a cryptographic key from a secret, preventing the need to save
the encryption secret on a centralized database or server and improving security.

Definition 2 (Key Derivation). Let P represent the user-provided secret and KDF the key derivation
function. The key K used for the encryption and decryption process can be derived as follows:

K = KDF(P, s, c, dkLen) (2)

where s is the salt, c is the number of iterations, and dKLen is the desired key length.
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One of the novelties of the proposed solution resides in the fact that it does not store
the encryption secret or keys. Instead, it encrypts a known string S with the secret and
stores this encrypted string on IPFS. Algorithm 2 illustrates the process of verifying a secret
without storing the secret or keys anywhere. Given the secret P′ provided by the user,
the corresponding key K′ is derived using the KDF function. Then, the encrypted string
E(S) retrieved from IPFS is decrypted by using K′. If the obtained decrypted string S′

corresponds to the original string S, then the provided secret is correct, and the verification
is successful; otherwise, the verification fails.

Algorithm 2 Verification of a secret S without revealing it

1: procedure VERIFYSECRET(P′)
2: Retrieve the encrypted string E(S) from IPFS.
3: K′ = KDF(P′, s, c, dkLen)
4: S′ ← D(E(S), K′)
5: if S’ = S then
6: the secret is correct
7: else
8: the secret is incorrect
9: end if

10: end procedure

If the secret verification is successful, the data are encrypted using the derived key
K′, as reported in line 6 of Algorithm 1. The encrypted data are then combined with the
hashed data inside a JSON object (see line 7 of Algorithm 1).

Definition 3 (Encryption). Let E represent the encryption function, K the key derived from the
secret, and D the data. The encrypted data ED can be obtained as follows:

ED = E(K, D) (3)

Once the combinedData are generated, it is stored on IPFS. IPFS generates a unique
CID, representing a reference for the encrypted and hashed data on IPFS. The blockchain is
the final step of the proposed architecture. After storing the encrypted data and the hashed
data on IPFS and obtaining the corresponding CID, this CID is stored on the blockchain
through a smart contract. Such a smart contract will maintain a list of CIDs related to the
data stored on IPFS. The immutability of blockchain ensures that the CID is recorded and
cannot be changed or removed, which provides an auditable track of the data integrity
and traceability. The primary purpose of this smart contract is not only to store CIDs
permanently but also to retrieve and verify the persisted data.

Algorithm 3 illustrates the function DATAVERIFICATION, which performs an integrity
check about the current content of the centralized database and what has already been
stored in the IPFS. After retrieving both contents, Dapi and Db, respectively, the function
analyzes if each row in the database is already contained in the blockchain and, in this case,
if the hashes are the same. The newly identified records are then stored in IPFS, as illustrated
in Algorithm 1, and a transaction gets performed to store the corresponding new CID.
Conversely, the records whose hashes do not coincide become classified as corrupted or
inconsistent. This consistency verification does not need to decrypt the stored data but
is based only on comparing the hashes. However, based on the specific policies of the
system, in case of corrupted or inconsistent data, their original version could be eventually
retrieved through a decryption of the encrypted data contained at the corresponding CID.

The proposed solution allows for continuous monitoring of data updates in an efficient
and secure way. We improved the system’s privacy and security by not decrypting the
sensitive data but only comparing hashes. Furthermore, by employing blockchain as an
immutable storage for comparisons, we ensure that the verification process is tamper-
proof and auditable. The robust integration of cryptographic hashing and encryption,
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IPFS, and blockchain enables a sophisticated solution that ensures data integrity, enhances
transparency, and maintains confidentiality in a public network.

Algorithm 3 Data retrieval and verification

1: procedure DATAVERIFICATION
2: Db ← retrieve from IPFS the documents with the stored CIDs
3: Mb ← = map from the hashed data in Db where key = idi and value = H(ri)
4: Dapi ← retrieve from the API the data stored in the database
5: for r ∈ Dapi do
6: id→ identifier of the current record r
7: hnew → H(r)
8: h = Mb.get(id)
9: if h is null then

10: the data entry is new and needs to be persisted in the blockchain
11: end if
12: if h == hnew then
13: the data entry has not been modified
14: else
15: the data entry has been modified
16: end if
17: end for
18: end procedure

5. Evaluation

This section presents the proposed solution implementation and mainly focuses on
testing the system performance and security with respect to different data sizes and secu-
rity vulnerabilities.

5.1. Experimental Setup

The experiments have been performed on a computer with an Intel Core i5 CPU of
1.00 GHz and 8 GB of RAM. A dApp has been developed in React (https://react.dev/, ac-
cessed on 12 March 2024) using the TypeScript language (https://www.typescriptlang.org/,
accessed on 12 March 2024), CryptoJS (version 4.2.0) for cryptographic functionalities, and the
ipfs-http-client (version 60.0.1) for IPFS decentralized storage interactions. Additionally,
we employ the AES algorithm for encryption and decryption with a key length of 256 bits
derived from the secret. To ensure the integrity of the data, we leverage the SHA256 hash-
ing algorithm. The proposed solution uses IPFS for data storage and retrieval, with Infura
as the IPFS node provider and Ethereum blockchain for storing the IPFS CID to ensure
robust and decentralized storage. Table 1 presents a detailed description of the experimen-
tal setup. The source code of the solutions has been made available through a GitHub
repository (https://github.com/MuhammadBinSaif/Efficient-and-Secure-Distributed-Data-
Storage-and-Retrieval-Using-IPFS-and-Blockchain, accessed on 12 March 2024).

Table 1. Experimental Setup Specifications.

Specification Details

Front-end Framework React 18.2.0
Programming Language TypeScript
Encryption Library CryptoJS 4.2.0
IPFS Client ipfs-http-client 60.0.1
Encryption Algorithm AES
Key Generation Method PBKDF2
Hashing Algorithm SHA256
IPFS Node Provider Infura
Blockchain Ethereum
Processor Intel Core i5 CPU 1.00 GHz
RAM 8.00 GB

https://react.dev/
https://www.typescriptlang.org/
https://github.com/MuhammadBinSaif/Efficient-and-Secure-Distributed-Data-Storage-and-Retrieval-Using-IPFS-and-Blockchain
https://github.com/MuhammadBinSaif/Efficient-and-Secure-Distributed-Data-Storage-and-Retrieval-Using-IPFS-and-Blockchain
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5.2. Performance Evaluation

This section presents a performance evaluation of the proposed system. We adopted
two different metrics to measure that performance: the throughput and the total time.
The aim is to show the impact of changing data size on the system throughput and on the
time taken to encrypt and decrypt the JSON data. We generated dummy JSON data (that
resemble real-life JSON data) by using the Faker library (https://fakerjs.dev/, accessed on
12 March 2024).

5.2.1. Encryption Throughput

The throughput T is measured in terms of the amount of data D processed per unit
time t during the encryption and the decryption phases. In particular, given the size of the
encrypted data size(ED) and of the decrypted data size(DD), the relative throughput can
be computed as follows, respectively:

TE =
size(ED)

t
TD =

size(DD)

t
(4)

We evaluated the throughput of the proposed solution on a wide range of data sizes
from 10 kb to 3000 kb. Figure 2 illustrates that the system’s throughput increases as data
size increases. Initially, the throughput was around 3.07 kilobits per second (kb/s) for
10 kilobits (kb) of data. However, with larger data sizes, such as 3000 kb, the throughput
has increased to over 307.12 kb/s. The throughput decreases for smaller amounts of data
because of the significant time taken by the initial encryption or decryption steps and
inherent computational efficiencies at larger data scales. However, as the data volume
increases, these initial steps become less significant in the overall process. These results
demonstrate that AES is scalable and efficient in processing large data sets and suitable
for applications dealing with large data volumes, resulting in secure and efficient data
encryption and decryption.

Figure 2. Throughput in kb/s.

5.2.2. Total Time

The total time t = te − ti is the difference between the initial time ti when a process
starts and the end time te when a process is completed. This section evaluates the total time
of the proposed solution for the encryption, decryption, and generation of the hash, and for
storing the hashed and encrypted data on IPFS for different data sizes, ranging from 10 kb
to 3000 kb. Figure 3 illustrates the total time for these processes. The results show that the
time for each operation increases as data size increases. The processing time for encryption,
decryption, and hashing of 10 kb of data is approximately 2472, 2511, and 1 ms, respectively.
In contrast, storing 10 kb of data on IPFS took 720 ms. As data size increases to 3000 kb, we

https://fakerjs.dev/
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can observe an increase in operation times for encryption to 3647 ms, decryption to 3590 ms,
hashing to 210 ms, and storing on IPFS to 6252 ms. The gradual increase in processing time
with data size demonstrates the efficiency of the AES and SHA256 algorithms. However,
because of network latency, data propagation, and processing delay, IPFS requires a longer
time to store data. However, this time could also be considered acceptable for real-world
applications since this immutable persisting activity will be reasonably conducted offline,
in contrast to other functional activities of the system.

Figure 3. Total time in ms.

5.2.3. Scalability

Finally, we analyze the scalability of the proposed system by measuring the overall
throughput of all phases (not only of the encryption one) with respect to different data
sizes, ranging from 10 kb to 3000 kb. Figure 4 shows the overall throughput, including
data encryption, hashing, and storing the encrypted and hashed data on IPFS. As we can
observe from the graph, initially, the throughput was around 3 kb/s for 10 kb of data.
However, as data size increases to 3000 kb, the throughput impressively grows to over
307 kilobytes per second. This shows the robust ability of the proposed system to manage
and process large data sets effectively, highlighting the proposed solution’s scalability.
Therefore, the proposed solution is suitable for adoption in data-intensive applications
where scalable security is critical.

Figure 4. Overall throughput in kb/s.
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5.3. Security Evaluation

This section presents a security evaluation of the proposed system. We evaluate
the capability of the system to check the data integrity and prevent unauthorized access.
The proposed system successfully detected both attacks.

5.3.1. Data Integrity

The primary focus of AES and similar encryption algorithms is to ensure confidentiality.
However, these systems do not ensure data integrity, which means that they do not detect
data changes during transmission or storage. An attacker could modify encrypted data,
which leads to incorrect but successful decryption. Therefore, the AES algorithm requires an
additional mechanism for data integrity. The proposed solution addresses this data integrity
challenge by integrating a hashing mechanism with encryption. The proposed system
computes the original data hash, a unique digital fingerprint of data. After decryption, it
computes the hash of decrypted data and compares it with the original hash. If both hashes
match, no tampering occurred during the encryption and decryption. The proposed data
integrity approach ensures robust security against unauthorized modifications, improving
stored or transmitted information security.

5.3.2. Unauthorized Access

The unauthorized access attack consists of accessing the content of the encrypted data
without a valid key. We perform an evaluation against this attack, which involves two steps:
first, a secure encryption of data with a valid secret key and then an attempt to decrypt these
data by using a different, unauthorized secret key. This approach simulates a real-world
attack scenario where an attacker tries to gain access to encrypted information. The system
successfully identified the unauthorized attempt as it continuously failed to decrypt the
data by using the unauthorized key. This resulted in either an empty output or an error.
These results show the proposed solution’s robust security and efficiency in preventing
unauthorized access and the reliability of system encryption and key management schemes
in protecting sensitive data.

6. Conclusions

Data immutability, traceability, and availability could be provided by properly in-
tegrating blockchain technology and IPFS. This paper proposes a complete architecture
that properly combines these two technologies with encryption and hashing algorithms
to ensure the mentioned properties efficiently. A set of scalability tests have also been
performed to demonstrate the system’s capabilities to adapt to an increased amount of data.
Finally, some considerations about the prevention of unauthorized access and the ensuring
of data integrity are also provided.
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