
1

Dataset characteristics for reliable code
authorship attribution

Farzaneh Abazari, Enrico Branca, Norah Ridley, Natalia Stakhanova, Mila Dalla Preda

F

Abstract—Code authorship attribution aims to identify the author of
source code according to the author’s unique coding style character-
istics. The lack of benchmark data in the field, forced researchers
to employ various resources that often did not reflect real program-
ming practices. Throughout the years, studies used textbook examples,
students’ programming assignments, faculty code samples, code from
programming competitions and files retrieved from open-source repos-
itories. Such data diversity raised concerns about the appropriate data
characteristics for reliable evaluation of code attribution.

In this paper, we investigate these concerns and analyze the effect
of the dataset characteristics and feature elimination techniques on the
accuracy of code attribution. Unlike the majority of the work done in
this field which concentrates on designing new features, we explore the
nature of data used in the previous studies and assess the factors that
influence the attribution task. Within this analysis, we investigate the
robustness of three feature sets seen as benchmarks in the attribution
research. Based on our findings, we define a process for derive a
reduced set of features for accurate and predictable attribution, and
make recommendations on the dataset characteristics.

Index Terms—Source code attribution, Machine learning, Feature Se-
lection, Authorship attribution, Github

1 INTRODUCTION

Code authorship attribution techniques aim to identify the
author of a given code based on its unique characteristics
that reflect an author’s programming style. Inspired by
social studies in the attribution of literary works, in the
past two decades researchers examined the effectiveness
of code attribution in the computer security domain. Code
attribution techniques have found a wide application in
code plagiarism detection [1], [2], [3], biometric research [4],
software forensics [5], [6], [7], and analysis of underground
actors [8] and malware authorship [9], [10], [11], [12].

Indeed, the research showed that analysis of software
might effectively unveil the digital identity of a devel-
oper that is manifested through variables, data structures,
programming language, employed development platforms,
and their settings [9], [13].

Through many research studies that have documented
the experiments aimed at studying the effectiveness of code
attribution, one question remained common: what is the
most appropriate dataset required for attribution of a code?
With a lack of benchmark datasets in this field, researchers
resorted to using ad hoc data that retain at least some char-
acteristics of programming practices, e.g., archives of stu-
dents’ programming assignments [14], [15], [16], programs

written by textbook authors [17], programming competition
archives [18], [19], [20], and open-source repositories [21],
[22], [23], [24].

Such data diversity in experimentation creates some con-
cerns. Using privately collected data (e.g., students’ assign-
ments) hinders reproducibility of the experiments. Open
data sources (public repositories and textbook examples)
raise questions about the sole authorship and context of
considered code. Code received from programming com-
petitions does not reflect personal coding habits due to the
artificial and constrained nature of competition setup.

Beyond the concerns about the source of data, datasets
vary drastically in size, the number of analyzed authors,
samples, length of the code, and even quality of code, mak-
ing a comparative analysis of studies challenging. For ex-
ample, MacDonell et al. [6] experimented with 7 authors in
the dataset obtaining 88% accuracy in attribution. McKnight
et al. [25] achieved 66% with 525 authors. Both Tennyson
et al. [17] and Caliskan et al. [18] obtained 98% accuracy
while experimenting with 200 samples and 9 samples per
author, respectively. Questioning the length of available
code, Dauber et al. [26] showed that it is possible to attribute
code snippets that have only a few lines of code, while the
majority of studies found it necessary to experiment with
lengthy code.

Such ad-hoc approaches to data selection naturally
prompt questions regarding the appropriate data character-
istics for code attribution:

• How much data is enough to demonstrate the effec-
tiveness of the attribution method? In other words,
what are the suitable data characteristics such as the
number of authors, samples per author, and length
of samples necessary for the code attribution task?

• Are these characteristics dependent on the data
source, data quality, and context? In other words,
would these data characteristics be appropriate for
data retrieved from different environments.

• What is the effect on the accuracy of code attribution
if appropriate characteristics are not selected?

The concerns regarding appropriate data characteristics
are not new. The Burrows et al. [27] study was one of the
first to question the quality and variability of data. A few
other researchers also brought up potential effects of data
bias on study results [26], [28], [29], [30].

2

Answering the questions regarding the appropriate data
characteristics is essential for software attribution domain
and may have implications for both accuracy and perfor-
mance of attribution techniques in the deployment envi-
ronment. Within this context, it is necessary to understand
whether the results obtained by previous studies were due
to the optimal, or perhaps coincidental, match between data
and approach, or due to the attribution technique’s tolerance
to dataset imperfections. This is the focus of our work.

We approach these questions by first analysing data
employed by the existing studies in the area of source code
attribution and replicating their experiments. We proceed
with exploring the effect of common code, analysing source
code size, samples size, and author set size effects on the
attribution accuracy of different classifiers. Finally, we de-
velop a balanced large-scale authorship attribution dataset
and offer it to the research community.

This article is organized as follows. In Section 2, we
provide a summary of previous studies. Section 3 describes
datasets characteristics and feature sets that are used by
recent works. We explore the effects of preprocessing and
feature extraction on the accuracy of different classifier in
Section 4. Section 5 explores the effect of source code size,
sample size, and author set size, respectively on attribution
accuracy. Finally, we summarize our findings in Section 6.

2 RELATED WORK

The cornerstone of any code authorship attribution study is
the dataset. Over time the researchers experimented with
data that can be broadly categorized in several groups:
academic data, data obtained from open source repositories
(OSS), and mixed data retrieved from both open source
projects and academic studies. The summary of the re-
viewed studies is given in Table 1.

2.1 Academic data

In the late 1990s, researchers mostly used archives of stu-
dents’ programming assignments [14], [15], [16]. Sharing
this data was challenging due to privacy concerns. If such
data was allowed to be shared, it was typically heavily
anonymized to remove identifiable information commonly
used for authorship attribution.

The first in-depth study of source code authorship attri-
bution was performed by Krsul et al. [14]. The researchers
leveraged C programs collected from students, faculty, and
staff to study the impact of programming structure, pro-
gramming style and layout on attribution. This study ex-
perimented with over 20 different classification methods on
a small set of 88 programs with a variable success.

Student-submitted programs were also used in the study
by Elenbogen et al. [16]. A total of six simple metrics
based on heuristic knowledge and personal experience were
considered: number of lines of code, number of variables,
number of comments, variable name length, looping con-
structs, and number of bits in the compressed program. The
attribution analysis was able to achieve results similar to
those obtained by Krsul et al. [14].

Burrows et al. [35] explored the accuracy of various
similarity measures (e.g., cosine, Dirichlet) for attribution of

1597 student assignments collected for a period of over 8
years. Within this study, the authors examined six groups of
features that, in their opinion, should represent good pro-
gramming style: white space, operators, literals, keywords,
I/O words, and function words.

2.2 Open-source repositories and mixed data
With the growing popularity of open-source repositories,
researchers have started leveraging this source of data.
Frantzeskou et al. [15] employed source code samples from
the FreshMeat repository1. The researchers introduced the
SCAP (Source Code Author Profiles) method that represents
an author’s style through byte-level n-gram profiles. Since
an author profile is comprised of a list of the L most fre-
quent n-grams, several follow-up studies were performed
to determine the best values of L and n ([40], [41], [15], [42],
[43], [44], [45]). The best results were achieved for values of
L equal to 1500 or 2000 and n-gram sizes of 6 or 7. Table 1
lists three main experiments performed in this study [15].

Several studies worked with free software projects
hosted on SourceForge2 [34], [24], [23]. Lange et al. [34] pre-
sented a method involving the similarity of histogram distri-
butions of code metrics, which were selected using a genetic
algorithm. The authors formulated 18 layout and lexical
metrics as histogram distributions. Shevertalov et al. [24]
focused on improving classification accuracy through dis-
cretization of four metrics (leading spaces, leading tabs, line
length, and words per line). Similar to Lange et al. [34] and
Shevertalov et al. [24] studies, Bandara et al. [23] used a
combination of layout and lexical features for attribution.
Gull et al. [21] employed a new characteristic of the coding
style of the programmer: code smell. Code smell is a known
phenomena in software engineering domain that usually
manifests a bad programming practice or design problem.
As such the presence of certain code smells can be indicative
of a certain programming style.

Similar to other studies, Zhang et al. [22] leveraged
layout characteristics for attribution. The programmer’s
profiles were constructed based on four feature categories:
layout (e.g., whitespaces), style (e.g., number of comments),
structure (average line length), and logic (character level n-
grams). The authors experimented with several algorithms,
yet the best result was obtained with SVN (83.47%).

Most of the authorship attribution techniques extract
features from the source code such as variable names and
keyword frequencies. Instead of using layout and lexical fea-
tures, Pellin et al. [31] used only syntactic features derived
from the abstract syntax (AST) trees. The approach was
unique; instead of creating frequency-based feature vectors
(common in attribution), the authors fed the AST directly
to the tree-based kernel machine classifier. Unfortunately,
the analysis with only 2 authors does not provide sufficient
ground for comparison with other methods.

Kothari et al. [33] explored attribution based on pro-
grammers’ profiles built with two types of metrics: style
characteristics (such as distributions of leading spaces, line
size, etc.), and character n-grams. Although the second
set was similar to the one introduced by Frantzeskou et

1. http://freshmeat.sourceforge.net/
2. https://sourceforge.net/

3

TABLE 1
Previous studies in source code authorship attribution.

Related Work Year # Au-
thors

Samples/
author

Tot.
Files

LOC Avg.
LOC

#
Features

Features
Type

Lang. Dataset Method Result

Krsul et al. [14] 1997 29 - 88 - - 49 lay,lex C academic Discr. analysis 73%
MacDonell et al. [6] 1999 7 5-114 351 16-1480* 182* 26 lay,lex C++ mixed CBR, NN 88%
Pellin et al. [31] 2000 2 1360-

7900
- - - - synt Java multiple OSSs SVM 73%

Ding et al.[32] 2004 46 4-10 259 200-2000 - 56 lay,lex Java mixed Discr. analysis 67.2%
Frantzeskou et al. [15] 2006 30 4-29* 333* 20-980* 172* 1500 lex Java FreshMeat (OSS) SCAP 96.9%
Frantzeskou et al. [15] 2006 8 6-8 60* 36-258 129 2000 lex Java academic SCAP 88.5%
Frantzeskou et al. [15] 2006 8 4-30 107 23-760 145 1500 lex Java FreshMeat (OSS) SCAP 100%
Kothari et al. [33] 2007 8 - 220 - - 50 lex - academic NaiveBayes 69%
Kothari et al. [33] 2007 12 - 2110 - - 50 lex - multiple OSSs NaiveBayes 61%
Lange et al. [34] 2007 20 3 60 336-

80131*
11166 18 lay,lex Java SourceForge Genetic alg. 55.0%

Elenbogen et al. [16] 2008 12 6-7 83 50-400* 100* 6 lay,lex C++* academic Decision tree 74.70%
Burrows et al. [35] 2009 10 14-26 1597 1-10789 830 325 lex C academic ranking 76.78%
Shevertalov et al. [24] 2009 20 5-300 - - 11166 163 lay,lex Java SourceForge Genetic alg. 54.3%
Bandara et al. [23] 2013 10 28-128 780 28-15052 44620 9 lay,lex Java SourceForge Regression 93.64%
Bandara et al. [23] 2013 9 35-118 520 20-1135 6268 9 lay,lex Java academic Regression 89.62%
Tennyson et al. [17] 2014 15 4-29 7231 1-3265 50 - lex C++,

Java
mixed Bayes

Classifier
98.2%

Caliskan et al. [30] 2015 250 9 2250 68-83 70 120000 lay,lex,synt C++ GCJ RF 98.04%
Caliskan et al. [18] 2015 1600 9 14400 68-83 70 - lay,lex,synt C++ GCJ RF 92.83%
Wisse et al. [36] 2015 34 - - - - 1689 lay,lex,synt JS GitHub SVM 85%
Yang et al. [37] 2017 40 11-712 3022 16-11418 98.63 19 lay,lex,synt Java GitHub PSOBP 91.1%
Alsulami et al. [19] 2017 10 20 200 - - 53 synt C++ GitHub NN 85%
Alsulami et al. [19] 2017 70 10 700 - - 130 synt Python GCJ NN 88.86%
Gull et al. [21] 2017 9 - 153 100-

12000
- 24 lay, lex Java PlanetSource

Code
NaiveBayes 75%

Zhang et al. [22] 2017 53 - 502 - - 6043 lay,lex Java PlanetSource
Code

SVM 83.47%

Dauber et al. [26] 2017 106 150 15900 1-554 4.9 451368 lay,lex, synt C++ GitHub RF 70%
McKnight et al. [25] 2018 525 2-11 1261 27-3791* 336* 265 lay,lex, synt C++ GitHub RF 66.76%
Simko et al. [20] 2018 50 7-61* 805 10-297* 74* - lay,lex, synt C GCJ RF 84.5%*

Abuhamad et al. [38] 2018 8903 7 62321 - 71.53 - lex LO GCJ RNN, RF 92.30%
Ullah et al. [39] 2019 1000 - - - - - lex, CFG LO GCJ NN 99%

- No data
* Data obtained from personal communication
∧ LO: language-oblivious approach

al. [41], Kothari et al. used entropy to identify the fifty
most significant metrics for each author. In all experiments,
the 4-gram frequencies outperformed the other six metrics.
Later, the study by Burrows et al. [27] indicated that this
method [33] outperformed the SCAP method proposed by
Frantzeskou [42].

Studies by MacDonell et al. [6], Ding et al. [32], and
Tennyson et al. [17] used the combination of open source
projects and academic code.

Overall, open source repositories have a clear advantage
of offering a rich and diverse pool of programmers and
source code for experiments. Yet a lack of clear distinction
among programs written by multiple authors presents a
major challenge in attribution analysis.

2.3 GoogleCodeJam data
The majority of recent attribution studies [18], [19], [20] have
used programs developed during the GoogleCodeJam,3 an
annual international coding competition hosted by Google.
Given a set of problems, the contestants are asked to provide
solutions in a restricted time. The availability of statisti-
cal information, such as the popularity of programming
language, contestants’ skill levels, and their nationalities
make data from the GoogleCodeJam especially useful for
authorship profiling. For authorship attribution, use of this
data has been extensively criticized mostly owing to its
artificial setup [26], [29], [30]. The researchers argued the ex-
isting competition setup gives little flexibility to participants

3. https://code.google.com/codejam/

resulting in somewhat artificial and constrained program
code.

Caliskan et al. [18] was the first study to showed
that attribution can be successful on large-scale datasets.
The dataset collected from the GoogleCodeJam competition
included 14,400 files from 1600 authors. Another difference
between Caliskan et al. study and the earlier works is
the composition of their feature set that included lexical,
layout and syntactic features. While the lexical and syntactic
categories accounted for the majority of features, the total
feature set represented 120,000 dimensions. Simko et al. [20]
replicated the Caliskan et al. [18] approach on smaller
dataset. As opposed to the original study [18] that achieved
nearly 99%, Simko et al. was only able to accurately attribute
84.5% samples of 50 authors.

To avoid hand-tuned feature engineering, Alsulami et
al. [19] employed a deep neural networks model that
automatically learned the efficient feature representations of
AST. The authors used Long Short-Term Memory networks
(LSTM) for tree extraction and experimented with several
different classification algorithms. In many respects, Alsu-
lami et al. study is similar to work done by Pellin et al. [31],
who employed AST features for attributing authors using a
tree-based kernel SVM algorithm.

GoogleCodeJam data was also used in adversarial attri-
bution of source code by Quiring et al. [46] and Matyukhina
et al. [47].

4

2.4 GitHub (OSS) data

Given the criticism of constructed datasets , several re-
searchers ventured to collect data “in the wild” [26], [37],
[36], [25]. The majority of them used repositories found on
GitHub4. In addition to the presence of significant noise
in the data (e.g., junk code), the main concern that re-
mained during their analysis was the sole authorship of
the extracted code. Similar to other open-source repositories,
GitHub does not offer reliable facilities to differentiate code
written by multiple authors.

All previous studies focused on attribution of complete
programs. Dauber et al. [26] were the first to analyze short,
incomplete, and sometimes uncompilable fragments (some
samples containing just 1 line of actual code).

GitHub was also the source of data in Yang et al. [37]
study. The majority of lexical and layout metrics employed
in this study were derived from Ding et al. [32] feature set.

The Wisse et al. [36] work focused on identification of
the JavaScript programmers with the aim to identify writers
of web exploit code. Similar to Caliskan et al. [18] study, the
authors used features derived from AST with a combination
of layout and lexical features to describe the coding style of
the author. However, Wisse et al. enriched the AST features
with character and node n-grams instead of adding word
unigram features as it was done in Caliskan et al. [18] study.
Although both methods were language-dependent, many
proposed features can be mapped to other languages.

Looking at adversarial attribution, McKnight et al. [25]
developed a technique to assist programmers in hiding
their coding style and consequently preventing their code
attribution. Similar to Wisse et al. [36] study, the researchers
used node frequencies derived from AST. However, they
further enriched this information with node attributes, iden-
tifiers, and comments. A different approach was taken by
Abuhamad et al. [38]. To avoid uncertainties of feature en-
gineering the authors used deep learning architecture with
a recurrent neural network (RNN). The approach was ex-
plored on several languages (C, C++, Java, Python) and only
leveraged lexical features. With exception of the Caliskan
et al. [18] study, this was the only work that ventured to
attribute authors on a large scale (8,903 authors).

Table 1 gives a summary of all source code attribution
studies that conducted experiments. A quick analysis of
attribution studies shows that in most cases researchers who
used the GoogleCodeJam dataset [18], [20], [19] in their
experiments received much better accuracy in attribution
task than those who chose other data sources. For example,
SourceForge data on average showed much less accuracy
than academic data. While experiments with GitHub data
in almost all cases gave much lower accuracy than with
GoogleCodeJam programs. Such difference in accuracy was
also noted by Dauber et al. [26] and Alsulami et al. [19]. The
authors showed that using the Caliskan et al. [18] method on
the GitHub dataset considerably decreases accuracy, from
96.83% (GoogleCodeJam) to 73% (GitHub) and from 99% to
75.90%, respectively.

Given the considerable variability of data characteristics
of the reviewed studies, it is essential to understand the
factors that influence the attribution results.

4. https://github.com/

Fig. 1. Flow of the analysis with multi-level feature elimination approach

3 METHODOLOGY

Figure 1 illustrates the flow of our analysis that consists
of four stages: preprocessing to reduce duplicated code and
rescale features, feature elimination to reduce noise and select
optimal set of features for analysis, classification, and valida-
tion to evaluate the generalization power of the classification
model and assess its dependency on the features.

3.1 Datasets
In our analysis we used data obtained from the previous
studies, from the GitHub repository and from the Google-
CodeJam programming competition. The details of these
datasets are given in Table 2.

Datasets from previous studies. We requested original
datasets employed by the previous studies and replicated
the analysis on the three sets that we received. These
datasets are Simko et al.[20], Dauber et al. [26] and McK-
night et al.’s [25] studies.

These datasets represent diverse experimental data qual-
ity used in attribution, they are derived from two different
sources: GitHub repository, and textbook programming as-
signments, and include code written in C and C++ program-
ming languages. For discussion purposes, in the rest of this
paper, we will refer to these datasets by the name of the first
author, e.g., the ’McKnight dataset’ will refer to data from
the work by McKnight et al. [25].

GitHub Repository. GitHub, an open-source software
development platform, contains nearly 67 million reposito-
ries. The programs in GitHub are typically more complex,
include third-party libraries, several encodings, use source
code from other authors and focus on solving diverse tasks
(e.g., from game development to middleware).

We collected programs from 2018 to 2020 by using
the Github API. Although it is difficult to guarantee sole

5

authorship of any code posted online, we took reasonable
precautions by filtering repositories marked as forks, as
these are typically copies of other authors repositories and
do not constitute original work. An additional check for
multiple-author repositories was performed by examining
the commit logs. Repositories with logs containing more
than one unique name and email address combination
(potentially indicating an involvement of several authors)
were also excluded. For this analysis, we collected source
code of over 380,000 programs written in Java programming
language from 3905 authors.

We offer our dataset to the research community in the
hope of diversifying and strengthening experiments in this
field 5.

GoogleCodeJam Dataset. Given the extensive criticism
of using data extracted from GoogleCodeJam programming
competition, for our analysis we also assembled a dataset
containing code from the 2008 to 2018 competitions. The
overall dataset contains around 13,000 authors with java
samples. Similar to the previous studies, we use a subset of
GCJ dataset. The extracted dataset contains 25,825 programs
from 1033 authors written in Java programming language.
We refer to it as GCJ dataset.

3.2 Preprocessing

One of the characteristics of datasets that might influence
the results of the analysis is the presence of noise and du-
plicated code. We filter our datasets to remove unparseable
samples, samples with less than 4 characters and authors
with less than 5 samples.

The cleaning of data also includes removal of third-party
data, including shared libraries and duplicated code. The
existence of such third-party code contributes to the amount
of noise in a data which might effectively make the attri-
bution process more challenging [25]. Indeed, third-party
libraries are typically shared among software programs, and
therefore, exhibit a different coding style that might confuse
the attribution process.

On the other hand, duplicate code samples belonging to
the same authors introduce bias in classification (i.e., giving
more weight to repetitive style features) and make the
attribution performance in different deployment environ-
ment unpredictable. The situation becomes more interesting
when code samples are not identical, but slightly different
(we refer to it as common code). This often happens with
code reuse, i.e., software developers commonly reuse code
previously written by them or in some instances by others.
To understand the influence of duplicate and common code
on authorship attribution accuracy, we explore its presence
in our input datasets.

We employ context-based fuzzy hashing to measure the
similarity between programs within one author and be-
tween authors in datasets. We use Context Triggered Piece-
wise Hash (CTPH) approach introduced by Kornblum [48]
that allows to detect identical and partial similarity in code.
The implementation of this approach is known as ssdeep.

5. https://cyberlab.usask.ca/authorattribution.html

As it is illustrated in Figure 2, the percentage of similar-
ity among datasets varies significantly. Dauber and Simko
datasets have the most similarity among the datasets. At
75% threshold only around 40% of code remains in the
Simko dataset. However, Github and GCJ sets show less
similarity as the number of files retained in the dataset after
removing similarities are 89.8% and 99.6%, respectively.
To balance the amount of data available for analysis, we
strategize, i.e., between two authors with a similar file we
remove a file from an author with more available code
samples. This allows us to retain more number of authors
irrespective of the similarity threshold.

In general, a lower threshold leads to less tolerance
towards common code, so more files are removed. The
overall trend in our datasets is stable (except the Simko’s
data) and the amount of removed data for any threshold
above 75% is similar. We thus error on the conservative side,
and retained files with less than 75% of code duplication.
The statistics of the dataset after removing code duplication
is given in Table 2.

3.3 Feature Standardization and Elimination

The majority of the reviewed studies claim to offer unique
sets of features capable of capturing developers’ stylistic
traits. Since the accuracy of attribution changes drastically
depending on the study, we aim to explore the impact of fea-
tures set on attribution and the extent of their contribution
to the final accuracy of the approach.

Our review shows that the existing studies experiment
in source code attribution authorship belong to one of the
following groups: layout, lexical, or syntactical features.

• Layout features refer to format or layout metrics that
describe the appearance of the code (e.g., average
line length, the number of spaces) and the number
of specific characters (e.g., commas, curly brackets).

• Lexical features are divided into the metrics of pro-
gramming style (e.g., author’s preference to use the
short or long name of classes and methods, the type
of branching statements), and the frequency of n-
grams. Style features are programming language de-
pendent, while n-grams features, based on sequences
of n-characters extracted from the source code, are
not.

• Syntactic features represent the code structure that is
resistant to the changes in the code layout. A abstract
syntax tree (AST) is a common way to determine how
a code is structured.

For our analysis, we therefore select the feature sets that
represent these groups.

The first studies in the code authorship attribution pri-
marily experimented with numeric features extracted from
layout and lexical levels. The study by Krsul et al. [14] was
first to publish 49 metrics for C/C++ language. MacDonell
et al. [6] and Gray et al. [49] further improved them by
using ANOVA test to measure features’ significance. Ding
et al. [32] combined and adapted these metrics for the Java
language. Although the authors never provided the final
subset in the original study, this was corrected by the follow-
up study by Burrows et al. [27] which derived a final feature

6

TABLE 2
The employed datasets’ statistics

Dataset Language Num. Au-
thors

Num of
Files

Range
Samples/
Author

Range
LOC

Avg. LOC Range char.
per line

Avg char.
per line

Github Java 3,905 380,732 4-11,889 1- 67,229 170.67 1-173,674 33.41
GoogleGodeJam (GCJ) Java 1,033 25,825 25 30-300 99.13 1-36,871 25.36
McKnight [25] C 676 40,246 6-1,437 1-110,860 336.34 1-76,041 28.28
Dauber (Snippets) [26] C++ 62 201,060 6 - 48,725 3 -17,759 13.98 1 - 15,326 28.77
Simko [20] C 58 2,838 14-366 10-1,256 89.71 1-294 19.31
The datasets’ statistics after preprocessing
Github Java 3,128 173,919 5-3,669 1-67,229 139.84 1-173,674 32.17
GoogleGodeJam (GCJ) Java 1,033 25,723 15 - 25 30-300 99.04 1-36,871 25.36
McKnight [25] C 675 36,854 6-804 1-110,860 345.81 1-76041 28.33
Dauber (Snippets) [26] C++ 38 135,883 5-36,680 4-998 14.5 1-15,326 26.99
Simko [20] C 46 1134 14-70 13-502 93.15 1-241 19.34

Fig. 2. Effects of removing similar code on number of files and authors

set of 56 metrics from the original Ding et al. [32] study.
Lange et al. [34], Gull et al. [21], Elenbogen et al. [16], and
Yang et al. [37] also experimented with Ding et al. [32]
features in their works.

Throughout the evolution of attribution domain, n-gram
features attracted a lot of research interest due to their sim-
plicity and generally good performance [35]. The Kothari
et al. [33] study featured a set of n-grams that was later
leveraged by other researchers (e.g., Bandara et al. [23],
Shevertalov et al. [24], Franzeskou et al. [15], Tennyson et
al. [17], and Zhang et al. [22]).

The final feature set that we selected for experiments is a
set derived by the Caliskan et al. study [18]. This set contains
syntactic features derived from AST along with some layout
and lexical features. Dauber et al. [26], Simko et al. [20], and
McKnight et al. [25] used these features in their studies.

We use three prominent feature sets for evaluation: Ding
et al. [32], Kothari et al. [33], and Caliskan et al. [18].

These selected feature sets are the most prominent in the
history of source code attribution, widely used and are often
seen as benchmark feature sets. In the rest of this work, we
will refer to these sets as the Ding’s, Kothari’s, Caliskan’s
features, respectively.

3.4 Feature selection methods
The goal of feature selection task is to select the subset of
features useful or relevant for building a good classifier.
Depending on the goal, the features might be selected based
on their usefulness to a specific classifier or their overall

ranking irrespective of the algorithm [50]. Since in this work
we experiment with various classification algorithms, we
employ the following feature selection methods:

Standardization. The preliminary analysis of datasets
show that the derived features vary drastically in scale, have
a high percent of missing values, and have features with low
variability. Removing such variation using feature scaling
through standardization is one of the necessary steps that
can remove the bias (i.e, domination of some features) and
allow the classification algorithm to learn properly. Yet this
step is never mentioned in attribution, thus we also train
our classifiers on raw data for comparison. We standardize
features by removing the mean and scaling them to unit
variance.

Variance analysis. Features with low variance (var =
0) should be removed as they are unlikely to contribute to
classification model.

Cross correlation analysis. In addition to variability in
accuracy and scale, the three feature sets employed in our
analysis differ significantly in the number of features. Ding
et al. [32] used discriminant analysis to identify 56 of the best
performing features as a result, the number of features are
constant and does not depend on the size of data. Kothari
et al. [33] selected 50 top features for each author. While,
Caliskan et al. [18] offered a diverse set of features that
depended on the analyzed data. None of the studies offered
a clear analysis of selected features and rationale for their
selection aside from overall method performance.

The preliminary analysis of these features sets revealed

7

co-dependency of some features, e.g., term frequency (TF)
of AST node types and term frequency-inverse document
frequency (TFIDF) of AST node types in the Caliskan’s
feature set. Correlated features are likely to carry redundant
and useless information. We thus venture to conduct corre-
lation analysis to determine the extent to which two or more
features depend on each other.

We calculate Pearson’s correlation coefficient ρ to rep-
resent the statistical relationships between features. The
correlation coefficient ranges from −1 to 1. A positive
correlation indicates that the variables increase or decrease
together, while a negative correlation indicates the inverse
relationship.

LassoLars. Least Absolute Shrinkage and Selection Op-
erator (LASSO) technique is commonly used for high-
dimensional data. LassoLars is a Lasso model implemented
using the Least-angle Regression (LARS) algorithm. The
algorithm attempts to determine features that are the most
correlated with the target. When multiple features have
equal correlation, LassoLars proceeds in a direction equian-
gular between the features [51].

Principle component analysis (PCA), is a widely used
dimensionality reduction technique that detects features
that are statistically significant. Using PCA, we can find a
list of features that express a linear relationship [52].

Information Gain. Among the reviewed studies, infor-
mation gain was the most prevalent method for feature
selection. One of its criticism is that it leads to the selection
of redundant features and similar performance might be
obtained with smaller subset of features [50].

3.5 Classification algorithms

Similar to variability in data characteristics, previous studies
in source code authorship attribution employed various
classification algorithms for attribution analysis including
Random Forest [18], [26], [25], [20], Naive Bayes [33], [21],
Decision tree [16], Neural network [37], [6], [19], Regression
analysis [23], Support vector machines [36], [31], [22] and
Discriminant analysis [14], [32].

The selection of a classification algorithm is typically
driven by the nature of the data and the set of features
employed for analysis. Algorithm selection is also influ-
enced by a number of other characteristics such as the
algorithm’s capability to cope with scarce or voluminous
data and the algorithm’s sensitivity and ability adapt to the
changes. A comprehensive analysis of data should indicate
the effectiveness of an algorithm’s behaviour in a deploy-
ment setting and its ability to produce expected results. Yet
most studies fail to justify their choice of a classification
algorithm. This lack of justification leads to uncertainty
about what algorithms are the most suitable for subtleties
of the code attribution domain.

In our work, we explore performance of 7 classification
algorithms previously employed by code attribution stud-
ies:

Gaussian Naı̈ve Bayes (GNB) is based on Bayes theorem
that assumes an independence between features [53]. Even
though feature independence assumption rarely holds true,
NB models perform surprisingly well in practice [54]. Naı̈ve
Bayes classifiers are fast compared to more sophisticated

methods and require a small amount of training data to
estimate the necessary parameters. The Gaussian Naı̈ve
Bayes classifier is one of its versions that follows a Gaussian
distribution and assumes the presence of data with contin-
uous values which is the case in our datasets.

Neural Network (NN) [55] are a series of algorithms that
mimic the operations of a human brain to detect relation-
ships between high volumes of data. Since neural networks
can have many layers and parameters with non-linearities,
they are very effective at modelling highly complex non-
linear relationships. Neural networks operate well with
large amounts of training data.

Decision Trees (DT) [56] produces a sequence of rules
that can be used to classify the data when a data of features
together with its target are given. The decision tree classifier
is a discriminative model. It can be unstable because small
variations in the data might result in a completely different
tree being generated. There is a high probability for over-
fitting the model if we keep on building the tree to achieve
high purity.

Discriminant Analysis [57] builds a predictive model
for authors’ coding style. The model is composed of dis-
criminant functions based on linear combinations of the
features that provide the best discrimination between the
authors. The functions are generated from a sample of
source code for which author is known; the functions can
then be applied to new source code that have measurements
for the predictor features but have unknown author. This
model assumes that different classes generate data based
on different Gaussian distributions. To train a classifier,
the fitting function estimates the parameters of a Gaussian
distribution for each class and Gaussians for each class are
assumed to share the same co-variance matrix. We employ
a Linear Discriminant Analysis (LDA) version of DA that
provides linear decision boundaries.

Support vector machine(SVM) [58] is a representation
of the training data as points in space separated into cate-
gories by a clear margin that is as wide as possible. Wider
margins mean more informative features. Unclassified data
are mapped into that same space and predicted to belong
to a class based on which side of the gap they fall. There
are four main types of kernel: polynomial, RBF, Sigmoid
and linear. Non-linear models are especially useful when
the data-points are not linearly separable. We use the Linear
SVC implementation of SVM that supports the linear kernel.

Random forest (RF) [59] classifier is an ensemble that
fits a number of decision trees on various sub-samples of
datasets and uses the average to improve the predictive
accuracy of the model. The RF algorithm builds trees from a
sample drawn with replacement from the training set. The
selected split is the best split among a random subset of all
the features. The result of this randomness increases the bias
of the forest, however, due to the averaging, the variance
decreases, which compensates for the increased bias and
generates a better model.

Logistic Regression(LR) [60] is a linear classifier that
predicts probabilities rather than classes. We use a multino-
mial logistic regression classification to calculate the proba-
bility of a source code belonging to an author. The logistic
regression classifier works well for predicting categorical
outcomes. However, it requires that each data point be

8

TABLE 3
The parameters of the classification algorithms

Alg. Parameter Kernel
GNB var smoothing = 1e-9 Non-linear
NN max iter=10000, learning rate=’adaptive’,

solver=’adam’, alpha=1
Non-linear

DT max depth=100 Non-linear
LDA solver=svd, shrinkage=None Linear
SVC kernel=”linear”, C=0.025 Non-linear
RF n estimators=100, min samples split=2,

min samples leaf = 1, max features=”log2”,
criterion=’entropy’

Non-linear

LR penalty=”l2”, max iter=100000, solver=”lbfgs”,
multi class=”multinomial”

Linear

independent, in essence it attempts to predict outcomes
based on a set of independent variables.

Experimental parameters All analysis was implemented
using the Python language (v 3.8.4) with the scikit-learn li-
brary (v 0.23.1). A summary of the classification algorithms’
parameters is given in Table 3. 5-fold cross-validation is
employed to measure the accuracy of the machine learning
model. All experiments were performed on an Ubuntu
server equipped with 384 GB of RAM and 32 CPU cores.

3.6 Permutation Test

As the last step in our analysis, we employ permutation
analysis as a model-agnostic method to estimate the quality
of the reduced feature sets for attribution tasks ”in the wild”.
This test measures how likely a given classifier would obtain
this accuracy with a given set of features by chance. In the
recent years, a number of studies have suggested to employ
the permutation test to assess the performance of the classi-
fier and the significance of the selected features [35], [61].

This technique is based on repeatedly shuffling the val-
ues of each feature in random order and then running a
classification model against the new feature set. If the model
depends on the shuffled feature, then the resulting predic-
tion can cause a higher error, consequently decreasing an
overall accuracy. To measure the importance of the shuffled
features, we employ p-value. The p-value approximates the
probability that the reduced feature’s accuracy would be
obtained by shuffled features (Equation 1).

p− value =
C + 1

npermutations + 1
=

1

101
= 0.0099 (1)

where C is the number of permutations which accuracy is
greater than the reduced feature set’s accuracy.

4 ANALYSIS RESULTS

To examine the impact of the datasets’ characteristics and
related decisions that researchers take during the validation
of code attribution techniques, we perform two sets of ex-
periments. First, we explore the effects of preprocessing and
feature elimination on the accuracy of different classifiers
compared to the baseline evaluation of the selected feature
sets. Second, based on the performance result of different
datasets, we measure the importance of the datasets’ char-
acteristics.

4.1 Baseline evaluation
To create a baseline for our analysis, we apply three selected
feature sets on five datasets. Table 4 shows the obtained re-
sults on these datasets. Due to the scale, Caliskan’s features
cannot be used on any of the datasets except Simko’s data.
This is somewhat expected, as the authors noted that their
approach cannot be used without feature elimination.

As the results show, none of the feature sets can adapt
to the changes in data, which essentially indicates that in
a deployment setting none of the techniques will produce
expected results. Although the accuracy of attribution with
every feature set varies significantly among datasets, the
Kothari features show the highest accuracy across different
datasets. Their originally reported results ranged from 61%
to 69% accuracy. We obtained even higher results on Simko
(99%) and GCJ (97%) datasets. Dings et al. [32] originally ob-
tained attribution accuracy of 67%, we were able to achieve
63% on Simko’s data. As we mentioned earlier, using Github
dataset considerably decreases accuracy for all attribution
approaches. These results provide us a baseline for further
analysis (referred to as BASE).

TABLE 4
The baseline accuracy results

Features Classif. Dataset
Githib GCJ McKnight Dauber Simko

Ding
features

#features 58 58 58 58 58
GNB 1% 24% 2.8% 0.4% 12%
NN 12% 46% 20% 33.5% 46%
DT 23% 43% 31% 36.5% 33%
LR 23% 55% 24% 33% 42%
RF ME 56% 42% 36% 63%
LDA 13% 41% 16% 28% 35%
SVC NC 45% NC 38.5% NC

Caliskan
features

#features 27,932,807 720,478 4,038,601 627,834 36,917
GNB ME ME ME ME 82%
NN ME ME ME ME 87%
DT ME ME ME ME 82%
LR ME ME ME ME 83%
RF ME ME ME ME 85%
LDA ME ME ME ME 2%
SVC ME ME ME ME NC

Kothari
features

#features 2388 760 2007 1065 609
GNB 45% 92% 55% 32% 95%
NN 27% 93% 19% 46% 98%
DT 29% 95% 30% 43% 98%
LR ME 93% 51% 47% 98%
RF ME 97% 52% 47% 98%
LDA NC 83% 36% 39% 99%
SVC NC 90% 31% 36% 29%

NC: models do not converge for the combination of the given features
ME: memory error due to insufficient system memory

4.2 Attribution across Feature Elimination
Cross correlation step is performed on the original feature
sets after standardization. Figure 3 shows the percentage of
correlated features with respect to the cross correlation coef-
ficient threshold. As the results show, all feature sets include
a substantial amount of highly correlated features. Since a
lower threshold leads to more features to be removed, we
choose to retain features with less than 95% correlation.

To understand the impact of various methods, we mea-
sure accuracy of attribution at each step of feature elimi-
nation. The results are presented in Figures 4, 5, 6, 7, 8.
The results after removing common code with SSDEEP are
referred to as RAW, after standardization as STD, after cross-
correlation and variance analysis are labelled as CC, after

9

Fig. 3. Pearson Correlation Analysis on GitHub dataset

LassoLars elimination as LL, after PCA and Information
gain approaches as PCA and IG, respectively. Due to the
massive number of Caliskan’s features, we could not obtain
results for RAW and STD data (even with our significant
computing resources).

There are several aspects that are clearly observable from
the results of our attribution experiments.

First, somewhat expected, but the important outcome
of these experiments is that removing noise, statistically
correlated and unimportant features with certain methods
does not significantly affect the accuracy. The accuracy of
attribution remains consistent for all feature sets for most of
the classifiers.

Tho feature selection methods that negatively influence
accuracy are PCA and IG. LassoLars step significantly
reduces the amount of features for analysis, making the
data more manageable while retaining the same level of
accuracy as previous steps, which is essential for attri-
bution approaches dealing with enormous features sets
such as Caliskan’s features (Table 5). For example, Las-
soLars method reduces the amount of features retaining
only 0.002% of overall features (GitHub data) for Caliskan’s
features. The reduction is less significant for Kothari’s and
Ding’s features as these are initially much smaller sets.

The PCA and IG methods further reduce the number of
features, yet at the expense of accuracy. For example, using
Caliskan’s features we can attribute a code to an author in
GCJ dataset with 61%(RF) on the reduced with LassoLars
method features (326 features), yet, using PCA reduction
(27 features) accuracy drops to only 37% and with IG the
accuracy drops even further. We have conducted additional
experiments that showed that applying IG method after
LassoLars approach before PCA does not result in any
significant improvement in accuracy.

Second, among employed classifiers, Random Forest
performs consistently well across all experiments. Logistic
Regression, Gaussian NB and Neural Network are the sec-
ond best classifiers that perform reasonably good. On the
other hand, Linear Discriminant Analysis and SVC have
unstable and low performance across different elimination
steps.

Third, the feature set matters. The Ding’s features pro-
duce the most stable (feature selection agnostic), yet the least
accurate performance, falling to less than 20% on GitHub
dataset. The Kothari’s features produce the most accurate
results (100% on Simko’s data, 99% on GCJ data). The

Caliskan’s features are most susceptible to the fluctuations
of feature elimination (over 20% difference in accuracy
between LassoLars and PCA feature selection on McKnight
and GCJ data with Random Forest).

It is also interesting to observe the effect of removing
duplicated code (RAW) on the results. Both Ding’s and
Caliskan’s feature sets are sensitive to the removal of com-
mon code among files. The accuracy of Ding’s features dips
from 63% (GCJ data) to over 35% with Simko’s dataset.
However, the accuracy with Kothari’s features remains the
same irrespective of common code removal.

Forth, the accuracy varies depending on the data. Both
the Ding’s and Caliskan’s feature sets produce the lowest
accuracy on GitHub dataset (20% and 5%, respectively).
The highest accuracy is achieved on GCJ (almost 60% with
Ding’s features) and Simko set (almost 80% with Caliskan’s
features).

All feature sets provide consistent, yet low accuracy
results (ranging from 40% to 53%) on the Dauber dataset
that consists of small code snippets. Although the original
study reported accuracy of 70%, we treat this data as an
outlier.

Finally, it should be noted that we were not able to
obtain the results claimed by the studies on any of the
datasets.

On the one hand, our analysis was performed with data
settings different from the ones reported in their original
studies. On the other hand, attribution ”in-the-wild” will
rarely conform to the characteristics of the dataset outlined
in the paper. For example, Caliskan’s study was able to
obtain 98% accuracy on a set of 250 authors with 9 samples
per authors each ranging from 68 to 83 lines of code. None
of the sets used in our analysis comply with these strict
criteria.

4.3 Permutation Test Analysis

Permutation tests was conducted on the reduced set of fea-
tures (i.e., feature set obtained after all feature elimination
steps) on GitHub dataset with Random Forest classifier. The
results are shown in Figure 9. The dashed line represents
accuracy of the reduced feature set is 20.1% with Ding’s fea-
tures, 5.2% with Caliskan’s features, and 58% with Kothari’s
features. The bars depict frequency of accuracy for runs with
permuted features. A p-value was computed to estimate if
the results obtained by shuffling values fall within the range

10

Fig. 4. Feature elimination for Github set

Fig. 5. Feature elimination for GCJ Java set

Fig. 6. Feature elimination for Mcknight set

Fig. 7. Feature elimination for Dauber set

11

Fig. 8. Feature elimination for Simko set

TABLE 5
Percentage of removed features after feature elimination

Features FE
Method

Removed Features (Number of Remaining Features)
Github GCJ McKnight Dauber Simko

Ding
features

RAW 0% (56) 0%(56) 0%(56) 0% (56) 0% (56)
STD 0% (56) 0%(56) 0%(56) 0% (56) 0% (56)
CC 5% (53) 5%(53) 3%(54) 73%(15) 1%(55)
LL 5%(53) 8%(51) 48%(29) 73%(15) 67%(18)
PCA 16%(47) 19%(45) 19%(45) 73%(15) 67%(18)
IG 39%(34) 42%(32) 85%(8) 75%(14) 73%(15)

Caliskan
features

LL 99.9%(706) 99.6%(638) 99.9%(326) 99.9%(211) 99.2%(279)

PCA 99.9%(21) 99.9%(27) 99.9%(29) 99.9%(28) 99.8%(62)
IG 99.9%(21) 99.9%(27) 99.9%(26) 99.9%(16) 99.9%(32)

Kothari
features

RAW 0%(644) 0%(697) 0%(2005) 0%(1028) 0%(494)
STD 0%(644) 0%(697) 0%(2005) 0%(1028) 0%(494)
CC 4%(617) 11%(618) 4%(1924) 11%(905) 31%(337)
LL 6%(600) 13%(606) 16%(1674) 78%(217) 64%(173)
PCA 46%(344) 59%(280) 94%(113) 94%(53) 70%(147)
IG 89%(68) 91%(57) 96%(64) 96%(37) 90%(47)

of values that can be considered as significantly important
within 99% of probability.

The accuracy of the permuted feature set is much lower
than the accuracy of the reduced feature set which indicates
that the reduced feature sets are statistically significant
and randomizing even one of the features decreases the
accuracy drastically. The reduced feature sets are available
for research community 6.

5 IMPACT OF DATASET CHARACTERISTICS ON AT-
TRIBUTION ACCURACY

Our experiments clearly show that using an existing attribu-
tion features on a different data does not reliably guarantee
similar performance. The datasets employed in our exper-
iments vary from the original studies in several aspects:
the number of authors available in the dataset, the number
of code samples per author and thus an overall number
of files, and the number of lines of code in the available
samples. We thus venture to explore the impact of each of
these characteristics on the accuracy of attribution. For our
experiment, we use the Github dataset with the reduced
features sets (after IG step), yet, the experiments with the
reduced sets produced after LassoLars method produce the
same tendencies with a better accuracy. Our goal in this
section is to understand the behavior of feature sets in
different dataset settings.

6. https://cyberlab.usask.ca/authorattribution.html

5.1 How many authors are needed?

Traditionally, author attribution techniques have been ap-
plied to problems where a small set of candidate authors is
known in advance (e.g., plagiarism detection). As the pool
of authors increases, this task becomes more difficult. Indi-
vidual author style has to be unique enough to consistently
distinguish itself from a large number of other potential
authors.

In previous research, the smallest number of authors (2)
was used by Pellin et al. [31]. The majority of the studies
in the field generally have up to 20 authors [6], [15], [33],
[23], [35], [21], [33], [16], [17], [24], [34]. The higher number
of authors is less common, i.e, 29 - 70 authors were used
in [14], [32], [15], [36], [37], [19], [20], [22], 106 authors in [26]
and 525 authors in [25].

The large-scale authorship attribution analysis was ex-
plored only by Caliskan et al. [18] and Abuhamad et al. [38].
Caliskan et al. analysis reached 98% accuracy with a 250
author set, and 93% accuracy with 1,600 authors. However,
a follow-up study by Simko et al. [20] that mirrored [18]
methodology on the same dataset for 5, 20, and 50 authors
received a different result - 100%, 88.2%, and 84.5%, respec-
tively. Abuhamad et al. analysis with 8,903 authors achieved
92%.

In this experiment, we explore the impact of a varying
number of authors. It should be noted that authors and
samples have an inverse relationship in our Github data, i.e.,
a large number of authors only have a few code samples.
To maintain enough author variation for the experiments,
we selected the largest number of samples that exists in
our Github data with the smallest number of authors (10)
and the largest number of authors. As a result, in this
experimental round we use 9 samples that are, on average,
110 lines long. With 9 samples per author we can have up
to 2000 authors. We randomly select 10, 30, 250, 750, 1000,
1500 and 2000 authors from the Github dataset. All reported
results are averaged cross-validated values obtained from 4
runs with random selections of authors.

As it is illustrated in Figure 10, accuracy decreases
dramatically by increasing number of authors up until 250
authors. After that the accuracy decrease is less notice-
able. Increasing number of authors consequently increases
a number of features, as a result, for example, we cannot
attribute authors using Caliskan features with more than
750 authors (a dataset with 2000 authors and 9 sample per

12

Fig. 9. Permutation test analysis

author produces 1,225,774 Caliskan’s features, in compari-
son, the same set has 646 Kothari’s features).

Results: As the pool of authors increases, authorship at-
tribution becomes more difficult. Individual author style has
to be unique enough to consistently distinguish itself from a
large number of other candidate authors. The results show
that attributing a code among 10 authors is straightforward
when using the Random Forest classifier with the Kothari or
Caliskan’s features. Generally, Kothari features discriminate
authors better than other feature sets.

5.2 How long should code samples be?
The length of code samples employed in previous studies
ranged significantly. For example, Burrows et al. [35] used
programs varying from 1 to 10,789 lines of code, Tennyson et
al. [17] took samples ranging from 1 to 3265 lines, Caliskan
et al. [18] worked with samples that fluctuated in size from
68 to 83 lines of code. In forensics and malware analysis,
often only small source code snippets may be available,
thus understanding the impact of code length on attribution
accuracy is critical.

Whether these results were coincidental or a direct result
of a smaller number of lines in considered code samples
is not clear. Our analysis showed that Dauber’s dataset is
highly redundant (Figure 2) and not equally distributed, i.e.,
3,125 programs were one-line samples, 2,171 had from 2 to
9 lines, 445 programs had from 10-99 lines, and 34 samples
had from 100 to 554 lines.

For a fine-grained view, we group our data by code size
into the following subsets: 10 to 50, 51 to 100, 101 to 250, 251
to 500, 501 to 750, 751 to 1000, 1001 to 1500, 1501 to 2000, and
2001 to 4000 LOC. Since the number of lines in code varies,
we fix the number of samples per author to 5 and number
of authors to 15 for each collection to have enough data that
can support higher ranges of lines of code (2001,4000).

Results: As it is illustrated in Figure 11, increasing num-
ber of lines of code has a different impact on attribution
accuracy. There is no detectable increase or decrease trend
on the graphs for neither of the feature sets. Kothari’s
features produce stable and high accuracy. Both Caliskan’s
and Ding’s features have drastically variable performance.
It is should noted that in spite of this variability Ding’s
features achieve lower performance with short code samples
(10-50 LOC) and the highest accuracy with the longest in our
dataset files (4000 LOC).

5.3 How many samples per author are needed?

Since authorship attribution aims to derive a developer’s
coding style, having sufficient data for this analysis becomes
essential. The number of samples used in attribution domain
across the years varied significantly, from 3 [34] and 9
samples [18] to 28-128 [23], and 1,360 - 7,900 samples per
author [31]. In most cases, the selection of programs per
author is driven by data availability. Thus, the question of
”how many samples per author are needed for analysis”
remains. We look into this question through the lens of
the size of samples. Following the practise of our previous
experiments, we randomly select 5, 10, 20, 50, 100, 250, 750,
and 1000 samples from Github dataset. For this experiment,
we fixed the number of authors to 15 with samples with
[1-500] LOC.

Results Attributing a small number of samples is chal-
lenging for all feature sets. Yet after a certain number of
samples is reached the accuracy plateaus for all feature sets
(Figure 12). Kothari’s features produce stable accuracy with
more than 10 samples per author, Caliskan’s features with
more than 20 samples per author, and Ding’s features with
more than 250 code samples per author. This is an important
finding since availability of code samples typically presents
challenges in attribution research.

TABLE 6
The recommended dataset characteristics

Feature set Ding’s fea-
tures

Caliskan’s
features

Kothari’s
features

Num. Authors 10 10 10
LOC [251-500],

[2001-4000]
[251-500] [251-1000]

Num. Samples/ Author 250+ 20+ 10+

5.4 Recommended data characteristics

Table 6 gives a summary of data characteristics that are
most likely to produce the best accuracy results for the three
feature sets. It is interesting to note that some characteristics
are common across all sets, such as 10 authors with samples
containing [251-500] lines of code. If available, then 250
samples per author for all feature sets will achieve the best
accuracy.

In order to verify the recommended parameters, we
generate five subsets of our datasets. Since the Dauber and

13

Fig. 10. Attribution accuracy for varying number of authors

Fig. 11. Attribution accuracy for varying number of lines of code

Fig. 12. Attribution accuracy of varying number of samples per author

Simko datasets have lower LOC in average, we adjust LOC
ranges to the closest available range. Similarly, since 250
samples per author are not available for all datasets, we
use 20 code samples per author with an understanding that
this is not the optimal characteristic when using the Ding’s
features. For this experiment, we use the proposed feature
elimination approach stopping after the LassoLars selection
to avoid a decrease in accuracy that we encountered after
PCA and IG.

The results are presented in Table 7. The obtained at-
tribution accuracy is significantly higher compared to our
baseline results or the results obtained during the feature
elimination experiments.

6 CONCLUSION

Finding a proper dataset for an authorship attribution study
is a challenging task. The researchers often resort to use

an available dataset with all its shortcomings. How these
shortcomings affect the results of attribution is not always
clear.

In this work, we investigated how the quality of dataset
impacts the overall performance of authorship attribution.
This is the first systematic study that offers a practical in-
sight into the performance of the existing attribution studies
and looks into the potential bias that different datasets’
shortcomings may bring. From the series of experiments,
we reached several important conclusions.

As a number of authors increases, attribution becomes
more challenging. Our experiments show that it is straight-
forward to attribute a small number of authors for any fea-
ture set (100% or nearly perfect accuracy using the Caliskan
and the Kothari features). However, increasing the number
of authors results in a visible deterioration in performance.
The most significant decrease in accuracy happens with the

14

TABLE 7
Accuracy with the recommended dataset characteristics

Dataset Characteristics Ding’s features Caliskan’s features Kothari’s features
Dataset #Auth. #Sample/

Author
LOC RF GNB LR NN RF GNB LR NN RF GNB LR NN

Github 10 20 [251-500] 55% 44% 56% 58% 82% 73% 84% 84% 96% 100% 96% 97%
GCJ 10 20 [251-500] 98% 90% 95% 96% 100% 97% 99% 99% 100% 99% 100% 100%
McKnight 10 20 [251-500] 62% 40% 48% 54% 77% 68% 80% 80% 88% 95% 91% 93%
Dauber 10 20 [200-500] 47% 38% 51% 51% 84% 72% 86% 90% 90% 96% 91% 93%
Simko 10 20 [20-502] 49% 36% 48% 45% 88% 77% 88% 88% 100% 97% 98% 96%

Ding’s and the Caliskan’s features. Thus it is important
to understand that an accuracy of attribution will likely
decrease when a large number of authors is present, and
an analysis of a new attribution method should explore a
range of authors.

Large code samples do not translate to better accuracy.
It is equally challenging to accurately attribute small code
snippets (10 to 50 LOC) as it is to attribute longer files (e.g.,
with 1500-2000 LOC). This is an important finding as having
an option of using smaller code samples when data is scarce,
is beneficial.

Attribution with over 250 samples per author does not
result in a corresponding increase in accuracy. Attributing
a small number of samples is challenging, yet once a critical
mass of samples per author is offered, accuracy plateaus.

In a nutshell, part of the results obtained by previous
studies were due to coincidental match between data and
approach, or due to the attribution technique’s tolerance
to dataset imperfections. If appropriate characteristics for
dataset are not selected properly, result are not reliable and
cannot be valid for other datasets.

REFERENCES

[1] L. Prechelt, G. Malpohl, and M. Philippsen, “Finding plagiarisms
among a set of programs with jplag,” J. UCS, vol. 8, no. 11, p. 1016,
2002.

[2] J.-H. Ji, G. Woo, and H.-G. Cho, “A plagiarism detection technique
for java program using bytecode analysis,” in Convergence and
Hybrid Information Technology, 2008. ICCIT’08. Third International
Conference on, vol. 1. IEEE, 2008, pp. 1092–1098.

[3] J. L. Donaldson, A.-M. Lancaster, and P. H. Sposato, “A plagiarism
detection system,” in ACM SIGCSE Bulletin, vol. 13, no. 1. ACM,
1981, pp. 21–25.

[4] M. L. Gavrilova and R. Yampolskiy, “Applying biometric princi-
ples to avatar recognition,” in Transactions on computational science
XII. Springer, 2011, pp. 140–158.

[5] E. H. Spafford and S. A. Weeber, “Software forensics: Can we track
code to its authors?” Computers & Security, vol. 12, no. 6, pp. 585–
595, 1993.

[6] S. G. MacDonell, A. R. Gray, G. MacLennan, and P. J. Sallis,
“Software forensics for discriminating between program authors
using case-based reasoning, feed forward neural networks and
multiple discriminant analysis,” in Proceedings of the 6th Inter-
national Conference on Neural Information Processing (ICONIP’99),
vol. 1. IEEE, 1999, pp. 66–71.

[7] F. Ullah, J. Wang, S. Jabbar, F. Al-Turjman, and M. Alazab, “Source
code authorship attribution using hybrid approach of program
dependence graph and deep learning model,” IEEE Access, vol. 7,
pp. 141 987–141 999, 2019.

[8] S. Afroz, A. C. Islam, A. Stolerman, R. Greenstadt, and D. McCoy,
“Doppelgänger finder: Taking stylometry to the underground,” in
Proceedings of the 2014 IEEE Symposium on Security and Privacy, ser.
SP ’14. USA: IEEE Computer Society, 2014, p. 212226.

[9] S. Alrabaee, P. Shirani, M. Debbabi, and L. Wang, “On the feasibil-
ity of malware authorship attribution,” in International Symposium
on Foundations and Practice of Security. Springer, 2016, pp. 256–272.

[10] R. Chouchane, N. Stakhanova, A. Walenstein, and A. Lakhotia,
“Detecting machine-morphed malware variants via engine attri-
bution,” Journal of Computer Virology and Hacking Techniques, vol. 9,
no. 3, pp. 137–157, 2013.

[11] H. Gonzalez, N. Stakhanova, and A. A. Ghorbani, “Authorship
attribution of android apps,” in Proceedings of the Eighth ACM Con-
ference on Data and Application Security and Privacy, ser. CODASPY
18. New York, NY, USA: Association for Computing Machinery,
2018, p. 277286.

[12] V. Kalgutkar, N. Stakhanova, P. Cook, and A. Matyukhina, “An-
droid authorship attribution through string analysis,” in Proceed-
ings of the 13th International Conference on Availability, Reliability and
Security, ser. ARES 2018. New York, NY, USA: Association for
Computing Machinery, 2018.

[13] V. Kalgutkar, R. Kaur, H. Gonzalez, N. Stakhanova, and
A. Matyukhina, “Code authorship attribution: Methods and chal-
lenges,” ACM Computing Surveys (CSUR), vol. 52, no. 1, pp. 1–36,
2019.

[14] I. Krsul and E. H. Spafford, “Authorship analysis: Identifying the
author of a program,” Computers & Security, vol. 16, no. 3, pp.
233–257, 1997.

[15] G. Frantzeskou, E. Stamatatos, S. Gritzalis, and S. Katsikas,
“Source code author identification based on n-gram author pro-
files,” Artificial Intelligence Applications and Innovations, pp. 508–
515, 2006.

[16] B. S. Elenbogen and N. Seliya, “Detecting outsourced student pro-
gramming assignments,” Journal of Computing Sciences in Colleges,
vol. 23, no. 3, pp. 50–57, 2008.

[17] M. F. Tennyson and F. J. Mitropoulos, “A bayesian ensemble
classifier for source code authorship attribution,” in International
Conference on Similarity Search and Applications. Springer, 2014, pp.
265–276.

[18] A. Caliskan-Islam, R. Harang, A. Liu, A. Narayanan, C. Voss, F. Ya-
maguchi, and R. Greenstadt, “De-anonymizing programmers via
code stylometry,” in 24th USENIX Security Symposium (USENIX
Security), Washington, DC, 2015.

[19] B. Alsulami, E. Dauber, R. Harang, S. Mancoridis, and R. Green-
stadt, “Source code authorship attribution using long short-term
memory based networks,” in European Symposium on Research in
Computer Security. Springer, 2017, pp. 65–82.

[20] L. Simko, L. Zettlemoyer, and T. Kohno, “Recognizing and imi-
tating programmer style: Adversaries in program authorship at-
tribution,” Proceedings on Privacy Enhancing Technologies, vol. 2018,
no. 1, pp. 127–144, 2018.

[21] M. Gull, T. Zia, and M. Ilyas, “Source code author attribution using
authors programming style and code smells,” International Journal
of Intelligent Systems and Applications, 2017.

[22] C. Zhang, S. Wang, J. Wu, and Z. Niu, “Authorship identification
of source codes,” in Asia-Pacific Web (APWeb) and Web-Age Infor-
mation Management (WAIM) Joint Conference on Web and Big Data.
Springer, 2017, pp. 282–296.

[23] U. Bandara and G. Wijayarathna, “Source code author identifi-
cation with unsupervised feature learning,” Pattern Recognition
Letters, vol. 34, no. 3, pp. 330–334, 2013.

[24] M. Shevertalov, J. Kothari, E. Stehle, and S. Mancoridis, “On the
use of discretized source code metrics for author identification,” in
Search Based Software Engineering, 2009 1st International Symposium
on. IEEE, 2009, pp. 69–78.

[25] C. McKnight, “Stylecounsel: Seeing the (random) forest for the
trees in adversarial code stylometry,” Master’s thesis, University
of Waterloo, 2018.

[26] E. Dauber, A. Caliskan-Islam, R. Harang, and R. Greenstadt, “Git

15

blame who?: Stylistic authorship attribution of small, incomplete
source code fragments,” arXiv preprint arXiv:1701.05681, 2017.

[27] S. Burrows, A. L. Uitdenbogerd, and A. Turpin, “Comparing
techniques for authorship attribution of source code,” Software:
Practice and Experience, vol. 44, no. 1, pp. 1–32, 2014.

[28] B. Stein, S. M. zu Eissen, and M. Potthast, “Strategies for re-
trieving plagiarized documents,” in Proceedings of the 30th annual
international ACM SIGIR conference on Research and development in
information retrieval. ACM, 2007, pp. 825–826.

[29] X. Meng and B. P. Miller, “Binary code multi-author identification
in multi-toolchain scenarios,” 2018.

[30] A. Caliskan-Islam, F. Yamaguchi, E. Dauber, R. Harang, K. Rieck,
R. Greenstadt, and A. Narayanan, “When coding style survives
compilation: De-anonymizing programmers from executable bi-
naries,” arXiv preprint arXiv:1512.08546, 2015.

[31] B. N. Pellin, “Using classification techniques to determine source
code authorship,” Department of Computer Science, University of
Wisconsin, 2000.

[32] H. Ding and M. H. Samadzadeh, “Extraction of java program fin-
gerprints for software authorship identification,” Journal of Systems
and Software, vol. 72, no. 1, pp. 49–57, 2004.

[33] J. Kothari, M. Shevertalov, E. Stehle, and S. Mancoridis, “A prob-
abilistic approach to source code authorship identification,” in In-
formation Technology, 2007. ITNG’07. Fourth International Conference
on. IEEE, 2007, pp. 243–248.

[34] R. C. Lange and S. Mancoridis, “Using code metric histograms and
genetic algorithms to perform author identification for software
forensics,” in Proceedings of the 9th annual conference on Genetic and
evolutionary computation. ACM, 2007, pp. 2082–2089.

[35] S. Burrows, A. L. Uitdenbogerd, and A. Turpin, “Application of
information retrieval techniques for source code authorship attri-
bution,” in International Conference on Database Systems for Advanced
Applications. Springer, 2009, pp. 699–713.

[36] W. Wisse and C. Veenman, “Scripting dna: Identifying the
javascript programmer,” Digital Investigation, vol. 15, pp. 61–71,
2015.

[37] X. Yang, G. Xu, Q. Li, Y. Guo, and M. Zhang, “Authorship attri-
bution of source code by using back propagation neural network
based on particle swarm optimization,” PloS one, vol. 12, no. 11, p.
e0187204, 2017.

[38] M. Abuhamad, T. AbuHmed, A. Mohaisen, and D. Nyang, “Large-
scale and language-oblivious code authorship identification,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS 18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 101114.

[39] F. Ullah, J. Wang, S. Jabbar, F. Al-Turjman, and M. Alazab, “Source
code authorship attribution using hybrid approach of program
dependence graph and deep learning model,” IEEE Access, vol. 7,
pp. 141 987–141 999, 2019.

[40] G. Frantzeskou, S. Gritzalis, and S. G. MacDonell, “Source code
authorship analysis for supporting the cybercrime investigation
process,” Handbook of Research on Computational Forensics, Digital
Crime, and Investigation: Methods and Solutions, pp. 470–495, 2004.

[41] G. Frantzeskou, E. Stamatatos, S. Gritzalis, and S. Katsikas, “Effec-
tive identification of source code authors using byte-level informa-
tion,” in Proceedings of the 28th international conference on Software
engineering. ACM, 2006, pp. 893–896.

[42] G. Frantzeskou, E. Stamatatos, S. Gritzalis, C. E. Chaski, and
B. S. Howald, “Identifying authorship by byte-level n-grams: The
source code author profile (scap) method,” International Journal of
Digital Evidence, vol. 6, no. 1, pp. 1–18, 2007.

[43] G. Frantzeskou, S. MacDonell, E. Stamatatos, and S. Gritzalis, “Ex-
amining the significance of high-level programming features in
source code author classification,” Journal of Systems and Software,
vol. 81, no. 3, pp. 447–460, 2008.

[44] G. Frantzeskou, E. Stamatatos, and S. Gritzalis, “Supporting
the cybercrime investigation process: effective discrimination of
source code authors based on byte-level information,” in Inter-
national Conference on E-Business and Telecommunication Networks.
Springer, 2005, pp. 163–173.

[45] G. Frantzeskou, “The source code author profile (scap) method:
An empirical software engineering approach,” Ph.D. dissertation,
PhD thesis, Department of Information and Communication Sys-
tems, University of the Aegean, Mytilene, Greece, 2007.

[46] E. Quiring, A. Maier, and K. Rieck, “Misleading authorship attri-
bution of source code using adversarial learning,” in 28th USENIX

Security Symposium (USENIX Security 19). Santa Clara, CA:
USENIX Association, Aug. 2019, pp. 479–496.

[47] A. Matyukhina, N. Stakhanova, M. Dalla Preda, and C. Perley,
“Adversarial authorship attribution in open-source projects,” in
Proceedings of the Ninth ACM Conference on Data and Application
Security and Privacy, ser. CODASPY 19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 291302.

[48] J. Kornblum, “Identifying almost identical files using context
triggered piecewise hashing,” Digital Investigation, vol. 3, pp. 91
– 97, 2006, the Proceedings of the 6th Annual Digital Forensic
Research Workshop (DFRWS ’06).

[49] A. Gray, S. MacDonell, and P. Sallis, “Software forensics: Extend-
ing authorship analysis techniques to computer programs,” The
Journal of Law and Information Science, 1997.

[50] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of machine learning research, vol. 3, no. Mar, pp.
1157–1182, 2003.

[51] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[52] L. Sirovich and M. Kirby, “Low-dimensional procedure for the
characterization of human faces,” Josa a, vol. 4, no. 3, pp. 519–524,
1987.

[53] T. Bayes, “Lii. an essay towards solving a problem in the doctrine
of chances. by the late rev. mr. bayes, frs communicated by mr.
price, in a letter to john canton, amfr s,” Philosophical transactions
of the Royal Society of London, no. 53, pp. 370–418, 1763.

[54] M. Aly, “Survey on multiclass classification methods,” Neural
Netw, vol. 19, pp. 1–9, 2005.

[55] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas im-
manent in nervous activity,” The bulletin of mathematical biophysics,
vol. 5, no. 4, pp. 115–133, 1943.

[56] L. Breiman, F. Jerome, S. Charles J., and O. R.A., Classification and
regression trees. Wadsworth International Group, 1984.

[57] P. A. Lachenbruch and M. Goldstein, “Discriminant analysis,”
Biometrics, pp. 69–85, 1979.

[58] V. Vapnik, “Pattern recognition using generalized portrait
method,” Automation and remote control, vol. 24, pp. 774–780, 1963.

[59] T. K. Ho, “Random decision forests,” in Proceedings of 3rd interna-
tional conference on document analysis and recognition, vol. 1. IEEE,
1995, pp. 278–282.

[60] D. R. Cox and E. J. Snell, Analysis of binary data. CRC press, 1989,
vol. 32.

[61] A. S. Arefin, R. Vimieiro, C. Riveros, H. Craig, and P. Moscato,
“An information theoretic clustering approach for unveiling au-
thorship affinities in shakespearean era plays and poems,” PloS
one, vol. 9, no. 10, p. e111445, 2014.

Farzaneh Abazari is a Postdoctoral fellow in the
Department of Computer Science at the University
of Saskatchewan, Canada. She received her Ph.D.
in 2018 in Computer Engineering. Her research
interests include authorship attribution, network se-
curity and software analysis.

PLACE
PHOTO
HERE

Enrico Branca is a researcher in the Depart-
ment of Computer Science at the University of
Saskatchewan, Canada. He has been working in
information security for over a decade with experi-
ence in software security, information security man-
agement, and cyber security R&D.

PLACE
PHOTO
HERE

Norah Ridley is a bachelor Student in the De-
partment of Computer Science at University of
Saskatchewan. Her main research interests are
machine learning and security.

Natalia Stakhanova is the Canada Research Chair
in Security and Privacy, and an Associate Professor
at the University of Saskatchewan, Canada.

Mila Dalla Preda is an Associate Professor at the
Department of Computer Science at the University
of Veron, Italy. Her main research interest are for-
mal methods applied to software protection, soft-
ware security, program and malware analysis.

