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Abstract— Robot-aided gait training (RAGT) plays a
crucial role in providing high-dose and high-intensity task-
oriented physical therapy. The human-robot interaction dur-
ing RAGT remains technically challenging. To achieve this
aim, it is necessary to quantify how RAGT impacts brain
activity and motor learning. This work quantifies the neu-
romuscular effect induced by a single RAGT session in
healthy middle-aged individuals. Electromyographic (EMG)
and motion (IMU) data were recorded and processed during
walking trials before and after RAGT. Electroencephalo-
graphic (EEG) data were recorded during rest before and
after the entire walking session. Linear and nonlinear anal-
yses detected changes in the walking pattern, paralleled by
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a modulation of cortical activity in the motor, attentive, and
visual cortices immediately after RAGT. Increases in alpha
and beta EEG spectral power and pattern regularity of the
EEG match the increased regularity of body oscillations
in the frontal plane, and the loss of alternating muscle
activation during the gait cycle, when walking after a RAGT
session. These preliminary results improve the understand-
ing of human-machine interaction mechanisms and motor
learning and may contribute to more efficient exoskeleton
development for assisted walking.

Index Terms— Robot-assisted gait training, motor learn-
ing, robotic rehabilitation, neuroplasticity, EEG, EMG,
human–robot interaction.

I. INTRODUCTION

ASSISTIVE devices, such as robots, support and enhance
human performance and are already part of the industrial

landscape. Assistive and rehabilitative robots have shown an
important uptake in clinical and real world settings in the past
decade, with a more widespread adoption projected in the next
few years [1]. Clinical advantages include high intensity and
high doses of therapeutic exercise. A limiting factor to robot
uptake has been overcome by the introduction of wearable
robots, – i.e., exoskeletons, which provide external support and
integrate force generation of the user. Specifically, exoskele-
tons designed to train and assist gait have the advantage
of allowing the user to walk in an ecological environment.
In rehabilitation, robot-aided overground gait training (RAGT)
can potentially enhance the confidence of users in navigating
the environment, increasing neuroplasticity and strengthening
motor learning [2], [3].

Robotic devices for overground gait rehabilitation allow for
many repetitions of the gait cycle in a weight-bearing position
and provide intense proprioceptive stimulation. It is also worth
highlighting that RAGT relieves physiotherapists of supporting
the user load [4], [5]. RAGT has shown clinical benefits in
neurological diseases [5], [6]. For example, in stroke, people
who undergo RAGT in the subacute stage demonstrate higher
speed and endurance of walking, increased muscle strength,
and a reorganization of the activation timing of lower limb
muscles [5], [6]. What remains unclear is how neuroplasticity
is modulated by RAGT. Compared to the wealth of studies
focusing on clinical outcomes after RAGT, knowledge of
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the neurophysiological phenomena underlying motor recovery
following RAGT interventions remains poor [7]. Although
RAGT induces modifications in cerebral and muscle activity
in stroke survivors [8], [9], [10], [11], indicative of increased
neural activity in the motor and associative areas of the brain,
heterogeneity in the stratification of the participants and the
protocols used limit clear conclusions at this time [12].

In stroke survivors, motor recovery should be paralleled
by restoring cortical motor activity / networks where the
slow rhythms of the affected hemisphere are recovered during
the rehabilitation process [13]. Similarly, gross muscle co-
contraction that affects gait smoothness and the physiological
alternating cycling of stepping observed during hemiplegic gait
may be concurrently addressed [14], [15].

Properly designed rehabilitation programs for gait recovery
in clinical practice must be grounded on neurophysiological
evidence, elucidating the type of neuromuscular reorganization
provided by RAGT. The aim of this research is to identify the
biomechanically-induced modifications on walking features,
muscular activation patterns, and resting-state cortical activity
induced by RAGT in able-bodied individuals. Our final aim is
to investigate the determinants of any modifications observed.
This information could help clarify how exoskeleton training
modulates neuroplasticity and motor learning, and will provide
an important building block required to develop more effi-
cient and user-centered exoskeletons. Observed modifications
induced by RAGT in able-bodied individuals can help inform
the design of rehabilitative, assistive gait devices for people
with neurological impairments.

Our research protocol design addressed the hypothesis that
RAGT induces neuroplasticity and motor learning by: (i) a
shift toward higher frequencies in sensorimotor areas after
exoskeleton training; and (ii) changes in kinematic parameters,
muscle activity, and timing modification of stride-synchronous
pattern of muscle activation after RAGT.

II. MATERIALS AND METHODS

The Materials and Methods section is detailed else-
where [16], but we briefly report the relevant information
hereinafter.

A. Participants
Ten able-bodied volunteers (5/5 M/F; age - median [1st

quartile; 3rd quartile]: 47.1 [45.1; 48.8] years; height: 174.0
[169.3; 181.5] cm; body mass: 74.5 [67.3; 77.5] kg) with no
reported neuro-muscular, cardiovascular, orthopedic or visual
disorders were recruited. Data collection was carried out in
accordance with the principles reported in the Declaration
of Helsinki. The participants read and signed an informed
consent, with full ethical approval granted by an Institutional
Review Board (Treviso, PROGAIT TRAINER, 24.10.19).

B. Robotic Device
Among commercial devices on the market, the EKSO

GT©(EKSObionics Inc., Richmond, CA, USA) consists of
two lower limb supports connected to a torso equipped with
a backpack, containing a battery and control electronics. The
EKSO-user coupling is enabled by straps on the belly, both

legs, and feet. Hip and knee joints are actuated in the sagittal
plane, whereas the ankle has a single degree of freedom in
the sagittal plane to facilitate the user from sitting to standing
and vice versa. All other degrees of freedom are locked.

The EKSO is able to fully assist the user, providing enough
power to perform the steps (Full mode), partially assist the
user (Adaptive mode), considering his/her needs, or not assist
the user (Free mode - where the actuators are off and the
device supports its own weight). For device eligibility and
safety, a user must be able to support his/her body weight using
either a walking frame or crutches, transfer weight laterally
and forward to allow the robot to initiate a forward step.

C. Measurement Systems
Participants were equipped with three wearable devices.

Inertial Measurement Units (IMUs) consisting of a 3D
accelerometer, a 3D gyroscope, and a magnetometer (Wave-
Track Waterproof, Cometa srl, Milan, Italy). An IMU was
placed on the fifth lumbar vertebra to follow the oscillation
of the center of mass (COM) during gait and characterize its
complexity and symmetry [17], [18], [19]. A waist-mounted
IMU also served as a proxy to identify turnings from straight
walking [20]. Two IMUs were placed laterally on the lower
limb shanks to detect foot strike and foot off [21], to segment
both lumbar acceleration and muscle activation signals.

Electromyography (EMG) was collected with a wireless
EMG system (MiniWave Waterproof EMG sensors, Cometa
srl, Milan, Italy) from the vastus lateralis (VL), biceps femoris
(BF), tibialis anterior (TA) and gastrocnemius lateralis (GL)
muscles of both legs [22], [23].

Activity of the Central Nervous System was collected with a
wireless electroencephalographic (EEG) headset with 64 chan-
nels (g.NAUTILUS PRO system, g.tec medical engineering,
Schiedlberg, Austria). An expert researcher identified the
position of Cz based on the 10–20 measurements and gently
scrubbed the scalp before placing the EEG cap and the gel,
to maintain electrode-skin impedance < 40k�. The gel was
applied starting from the reference electrode (on the ear lobe),
then the ground electrode, Cz, and all the other channels.

EEG, IMU and EMG data were collected synchronously
through custom software C, using the g.NEEDACCESS.NET
API (g.tec medical engineering, Schiedlberg, Austria) and
the COMETA.NET API (Cometa srl, Milan, Italy). EEG and
IMU data were collected at 250 Hz, whereas a 2000 Hz
sampling frequency was used for EMG data. To ensure data
synchronization among the three signals, EEG and IMU data
were linearly upsampled to the lowest common multiple (i.e.,
2000 Hz). More detail on this methodology is available in [16].

D. Data Collection Protocol
Each participant was asked to sit in a quiet environment with

eyes open to collect a resting state EEG (pre-walking). The
participants then walked, self-paced, on a 15 m corridor back
and forth; we considered the first 15 m track as the baseline
for the walking features.

Subsequently, they underwent a 30-minute gait training with
an EKSO, mimicking usual clinical practice. The three modes
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Fig. 1. Experimental protocol: (i) Resting state recording pre-walking: A 5-min resting state is recorded on the EEG while the participant is
sitting with her/his eyes open, fixing a point in front of her/him, and slightly opening the mouth to relax facial muscles. (ii) Free-walking recording:
the participant walks at a self-selected pace for 30 m (i.e., one trial: 15 m back and forth along the corridor). (iii) EKSO walking training: The
participant walks with the EKSO device, programmed with the ProStep™ mode with three modalities (10 min each): Bilateral Max Assist mode,
Adaptive Assist mode, Free mode. (iv) Free-walking recording. Three further walking trials (15 m back and forth each) are collected to observe
whether there is a training effect or reestablishment of the baseline gait pattern after the EKSO removal. (v) Resting state recording post-walking:
5-min EEG resting state as in (i) was recorded at the end of the session.

of activation of the EKSO GT were deployed during this
session (Fig. 1) [16].

Following EKSO training and deactivation of the device,
participants again walked in a self-pace back and forth on
the 15 m walkway three times – i.e., six tracks in total.
We analyzed data from the first track traveled immediately
after EKSO training (T1, light orange in Fig. 1) and from the
fifth track as follow-up (T2, light blue in Fig. 1).

Lastly, a resting state EEG was again recorded (post-
walking). The complete data collection procedure is summa-
rized in Fig. 1 and detailed in [16].

E. Signal Processing
IMU data were downsampled from 2 kHz to 250 Hz, their

actual sampling frequency, and then filtered, considering a 2nd

order low-pass Butterworth filter with a cutoff frequency equal
to 6 Hz for the shin-mounted gyroscopes, and a 4th order low-
pass Butterworth filter with a cutoff frequency equal to 10 Hz
for the other IMU signals.

To correct for possible misalignment of the sensor axes
with the global anterior-posterior (AP), medial-lateral (ML)
and vertical (VT – i.e., anti-parallel to gravity) directions
of the body, a roll-pitch correction was estimated using the
waist-mounted accelerometer as inclinometer from the initial
standing condition, while participants are idling ahead of the
“start” command and walk [24].

Turning onset and ending instants were estimated from the
vertical component of the lumbar angular velocity [20], and

only signals gathered from straight walking were retained for
further analysis. Shin-mounted wearables served as a proxy
for foot strikes and foot drops during gait and were used
to calculate the spatiotemporal parameters of gait [21]. Gait
events were used to calculate: the gait cycle duration, defined
as the time interval, in seconds, between two subsequent foot
strikes of the same foot; the step duration, i.e., the time interval
in seconds between a foot strike and the foot strike of the
contralateral foot; and cadence, calculated as the number of
steps performed in a minute of walking. The walking speed
was estimated by dividing the length of the walking track
(15 m) by the time taken to cover that distance, determined
by the gait events detected for the first step and the onset
of the turning at the end of the corridor. In determining the
spatiotemporal parameters of gait (except for average speed)
and for the further analyses, the first and last strides of each
walking 15 m track were discarded as they consisted of
adjustment steps.

Lumbar acceleration in the AP, ML and VT directions
was used to compute indices of overall gait symmetry and
complexity, which we hypothesized would vary between pre-
and post-training sessions.

Symmetry of gait was assessed with the improved Harmonic
Ratio (iHR) [18]. The iHR is defined by relating the power
of intrinsic harmonics (i.e., associated with the symmetric
component of gait) to the total power of the signal for
each stride, allowing a normalized index ranging from 0 (no
symmetry) to 100% (total symmetry).
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Complexity was assessed through Higuchi’s algorithm that
allows two parameters from a procedure that constructs sub-
signals of different lengths from the original signal to be
defined and checks whether subsignal patterns are repeated
at different scales elsewhere in the original signal [25]. The
more complex the signal, the higher the Higuchi’s fractal
dimension (HFD). The second parameter computed from with
Higuchi’s algorithm is the Tortuosity (τℓk ): a measure of
the non-linear oscillatory behavior of the time-series. The
greater the oscillatory components in the signal, the higher
the tortuosity [26], [27], [28], [29]. EMG data were first
filtered with a 4th order band-pass Butterworth filter between
20 and 250 Hz [30], and then segmented stride-by-stride
before further steps. For each muscle, we calculated the signal
amplitudes (RMS) and Center of Activity throughout the gait
cycle (CoA) [31], [32]. The CoA is the first trigonometric
moment of the signal distribution. It has previously been
used to compare muscle activity and timing under different
conditions [32], as identifying all peak activity levels in major
muscle groups may prove unreliable. The CoA was calculated
using circular statistics (i.e., the circ_mean function in the
CircStat Matlab toolbox [31]) on the envelope of the EMG
time series for each muscle (i.e., the rectified and low-pass
filtered (4th order low-pass Butterworth filter, 10 Hz cutoff)
time series), then time normalized on 201 points over each
stride.

The co-contraction index (CCI) was calculated using the
method originally described in [33] to evaluate the relative
level of co-contraction between coupled agonist-antagonist
muscles – i.e., VL-BF and TA-GL. A muscle contracts to pro-
vide action or stabilization to a human joint. As an example,
when the foot hits the ground during walking, the action of
the tibialis anterior prevents the foot from abrupt landing on
the floor. However, an excessive contraction of TA in that gait
phase would lead to an inefficient gait. Similarly, excessive
co-contraction of the tibialis anterior (TA) and the gastroc-
nemius lateralis (GL) would lead to stiffening of the ankle
joint [34], [35], and consequently to loss of fine movement
control [36].

EEG data were zero phase high pass filtered above 1 Hz
through a Butterworth filter of 4th order and then zero phase
low pass filtered below 40 Hz through a Butterworth filter of
4th order avoiding phase distortion. 2-s non-overlapping EEG
epochs were then extracted from the continuous dataset and
individual epochs containing eye blinks and eye movements
were also identified by visual inspection and removed from
further analysis (average percentage of removed epochs: 40%).
Data were cleaned from remaining physiological artifacts
(remaining eye blinks, horizontal and vertical eye movements,
muscle potentials, and other artifacts) through a Principal
Component Analysis (PCA)-informed Independent Compo-
nent Analysis (ICA) algorithm implemented in EEGLAB
(average percentage of components removed: 10%).

We computed the absolute power spectra in the canonical
EEG frequency bands, i.e., delta (1-4) Hz, theta (4-7) Hz,
alpha (8-12) Hz, beta (14-24) Hz: (i) each 2-s EEG epoch
was multiplied by a window function, i.e., Hamming win-
dow; (ii) the periodograms of all modified epochs were then

averaged to estimate the power spectral density of each
condition; (iii) the area under the curve (representing the
power spectral density as a function of the frequency) was
estimated for each EEG frequency band and represented by
topographic maps.

For each EEG time-series in the scalp, both linear and
non-linear features were assessed through Higuchi’s algorithm.
We refer the reader to [37] for further details on the application
of HFD in EEG data. For each EEG time-series in the scalp,
we applied the LAURA algorithm implemented in Cartool
(cartoolcommunity.unige.ch) to calculate the source recon-
struction, taking into account the age of the participants to
calibrate the skull conductivity [38], [39]. The method restricts
the solution space to the gray matter of the brain. The cortex
was then parcellated into 83 brain regions of interest (ROIs).
The dipoles in each ROI were represented with a unique time-
series applying a singular value decomposition [40]. Absolute
power spectra in the canonical EEG frequency bands were
calculated for each ROI to estimate the sources in the cortex
that were responsible for the different topographies in the scalp
pre- and post-walking.

F. Statistical Analysis
All walking features were tested for differences between

the three time points, that is, T0-T1-T2 (Fig. 1) – using a
Friedman test and the Wilcoxon signed rank test paired as
post hoc (pvalue = 0.05). Effect size was calculated as the
Z-statistic divided by the square root of the sample size [41].

To address the potential confounding factor of altered gait
speed on the calculated walking features and muscle activity
at the different time points, multiple linear regression models
between these parameters and walking speed were run.

We performed two-sided, paired samples Wilcoxon signed-
rank tests to compare power spectra and HFD values for each
of the 64 EEG channels and 83 ROIs between pre- and post-
walking trials (Fig. 1). Taking into account the limited sample
size (10 participants), no corrections for multiple comparisons
were made in the hypothesis testing.

III. RESULTS

Due to the exploratory nature of this study and considering
the relatively small sample size, Fig. 2–6 report significance
obtained with Friedman and relevant post-hoc tests (no correc-
tion for multiple comparisons applied). When Friedman pvalue
is not given, post-hoc results should be interpreted as a trend
towards significance, since their relevant effect size was large.
Detailed pvalues and effect sizes obtained for each statistical
test are reported in the Supplemental Materials.

A. IMU Results
The analysis of the gait cycle parameters (Fig. 2) revealed a

slight increase in the duration of the gait cycle between T0 and
T1 (no significance), and a decrease in duration between T1
and T2 (pvalue = 0.0039 for the left side – trend, and pvalue =

0.002 for the right side). Coherent results were obtained for the
stance phase (T0-T1 comparison: without significance; T1-T2:
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Fig. 2. Gait spatiotemporal parameters (that is, walking speed, gait
cycle, stance, swing, cadence) calculated during the first free-walking
track prior to the EKSO training (T0, green) and during the first free-
walking track after the EKSO training (T1, orange) and the 5th track (T2,
light blue). The walking speed was estimated by dividing the length of
the walking track – i.e., 15 m – by the time to cover that distance. The first
column reports values for the left leg whilst the second column reports
values for the right leg. Data are represented through boxplots reporting
the minimum, maximum, sample median, and first and third quartiles.
In each boxplot, p-values are reported for each Wilcoxon signed-rank
test.

pvalue = 0.0039 for the left and right sides, without signif-
icance for the Friedman test) and the duration of the swing
phase (T0-T1 comparison: no significance; T1-T2: pvalue =

0.0059 for the left side). Consistently, cadence (i.e., number
of steps per minute - comparison T1-T2: pvalue = 0.02 for
the left side – trend, and pvalue = 0.0039 for the right side)
and walking speed, estimated considering a 15 m walking path
and the time needed to travel that distance (T0-T1 comparison:
pvalue = 0.019; T1-T2: pvalue = 0.002; T0-T2: without
significance), decreased immediately after EKSO training and

Fig. 3. Nonlinear metrics to quantify gait symmetry (improved Har-
monic Ratio, iHR), complexity (Higuchi’s Fractal Dimension, HFD) and
periodicity (tortuosity, τℓk ) in the anterior-posterior (AP), medial-lateral
(ML), and vertical (VT) directions of the body during walking. Nonlinear
metrics were calculated during the first free-walking track prior to the
EKSO training (T0, green) and during the first free-walking track after
EKSO training (T1, orange) and the 5th track (T2, light blue). pvalues are
reported for each Wilcoxon signed-rank test.

increased after the 5th traveled walking track. No significance
was identified in the comparisons T0-T2.

The symmetry of gait assessed via the iHR in all the
inspected directions (AP, ML, and VT) did not change between
the different time points (Fig. 3). A small trend was obtained
for iHR between T1 and T2 in the AP direction (pvalue =

0.0488), but with a non-significant omnibus Friedman test.
Both Higuchi’s fractal dimension (HFD) and tortuosity (τℓk )
calculated on lumbar acceleration revealed that no substantial
modifications were induced in the gait pattern of the partici-
pants in the AP direction (Fig. 3). A significant difference was
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observed only when comparing τℓk at T1 and T2 (pvalue =

0.0371), again with a non-significant Friedman test. Instead,
the lumbar acceleration was less complex and less rich in
oscillatory components immediately after EKSO training (that
is, comparison T0-T1) in ML (HFD: pvalue = 0.0488; τℓk :
pvalue = 0.0273 – both with non-significant Friedman tests)
and VT directions (HFD: pvalue = 0.0098; τℓk : pvalue =

0.002), with τℓk significant differences also observed between
T1 and T2 in the VT direction (pvalue = 0.002). See the
Supplemental Materials for pvalue and the effect size obtained
for each comparison.

B. EMG Results
EMG data revealed a few statistically significant differences

and some trends toward significance. In particular, the Root
Mean Square (RMS, Fig. 4) increased between T1 and T2 for
left BF (pvalue = 0.02) and right BF (pvalue = 0.014; with
a significant Friedman test: p = 0.045), left GL (pvalue =

0.049) and right TA (pvalue = 0.014). A trend towards
significantly increased RMS was also detected for the right
GL between T0 and T1 (pvalue = 0.027).

The Center of Activity (CoA) of the TA increased between
T0 and T1 (pvalue = 0.037) and between T0 and T2 (pvalue =

0.02), with a positive Friedman test (pvalue = 0.0383). This
trend was also observed for the other muscle groups, though
not significantly (Fig. 5A). Fig. 5B depicts the polar plots of
the CoAs over the gait cycle percentage, clearly showing the
reorganization of muscle activity in terms of timing between
pre- and post-EKSO training. In particular, differences in
muscle activity are observed in the gait cycle when comparing
T0 with T1 and T2, in particular for the TA and GL muscles
bilaterally (Fig. 5). No significant changes were observed
between T1 and T2.

Co-contraction, as evaluated by the co-contraction index
(CCI, Fig. 6), increased generally between pre and post EKSO
training, with a significant difference obtained for the muscles
of the right ankle (CCIT A−GL – Friedman test: pvalue =

0.0383; T0-T1 and T0-T2 comparisons: pvalue = 0.0098).
Power of statistical results was generally small or moderate,

however large effect sizes were obtained for those comparisons
that returned significant differences (and a few additional
comparisons on CoA). See the Supplemental Materials for
detailed pvalue and effect size.

C. Walking Features and Muscular Activity Correlation
With Walking Speed

The Supplemental Materials reports detailed results of the
linear regression models run between each calculated walking
feature and muscular activity parameter and the walking speed,
with relevant R2 and pvalues . These results highlight generally
poor correlations, with a few statistically significace: i.e., RMS
of the right BF, right TA and left GL; CCI of left VL-BF and
TA-GL; CoA of the left TA; and HFD of lumbar acceleration
in the AP direction (p < 0.05 and 0.40 < R2 < 0.54).

D. EEG Results
EEG power spectra changes following exoskeleton train-

ing (i.e., post-walking trial) reached statistical significance

Fig. 4. Root Mean Square (RMS) calculated on electromyographic
signals collected in the vastus lateralis (VL), biceps femoris (BF), tibialis
anterior (TA), and gastrocnemius lateralis (GL) of both legs. RMS and
CoA were calculated during the first free-walking track prior to the EKSO
training (T0, green) and during the first free-walking track after the EKSO
training (T1, orange) and the 5th track (T2, light blue). The first column
reports values for the left leg while the second column reports values for
the right leg. pvalues are reported for each Wilcoxon signed-rank test.

(Fig. 7). During the 5-min pre-walking resting state recording
(Fig. 7 (a-d)), as expected in a relaxed, stable, and comfortable
state, the largest amplitudes in the alpha frequency range were
evident in the parietal and occipital regions and the smallest in
the frontal region, Fig. 7 (c). A significant statistical difference
in spectral power was observed between EEG recordings
pre- and post-walking trials in the sensorimotor brain areas,
in both alpha and beta frequency bands Fig. 7 (m, n). Here,
the average spectral power in alpha and beta increased after the
exoskeleton training, Fig. 7 (g, h). In the lower EEG rhythms,
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Fig. 5. Coefficient of Activity (CoA), presented as Boxplot (A) and Polar plots (B), of vastus lateralis (VL), biceps femoris (BF), tibialis anterior (TA),
and gastrocnemius lateralis (GL) of both legs over the percentage of the gait cycle. (A) The first column reports values for the left leg, while the
second column reports values for the right leg. pvalues are reported for each Wilcoxon signed-rank test. (B) The radius of the polar sector is oriented
as the mean CoA among participants; its length refers to the mean RMS, while its width refers to the mean angular standard deviation of CoA
among participants. CoA was calculated during the first free-walking track before the EKSO training (T0, green) and during the first free-walking
track after the EKSO training (T1, orange) and the fifth track (T2, light blue).

i.e., delta and theta, widespread differences between pre-
Fig. 7 (a, b) and post-walking Fig. 7 (e, f) were not observed
in Fig. 7 (i, l). These results are consistent with the increase in
electrical source spectral power of: (a) Left Superior Parietal
and Right Paracentral brain areas in delta frequency band;
(b) Left and Right Rostral Anterior Cingulate and Right
Enthorinal in theta frequency band; (c) Left Paracentral; Left
Superior Parietal; Left and Right Precuneus; Right Lingual

and Cuneus in alpha frequency band; (d) Left and Right
Superior Parietal; Left Paracentral and Right Precuneus in beta
frequency band, Fig. 8.

The complementary information resulted from nonlinear
analysis, Fig. 9 (c), reports an increase in the regularity of
EEG patterns in the parietal and occipital brain regions, i.e.,
HFD decreased in the post-walking trial, Fig. 9 (b), compared
to pre-walking state, Fig. 9 (a).
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Fig. 6. Co-Contraction Index (CCI) calculated on electromyographical
signals collected in antagonist muscles of the upper leg (vastus lateralis
(VL) and biceps femoris (BF)), and lower leg (tibialis anterior (TA) and
gastrocnemius lateralis (GL)) of both sides. CCI was calculated during
the first free-walking track before the EKSO training (T0, green) and
during the first free-walking track after the EKSO training (T1, orange)
and the 5th track (T2, light blue). The first column reports values for the
left leg, while the second column reports values for the right leg. pvalues
are reported for each Wilcoxon signed-rank test.

Fig. 7. Topography of the averaged value between partici-
pants in the power spectra (µV2) in the canonical EEG frequency
bands – i.e., (a, e) delta (1-4) Hz; (b, f) theta (4-7) Hz; (c, g) alpha
(8-12) Hz; (d, h) beta (14-24) Hz – (a, b, c, d) pre and (e, f, g, h) post-
walking. (i, l, m, n) Statistical maps reporting the p-value of the statis-
tically significant difference between the differences in the EEG power
spectra in each frequency band, assessed by a two-sided sign-test.

IV. DISCUSSION

Our knowledge of human-robot interaction, particularly
in the context of robot-assisted walking, remains limited.
Therefore, the aim of this exploratory study was to provide
a granular description of the muscular and cortical modifica-
tions induced by a single session of RAGT in able-bodied
individuals. This knowledge is imperative as a foundation to
design assistive and rehabilitation robotic devices.

Fig. 8. Averaged values (between participants) of the difference in
power spectra in the source domain between post- and pre-walking trials
in the canonical frequency bands. Only values that statistically resulted
significant are reported: (a) Left Superior Parietal and Right Paracentral
brain areas in delta band; (b) Left and Right Rostral Anterior Cingulate
and Right Enthorinal in theta; (c) Left Paracentral; Left Superior Parietal;
Left and Right Precuneus; Right Lingual and Cuneus in alpha; (d) Left
and Right Superior Parietal; Left Paracentral and Right Precuneus in
beta. The dimension and color of the node (centered on each ROI)
identify the value of the power difference ((µA/mm3)2) of the recon-
structed source waveforms under the two conditions. Brain networks
were visualized with the BrainNet Viewer [42].

Fig. 9. Topography of the average value between participants of
the Fractal Dimension (HFD) of Higuchi (a) pre- and (b) post-walking.
(c) Statistical map reporting the p-value of the statistical significant
difference between HFD differences between pre and post, assessed
by two-sided sign-test.

In our experiment, sensorimotor rhythms, namely alpha and
beta, increased at the end of the training session, a finding
mirrored by an increase in EEG signal regularity measured
with Higuchi’s fractal dimension (HFD). Similarly, HFD and
tortuosity (τℓk ), calculated on IMUs signal, showed a lower
complexity (i.e., higher regularity) of the lumbar acceleration
in the mediolateral and vertical directions after EKSO training.
These changes in kinematics suggest a modulation of self-
paced overground walking towards a more periodic pattern.
This could be a carryover effect. EMG signal analysis high-
lighted a higher activation of a subset of lower limb muscles
and a loss of the physiological sequential timing of activation
throughout the gait cycle. Although only a few significances
for CoA were obtained at different time points (i.e., T0-T1-T2)
for the left and right lower limbs, statistics returned small to
moderate power for the majority of our comparisons at T0-T1
and T0-T2 for RMSs, CoAs and CCIs (see Supplemental
Materials). This suggests that a larger sample size would
help generalize the results, and possibly support finding more
significant differences where only a trend can currently be
observed.

These modulations in neurophysiological and motor pat-
terns could be a manifestation of motor learning. Indeed,
although the walking speed is known to affect walking fea-
tures, correlation of speed with the other walking features
and muscular activity parameters was poor (p < 0.05 and
0.40 < R2 < 0.54), thus not explaining the differences
among the results. RAGT may have acted as a motor priming,
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i.e., a non-conscious learning process which occurs when
the exposure to a first stimulus changes the response to a
subsequent stimulus [43].

The observed modifications could reflect pure motor learn-
ing, with strong extrinsic feedback provided by the mechanical
constraint [44] over a limited timescale. We observed an
increase in the activity of the frontal midline theta (FMT),
located at the source level in Left and Right Rostral Anterior
Cingulate and Right Enthorinal after robotic gait training.
In cognitive control tasks, FMT oscillations (4–8 Hz) are
frequent [45]. FMT oscillations have been associated with
cognitive effort [46], described as the strain of continuously
summoning cognitive control.

Our data suggest an increased cognitive effort induced
by RAGT. This may have been expected, in part, since all
participants were naive to the device. Quantification of this
induced mental workload might increase the effectiveness of
training, allowing the intensity of the training to be adapted to
a level that promotes motor learning [47] without challenging
the subject to a non-efficient level of physical and mental
exertion in a known trade-off. In fact, motor learning has been
shown to be promoted by cognitively challenging, though not
distressing, tasks [47]. Despite an increased interest in this
topic, to our knowledge up to now only a few studies, based on
prosthetics, focused on changes in brain activity (i.e., change
in spectral power of the alpha and theta bands) related to
cognitive load [48] during gait training. Brain activity reflects
purely cognitive effort and is therefore considered a more
appropriate physiological measure to quantify this aspect of
training during RAGT.

Another finding we observed in this study was an increase
in alpha rhythm in the occipital areas. This activity might be
interpreted as increased visual activation due to the complex
spatial navigation task of exoskeleton overground training.
This additional cortical activation, while adding to the cogni-
tive effort, stresses also a particular advantage of exoskeleton
gait training among RAGT technologies, where training takes
place in an ecological environment and provides an enriched
rehabilitation experience that is not limited to a treadmill.

Our findings must be interpreted considering a few lim-
itations. This study did not include subjective measures of
cognitive and physical exertion associated with self-selected
overground walking and RAGT. This aim was beyond the
scope of our study when we designed the protocol. There is a
lack of standardized tools for these assessments, which would
have made these evaluations challenging. Standardized agree-
ment on core outcomes and additional research is required in
this field. Another limitation, given the exploratory nature of
the study, is the small sample size, which provided significant
results.

The idea behind this research was to study what mech-
anisms are induced in able-bodied subjects with the use
of a RAGT device. Furthermore, differently from what is
proposed in this study, considering only one activation mode
for the RAGT device could help to further distinguish which
mode of use should be preferred to specifically treat differ-
ent medical conditions. Another limitation may be the rela-
tively short follow-up, which hinders us from quantification

of the duration of the short-term plasticity after-effects
of RAGT.

V. CONCLUSION

Our data provide evidence of a priming and motor learning
effect achieved in a single session of robotic gait training. The
gait pattern of overground-free walking immediately after a
RAGT session is characterized by an increase in regularity and
periodicity in the frontal plane, paralleled by greater activation
and a loss of sequential physiological timing of the lower
leg muscles during the gait cycle. These features probably
represent a carryover effect of robotic gait, which diminishes
within a few minutes after RAGT.

These data prevent us from any speculation on the possible
neuromuscular induced activation in neurological populations.
These preliminary findings point to overlooked aspects of
robotic gait training. It appears that physiological corticospinal
activity after overground free gait in able-bodied subjects
cannot be compared with that obtained after robotic training
in the same sample. This observation stresses the need to build
repositories of neurophysiological and kinematic data recorded
during RAGT to be used as reference data for clinical studies.
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