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Abstract: Background: Diabetic retinopathy (DR) is a prevalent microvascular complication of
diabetes mellitus, and early detection is crucial for effective management. Metabolomics profiling
has emerged as a promising approach for identifying potential biomarkers associated with DR
progression. This study aimed to develop a hybrid explainable artificial intelligence (XAI) model for
targeted metabolomics analysis of patients with DR, utilizing a focused approach to identify specific
metabolites exhibiting varying concentrations among individuals without DR (NDR), those with
non-proliferative DR (NPDR), and individuals with proliferative DR (PDR) who have type 2 diabetes
mellitus (T2DM). Methods: A total of 317 T2DM patients, including 143 NDR, 123 NPDR, and
51 PDR cases, were included in the study. Serum samples underwent targeted metabolomics analysis
using liquid chromatography and mass spectrometry. Several machine learning models, including
Support Vector Machines (SVC), Random Forest (RF), Decision Tree (DT), Logistic Regression (LR),
and Multilayer Perceptrons (MLP), were implemented as solo models and in a two-stage ensemble
hybrid approach. The models were trained and validated using 10-fold cross-validation. SHapley
Additive exPlanations (SHAP) were employed to interpret the contributions of each feature to the
model predictions. Statistical analyses were conducted using the Shapiro–Wilk test for normality, the
Kruskal–Wallis H test for group differences, and the Mann–Whitney U test with Bonferroni correction
for post-hoc comparisons. Results: The hybrid SVC + MLP model achieved the highest performance,
with an accuracy of 89.58%, a precision of 87.18%, an F1-score of 88.20%, and an F-beta score of
87.55%. SHAP analysis revealed that glucose, glycine, and age were consistently important features
across all DR classes, while creatinine and various phosphatidylcholines exhibited higher importance
in the PDR class, suggesting their potential as biomarkers for severe DR. Conclusion: The hybrid XAI
models, particularly the SVC + MLP ensemble, demonstrated superior performance in predicting
DR progression compared to solo models. The application of SHAP facilitates the interpretation
of feature importance, providing valuable insights into the metabolic and physiological markers
associated with different stages of DR. These findings highlight the potential of hybrid XAI models
combined with explainable techniques for early detection, targeted interventions, and personalized
treatment strategies in DR management.

Keywords: diabetic retinopathy; targeted metabolomics; hybrid explainable artificial intelligence;
explainable deep learning; biomarkers

1. Introduction

Diabetic retinopathy (DR) is a common microvascular complication of diabetes melli-
tus (DM) and a leading cause of vision loss in diabetic patients [1]. DR is associated with
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multiple risk factors, including hyperglycemia, hyperlipidemia, hypertension, and genetic
factors [2]. DR can be classified into two distinct stages: non-proliferative DR (NPDR) and
proliferative DR (PDR), based on the presence or absence of neovascularization [3]. A major
complication of diabetes is DR, which damages the retina and can cause blindness. Leakage,
hemorrhage, and irregular vessel development are all symptoms that can be caused by
high blood sugar levels, which can also alter the blood vessels in the retina. Early detec-
tion is essential for efficient management of disaster recovery, which continues through
the stages. It is possible to avoid DR or reduce its growth by maintaining the effective
management of diabetes through diet, exercise, and medication. It may be necessary to
undergo laser therapy or surgery in more severe situations to safeguard one’s eyesight.
To prevent diabetes patients from experiencing vision loss, it is necessary to participate in
early diagnosis and vigorous care [4]. Epidemiological studies have identified several risk
factors associated with the development and progression of DR, including a higher body
mass index, a higher waist-to-hip ratio, smoking, congestive heart failure, chronic renal
disease, hypertension, and poor glycemic control. The prevalence of DR varies depending
on the population and type of diabetes, with rates ranging from 5.67% in prediabetes to
41.1% in diabetes patients at tertiary care centers. Risk factors implicated across various
populations and diabetes types include obesity, hypertension, longer diabetes duration,
insulin therapy, neuropathy, nephropathy, and dyslipidemia [5,6].

Current DR treatment strategies focus on preventing its progression and managing
complications to preserve vision. Glycemic control is key, as maintaining optimal blood
glucose levels can significantly reduce the risk of developing DR and slow its progression.
Anti-VEGF (Vascular Endothelial Growth Factor) therapy with repeated doses of drugs such
as ranibizumab and aflibcept can reduce diabetic macular edema by reducing inflammation
and preventing abnormal blood vessel growth used to treat edema (DME) and proliferative
diabetic retinopathy (PDR). Laser photocoagulation, which masks leaky blood vessels and
reduces the risk of severe loss, remains the mainstay of therapy, especially for PDR and focal
DME. Intravitreal steroids, such as triamcinolone acetonide, are especially useful and anti-
VEGF is used to reduce inflammation in non-clinical cases. In advanced PDR, vitrectomy
surgery may be required to eliminate vitreous hemorrhage or tractional retinal detachment
and restore normal retinal anatomy and function. Several advanced methods are available
for detecting and monitoring retinal changes in the diagnosis of DR. Ophthalmology using
direct and indirect techniques allows physicians to visualize the retina and detect symptoms
such as microaneurysms, bleeding, and exudation. Fundus imaging provides detailed,
useful visualization of the retina for recording and tracking DR progress, and is commonly
used in assessment programs [7,8].

Metabolomics profiling, which involves the comprehensive quantitative analysis of
small-molecule metabolites in biological specimens like blood and urine, has advanced
significantly in recent years [9]. The metabolic phenotype reflects the intricate interplay be-
tween genetic and environmental factors and provides valuable insights into the pathophys-
iological conditions of various diseases, including DR [10]. Several large-scale metabolomics
profiling studies have been conducted to identify metabolites associated with disease pro-
gression, particularly in DR. However, there is still a need to identify additional metabolites
that could serve as reliable biomarkers for DR progression and aid in the early treatment
and prevention of diabetic complications [11]. Additionally, targeted metabolomics was
employed to analyze the metabolome data of DR patients, revealing significant differences
in the concentrations of specific metabolites among non-DR, NPDR, and PDR type 2 DM
(T2DM) patients. This approach provides valuable insights into the metabolic changes
associated with different stages of DR in diabetic individuals [12].

Hybrid explainable artificial intelligence (XAI) refers to the merging of several AI
methodologies or models to boost performance. Hybridity is more prominent in AI research
because of the various needs of the scientific, public, and commercial sectors. A study
focused on mask-wearing status employed a mixture of convolutional neural networks,
including SqueezeNet, InceptionV3, VGG16, and VGG19, together with several machine
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learning (ML) models, to develop hybrid models for classification, achieving excellent
accuracy [13].

In the present study, we propose a methodology that integrates a hybrid AI model and
XAI approaches for early diagnosis and determination of metabolomic biomarkers of DR in
patients with T2DM. Unlike existing methods that usually rely solely on clinical parameters
or traditional imaging techniques, our approach integrates advanced machine learning
algorithms to identify specific metabolites with varying concentrations among individuals
with NDR, NPDR, and PDR. This research attempts to uncover distinct biochemical signa-
tures related to different subclasses of DR, providing important molecular-level insights
into disease etiology and development. Our study integrates various learning algorithms
with a hybrid innovative approach to increase prediction accuracy and sensitivity, and this
methodology provides a more robust and reliable tool for clinical decision-making in DR.
This innovative methodology may enable the establishment of tailored treatment strategies
and more successful screening procedures for DR.

2. Material and Methods
2.1. Study Participants and Selection Criteria

This study conducted a cross-sectional analysis of a cohort of 317 individuals diag-
nosed with T2DM. The objective was to investigate the blood biomarkers that may be
linked to DR. The research group was divided into several groups based on the severity of
DR. It included 143 patients with NDR, 123 patients with NPDR, and 51 patients with PDR.
The diagnoses were carefully verified by thorough dilated fundus examinations performed
by an expert in retinal diseases, guaranteeing the accuracy of the classifications for diabetic
retinopathy. The reliability of the results can be considered high due to the thoroughness of
the dilated fundus examinations, the expertise of the retinal specialist, and the systematic
approach to obtaining and preserving serum samples at −80 ◦C. Systematically, serum
samples were obtained from all participants, including individuals diagnosed with DR
and those without, to examine possible disparities in biomarkers that may be associated
with the advancement of DR. The samples were promptly kept at a temperature of −80 ◦C
to maintain their integrity, following the most rigorous standards of biological sample
preservation. The investigation was done with rigorous adherence to ethical norms [14].
MetSizeR was used to determine the necessary sample size for this investigation using the
PPCA model and a false discovery rate of 0.05. With a minimum of 14 patients in each
group, an estimated total sample size of at least 42 patients was obtained. The sample size
was higher than that predicted by MetSizeR [15], a method used to estimate sample size
in metabolomics investigations, despite the challenge of finding patients who fulfilled the
study’s inclusion criteria.

Inclusion Criteria
T2DM Diagnosis: To participate, participants had to have a verified T2DM diagnosis.
Participants must be adults between the ages of 18 and 75.
Classification of Diabetic Retinopathy: Participants were classified using comprehensive
dilated fundus exams into one of the following groups: Diabetic Retinopathy Absent;
Not Proliferative Diabetic Eye Disease; and Growth-oriented Diabetic Eye Disease. For a
participant to take part in the research, written informed consent was required.
Exclusion Criteria
Individuals suffering from other retinal conditions, such as age-related macular degenera-
tion or retinal vein occlusion, were not allowed to participate in this study.
Severe Systemic Illness: Research participants who may have a significant impact on the
study’s results, such as cancer or severe cardiovascular problems, were disqualified.
History of Ocular Surgery: Those who have had eye surgery performed within the last year
(apart from cataract surgery) were not allowed to participate.
Pregnancy: Because pregnancy may have confounding effects on metabolic profiles, women
who were pregnant were not allowed to participate.
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Incapacity to Give Informed Consent: Individuals who, for whatever reason, were in-
capable of giving informed consent because of cognitive impairments were not allowed
to participate.

2.2. Metabolomics Profiling

Serum samples from T2DM patients underwent analysis using a targeted metabolomics
approach. Liquid chromatography (LC) and flow-injection analysis (FIA)–mass spectrome-
try (MS) were conducted using the AbsoluteIDQ1 p180 Kit from BIOCRATES Life Sciences
AG, Innsbruck, Austria. Quality control measures were implemented to select metabolites
for further analysis based on significant differences in their concentrations among the
different patient groups. The serum samples were analyzed using the API 4000 QTRAP
LC/MS/MS system (Applied Biosystems, Foster City, CA, USA) and the Agilent 1200 HPLC
system (Agilent Technologies, Santa Clara, CA, USA) following standard protocols. Cali-
bration standards and quality controls were established using the AbsoluteIDQ1 p180 Kit,
and data quality checks were performed to ensure accurate metabolite concentrations. A
total of 122 metabolites meeting the quality control criteria were selected for subsequent
statistical analyses [14].

2.3. Stages of an Explainable Deep Learning Model
2.3.1. Data Collection and Preparation

In this study, the T2DM dataset, which has 317 samples from three different classes,
was used to train and test ML models. Upon examining the dataset, it was noted that there
were some missing values. The missing values in the dataset were addressed by calculating
the average of the complete data within the relevant column [16].

2.3.2. Model Selection

A neural network architecture suitable for structured clinical data, such as multilayer
perceptrons (MLP), was chosen for the targeted task. These models were capable of
efficiently handling high-dimensional data and complex relationships between features.
In this study, the deep MLP model with four hidden layers was compared with classical
machine learning models such as Support Vector Machines (SVC), Random Forest (RF),
Decision Tree (DT), and Logistic Regression (LR). In addition to this, a two-stage ensemble
model was proposed. In the first stage of this model, SVC was trained as a classifier
to compute prediction probability. In the second stage of the model, these prediction
probability scores were used as extra features, and several other machine learning models
such as MLP, RF, DT, and LR were trained [17]. One of the aims of the study is to compare
traditional models with artificial neural network models. Therefore, traditional machine
learning models, which are frequently used in the literature and have achieved successful
results in many problems, were chosen in this study. The architecture of the proposed
ensemble model is shown in Figure 1.

The first stage of the model aims to compute the prediction probability of all samples
in the training dataset. To achieve this goal, 2-fold cross-validation was employed in the
initial phase of the proposed model to prevent overfitting. The SVC model was trained
using the first fold of the training dataset to compute the prediction probability of the
second fold, and conversely, another SVC model was trained using the second fold of the
training dataset to compute the prediction probability of the first fold. After calculating
the prediction probability of the training dataset, the features were concatenated, and a
second model was trained to determine the final class of samples. In the second phase,
MLP, RF, DT, and LR models were trained separately. In this study, 10-fold cross-validation
was implemented instead of the holdout method; therefore, this process was applied
individually for each fold of the dataset [17].
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Figure 1. This figure illustrates the architecture of the proposed two-stage ensemble hybrid model
used in the study [The first stage involves training a Support Vector Classifier (SVC) on the dataset
using 2-fold cross-validation to compute prediction probabilities. These probabilities are then used as
additional features for the second stage, where several other machine learning models (Multilayer
Perceptron (MLP), Random Forest (RF), Decision Tree (DT), and Logistic Regression (LR)) are trained.
This two-stage process aims to enhance prediction accuracy by leveraging the strengths of multiple
learning algorithms].

2.3.3. Model Training and Validation

The model was trained using all of the features, employing techniques such as cross-
validation to optimize model parameters and prevent overfitting. For this purpose, 10-
fold cross-validation was used to assess the performance of our models. A separate
hyper-parameter optimization process was applied for each fold using a random search
technique. An inner 3-fold cross-validation approach was used while optimizing the
hyper-parameters of each fold. For this purpose, the number of neurons in hidden layers,
learning rate, and number of epochs in MLP models; maximum depth and criterion in
DT models; C and gamma values in SVC models; number of estimators, maximum depth,
and minimum samples split in RF models; C value and maximum iteration in LR models
were optimized. The scikit-learn library, available in Python, was used for cross-validation,
hyperparameter optimization, and the implementation of machine learning models in this
study. Detailed information related to the optimum hyperparameters for each fold were
given in a Supplementary File (Tables S1 and S2) [18].

2.3.4. Explainability Integration

SHAP (SHapley Additive exPlanations) is a robust interpretability approach inspired
by cooperative game theory, particularly intended to break down and interpret the con-
tributions of each feature to a model’s predictions. By computing SHAP values, it gives a
clear and consistent approach to understanding the influence of each feature on the final
output of the model. This interpretability is especially critical in clinical decision support
systems, where knowing the logic behind a model’s prediction may dramatically affect
patient treatment. SHAP values have both global and local interpretability, meaning they
can explain the overall effect of characteristics across all predictions as well as the impact
on individual predictions. This dual viewpoint promotes transparency and confidence in
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the model, enabling physicians to make educated judgments based on full knowledge of
how numerous characteristics, such as patient demographics, test findings, and medical
history, contribute to the prediction. Consequently, SHAP values serve a critical role in
ensuring that complicated models employed in healthcare settings are both interpretable
and dependable, eventually enabling improved clinical results [19].

2.3.5. Model Evaluation

The evaluation of the model was undertaken by performing applicable performance
criteria, including accuracy, precision, F1-score, and F-beta scores, to objectively examine its
efficacy. These metrics are significant as they provide a full study of the model’s potential to
reliably forecast diabetic retinopathy based on clinical data. Specifically, accuracy measures
the proportion of total correct predictions made by the model, precision evaluates the cor-
rectness of positive predictions, the F1-score represents the harmonic mean of precision and
recall, and F-beta scores are a generalization of the F1-score that weight recall more heavily,
making them particularly valuable in scenarios in which failing to detect true positives has
severe consequences. The beta score was assigned a value of 0.5 for the F-beta score [20].

2.3.6. Interpretation of Results and Clinical Validation

Within the framework of a clinical setting, the SHAP values were evaluated to explain
and validate the judgments made by the model. It was determined that the model’s
predictions were both medically sound and beneficial for clinical applications by correlating
these findings with established clinical recommendations and published research [21].

2.4. Data Analysis

Data were analyzed using the statistical software R (version 4.1.2, R Foundation for
Statistical Computing, Vienna, Austria). Before statistical testing, data cleaning procedures
were performed to ensure accuracy and completeness. Variables with erroneous or non-
numeric entries were corrected or excluded based on the context. The normality assumption
was tested by the Shapiro–Wilk test. For the quantitative variables, differences across the
NDR, NPDR, and severe PDR groups were tested using the Kruskal–Wallis H test, a non-
parametric method suitable for data not following a normal distribution. This test was
chosen to assess the overall difference among the three groups for each variable of interest.
Post-hoc pairwise comparisons were conducted using the Mann–Whitney U test with
Bonferroni correction to control for Type I error across multiple tests. The significance level
for all analyses was set at α = 0.05, with the Bonferroni adjustment applied based on the
number of comparisons. The relationship between categorical variables was examined
using the Chi-square test of independence. This test was specifically applied to assess
the association between gender and the retinopathy groups. Results are reported with
median and interquartile range (IQR) values for continuous variables to provide robust
measures of central tendency and variability, given the non-normal distribution of the data.
Statistical significance, test statistics, and p-values are presented to detail the outcomes
of the analyses conducted. For the data analysis and modeling, we used the SHAP, and
scikit-learn libraries in Python.

3. Results

The study sample consisted of T2DM patients (n = 317), comprising NDR (n = 143) and
DR (n = 174) individuals. DR patients were further separated into two groups according
to the status of the problems. These included the NPDR (n = 123) and PDR (n = 51)
groups. Significant age differences were observed across the groups (H = 23.34, p < 0.00001).
The median age and interquartile ranges (IQR) for each group were as follows: NDR
(median = 55, IQR = [50, 60]), NPDR (median = 58, IQR = [53, 63]), and PDR (median = 60,
IQR = [55, 65]). Post-hoc analyses using the Bonferroni correction showed significant
differences between NDR and NPDR (p = 0.0000126), and NDR and PDR (p = 0.000551), but
not between NPDR and PDR (p = 0.865). Significant differences were found in the HbA1c
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levels (H = 17.42, p < 0.0002). The median HbA1c values were as follows: NDR (6.0%,
IQR = [5.7, 6.3]), NPDR (7.2%, IQR = [6.8, 7.6]), and PDR (7.5%, IQR = [7.1, 8.0]). Pairwise
comparisons indicated significant differences between NDR and NPDR (p = 0.000122)
and between NDR and PDR (p = 0.00418), but not between NPDR and PDR (p = 0.824).
Glucose levels differed across the groups (H = 10.01, p = 0.0067). Median glucose levels
were as follows: NDR (90 mg/dL, IQR = [85, 95]), NPDR (120 mg/dL, IQR = [110, 130]),
and PDR (125 mg/dL, IQR = [115, 135]). The Bonferroni adjusted pairwise tests revealed
significant differences between NDR and NPDR (p = 0.00155), but not between NDR and
PDR (p = 0.12) or NPDR and PDR (p = 0.617). Creatinine levels also showed significant
differences (H = 27.06, p < 0.000001). The median values were as follows: NDR (0.9 mg/dL,
IQR = [0.8, 1.0]), NPDR (1.1 mg/dL, IQR = [1.0, 1.2]), and PDR (1.3 mg/dL, IQR = [1.2, 1.4]).
Significant differences were found between all paired groups: NDR and NPDR (p = 0.00816),
NDR and PDR (p = 0.000000692), and NPDR and PDR (p = 0.000874). We examined the
association between gender and the retinopathy groups using a Chi-square test, which
indicated no significant association (χ2 = 0.768, p = 0.681).

Table 1 indicates the analysis results of the non-hybrid models. In addition to this,
two-stage ensemble models were also trained in this study. As explained before, in the
first stage of this model, SVC was trained as a classifier to compute prediction probability.
In the second stage, several other models were trained using these prediction probability
scores as an extra feature. As a result of this process, four models, SVC + RF, SVC + DT,
SVC + LR, and SVC + MLP, were trained.

Table 1. Performance metric findings of Solo models.

Model Accuracy (%) Precision (%) F1-Score (%) F-Beta Score (%)

SVC 84.54 80.81 81.68 81.06
RF 85.48 83.05 83.88 83.37
DT 85.17 83.20 84.15 83.54
LR 83.59 80.39 81.41 80.70

MLP 86.75 84.80 85.48 85.06

Table 2 shows the performance metrics of the ensemble models trained using the
T2DM dataset. According to the results in this table, there is an increase in performance
measures when applying the proposed two-layer ensemble approach to any ML model
used in the study. In addition, the deep neural network model achieved more successful
results both in single models and hybrid models. In this regard, it is predicted that utilizing
the deep MLP model would be most suitable for designing a biomarker. In designing this
biomarker, the models are elucidated using the SHAP method to assess the impact of each
feature utilized in the machine learning model on the success rate. The impact of features
computed by SHAP using the MLP model, which outperformed the other models, is shown
in the following figures.

Table 2. Performance metric findings of hybrid models.

Model Accuracy (%) Precision (%) F1-Score (%) F-Beta Score (%)

SVC + RF 86.11 83.39 84.38 83.64
SVC + DT 85.80 83.48 84.75 83.89
SVC + LR 83.91 80.79 81.41 80.94

SVC + MLP 89.58 87.18 88.20 87.55

Figure 2 illustrates the different patterns of feature importance across the DR classes,
indicating that certain biochemical and physiological parameters are more relevant for certain
conditions. Glucose and glycine show significant importance in all classes but are particularly
impactful in the NPDR class. The analysis of SHAP values across different DR classes provides
insights into the model’s behavior and decision-making process. The model leverages a
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complex interaction of features where metabolic and age-related factors like glucose, glycine,
and age appear consistently across the classes, suggesting their universal importance in the
pathology of DR. The prominence of specific metabolites and amino acids such as taurine,
creatinine, and various phosphatidylcholines highlights the potential metabolic underpinnings
of DR progression. This could suggest pathways for targeted therapeutic interventions or
for biomarkers in clinical settings. In the PDR class, a marked influence of creatinine and
the phosphatidylcholine molecules suggest a shift towards more systemic and nephrological
influences as DR progresses to more severe forms. This shift is crucial for understanding how
DR could be connected to broader systemic conditions.

Figure 3 demonstrates which biochemical and physiological features are most influ-
ential across different DR classes. Features such as HbA1c, Tyr (Tyrosine), and various
phosphatidylcholine molecules (e.g., PC.ae.C36.2) appear frequently across the plots, indi-
cating their significant role in the model’s decision-making process. Certain features have
more pronounced impacts in specific DR classes. HbA1c and Tyr have a more substantial
influence in the PDR class compared to the NDR and NPDR classes. This suggests that
these features may be particularly relevant for identifying more severe stages of diabetic
retinopathy. The comparison between classes highlights that different features carry dif-
ferent weights depending on the severity of the condition. Creatinine and citrate show
significant importance in the NDR class, which might indicate their utility in distinguishing
no retinopathy from some degree of retinopathy. It may be determined from the study
findings that the two-stage hybrid strategy delivers more favorable outcomes. Upon inspec-
tion of feature significance in the hybrid model, it becomes obvious that the probabilities
produced from the machine learning model applied in the second stage exert the most
significant effect on the final class prediction. Considering these data, it is inferred that
the boost in the performance of the two-stage hybrid approach may be attributable to the
prediction probabilities provided by the first-stage method.
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Figure 3. SHAP importance values for the hybrid MLP models, depicting the influence of various
biochemical and physiological features across different DR classes. Features such as HbA1c, tyrosine
(Tyr), and phosphatidylcholine molecules (e.g., PC.ae.C36.2) appear frequently, indicating their
significant roles in the model’s decision-making process. This figure shows how different features
carry varying weights depending on the DR severity, with certain markers being particularly relevant
for identifying more severe stages of DR.

4. Discussion

The present study presents a comprehensive review of solo and hybrid machine
learning models in DR prediction and analysis using the T2DM dataset. A substantial
boost in prediction performance measures was obtained with the deployment of two-
stage ensemble models over non-hybrid, solo models. This suggests a strategic benefit of
combining various learning algorithms to increase prediction accuracy, precision, and other
performance measurements.

The solo models analyzed (SVC, RF, DT, LR, and MLP) displayed commendable in-
dividual performances, with the MLP model outperforming others in terms of accuracy,
precision, and F-scores. The MLP’s superior performance aligns with findings from a scien-
tific article, which reported that deep learning models often outstrip traditional machine
learning models in medical image analysis due to their ability to learn complex patterns
from large datasets [22]. One of the main purposes of the ensemble method is to correct er-
rors made by one method using another method. In this study, the prediction probabilities
calculated by the MLP were used as input for a second model to create an ensemble method.
When examining studies in the literature, it has been observed that ensemble methods
generally achieve more successful results than individual methods. Another factor that
affects the performance of the model is the individual success of each method used in the
ensemble. Therefore, it was expected that the best score observed in our study would be
obtained with an ensemble method.

When examining the ensemble models (SVC + RF, SVC + DT, SVC + LR, and SVC +
MLP), the SVC + MLP configuration showed the highest improvement in all metrics. This
enhancement is consistent with that reported in other research, which found that layering
different types of models could lead to more robust predictions in biomedical applications
by capturing diverse patterns that solo models might miss [23].
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Furthermore, using the SHAP method to interpret model predictions provided insight-
ful revelations about the feature importance in disease progression, particularly in different
classes of DR. The significant roles of glucose, glycine, and age across all DR classes suggest
their universal importance in DR pathology. This finding is corroborated by research that
highlighted metabolic and age-related factors as critical in DR progression [24]. Moreover,
the analysis revealed varying impacts of specific biochemical markers across different DR
severity levels. Creatinine and various phosphatidylcholine molecules exhibited higher
importance in more severe DR classes (PDR), similar to observations by a medical study,
which suggested a link between nephrological markers and severe DR conditions [25].

The results of this study demonstrate considerable variation in age, HbA1c, glucose,
and creatinine levels throughout different phases of diabetic retinopathy, underscoring the
relevance of these biomarkers in monitoring disease progression. Notably, the increase in
median HbA1c, glucose, and creatinine values from non-proliferative to severe proliferative
diabetic retinopathy suggests a link with the deterioration of the disease condition. These
findings are consistent with recent research suggesting that prolonged exposure to high
glucose levels could improve the severity of retinopathy, presumably due to increased
oxidative stress and vascular damage inside the retina [26]. Moreover, the large age
differences identified across the groups further support the hypothesis that the risk and
development of diabetic retinopathy worsen with age. This is under the larger awareness
within the profession that older age is a significant risk factor for the development of more
severe diabetes-related problems [27]. Our study identified no significant gender differences
in the course of diabetic retinopathy, suggesting that the physiologic consequences of
diabetes on retinal health could be similar across genders. This accords with clinical
research that has questioned established ideas about gender discrepancies in diabetes
outcomes, claiming instead that lifestyle and medication adherence may play more major
roles [28]. These findings are essential for doctors and academics alike, as they provide
knowledge that can change screening and monitoring protocols for diabetic retinopathy. By
recognizing the importance of age, HbA1c, glucose, and creatinine as indicators, healthcare
practitioners can optimize patient outcomes through earlier intervention and personalized
treatment programs [29]. In contrast, some studies have reported minimal improvements
in model performance when combining classifiers in the same way. This discrepancy could
be attributed to differences in datasets, feature sets, or model tuning, highlighting the
context-dependent nature of machine learning applications in healthcare [30,31].

Glucose consistently emerges as the most important metabolite in both solo and hybrid
MLP models in all stages of DR. This finding shows that the role of diabetes mellitus and
high consumption in DR development is well-established and consistent. Elevated glucose
levels are a hallmark of diabetes and are directly linked to nerve damage and subsequent
retinal problems. Chronic hyperglycemia leads to the production of advanced glycation
end products (AGEs), which accumulate and cause structural and functional abnormalities
in retinal blood vessels and this process leads to increased vascular permeability, microa-
neurysms growth, and end completely the blood–retinal barrier collapses. In addition,
excess glucose levels can activate multiple signaling pathways that exacerbate inflamma-
tion and oxidative stress, exacerbating retinal damage. The consistent role of glucose as a
key metabolic factor in DR models in its many phases emphasizes the critical importance
of strict glycemic control in terms of control and prevention development of this disorder.
In order to reduce the risk of DR progression and consequences, the associated metabolism
may, ultimately, improve patient outcomes and quality of life. This insight into the primary
role of glucose also highlights the importance of continued research and innovation to
build effective ways to maintain adequate glycemic emphasize levels in diabetics [32].
Managing glucose levels is thus paramount in preventing DR progression. Glycine is an-
other significant metabolite, particularly highlighted in the Hybrid MLP models. Glycine’s
role in neurotransmission and as a metabolic regulator suggests its involvement in the
metabolic disturbances associated with diabetes [33]. Elevated glycine levels may indicate
an impaired glucose metabolism and increased oxidative stress, contributing to DR devel-
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opment. HbA1c, a measure of long-term glycemic control, is crucial in predicting DR stages.
Its importance reflects the necessity for sustained glucose management to mitigate DR
risks. Elevated HbA1c levels are strongly correlated with the severity of retinopathy [34].
Phosphatidylcholines, including PC.aa.C34.2 and PC.aa.C38.6, are particularly prominent
in the Solo MLP models for the NPDR and PDR classes. These metabolites are essential
components of cell membranes and play significant roles in lipid metabolism. Altered
PC levels suggest disruptions in lipid homeostasis and cellular integrity, contributing to
retinal damage [35]. Several amino acids, such as glutamine (Gln), alanine (Ala), valine
(Val), threonine (Thr), and arginine (Arg), are also highlighted based on the comprehensive
analysis. These amino acids are vital for protein synthesis and energy metabolism, and
their altered levels can indicate broader metabolic dysregulation in diabetes. Creatinine, a
marker of renal function, is significant in both the NPDR and PDR classes. This is consistent
with the high prevalence of diabetic nephropathy in advanced DR stages. Age also emerges
as an important factor, reflecting the increased risk of DR with advancing age [36,37]. Other
metabolites, such as ornithine and proline, which are involved in the urea cycle and amino
acid metabolism, as well as Trp and Tyr, precursors to neurotransmitters, suggest potential
links between metabolic and neurodegenerative processes in diabetes [38].

The study’s findings emphasize the promise of advanced machine learning methodolo-
gies, particularly hybrid models, in enhancing the projected accuracy and interpretability
of health-related outcomes. Ensemble models and deep learning, along with interpretative
techniques like SHAP, can greatly contribute to understanding intricate illness causes and
improving diagnostic processes in clinical settings. Future studies might examine the
integration of other, different models and the assessment of their interpretability to further
enhance the predictions and insights produced by such sophisticated analytical tools [39].

The superior performance of hybrid models, particularly the SVC + MLP model,
suggests that these models could significantly enhance DR’s diagnostic accuracy. This
precision is critical in distinguishing between the various stages of DR, allowing for earlier
and more precise interventions, and potentially reducing the progression to more severe
stages that require invasive treatments. The integration of these models into CDSS can
provide ophthalmologists with powerful tools to analyze retinal images more efficiently.
This integration can aid in making quicker and more accurate decisions, particularly in
areas with limited access to specialized healthcare providers [40]. The ability of the models
to identify early signs of DR and to elucidate the metabolic and physiological markers
associated with its progression offers a pathway to preventive healthcare strategies. By
identifying at-risk individuals early, preventative measures can be taken sooner, which
may include lifestyle and dietary changes, as well as closer monitoring of glucose and
blood pressure levels. While the current study demonstrates significant potential, the
scalability and adaptability of these models in different clinical settings remain to be tested.
The models need to be validated not only across various demographics but also across
different equipment and settings to ensure they maintain accuracy without high-grade,
specialized equipment. Further research could explore combining the predictive power of
machine learning models with other modalities like genetic testing or biomarker analysis
to enhance predictive accuracy further. Additionally, longitudinal studies could assess how
interventions based on model predictions affect patient outcomes over time. The hybrid
SVC + MLP model outperformed the solo models in predicting and assessing DR, which
may be attributed to various theoretical benefits inherent to ensemble learning. Ensemble
learning integrates various learning algorithms to produce higher prediction performance
than could be achieved from any of the component models alone. This strategy harnesses
the strengths and mitigates the limitations of individual models, resulting in more robust
and accurate forecasts.

The uncovered indicators, including glucose, glycine, HbA1c, and creatinine, might
possibly be incorporated into existing clinical practice to promote early identification and
tailored treatment methods for DR. For practical implementation, these biomarkers need
to be verified in larger, independent cohorts to ensure their reliability and generalizability.
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This validation method incorporates longitudinal studies to evaluate the evolution of
DR in varied groups and contexts. Additionally, incorporating these biomarkers into
clinical decision support systems (CDSS) may benefit ophthalmologists in making more
accurate and timely judgments, especially in resource-limited situations. The research
implies that early identification of at-risk patients using these indicators might lead to
preventive actions, such as lifestyle adjustments and tight glucose control, eventually
improving patient outcomes. Therefore, future research should concentrate on confirming
these biomarkers, understanding their significance in DR pathophysiology, and creating
rigorous guidelines for their adoption in normal clinical practice. This will ensure that
the encouraging findings from machine learning models translate into actual gains in
controlling and preventing DR in clinical settings.

Recent research primarily concentrates on the growing role of hypertension and en-
vironmental variables in DR development, as well as the newest breakthroughs in AI
applications in metabolomics. Notably, the inclusion of new studies addressing the rela-
tionship between metabolic diseases and hypertensive situations should provide a more
comprehensive understanding of DR pathogenesis. Additionally, there is a need to men-
tion significant references describing comparable AI applications in metabolomics, which
would frame this work within the larger context of contemporary technical breakthroughs.
Integrating these updates will boost the manuscript’s relevancy and highlight its alignment
with cutting-edge research on this quickly evolving subject [41,42].

The clinical efficacy of the machine learning models addressed in this work, partic-
ularly the hybrid models such as SVC + MLP, indicates a promising improvement in the
early diagnosis and management of DR. The findings demonstrate that these models not
only boost diagnostic accuracy but also precision, enabling earlier intervention options
that are critical in limiting the progression of DR [43]. This is particularly advantageous
for places where access to expert healthcare practitioners is restricted. Furthermore, im-
plementing these models in real-world clinical settings could significantly streamline the
screening process, making it faster and more reliable. This would allow for a broader,
more effective deployment of resources, potentially reducing the overall healthcare burden
associated with late-stage DR treatments. By integrating these advanced predictive models
into existing clinical workflows, there is an opportunity to transform current DR manage-
ment practices, emphasizing preventative care and personalized treatment plans based on
precise, data-driven insights. However, to realize their full potential, these models must
undergo extensive clinical validation to ensure their efficacy and reliability across diverse
patient demographics and varying clinical environments.

5. Conclusions

The use of XAI in DR utilizing the implemented models indicates promising outcomes
in enhancing the accuracy and efficiency of diagnosis and therapy. Through the construc-
tion of interpretable algorithms, healthcare personnel may obtain greater insights into the
decision-making process of AI systems, leading to increased confidence and adoption of
these technologies in clinical practice. By offering open explanations for the predictions
and suggestions made by AI, clinicians may better comprehend the underlying rationale
and perhaps unearth a new understanding about the condition. Overall, the incorporation
of explainable AI in DR not only boosts diagnostic performance but also promotes collabo-
ration between human specialists and ML systems, eventually enhancing our knowledge
and management of this sight-threatening disorder.
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