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Abstract

In this paper we develop a new well-balanced discontinuous Galerkin (DG) finite element scheme with
subcell finite volume (FV) limiter for the numerical solution of the Einstein–Euler equations of general
relativity based on a first order hyperbolic reformulation of the Z4 formalism. The first order Z4 system,
which is composed of 59 equations, is analysed and proven to be strongly hyperbolic for a general metric.
The well-balancing is achieved for arbitrary but a priori known equilibria by subtracting a discrete version
of the equilibrium solution from the discretized time-dependent PDE system. Special care has also been
taken in the design of the numerical viscosity so that the well-balancing property is achieved. As for the
treatment of low density matter, e.g. when simulating massive compact objects like neutron stars surrounded
by vacuum, we have introduced a new filter in the conversion from the conserved to the primitive variables,
preventing superluminal velocities when the density drops below a certain threshold, and being potentially
also very useful for the numerical investigation of highly rarefied relativistic astrophysical flows.

Thanks to these improvements, all standard tests of numerical relativity are successfully reproduced,
reaching three achievements: (i) we are able to obtain stable long term simulations of stationary black
holes, including Kerr black holes with extreme spin, which after an initial perturbation return perfectly
back to the equilibrium solution up to machine precision; (ii) a (standard) TOV star under perturbation is
evolved in pure vacuum (ρ = p = 0) up to t = 1000 with no need to introduce any artificial atmosphere
around the star; and, (iii) we solve the head on collision of two punctures black holes, that was previously
considered un–tractable within the Z4 formalism.

Due to the above features, we consider that our new algorithm can be particularly beneficial for the
numerical study of quasi normal modes of oscillations, both of black holes and of neutron stars.

Keywords: Einstein field equations, relativistic Euler equations, first order hyperbolic formulation of the
Z4 formalism, discontinuous Galerkin, non conservative, well-balancing

1. Introduction

In spite of considerable progress made in the last two decades, the stable and accurate numerical so-
lution of the Einstein field equations still remains an extremely challenging task to be tackled. Among
recent achievements, we highlight the results obtained in [113, 126, 114, 136, 124, 147]. One of the pri-
mary obstacles for numerical discretization of the Einstein equations is the fact that these equations are
not immediately well-posed in their original four-dimensional form, and a well-posed 3+1 formulation is
required. On a mathematical ground, the well-posedness of a 3+1 formulation of the Einstein equations
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would be guaranteed if one could prove that such a system of time-dependent partial differential (PDE)
equations is unconditionally symmetric hyperbolic [42, 134, 41, 138]. However, there are a number of
reasons which prevent from reaching a simple conclusion in this respect. First, the Einstein equations arise
as nonlinear second order PDEs in the metric coefficients, and reducing them to a first–order system from
which the required mathematical properties can emerge more clearly is far from trivial [94]. Second, the
gauge freedom which is inherent to the Einstein equations is quite often a rather delicate issue, as it can
substantially affect hyperbolicity [80]. Finally, as the Einstein equations include a set of stationary nonlin-
ear second order differential constraints which must be satisfied during the evolution, their proper treatment
can also have important implications on the mathematical nature of the overall PDE system.

Despite the symmetric hyperbolicity being necessary for strictly proving well-posedness of a given
first–order PDE system, from the computational view point this condition might be slightly relaxed as it
is well known that for stable numerical computations, in fact, a strongly hyperbolic formulation is usually
enough. In particular, the first-order strongly hyperbolic 3+1 formulation used in this paper does not have
an obvious symmetric hyperbolic reformulation, at least to the best of our knowledge. Yet, it provides the
possibility to perform stable computations of the Einstein field equations. We note that several symmetric
hyperbolic formulations of the Einstein’s equations in 3+1 split are known [80, 2, 74, 8, 32, 99], but the
applicability of most of these formulations in numerical general relativity (GR) has yet to be tested.

One can notice that, after the first detection of gravitational waves recorded in 2015 [1], the vast majority
of research groups performing numerical simulations of the gravitational signal from astrophysical sources
have been adopting the so called 3+1 formalism [3] in its various formulations. Some representative exam-
ples include [15, 97, 100, 114, 121, 36, 57]. In many of these codes the amount of physical effects that are
currently taken into account is really impressive (see [14] for a review). The most popular and successful
implementations using the 3+1 foliation of spacetime include the BSSNOK (Baumgarte-Shapiro-Shibata-
Nakamura-Oohara-Kojima) formulation [140, 17, 120, 30]; the Z4 formulation of [24, 25, 5], which has the
advantage of incorporating the treatment of the Einstein constraints through the addition of a four vector
zµ; the Z4c formulation [22], which adds a conformal transformation to the metric; the CCZ4 formulation
of [6, 7], where suitable coefficients are added to damp the violation of the Einstein constraints and it is par-
ticularly suitable for treating binary systems. Finally, in recent work [63, 62] a first–order version of CCZ4
was proposed, namely FO-CCZ4, which consists of a system of 59 equations, it is strongly hyperbolic for a
particular choice of gauges and it incorporates a curl-cleaning technique for the treatment of internal curl-
free conditions. As a proper mathematical formulation of the Einstein equations must be accompanied by a
good numerical scheme in order to obtain stable and accurate numerical simulations, in [63, 62] a numeri-
cal scheme based on discontinuous Galerkin methods combined with finite volume subcell limiter [71] was
used.

In spite of their attractive features in terms of accuracy and scalability on parallel computers, DG meth-
ods are far from common in the relativistic framework. After the pioneering investigations of [69, 135], and
apart from a slightly better popularity for treating relativistic flows in stationary spacetimes, with or without
magnetic fields [34, 153, 56, 54, 89], their usage in full numerical relativity remains rather limited, with
only a few groups investing on them around the world [143, 117, 106, 98, 147]. While in the just mentioned
works the time evolution is performed via Runge–Kutta schemes at various orders, the approach followed by
our group over the years has been to resort to ADER (arbitrary high order derivatives) schemes [148, 149],
which incorporate the solution of a Generalized Riemann Problem (GRP) at the cell boundaries. After
the modern reformulation of ADER provided by [61, 59], where the approximate solution of the GRP is
obtained by evolving the data inside each cell through a local space-time discontinuous Galerkin predictor,
ADER schemes have been successfully implemented to solve the relativistic hydrodynamics and magne-
tohydrodynamics equations in stationary spacetimes [154, 156, 155, 76, 85]. With the present work, we
resume our investigations in full numerical relativity with DG methods, by revisiting the original Z4 formu-
lation of the Einstein equations, which, as we clarify below, does not show any inconvenience with respect
to the CCZ4 formulation and is significantly simpler.
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In addition, when one performs numerical simulations of (nearly) stationary configurations, a crucial
property that ought to be achieved is the ability to preserve equilibria exactly at the discrete level over long
time scales. Indeed, this capability, besides guaranteeing long-time stable simulations of the equilibrium
profiles themselves, allows to capture with increased accuracy small physical perturbations around them that
otherwise would be hidden by spurious numerical oscillations. For instance, this is particularly relevant
when studying normal modes of oscillations in relativistic astrophysical sources [111, 79]. Thus, in this
work we endow our high order finite volume and discontinuous Galerkin schemes with so-called well-
balanced (WB) techniques. Such techniques were originally introduced in computational fluid dynamics
for the shallow water equations, see e.g. [21, 110, 91, 29, 12, 37, 122, 123], and then successfully employed
for many different applications with a number of relevant results over the last two decades [38, 116, 86, 82,
11, 39, 129]. In particular, there has been a major interest for well-balancing in astrophysical applications,
starting from their use joint to the classical Newtonian Euler equations with gravity and more recently
even for the MHD system, see for example [28, 102, 103, 40, 20, 83, 40, 55, 107, 145, 144, 146, 93,
19] and [101, 23, 77], to the more recent work of [84], where WB has been applied for the first time
to the general relativistic framework allowing the (1D) numerical simulations of the coupled evolution of
matter and spacetime for small perturbations of neutron star equilibrium configurations. In this work we
propose a new, simple but rather efficient approach to obtain the well-balanced property inside an existing
three-dimensional general purpose code for numerical general relativity that is based on finite volume and
discontinuous Galerkin finite element schemes and which includes also adaptive mesh refinement (AMR)
with time-accurate local time stepping (LTS), see [70, 154, 63]. Our new kind of well-balancing can be
easily applied even to very complex hyperbolic PDE systems, such as the Einstein field equations, for which
the original WB algorithm of [37, 84] becomes more cumbersome, in particular when combining DG and
FV schemes inside a 3D AMR framework with LTS. Since our work develops along different directions
joining together various aspects concerning the formulation of the equations, the numerical scheme and
potential astrophysical applications, we list here the major achievements attained in this paper.

1. We provide a novel first–order reformulation of the Einstein equations in their Z4 version, showing
the hyperbolicity of the resulting PDE system by the explicit computation of all the eigenvalues and
eigenvectors for a general metric.

2. We solve the full Einstein–Euler equations written as a single monolithic first order hyperbolic system
applying the same numerical scheme to all equations; the method employed in this paper is a very
high order accurate and robust Discontinuous Galerkin (DG) scheme with adaptive mesh refinement
(AMR), time-accurate local time stepping (LTS) and a posteriori sub-cell finite volume limiter.

3. We present a simple but at the same time very general well-balanced version of the overall algo-
rithm, capable of preserving any general but a priori known equilibrium solution on arbitrarily long
timescales. This opens the door to a wide field of potential applications in the numerical study of
quasi normal modes of oscillations, both of black holes and of neutron stars.

4. We propose a major improvement in the conversion from the conserved to the primitive variables (of
the matter part) in the presence of vacuum, which, at least in the simple case of an ideal gas equation
of state, allows to treat physical regimes with p = ρ = 0, thus avoiding any use of artificial low
density atmospheres outside high density objects.

5. We show that even the Z4 formulation of the Einstein equations, which does not contain a conformal
factor in the spatial metric, can successfully treat binary black holes, provided a “non–shifting–shift”
version of the Gamma driver is adopted and a special filtering is applied to the metric terms, to avoid
the formation of spikes.

The structure of the paper is the following: in Sect. 2 we present the original Z4 formulation provided
by [24, 25, 27] with only minor modifications. Sect. 3 is devoted to the description of the new well-balanced
ADER-DG scheme with subcell finite volume limiter, while Sect. 4 contains the results of our investigations.
Finally, we conclude our analysis in Sect. 5 with a few indications for further progresses.
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Throughout this paper we assume a signature (−,+,+,+) for the spacetime metric and we will use Greek
letters (running from 0 to 3) for four-dimensional spacetime tensor components, while Latin letters (running
from 1 to 3) for three-dimensional spatial tensor components. Moreover, we adopt a geometrized system of
units by setting c = G = 1, in such a way that the most convenient unit of lengths is rg = G M/c2 = M. We
just recall that for a one solar mass black hole, this choice corresponds to rg = 1.476 × 103 m as a unit of
length and to rg = 4.925 × 10−6 s as a unit of time.

2. Damped Z4 formulation of the Einstein equations

2.1. The 3+1 splitting of spacetime

According to the 3+1 formalism, the spacetime can be foliated through Σt = const hypersurfaces as

ds2 = −(α2 − βiβ
i)dt2 + 2βidxidt + γi jdxidx j , (1)

where α is the lapse, βi is the shift and γi j is the metric of the three dimensional space, see [3, 137, 18, 92]
for an extended discussion. An Eulerian observer is then introduced, with four velocity defined by nµ =
1
α

(1,−βi) everywhere orthogonal to the hypersurface Σt, and with respect to whom all physical quantities
are measured. We recall that the original Z4 formulation of the Einstein equations was not meant to be
restricted to the 3+1 formalism. In fact, it was specifically devised by [24, 25] to hyperbolize the elliptic
Einstein constraints in a general covariant framework, after introducing an additional quantity zµ whose
role is analogous to the scalar Ψ in the divergence cleaning approach of [118, 52] for the Maxwell and
magnetohydrodynamics equations. On the other hand, the damped version of the Z4 formulation, first
proposed by [95], was intrinsically linked to the 3+1 framework, since it dragged the four vector nµ directly
into the Einstein equations, in combination with two additional constant coefficients κ1 and κ2, which were
introduced to allow for the damping of the four vector zµ as it propagates constraint violations away. An
alternative rigorous treatment of the constraints is obtained via so-called fully-constrained formulations, see
e.g. [48, 47] and references therein.

Here we introduce a slightly different version with respect to [95], where the coefficients κ1 and κ2 are
never multiplied among each other and thus produce effects that are clearly separated. Hence the augmented
Einstein equations with damped Z4 cleaning read

Gµν + ∇µzν + ∇νzµ − ∇πzπgµν − κ1(nµzν + nνzµ) − κ2nπzπgµν = 8πTµν , (2)

or, equivalently,

(4)
Rµν + ∇µzν + ∇νzµ − κ1(nµzν + nνzµ − nπzπgµν) + κ2nπzπgµν = 8π

(
Tµν −

1
2

Tgµν

)
, (3)

where Gµν and
(4)

Rµν are the Einstein and the Ricci tensors1, while T µν is the energy–momentum tensor of
matter. In this paper we limit our attention to a perfect fluid with no magnetic fields, such that

T µν = (e + p)uµuν + pgµν = ρhuµuν + pgµν , (4)

with e, p, ρ and h being the energy density, the pressure, the rest mass density and the specific enthalpy,
respectively, each of them measured in the comoving frame of the fluid with four velocity uµ. We notice

1In what follows we use the left superscript (4) to distinguish between four-dimensional tensors and three dimensional ones, in
those cases when confusion may arise (the Ricci and the Riemann tensor). Moreover, ∇µ denotes the four dimensional covariant
derivative, while Dµ := γνµ∇ν = (nνnµ + δνµ)∇ν is used for the spatial covariant derivative. This is the same convention of [3, 137].
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that the wave equation for the four vector zµ corresponding to (2) is

∇µ∇µzν +
(4)

Rµνzµ = κ1∇
µ(nµzν + nνzµ) + κ2∇ν(nρzρ) , (5)

which is obtained after taking the four divergence of (2). Within the 3+1 decomposition, all vectors and
tensors are split in their components parallel and perpendicular (or mixed, depending on the rank) to nµ. So,
for instance, we have

u µ = W n µ +W v µ, (6)
T µν = S µν + S µnν + n µS ν + En µnν, (7)

zµ = Θnµ + Zµ, (8)

where W = −uµnµ = 1/
√

1 − v2 is the Lorentz factor of the fluid, S µν = γ
α
µ γ

β
νTαβ is the spatial part of the

energy–momentum tensor, S µ = −γ
α
µ nβTαβ is the momentum density, γµν = nµnν+δ

µ
ν is the spatial projector

tensor, δµν is the Kronecker delta, E = nα nβTαβ is the energy density, Zµ = γ
µ
νzν is the purely spatial part

of the four vector zµ and Θ = −zµnµ = αz0, each of which is measured in the Eulerian observer frame. In
terms of the primitive variables they read

S µν = ρhW2vµvν + pγµν , (9)

S µ = ρhW2vµ , (10)

E = ρhW2 − p . (11)

There are also vectors and tensors which are intrinsically spatial, namely without any component along nµ,
such as the four acceleration of the Eulerian observer

aµ = nν∇νnµ = γνµ∇ν lnα = Dµ lnα , (12)

or the extrinsic curvature of the hypersurface Σt, a symmetric tensor defined as

Kµν = −γ
α
µ∇αnν = −∇µnν − nµaν , (13)

which plays a fundamental role as a dynamical set of quantities, representing the opposite of the (non–trace-
free) shear tensor of the Eulerian four velocity nµ. We notice that the purely spatial part of the Ricci tensor
Rµν is not simply given by the full spatial projection of the four dimensional Ricci tensor

(4)
Rµν, but rather is

obtained from the so-called contracted Gauss relations, i.e.

Rµν = γ
α
µγ

β
ν

(4)
Rαβ + γ

α
µγ

β
νnσnπ

(4)
Rασβπ − KKµν + KµπKπ

ν , (14)

where K = γi jKi j = −∇µnµ is the trace of the extrinsic curvature, also equal to the opposite of the Eulerian
observer expansion.

2.2. The second order Z4 system

The second order PDE system that governs the evolution of the gravitational field in the presence of
matter is given by (see also [24] for a comparison)

(∂t − Lβ) γi j = −2αKi j (15)

(∂t − Lβ) Ki j = −DiD jα + α
[
Ri j + DiZ j + D jZi − κ1Θγi j − κ2Θγi j − 2ΘKi j

− 2KimKm
j + K Ki j − 8π

(
S i j −

1
2

T γi j

) ]
(16)
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(∂t − Lβ) Θ =
α

2
e2

[
R + K2 − Ki j Ki j − 16π E

]
+ α

[
DkZk − Zk Dkα

α
− Θ(2κ1 + κ2) − KΘ

]
(17)

(∂t − Lβ) Zi = α
[
D j Ki

j − Di K − 8πS i

]
+ α[∂iΘ − 2 Ki

j Z j − ΘDi lnα − κ1Zi] . (18)

Furthermore, we stress the following facts about each of the above equations2. Eq. (15) is a pure rela-
tion coming from differential geometry and which can be derived without any reference to the Einstein
field equations. It states that the dynamics of the spatial metric tensor γi j is determined by the extrinsic
curvature. Eq. (16) is obtained after inserting the four dimensional Ricci tensor as given by the Einstein
equation (3) into the so–called Ricci equation of differential geometry (see [18, 137] for an extended dis-
cussion). Finally, Eqs. (17)–(18) are the evolutionary version of the Einstein constraints within the Z4
formalism and are obtained after contracting the Einstein equations (3) with nµnν and nµγνπ, respectively. In
fact, the Hamiltonian constraint H and the momentum constraints Mi, defined as

H = R − Ki jKi j + K2 − 16πE , (19)

Mi = γ jl
(
∂lKi j − ∂iK jl − Γ

m
jlKmi + Γ

m
jiKml

)
− 8πS i , (20)

can be recognized on the right hand side of (17) and (18). Assumed to be zero for proper initial data of the
Einstein equations, on the discrete level such quantities can in fact increase, and the whole strategy of the
Z4 approach is to keep their dynamics under control by transporting the numerical errors away from the
computational domain at the velocity e, which is the so-called cleaning speed.

2.3. The first–order Z4 system with matter

Similarly to the standard approach of [24, 25, 63], we introduce 30 auxiliary variables involving first
derivatives of the metric terms, namely

Ai := ∂i lnα =
∂iα

α
, B i

k := ∂kβ
i , Dki j :=

1
2
∂kγi j . (21)

In addition, we list the following expressions and identities, clarifying how second order spatial derivatives
can be removed:

γ = det(γi j) , (22)
∂kγ

i j = −2γinγm jDknm , (23)
Γk

i j = γkl
(
Di jl + D jil − Dli j

)
, (24)

∂kΓ
m
i j = −2γmnγplDknp

(
Di jl + D jil − Dli j

)
+ γml

(
∂(kDi) jl + ∂(kD j)il − ∂(kDl)i j

)
, (25)

Rm
ik j = ∂kΓ

m
i j − ∂ jΓ

m
ik + Γ

m
lk Γ

l
i j − Γ

m
l j Γ

l
ik, (26)

Ri j = Rk
ik j = ∂kΓ

k
i j − ∂ jΓ

k
ik + Γ

k
lk Γ

l
i j − Γ

k
l j Γ

l
ik , (27)

R = γi j Ri j , (28)
DiD jα = αAiA j − αΓ

k
i jAk + α∂(iA j) , (29)

Γi = γ jk Γi
jk , (30)

∂kΓ
i = −2D jl

k Γ
i
jl + γ

jl ∂kΓ
i
jl . (31)

2While deriving the equations (16)–(17) one uses the fact γαµγ
β
ν∇αzβ = −ΘKµν + DµZν and ∇µzµ = −KΘ − nµnν∇µzν + DµZµ =

−KΘ + nµ∂µΘ + Zµaµ + DµZµ.
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Having done that, we can rephrase the system (15)–(18) as a first–order system, augmented by the matter
part (see [53] for details). The full Z4 Einstein-Euler system is therefore given by

∂t(
√
γD) + ∂i

[√
γ(αviD − βiD)

]
= 0 , (32)

∂t(
√
γS j) + ∂i

[√
γ(αS i

j − β
iS j)

]
=
√
γ
[
αS ikD jik + S iB i

j − αEA j

]
, (33)

∂t(
√
γE) + ∂i

[√
γ(αS i − βiE)

]
=
√
γ
[
αS i jKi j − αS jA j

]
, (34)

∂tγi j − β
k∂kγi j = γikB k

j + γk jB k
i − 2αKi j , (35)

∂tKi j − β
k∂kKi j + α∂(iA j) − αγ

kl
(
∂(kDi) jl − ∂(kDl)i j

)
+ αγkl

(
∂( jDi)kl − ∂( jDl)ik

)
− 2α∂(iZ j) = KkiB k

j + Kk jB k
i

− αAiA j + αΓ
k
i jAk + α

[
− 2γknγplDknp

(
Di jl + D jil − Dli j

)
+ 2γknγplD jnp (Dikl + Dkil − Dlik)

+ Γm
lmΓ

l
i j − Γ

m
l jΓ

l
im

]
− 2αΓk

i jZk − αΘγi j(κ1 + κ2) − 2αKilγ
lmKm j + αKi j(K − 2Θ)

− 8πα
(
S i j −

1
2

T γi j

)
, (36)

∂tΘ − β
k∂kΘ −

1
2
αe2

[
γi jγkl

(
∂(kDi) jl − ∂(kDl)i j

)
− γi jγkl

(
∂( jDi)kl − ∂( jDl)ik

)
+ 2γi j∂iZ j

]
=

=
α

2
e2

[
− 2γi jγknγplDknp

(
Di jl + D jil − Dli j

)
+ 2γi jγknγplD jnp (Dikl + Dkil − Dlik)

+ γi j
(
Γm

lmΓ
l
i j − Γ

m
l jΓ

l
im

)
+ K2 − Ki j Ki j − 16π E

]
+ α

[
−γi j Γk

i jZk − ZkAk

]
− αΘK − αΘ(2κ1 + κ2) , (37)

∂tZi − β
k∂kZi − α∂iΘ − α

[
γ jm∂ jKmi − γ

mn∂iKmn

]
= Zk B k

i + α
[
− γ jm(Γn

jmKni + Γ
n
jiKmn)

+ γmn(Γl
imKln + Γ

l
inKml) − 8πS i

]
+ α[−2 Ki

j Z j − Θ Ai − κ1Zi] , (38)

where we have written the principal part of the PDEs on the left hand side, while moving all algebraic
source terms to the right. In addition to the system (32)–(38), we need to adopt specific gauge conditions,
which we choose in the following way. For the lapse, we assume the standard form [18]

∂t lnα − βk∂k lnα = −g(α)α(K − K0 − 2cΘ) , (39)

which gives us the possibility to switch among the 1+log gauge condition, setting g(α) = 2/α, and the
harmonic gauge condition, setting g(α) = 1. For the shift, on the other hand, we use the gamma–driver
condition in those cases when the evolution of the shift is needed, and in particular we adopt the so-called
“non–shifting–shift” version of [75]

∂tβ
i =

3
4

bi, (40)

∂tbi = ∂tΓ̂
i − ηbi , (41)

where Γ̂i = Γi + 2γi jZ j and Γi = γ jk Γi
jk. Note that the quantities Γ̂i are not primary variables, and their

time evolution can be deduced from the other dynamical variables as specified below. From the gauge
conditions (39)–(40) we can then obtain the PDEs for the auxiliary variables, namely

∂tAi − β
k∂kAi + αg(α) (γmn∂iKmn − ∂iK0 − 2c∂iΘ) = −αAi (K − K0 − 2Θc)

(
g(α) + αg′(α)

)
+

+2αg(α)K jkDi jk + B k
i Ak , (42)
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∂tB i
k − s

(
3
4
∂kbi − α2µ γi jγnl

(
∂kDl jn − ∂lDk jn

))
= 0 , (43)

∂tDki j − β
l∂lDki j −

1
2
γmi∂(kBm

j) −
1
2
γm j∂(kBm

i) + α∂kKi j = B m
k Dmi j + B m

j Dkmi + B m
i Dkm j

− αAkKi j . (44)

The following aspects ought to be emphasized about the whole system (32)–(44)

• The first five equations for the evolution of matter are in conservative form, while the rest of the
equations are in non conservative form.

• The quantities Γ̂i in Eq. (41) are not primary variables. Their evolution in time is obtained from

∂tΓ̂
i = Γi

jk ∂tγ
jk + γ jk ∂tΓ

i
jk + 2

(
Z j∂tγ

i j + γi j∂tZ j

)
, (45)

which involve time derivatives of the already existing dynamical variables. In fact, we can write

∂tγ
i j = −γinγ jm∂tγnm

= −2γinγ jmβk Dknm − γ
jkB i

k − γ
ikB j

k + 2αγinγ jmKnm, (46)

∂tΓ
i
jk = ∂tγ

im
(
D jmk + Dk jm − Dm jk

)
+ γim

(
∂tD jmk + ∂tDk jm − ∂tDm jk

)
= γimβr

[
∂rD jmk + ∂rDk jm − ∂rDm jk

]
+ ∂( jB i

k) − αγ
im

(
∂ jKmk + ∂kK jm − ∂mK jk

)
+

+γim[
D jmnB n

k + DnmkB n
j + DknmB n

j + Dn jmB n
k − Dm jnB n

k − DmnkB n
j
]

−αγim
(
A jKmk + AkK jm − AmK jk

)
+

+
[
− 2γipγmqβrDrpq − γ

mrB i
r + 2αγipγmqKpq

] (
D jmk + Dk jm − Dm jk

)
. (47)

• The binary parameter s in Eq. (43), either 1 or 0, is introduced to switch the gamma–driver on or off,
depending on the test being considered.

The equations (32)–(44) above form a non-conservative first-order hyperbolic system, namely they can be
written as

∂u
∂t
+
∂fi(u)
∂xi

+ Bi(u)
∂u
∂xi
= S(u), or, equivalently,

∂u
∂t
+ ∇ · F(u) + B(u) · ∇u = S(u), (48)

where u is the state vector, composed of 59 dynamical variables3, F(u) = (f1(u), f2(u), f3(u)) is the flux
tensor for the conservative (hydrodynamic) part of the PDE system, while B(u) = (B1(u),B2(u),B3(u))
represents the non-conservative part of the system, essentially all of the Einstein sector. Finally, S(u) is the
source term, which contains algebraic terms only. When written in pure quasilinear form, the system (48)
becomes

∂u
∂t
+ Ai(u)

∂u
∂xi
= S(u) , (49)

where the matrix Ai(u) = ∂fi(u)/∂u+Bi(u) contains both the conservative and the non-conservative contri-
butions. Sect. 3 below describes the numerical methods adopted to solve such a system of equations.

2.4. Hyperbolicity of the first order Z4 system
Even before the Z4 formalism was introduced, in [26] the hyperbolic nature of the first–order conser-

vative formulation of the Einstein field equations was highlighted. It was subsequently confirmed after the

3More specifically, 5 for the matter part, 10 for the lapse, the shift vector and the metric components, 6 for Ki j, 4 for the zµ four
vector, 3 for Ai, 9 for B j

i , 18 for Di jk , 1 for K0 and 3 for bi.
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introduction of the Z4 approach [24]. However, our analysis differs from theirs, since our system (32)–(44)
is written in non–conservative form. In the context of the CCZ4 formulation [64, 63], we have already
emphasized that the hyperbolicity of a system like (49) is favoured if one makes the maximum possible use
of the auxiliary variables defined in Eq. (21). In other words, our first-order Z4 system does not contain any
spatial derivatives of α, βi, γi j, which have been moved to the purely algebraic source term S(u) precisely
by using the auxiliary quantities defined in (21). We have verified the hyperbolicity of the subsystem (35)–
(44) governing the space-time evolution by computing the eigenvalues and the corresponding eigenvectors
through the symbolic mathematical software Maple4. The results for a general metric are reported in Ap-
pendix A.

3. The numerical scheme

3.1. A well-balanced ADER-DG scheme for non conservative systems

For problems where a stationary equilibrium solution needs to be maintained in time, the well-balancing
properties of a numerical scheme can play a major difference. Such techniques were first introduced for the
shallow water equations in [21, 110, 87, 91, 12, 37, 38, 127] and further developed over the years with a
number of significant contributions, see [39] and references therein. Later, the concept of well-balancing
was also extended to the Newtonian Euler equations with gravity, see e.g. [28, 102, 103, 40, 20, 83, 40,
55, 107, 144, 93]. The resulting numerical schemes are able to remove the discretization errors from the
equilibrium solution, while focusing on the development of real physical perturbations that may act on a
system. A well-balanced scheme for the numerical solution of the Einstein equations was first proposed
by [84], who showed that, if an initial perturbation is introduced in a stationary solution, only the well-
balanced algorithm is able to recover the shape of the equilibrium over long timescales. On the contrary,
the solution obtained through a not well-balanced scheme will be significantly deteriorated.

Unfortunately, the extension to three space dimensions and to adaptive mesh refinement (AMR) with
time-accurate local time stepping (LTS) of the well-balanced scheme presented by [84] is quite cumber-
some, as the scheme essentially relies on the incorporation of well-balanced reconstruction operators.
Therefore, we propose here an alternative approach which is conceptually much simpler, yet extremely
effective. The obtained method, presented here below, is exactly well-balanced for any equilibrium solution
that is known a priori, exactly or in a discrete way. Thus, the equilibrium can be given in a closed analytical
form, but it may also be just a numerical equilibrium, as it is for example in the TOV star test case, presented
in Sect. 4.6, where the equilibrium solution has been obtained by solving an ODE system in radial direction
with a high order accurate numerical method. From the point of view of preserved equilibria this is for
example the same context of [84] and [19], the latter being similar also for the structure of the proposed
well-balanced methodology.

In the following we use ue = ue(x) to denote a general stationary equilibrium solution, for which we
know that

∂tue = 0. (50)

Hence, as a consequence, the equilibrium solution ue must satisfy the stationary PDE system

∂fi(ue)
∂xi

+ Bi(ue)
∂u
∂xi
= S(ue), or, equivalently, Ai(ue)

∂u
∂xi
= S(ue). (51)

Since we can always subtract (51) from the governing PDE (48) we obtain

∂u
∂t
+
∂fi(u)
∂xi

−
∂fi(ue)
∂xi

+ Bi(u)
∂u
∂xi
− Bi(ue)

∂ue

∂xi
= S(u) − S(ue). (52)

4See https://maplesoft.com/
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Having done that, we create an extended vector of quantities ũ = [u,ue]T to be evolved in time, essentially
doubling the number of variables. In practice, the vector ue is slightly smaller than u, since we do not need
to consider the equilibrium values of the cleaning four vector zµ, neither of the scalar K0, nor of the three
vector bi related to the gamma–driver. Eventually, the full vector ũ contains 59 + 51 = 110 variables, and
with the above property ∂tue = 0 of a stationary equilibrium the system (52) translates into

∂ũ
∂t
+
∂f̃i(u)
∂xi

+ B̃i(u)
∂ũ
∂xi
= S̃(ũ), or, equivalently,

∂ũ
∂t
+ ∇ · F̃(ũ) + B̃(ũ) · ∇ũ = S̃(ũ), (53)

with F̃(ũ) =
(
f̃1(ũ), f̃2(ũ), f̃3(ũ)

)
,

S̃(ũ) =
(

S(u) − S(ue)
0

)
, f̃i(ũ) =

(
fi(u) − fi(ue)

0

)
(54)

and

Ãi =

(
Ai(u) −Ai(ue)

0 0

)
, B̃i =

(
Bi(u) −Bi(ue)

0 0

)
, (55)

thus obtaining that the equilibrium sector ue contained in the second part of ũ remains frozen, while the
equilibrium solution is subtracted from the first part of the vector ũ, as dictated by Eq. (52). We note
that the approach expressed by Eq. (52) closely follows the seminal ideas introduced in [88, 19] for the
well-balancing of completely general multi-dimensional hyperbolic PDE systems. While the applications
presented in [88, 19] were related to the Newtonian Euler and MHD equations, the method is general
enough so that in this paper it can now for the first time also be applied to a first order reformulation of the
Einstein-Euler system that describes the coupled dynamics of matter and spacetime in full general relativity,
see (32)-(44).

It is obvious that when inserting the extended equilibrium solution ũe = (ue,ue)T into (53) one has
∂tũe = 0, i.e. the augmented equation is trivially satisfied since by construction the following fundamental
properties hold:

F̃(ũe) = 0, B̃(ũe) · ∇ũe = 0, S̃(ũe) = 0. (56)

In the computation of the numerical fluxes via Riemann solvers, which is typical for discontinuous
Galerkin and finite volume schemes, special care has to be taken in the structure of the numerical viscosity,
which must not destroy the well-balancing of the numerical scheme. For this purpose, we will later need a
modified identity matrix or well-balanced identity matrix, which acts on the extended state vector ũ and has
the following block structure:

Ĩ =
(

I −I
0 0

)
. (57)

The main property of the above well-balanced identity matrix is that its product with the extended equilib-
rium state ũe = (ue,ue)T is zero, i.e. Ĩ ũe = 0.

In the practical implementation of the numerical scheme solving Eq. (53), we have allowed for the
possibility to switch the well-balancing on or off, according to the problem under consideration. For equi-
librium, or close–to–equilibrium problems, well-balancing is of course important and it is activated. For
rather dynamical problems, on the contrary, well-balancing is abandoned, and only the first 59 equations
are considered with no need to subtract the equilibrium solution.

The DG and FV discretization is based on the weak form of the PDE (53), which, upon integration over
the spacetime control volume Ωi × [tn, tn+1], provides

tn+1∫
tn

∫
Ωi

Φk
∂ũ
∂t

dx dt +

tn+1∫
tn

∫
Ωi

Φk

(
∇ · F̃(ũ) + B̃(ũ) · ∇ũ

)
dx dt =

tn+1∫
tn

∫
Ωi

Φk S̃(ũ) dx dt . (58)
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The most important difference between the new scheme presented in this paper and the one used in [84]
is that here we use a discrete version of the equilibrium ue

h(x, tn) by simply setting the nodal degrees of
freedom as ũn

i,ℓ = (ue(xℓ),ue(xℓ))T , i.e. the discrete equilibrium is the L2 projection of the exact equilibrium
into the space of piecewise polynomials of degree N. Instead, in [84] the discrete solution was the sum of
the exact analytical (non-polynomial) equilibrium ue(x) plus a piecewise polynomial perturbation.

In the following, we will focus on a few relevant aspects calling for attention when integrating Eq. (58),
each of which deserves a bit of discussion.

3.1.1. The DG discretization in space
We tackle the solution of the Z4 system by considering a computational domain Ω in dimension d = 2

or d = 3 that is given by the union of a set of non-overlapping Cartesian tensor-product elements, namely
Ω =

⋃
Ωi =

⋃
[xi −

1
2∆xi, xi +

1
2∆xi] × [yi −

1
2∆yi, yi +

1
2∆yi] × [zi −

1
2∆zi, zi +

1
2∆zi], where xi = (xi, yi, zi)

indicates the barycenter of cell Ωi and ∆xi = (∆xi,∆yi,∆zi) defines the size of Ωi in each spatial coordinate
direction. According to the DG finite-element approach, the discrete solution at time tn is written in terms
of prescribed spatial basis functions Φℓ(x) as

ũh(x, tn) =
∑
ℓ

ũn
i,ℓΦℓ(x) := ũn

i,ℓΦℓ(x) . (59)

Here ℓ := (ℓ1, ℓ2, ℓ3) is a multi-index while the expansion coefficients ûn
i,ℓ are the so-called degrees of

freedom. The spatial basis functions Φℓ(x) = φℓ1 (ξ)φℓ2 (η)φℓ3 (ζ) are chosen as tensor products of one-
dimensional nodal basis functions defined on the reference element [0, 1]. In one spatial dimension, the
basis functions φℓi (ξ) are the Lagrange interpolation polynomials, up to degree N, which pass through the
(N + 1) Gauss-Legendre quadrature points. This is particularly convenient when performing numerical
integrals of the discrete solution, due to the nodal property that φk(ξ j) = δk j, with ξ j being the coordinates
of the nodal points5.

3.1.2. The spacetime predictor
A crucial aspect has to do with time integration. A common option to integrate Eq. (58) in time would

be to resort to Runge–Kutta schemes, thus obtaining RKDG schemes [46, 45]. However, as a valid alterna-
tive introduced by [67, 61, 131] and adopted preferentially within our group, we have followed the ADER
approach, according to which a high order accurate (both in space and in time) solution can be obtained
through a single time integration step, provided an approximate predictor state q̃h is available at any inter-
mediate time between tn and tn+1. Note that unlike in previous publications on ADER schemes in this paper
q̃h is an approximation of the extended state vector ũ = [u,ue]T . Furthermore, while in the original ADER
version of ADER by Toro and Titarev [148, 149, 151] the computation of the predictor was obtained through
the Cauchy-Kovalewski procedure, we follow here the more recent approach introduced in [59], which is
more suitable for complex systems of equations like the Einstein-Euler equations of general relativity. The
predictor q̃h is thus expanded into a local spacetime basis

q̃h(x, t) =
∑
ℓ

θℓ(x, t)q̃i,ℓ := θℓ(x, t)q̃i,ℓ , (60)

with the multi-index ℓ = (ℓ0, ℓ1, ℓ2, ℓ3) and where the spacetime basis functions

θℓ(x, t) = φl0 (τ)φℓ1 (ξ)φℓ2 (η)φℓ3 (ζ)

5The mapping from physical coordinates x ∈ Ωi to reference coordinates ξ = (ξ, η, ζ) ∈ [0, 1]3 is simply given by x = xi −
1
2∆xi +

(ξ∆xi, η∆yi, ζ∆zi)T .
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are again generated from the same one-dimensional nodal basis functions φk(ξ) as before, namely using
the Lagrange interpolation polynomials up to degree N passing through N + 1 Gauss–Legendre quadrature
nodes. The coordinate time is mapped to the reference time τ ∈ [0, 1] via t = tn + τ∆t. Multiplication of the
PDE system (53) with a test function θk and integration over the spacetime control volume Ωi × [tn, tn+1]
yields

tn+1∫
tn

∫
Ωi

θk
∂q̃h

∂t
dx dt +

tn+1∫
tn

∫
Ωi

θk

(
∇ · F̃(q̃h) + B̃(qh) · ∇q̃h

)
dx dt =

tn+1∫
tn

∫
Ωi

θkS̃(q̃h) dx dt. (61)

Since the calculation is performed locally for each cell, no special treatment of the jumps at the element
boundaries is needed at this stage, and Riemann solvers are not involved. Rather, Eq. (61) is integrated by
parts in time, providing

∫
Ωi

θk(x, tn+1)q̃h(x, tn+1)dx −
∫
Ωi

θk(x, tn)ũh(x, tn)dx −
1∫

0

∫
TE

∂θk(x, t)
∂t

q̃h(x, t)dx dt =

tn+1∫
tn

∫
Ωi

θk

(
S̃(q̃h) − ∇ · F̃(qh) + B̃(q̃h) · ∇q̃h

)
dx dt. (62)

Eq. (62) generates a nonlinear system for the unknown degrees of freedom q̃i,ℓ of the spacetime polynomials
q̃h. The solution of (62) is obtained via a simple fixed-point iteration, the convergence of which was proven
in [35].

Well-balanced property of the predictor. When the discrete solution ũh(x, tn) at time tn coincides with the
discrete equilibrium, i.e. when ũh(x, tn) = (ue

h,u
e
h)T with nodal degrees of freedom ũn

i,ℓ = (ue(xℓ),ue(xℓ))T ,
then it is obvious that q̃h = q̃e

h = (ue
h,u

e
h)T is a solution of (62) since S̃(q̃e

h)−∇ · F̃(q̃e
h)+ B̃(q̃e

h) · ∇qe
h = 0 due

to the fundamental properties (56). Hence, the predictor is by construction well-balanced.

3.1.3. ADER-DG schemes for non-conservative systems
Another aspect related to the solution of Eq. (58) has to do with the presence of non–conservative terms,

indeed the vast majority in the Einstein–Euler system that we are considering. Our strategy is based on the
so-called path-conservative approach of [37, 127], which was first applied to DG schemes by [60, 65] and
subsequently considered in the context of the first–order formulation of the CCZ4 Einstein system by [63].
In practice, after integration by parts of the flux divergence and the introduction of a Riemann solver that
accounts for the jumps at the element boundaries, the fully discrete one-step ADER-DG scheme resulting
from (58) reads

∫
Ωi

ΦkΦℓ dx

 (ũn+1
i,ℓ − ũn

i,ℓ

)
+

tn+1∫
tn

∫
Ω◦i

Φk B̃(q̃h) · ∇q̃hdx dt −

tn+1∫
tn

∫
Ω◦i

∇Φk · F̃(q̃h) dx dt

+

tn+1∫
tn

∫
∂Ωi

ΦkD
(
q̃−h , q̃

+
h

)
· ndS dt +

tn+1∫
tn

∫
∂Ωi

Φk F
(
q̃−h , q̃

+
h

)
· ndS dt =

tn+1∫
tn

∫
Ωi

Φk S̃(q̃h)dξ dτ , (63)

where the boundary integrals in (63) become relevant only when the boundary extrapolated states at the left
q̃−h and at the right q̃+h of the interface are different, q̃−h , q̃+h , namely when there is a true jump. According
to a now well-established procedure, developed in [127, 37, 68], the jump terms in the non-conservative
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product are computed through a path-integral in phase space as

D
(
q̃−h , q̃

+
h

)
· n =

1
2


1∫

0

B̃(ψ) · nds

 (q̃+h − q̃−h
)
, (64)

which we have solved via a Gaussian quadrature formula composed of three points. For simpler systems
of equations, one might even think about using the Riemann invariants of the PDE system as optimal paths
along which to perform the integration [119], but for the Einstein equations such an option is absolutely
impracticable, thus we have used a simple segment path

ψ = ψ(q̃−h , q̃
+
h , s) = q̃−h + s

(
q̃+h − q̃−h

)
, 0 ≤ s ≤ 1 . (65)

The simplest possible numerical flux for the conservative part of the equations, i.e. for the Euler subsystem,
is a Rusanov-type flux given by

F
(
q̃−h , q̃

+
h

)
· n =

1
2

(
F̃(q̃−h ) + F̃(q̃+h )

)
· n−

1
2

smaxĨ
(
q̃+h − q̃−h

)
. (66)

The last term in Eq. (66) contains the numerical viscosity, which employs the well-balanced identity matrix
Ĩ. For a Rusanov-type flux the numerical viscosity is provided by the knowledge of a single characteristic
speed, smax, which denotes the maximum of the absolute values of the characteristic velocities

∣∣∣Λ(q̃−h )
∣∣∣,∣∣∣Λ(q̃+h )

∣∣∣ at the interface
smax = max

(∣∣∣Λ(q̃−h )
∣∣∣ , ∣∣∣Λ(q̃+h )

∣∣∣) . (67)

A more sophisticated HLL-type flux, which also employs the use of the well-balanced identity matrix Ĩ
reads

F
(
q̃−h , q̃

+
h

)
· n =

sRF̃(q̃−h ) − sLF̃(q̃+h )
sR − sL

· n+
sRsL

sR − sL
Ĩ
(
q̃+h − q̃−h

)
, (68)

with the left and right signal speeds sL ≤ 0 and sR ≥ 0 computed, e.g., according to [72, 73].

Well-balanced property of the final ADER-DG scheme. We now assume that the discrete solution coin-
cides with the discrete equilibrium, i.e. ũh = (ue

h,u
e
h)T . Since the predictor is well-balanced, the resulting

predictor solution is q̃h = (ue
h,u

e
h)T . Due to the fundamental property (56) it is obvious that all terms

in (63) cancel by construction. However, at this point we emphasize again that in order to preserve the
well-balancing property of the numerical scheme, in the numerical fluxes one must make use of the well-
balanced identity matrix Ĩ introduced in (57), since Ĩ

(
q̃e,+

h − q̃e,−
h

)
= 0 for two arbitrary discrete equilibrium

states q̃e,±
h = (ue,±

h ,ue,±
h ).

Finally, since it is quite often a crucial quantity in a numerical simulation, it is worth providing some
information about the total memory consumption produced by our numerical scheme. Let us first quantify
the memory load of the spacetime predictor of Sect. 3.1.2 for a single variable and a single numerical cell,
i.e.

MemLoadP = (N + 1)4 · [ 1︸︷︷︸
q̃h

+ 3︸︷︷︸
F̃

+ 3︸︷︷︸
∇q̃

+ 1︸︷︷︸
S̃

] = 8 · (N + 1)4 , (69)

where N is the degree of the DG polynomial, the exponent 4 refers to the number of spacetime dimensions,
while the terms in square brackets correspond to the contribution of the variable itself, the fluxes, the
gradients and the source, respectively. Secondly, the memory load produced by the true DG scheme of
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Table 1: Memory load per cell of the fully well-balanced Z4 ADER-DG scheme according to Eq. (71).

N MemLoad MemLoad (Byte, double precision)

1 22880 183040 ∼ 0.2 MB
2 100980 807840 ∼ 0.8 MB
3 295680 2365440 ∼ 2.2 MB
4 687500 5500000 ∼ 5.2 MB
5 1378080 11024640 ∼ 10.5 MB

Sect. 3.1.3 is given by

MemLoadDG = 2 · (N + 1)3 · [ 1︸︷︷︸
q̃h

+ 3︸︷︷︸
F̃

+ 1︸︷︷︸
S̃−B̃·∇q̃

] = 10 · (N + 1)3 , (70)

where the multiplication factor 2 is required to account for the two time levels at tn and tn+1, the exponent 3
refers to the number of space dimensions, while the terms in square brackets correspond to the contribution
of the variable itself, the fluxes, and the compactified term S̃ − B̃ · ∇q̃, the latter one being an optimization
feature of our implementation. Summing Eq. (69) and Eq. (70), and multiplying by the 110 variables of the
fully well-balanced scheme, we obtain the total memory load per numerical cell

MemLoad = 110 · (MemLoadP +MemLoadDG) = 220 · (N + 1)3 · (4N + 9) . (71)

Table 1 shows the total memory load for a few values of the polynomial degree N according to Eq. (71).

3.2. A posteriori sub-cell finite volume limiter

At this point, we need to point out that DG schemes are linear in the sense of Godunov [90]. This
means that, while the solution is represented within each cell by higher order polynomials, the update rule
is linear when applied to a linear PDE. Hence, they represent a highly accurate method to describe the
smooth features of the metric variables, but, as proven by the Godunov theorem [90], starting from second
order, they will inevitably oscillate in presence of discontinuities or strong gradients. Thus, we need to
endow our DG scheme with a technique able to strengthen its robustness, maintaining at the same time its
desirable high order of accuracy.

Among the different strategies proposed over the years (see for example [43, 44, 109, 128, 132, 133] for
some seminal introductory papers), we select the so-called a posteriori sub-cell finite volume limiter, which
has proved its capabilities in previous works both from the authors themselves [71, 157, 66, 156, 104, 81, 85]
and also from other research groups [141, 142, 51, 96, 112, 139, 130]. While referring to the aforementioned
references for a detailed description, in particular to Section 3.4 of [157] and Section 4 of [156] where the
sub-cell finite volume limiter has been also outlined on adaptive Cartesian meshes (AMR), here we only
briefly recall the key concepts.

First, our limiter acts in general in an a posteriori fashion: indeed, at the beginning of each timestep
we apply our unlimited DG scheme, everywhere on the domain, in order to obtain a candidate solution
ũn+1,∗

h = ũn+1
h . Then, the candidate solution is checked against physical and numerical admissibility criteria

to verify that it does not presents nonphysical values (as negative densities, negative pressures or superlumi-
nal velocities) or spurious oscillations (according to a relaxed discrete maximum principle). The cells where
one of these criteria is not respected are marked as troubled and, only in those cells, we completely recom-
pute the solution by employing a more robust scheme; in particular, in this work we rely either on a second
order Total Variation Diminishing (TVD) finite volume scheme or on a third order ADER-WENO [16] FV
method.
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Furthermore, we emphasize that the key point for maintaining the resolution capabilities of the DG
scheme, when using instead a less accurate FV scheme, consists in applying it on a locally refined mesh.
So, we subdivide each original troubled cellΩi in (2N+1)d sub-cellsωα. Then, we perform an L2 projection
of the DG solution ũn

h on the space of constant polynomials obtaining the sub-cell averages values ûn|ωα with
α = [1, (2N + 1)d], and we evolve these sub-cell values with the FV scheme. In this way, we obtain the
updated sub-cell averages information ûn+1|ωα from which we reconstruct back a high order polynomial ũn+1

h
with a least square operator coupled with a conservation constraint on the main cell Ωi. We also notice that
this reconstruction technique might still lead to an oscillatory solution, being an unlimited linear procedure.
In this case, the oscillatory cell will be marked again as troubled at the next timestep tn+2, so we will apply
again the FV scheme there but using as sub-cell averages directly the oscillation-free ûn+1|ωα obtained at the
previous timestep without passing through the reconstruction-projection step.

Finally, we remark that FV schemes have a less restrictive CFL stability condition than that imposed
by Eq. (88) for DG schemes. In particular, the choice of the ∆t is not affected at all by the requested order
of accuracy, thus the factor (2N + 1) is not appearing in the finite volume CFL formula. This justifies the
stability of our FV limiter scheme which can be safely applied to the cells ωα whose mesh size is exactly a
factor (2N + 1) smaller than the original Ωi cell size, thus leading exactly to the same CFL constraint of the
original unlimited DG scheme. Further details can be found in [71].

Concerning the well-balancing property, the subcell FV limiter is also by construction well-balanced
for discrete equilibria due to the fundamental properties (56).

3.3. The choice of coordinates

In general relativity the choice of coordinates is completely arbitrary, in the sense that, since the orig-
inal equations are covariant, the mathematical form of the equations is always the same, irrespective of
the coordinates chosen. However, this does not mean that all coordinate systems behave equally well, es-
pecially when performing numerical simulations. In this paper we have adopted the following systems of
coordinates:

1. Spherical coordinates (t, r, θ, ϕ), which can be used either in flat spacetime or in the presence of a
central (non–rotating) mass, as for the case described in Sect. 4.6. The corresponding metric is

ds2 = −e2ϕdt2 + e2ψdr2 + r2dθ2 + r2 sin2 θdϕ2 , (72)

where ϕ and ψ are functions of r only.
2. Kerr–Schild spheroidal coordinates (t, r, θ, ϕ). These are special coordinates6 that are very convenient

to describe the stationary spacetime of either non-rotating (Schwarzschild, with a = 0) or rotating
(Kerr, with 0 < a < 1) black holes, since they do not show any singularity at the event horizon. In
terms of such coordinates the metric can be written as [105, 108]

ds2 =(z − 1) dt2 − 2za sin2 θ dt dϕ + 2zdt dr − 2a(1 + z) sin2 θ dr dϕ

+ (1 + z) dr2 + ρ2 dθ2 +
Σ sin2 θ

ρ2 dϕ2 , (73)

where z = 2Mr/ρ2, ρ2 = r2 + a2 cos2 θ, Σ = (r2 + a2)2 − a2∆ sin2 θ, ∆ = r2 + a2 − 2Mr. The lapse of
the metric is α = 1/

√
1 + z, while there is a non–zero shift βi = (z/(1 + z), 0, 0) even in the absence

6In view of the coordinate transformation (75)–(78), we are not allowed to interpret the Kerr–Schild coordinates as standard
spherical coordinates. For an extended discussion about different coordinate systems in the Kerr spacetime see [152].
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of black hole rotation. The spatial part of the metric is given by

γi j =

 1 0 −a sin2 θ(1 + z)
0 ρ2 0

−a sin2 θ(1 + z) 0 Σ sin2 θ/ρ2

 . (74)

The only physical singularity of the Kerr spacetime, which is also a coordinate singularity, is at
ρ2 = 0, namely, at r = 0 and θ = π/2.

3. Kerr–Schild Cartesian coordinates (t, x, y, z). These coordinates are obtained from the Kerr-Schild
spheroidal coordinates through the transformation

x =
√

r2 + a2 sin θ cos
[
ϕ − arctan

(a
r

)]
, (75)

y =
√

r2 + a2 sin θ sin
[
ϕ − arctan

(a
r

)]
, (76)

z = r cos θ , (77)
t = t′ , (78)

such that the metric can be expressed as a deviation from the flat Minkowski spacetime, namely

ds2 =
(
ηµν + 2Hlµlν

)
dxµ dxν µ, ν = 1, 2, 3 (79)

where

H =
Mr3

r4 + a2z2 , lx =
rx + ay
r2 + a2 , ly =

ry − ax
r2 + a2 , lz =

z
r
, (80)

and

r =

√
(x2 + y2 + z2 − a2)/2 +

√
((x2 + y2 + z2 − a2)/2)2 + z2a2. (81)

Note that the lapse and the shift are given, respectively, by α = 1/
√

G and βi = 2H
G li, where G =

1 + 2H. In these coordinates, the physical singularity, that in spheroidal coordinates is at r = 0,
θ = π/2, corresponds to the points with x2+ y2 = a2 on the z = 0 plane, and it is therefore represented
by a circle, the so-called ring singularity.

For each of the numerical tests reported in Sect. 4 we will specify which kind of coordinates have been
adopted, among those just described.

3.4. Recovering of the primitive hydrodynamical variables
Notoriously, in the relativistic framework the recovering of the primitive variables (ρ, vi, p) from the

conserved variables (D, S i, E) is not analytic, and a numerical root-finding approach is necessary. The
primitive variables are in fact required for the computation of the numerical fluxes in the evolution of the
matter variables (see equations (32)–(34) above). Here, following the third method reported in Sect. 3.2 of
[53], we solve the system

F1(x, y) = y2x − S 2 = 0, (82)
F2(x, y) = y − p − E = 0 , (83)

where x = v2, y = ρhW2, and where the pressure, at least for an ideal gas equation of state considered in
this paper, can be written in terms of x and y as

p =
γ − 1
γ

[
(1 − x)y − D

√
1 − x

]
. (84)
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In practice, we first derive y = y(x) from Eq. (83) and then we find the root of F1[x, y(x)] = 0 via a Newton
scheme. As any other root solver, however, also this one might have troubles when the gas variables become
very small, a problem that has been afflicting numerical relativistic hydrodynamics since its birth. We have
found a rather efficient strategy to solve this problem in such a way that allows us to treat even cases when
ρ = 0 exactly. The idea can be split in the following steps:

1. We first check whether D is smaller than a given tolerance, say D < 10−14. If that is the case, we
set ρ = max(0,D) and vi = 0. This accounts also for the cases when D becomes less or equal than
zero, and reflects the idea that where there is no matter, the velocity field also vanishes, hence the
associated Lorentz factor is one.

2. If D > 10−14, then we apply our standard root solver as outlined above. If the root solver fails, then
again we set ρ = p = vi = 0.

3. If the root solver finds a root, namely a value of x = v2, the following check is performed. If
y > y0 = 10−4, the velocity is computed normally as

vi =
S i

y
. (85)

If instead y < y0 = 10−4, then a filter function is introduced

f (y) = 2(y/y0)3 − 3(y/y0)2 + 1 (86)

and the velocity field is computed by a filtered division as

vi = S i
y

y2 + f (y)ε
, (87)

where ε = 5 × 10−9. The filter function f (y) in the denominator of (87) is a cubic polynomial chosen
in such a way to have vanishing first derivatives in y = 0 and in y = y0, as well as the correct
interpolating property in those two points, namely f (0) = 1, f (y0) = 0.

In this way it is possible to solve regions characterized by very low matter densities, including even ρ = 0,
and the potentially harmful division by zero is controlled by the filter function in the denominator of (87),
which never vanishes. We stress that the value of ε in Eq. (87) does not come from a rigorous proof, but it
is related to the choice y0 = 10−4 roughly as ε ≤ y2

0 according to the following arguments: since f (0) = 1
and f (y0) = 0 (see the left panel of Fig. 1), when y → 0, the product f (y)ε → ε, which is a small but finite
quantity, thus avoiding division by zero in the denominator of Eq. (87). When y → y0, on the contrary,
the product f (y)ε → 0 and we approach the safe regime of normal division, namely Eq. (87) reduces to
Eq. (85). The effect of the filter is plotted in Fig. 1, showing both the polynomial f (y) (left panel) and the
ratio vi/S i (right panel), which reduces smoothly to zero when y→ 0.

The method that we have just described is decoupled from the well-balanced property of Sect. 3.1,
in the sense that it can be applied successfully even in a not well-balanced implementation. Of course
it will require appropriate adaptations in case of more complicated equations of state. Actually, having
ρ = p = vi = 0 corresponds to removing the fluid, while preserving the underlying equilibrium solution of
the spacetime. Therefore, the algorithm itself adheres perfectly to the well-balanced approach.

4. Numerical tests

In this Section we present a large set of numerical results to show all the capabilities, in terms of
robustness, long-term stability and resolution, of our high order finite volume and discontinuous Galerkin
schemes for the simulation of the proposed first–order hyperbolic Einstein-Euler Z4 system. If not stated
otherwise, in all numerical tests we use the standard Z4 cleaning speed e = 1 in our modified Z4 system.
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Figure 1: Lelft panel: plot of the polynomial f (y) built in such a way to have f (0) = 1, f (y0) = 0, f ′(0) = 0, f ′(y0) = 0. Right panel:
plot of the ratio between velocity and momentum vi/S i when the filter function is applied. If y = ρhW2 < 10−4, the filter is activated,
and the velocity decreases smoothly to zero.

We also recall that the timestep in DG schemes is restricted according to

∆t <
1
d

1
(2N + 1)

h
|λmax|

, (88)

where h and |λmax| are a characteristic mesh size and the maximum signal velocity, respectively.

4.1. Linearized gravitational wave test

As a first validation of our approach we consider a simple test, essentially one-dimensional, taken
from [4] for which the metric is given as a wave perturbation of the flat Minkowski space time

ds2 = −dt2 + dx2 + (1 + b) dy2 + (1 − b) dz2, with b = ϵ sin (2π(x − t)) , (89)

where ϵ = 10−8 is small enough so that the model behaviour is linear and the terms depending on ϵ2 can be
neglected. According to (89) γxx = 1, γyy = 1 + b, γzz = 1 − b; next, we use the harmonic gauge condition,
while the gamma–driver can be turned off, i.e. s = 0. Furthermore, the extrinsic curvature is given by
Ki j = ∂tγi j/(2α) which means that its nonzero components are only Kyy = −1/2 ∂tb and Kzz = 1/2 ∂tb. The
remaining non zero terms for the problem initialization are Dxyy = 1/2 ∂xb and Dxzz = −1/2 ∂xb, with
the following setting for the other relevant parameters κ1 = 0, κ2 = 0 and c = 0. Matter is absent in this
test. To discretize the problem we consider a rectangular domain [−0.5, 0.5] × [−0.2, 0.2] with periodic
boundary conditions, and we employ an unlimited ADER-DG scheme of order 6 on a mesh composed by
4×4 elements, which corresponds to 24 degrees of freedom in each direction. We run our simulation until a
final time of t = 1000, corresponding to 1000 crossing times7. Figure 2 shows the results of the calculation.
In the left panel we present the numerical solution for the Kzz component of the extrinsic curvature, at the
final time, compared with the exact one. Essentially the same perfect matching is exhibited by the other
quantities. In the right panel we display instead the evolution of the Einstein constraints. As evident, in
this simulation the Hamiltonian and momentum constraints are all constant up to machine precision for the
entire duration of the simulation.

7We recall that, for tests in special relativity, having set c = 1, the unit of time is the time taken by light to cover a unit distance.
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Figure 2: Linearized gravitational wave test solved with an ADER-DG scheme of order 6. Left panel: Kzz component of the extrinsic
curvature at the final time, compared to the exact solution. Right panel: Einstein constraints monitored all along the duration of the
simulation.

4.2. The gauge wave

We continue the benchmarking of our numerical scheme and of the proposed first–order hyperbolic
reformulation of the Z4 system with the so called gauge wave test, also taken from [4]. Here, the metric is
given by

ds2 = −H(x, t) dt2 + H(x, t) dx2 + dy2 + dz2, where H(x, t) = 1 − A sin (2π(x − t)) , (90)

which describes a sinusoidal gauge wave of amplitude A propagating along the x-axis. This means that the
metric variables are set to γxx = H and γyy = γzz = 1 and the shift vector is βi = 0, hence the gamma–driver
is switched off (s = 0). For this test the harmonic gauge condition is used. The extrinsic curvature is again
given by Ki j = −∂tγi j/(2α), i.e.

Kyy = Kzz = Kxy = Kxz = Kyz = 0 and Kxx = −πA
cos (2π(x − t))

√
1 − A sin (2π(x − t))

. (91)

All the other quantities follow accordingly, with the lapse function given by α =
√

H. Matter is absent
also in this test problem. We emphasize that the present test case, even if it can be seen as a nonlinear
reparametrization of the flat Minkowski spacetime, is far from trivial: indeed, it is reported that the first
and second order formulation of the classical BSSNOK system fail for this test after a rather short time,
see [6, 31], and that the original version of the CCZ4 system was stable only in its damped formulation [6].
The first stable undamped simulation was reported in [63] for a first–order reformulation of the CCZ4
system. Also here for this test we use an undamped version of the PDEs with κ1 = 0, κ2 = 0, while we have
noticed that it is necessary to set c = 1 in the gauge condition (39) chosen with the harmonic version, i.e.
g(α) = 1.

We have first run a test case with a small wave amplitude A = 0.1 over a rectangular domain of size
[−0.5, 0.5] × [−0.02, 0.02] with periodic boundary conditions. We have used an ADER-DG P3 numerical
scheme with a uniform grid composed of 100 × 4 elements, evolving the system until t = 1000. Hence in
the left panel of Figure 3 we show the profile of the lapse function α as a representative quantity, showing a
perfect matching with the exact solution at the final time. In the right panel, on the other hand, we monitor
as usual the Einstein constraints, which manifest a moderate linear growth all along the evolution.

Then, we have considered a large amplitude perturbation with A = 0.9, to the extent of performing
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a numerical convergence analysis of our scheme. The computational domain in this case is given by
[−0.5, 0.5] × [−0.05, 0.05]. The results, extracted from data at time t = 10, are reported in Table 2 and
confirm that the scheme reaches the nominal order of convergence.

Figure 3: Solution of the gauge wave test at t = 1000 with A = 0.1 using an ADER DG scheme of order 4. Left panel: profile of the
lapse α compared to the exact solution. Right panel: Evolution of the Einstein constraints.

Gauge wave — ADER-DG-PN

Nx × Ny L1 error L2 error L∞ error L1 order L2 order L∞ order Theor.

D
G
-P

2

40 × 4 1.2838E-03 4.8661E-03 2.5095E-02 — — —

3
60 × 6 2.6423E-04 9.8619E-04 4.9053E-03 3.90 3.94 4.03

80 × 8 8.2440E-05 3.0322E-04 1.5083E-03 4.05 4.10 4.10

100 × 10 3.3280E-05 1.2108E-04 6.0413E-04 4.07 4.11 4.10

D
G
-P

3

40 × 4 5.3398E-05 2.0348E-04 1.0660E-03 — — —

4
60 × 6 1.2460E-05 4.7006E-05 2.3760E-04 3.59 3.61 3.70

80 × 8 4.1667E-06 1.5621E-05 7.7947E-05 3.81 3.83 3.87

100 × 10 1.7520E-06 6.5436E-06 3.2420E-05 3.88 3.90 3.93

D
G
-P

4

40 × 4 1.8236E-06 6.7109E-06 3.3969E-05 — — —

5
60 × 6 1.6400E-07 5.8994E-07 2.8784E-06 5.94 6.00 6.09

80 × 8 2.9500E-08 1.0461E-07 4.9922E-07 5.96 6.01 6.09

100 × 10 7.7948E-09 2.7398E-08 1.2988E-07 5.96 6.00 6.03

D
G
-P

5

40 × 4 5.5287E-08 2.0571E-07 1.1845E-06 — — —

6
60 × 6 6.2100E-09 2.2674E-08 1.1696E-07 5.39 5.44 5.71

80 × 8 1.2027E-09 4.3669E-09 2.1883E-08 5.71 5.73 5.83

100 × 10 3.3009E-10 1.1974E-09 5.9321E-09 5.79 5.80 5.85

D
G
-P

6

40 × 4 2.8610E-09 1.0215E-08 5.2758E-08 — — —

7
50 × 5 5.0341E-10 1.7825E-09 8.9322E-09 7.79 7.82 7.96

60 × 6 1.2258E-10 4.3434E-10 2.5857E-09 7.75 7.74 6.80

70 × 7 3.8840E-11 1.3929E-10 1.0035E-09 7.46 7.38 6.14

Table 2: Numerical convergence results for the gauge wave test at t = 10 with a wave amplitude A = 0.9. In the table we report the
L1, L2, L∞ error norms and the corresponding numerical order of convergence for the lapse α.
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4.3. The robust stability test

Another important validation for any numerical GR code is represented by the so–called robust stability
test in a flat Minkowski spacetime without matter, already treated by [4, 63]. It consists of a random per-
turbation with amplitude ±10−7/ϱ2 which is applied to all quantities of the PDE system in a flat Minkowski
spacetime. The amplitude of the perturbation that we have chosen is three orders of magnitude higher than
that reported in [4]. The computational domain is given by the square [−0.5; 0.5]×[−0.5; 0.5], for which we
have considered four simulations with an unlimited ADER-DG P3 scheme on a sequence of refined meshes
formed by 10ϱ × 10ϱ elements, where ϱ ∈ {1, 2, 4, 8} is the refinement factor.

This is also a test for the gamma–driver shift condition, which, in principle, would not be necessary for
this kind of problem but is nevertheless activated to solve the PDE system in its full generality. The other
relevant parameters have been chosen as κ1 = 0, κ2 = 0, c = 0, µ = 0.2, η = 0, see (41) and (43). Fig. 4
shows the results of our calculations, where we have reported the evolution of the four Einstein constraints
for a sample of progressively refined meshes. The unit of time is again the travel time taken by light to
cover the edge of the square domain.

4.4. Spherical Michel accretion

As a further test, we have evolved the transonic spherical accretion solution of matter onto a Schwarz-
schild black hole obtained by [115] (see also [137] for a modern presentation). We recall that this is not a
solution of the full Einstein–Euler equations, but rather just of the Euler equations in the stationary back-
ground spacetime of a non–rotating black hole. However, if the whole mass accretion rate is small enough,
we can neglect the increase of the black hole mass that would in principle be produced by the accreted mat-
ter. Under such circumstances we can consistently evolve the Euler equations while freezing the evolution
of the metric, i.e. assuming what is referred to as the Cowling approximation [49].

The numerical details for obtaining the initial conditions can be found in [10]. We have performed
this simulation in spheroidal Kerr–Schild coordinates (see case 1. of Sect. 3.3) over a two dimensional
computational domain given by (r, θ) ∈ [0.5; 10] × [0 + ϵ; π − ϵ], with ϵ = 0.005 and covered by a 50 × 32
uniform grid. The critical radius, where the flow becomes supersonic, is rc = 5 (inside the computational
domain). We choose the critical density (density at the critical radius) ρc = 1.006× 10−7 such that the mass
accretion rate (computed as 4πr2

cρcur
c) is −1.0 × 10−5, meaning that the total mass accreted onto the black

hole from t = 0 to t = 1000 M is just 1/100 of the total mass M of the central black hole, thus justifying the
physical assumption of a stationary spacetime. We stress that, with these parameters characterized by very
low rest mass densities, the test becomes extremely challenging from the numerical point of view, in spite
of the solution being smooth and regular8.

The equation of state is that of an ideal gas with adiabatic index γ = 5/3. At time t = 0, the rest
mass density of the exact solution is perturbed by a Gaussian profile peaked at the critical radius, with an
amplitude given by δρ = 10−3ρc. We have solved this test by considering only the hydrodynamic section
of the system (32)–(44), thus adopting the Cowling approximation. The numerical scheme is a pure DG
scheme at fourth order of accuracy (N = 3), while the other relevant parameters have been chosen as
κ1 = 0.01, κ2 = 0, c = 0, with no gamma–driver. We have performed two simulations to the final time
t = 1000 M, the first one with the new well-balancing technique described in Sect. 3, and a second one
without it, obtaining rather different results. Figure 5 reports the one dimensional profiles of the solution
for the rest mass density and for the radial velocity vr at the final time compared to the exact solution. If
no well-balancing is adopted, the solution quickly deteriorates, amounting to a sequence of failures in the
recovering of the primitive variables, as can be seen by the zero density values reported in the left panel of
Figure 5. If the well-balancing is used instead, the exact solution is recovered and stationarity is preserved.
We recall that the positive values of the the radial velocity, which are somewhat counter intuitive given

8For a comparison, the rest mass density chosen in [53] was much higher, giving a mass accretion rate r2
cρcur

c = −1.
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Figure 4: Robust stability test case with a random initial perturbation of amplitude 10−7/ρ2 in all quantities on a sequence of succes-
sively refined meshes on the unit square in 2D. The gamma–driver shift condition, 1+ log slicing and ADER-DG P3 scheme have been
used. Top left: 10 × 10 elements, corresponding to 40 × 40 degrees of freedom (ϱ = 1). Top right: 20 × 20 elements, corresponding to
80 × 80 degrees of freedom (ϱ = 2). Bottom left: 40 × 40 elements, corresponding to 160 × 160 degrees of freedom (ϱ = 4). Bottom
right: 80 × 80 elements, corresponding to 320 × 320 degrees of freedom (ϱ = 8).
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Figure 5: Solution of the spherical accretion of matter onto a non-rotating black hole. The final rest mass density (left panel) and the
radial velocity (right panel) at time t = 1000 M are compared to their initial profiles.

that matter is falling into the black hole with increasing velocity, are a spurious effect of the Kerr–Schild
coordinates, which generate a positive radial shift.

We also stress that in these regimes of low density matter, using the filter described in Sect. 3.4 is
absolutely crucial, and the simulation encounters a sequence of catastrophic failures before t ∼ 5M if no
filter is adopted, irrespective of the well-balancing property being activated, or not.

4.5. Single stationary black holes in two and three space dimensions
The Schwarzschild solution, historically the first exact solution that was found for the Einstein field

equations, describes the spacetime around a non–rotating black hole and it represents a static solution of
the Einstein field equations. A generalization to rotating black holes is the stationary Kerr solution. For all
simulations reported in this section, the mass of the black hole is M = 1 M⊙. In all tests presented here,
matter is absent.

Non-rotating black hole in 2D. In our first simulation we solve the Z4 equations for a Schwarzschild black
hole (a = 0) in spherical Kerr–Schild coordinates, see Sect. 3.3. The two–dimensional computational
domain in the r − θ plane is chosen as Ω = [0.5, 6] × [δ, π − δ], with δ = 0.1415926535. The domain Ω is
discretized with 80×40 elements. On all boundaries we prescribe the initial condition as Dirichlet boundary
condition for all state variables. We use the fourth order version (N = 3) of our new exactly well-balanced
ADER-DG scheme based on the HLL Riemann solver and without any subcell FV limiter. Concerning the
Z4 system we use the 1+log gauge condition and set c = 0, κ1 = 1.0, κ2 = 1.0 and s = 0, i.e. the shift is
not evolved in time. In order to study the behaviour of the new well-balanced scheme in the presence of a
small perturbation, the initial condition for the cleaning variable Θ is chosen as

Θ(0, x) = A0 exp
(
−

1
2

(X − 4)2 + (Y − 0)2

σ2

)
, (92)

with (x1, x2) = (r, θ), A0 = 10−3, σ = 0.2, X = r sin θ and Y = r cos θ. We expect that during the simula-
tion the perturbation leaves the computational domain and that for large enough times the solution returns
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back to the exact stationary equilibrium solution. The computational results obtained for this simulation
are shown in Figure 6. In the top left panel we plot the L2 norms of the constraint violations H(t) − H(0)
and Mi(t) − Mi(0) for the Hamiltonian and the momentum constraints. As expected, the initial perturbation
of the order 10−3 decays exponentially in time and the solution returns back to the exact equilibrium. To
the best knowledge of the authors, this is the first long-time simulation ever carried out for the Einstein
field equations using a high order exactly well-balanced discontinuous Galerkin finite element scheme and
where, after an initial perturbation, the discrete solution returns back to the exact steady equilibrium solu-
tion. In the remaining panels of Figure 6 we show one dimensional profiles obtained from cuts along the
equatorial plane, for various representative quantities like α, γ11, K11. As apparent from the figure, perfect
agreement with the exact stationary solution is obtained at the final time t = 1000 M.
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Figure 6: 2D simulation of an initially perturbed Schwarzschild black hole (a = 0) in the 2D plane r − θ using spherical Kerr-Schild
coordinates. Top left: time series of the constraint violations until time t = 1000 M. It is clearly visible that the initial perturbation
decays exponentially in time and that the numerical solution returns to the stationary equilibrium. From top right to bottom right: 1D
cuts along the radial direction at θ = π/2 for the lapse α, the metric tensor component γ11 and the extrinsic curvature component K11
at time t = 1000 M and comparison with the exact solution.

Numerical study of the well-balancing property. We now repeat the previous test of the non-rotating black
hole in 2D until t = 0.1 using a fourth order ADER-DG scheme (N = 3) on 40×20 elements and employing
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Table 3: Numerical well-balancing test with a fourth order ADER-DG scheme using single, double and quadruple precision. L∞ error
norms for several quantities of the Z4 system at time t = 0.1.

Quantity single precision, A0 = 10−8 double precision, A0 = 10−16 quadruple precision, A0 = 10−28

α 7.4505806E-06 3.2196468E-015 4.7282543E-030
γ11 7.8201294E-05 3.3306691E-014 2.2768344E-030
K11 8.1777573E-05 3.2862602E-014 2.8324170E-029
K12 2.7160518E-06 1.9922607E-015 1.5911163E-029
Θ 2.6383780E-06 1.6878889E-015 3.4825676E-029
Z1 9.8760290E-07 1.3437779E-015 2.3198075E-029
A1 9.4473362E-06 4.8849813E-015 1.8991764E-029
D111 3.3855438E-05 1.3766766E-014 4.5212168E-030

three different machine precisions, namely single, double and quadruple precision. We set the perturbation
amplitude A0 so that it corresponds to the respective machine precision. The values of A0 as well as the
obtained L∞ error norms are reported in Table 3 at time t = 0.1 for several components of the Z4 system
and for all chosen machine precisions. The computational results clearly show that the errors remain of the
order of machine precision, hence the new numerical method proposed in this paper is well-balanced also
in its practical implementation, as expected.

Non-rotating black hole in 3D. We have then evolved the same stationary Schwarzschild black hole (a =
0) in three space dimensions by choosing the 3D Cartesian Kerr–Schild coordinates already discussed in
Sect. 3.3. The computational domain is the box [−5; 5] × [−5; 5] × [−5; 5], from which we have excised a
cubic box with an edge of length 1.0 centered on the physical singularity at r = 0. The resolution is 203, and
similarly to the two-dimensional case, a perturbation is introduced in the variable Θ. Again with a fourth
order well-balanced ADER-DG scheme, we obtain the results that are shown in Fig. 7. The constraint
violations decay back to the equilibrium at time t ≈ 400 M, after which the solution is perfectly stable
around machine precision. For this simulation, the 1D cuts are extracted along the z axis.

Rotating black hole in 3D. Finally, in addition to the previous Schwarzschild black holes with a = 0, we
have also evolved two Kerr black holes in three space dimensions, one with spin a = 0.5 and the other one
with spin a = 0.99. The computational domain is the box [−5; 5]×[−5; 5]×[−5; 5], with the same resolution
as for the Schwarzschild case, namely 203. A major difference is given by the fact that the excision box
must enclose the ring singularity on the z = 0 plane [50], which has an external radius rring = a. Hence, the
excision box is effectively a parallelepiped with edges 2×2×1, and 3.2×3.2×1, for the two black holes with
spin a = 0.5 and a = 0.99, respectively. Keeping the same strategy of perturbing the initial configuration,
we obtain results that are shown in Fig. 8 and Fig. 9, and confirming the turning back of the solution to the
exact equilibrium. Fig. 10, on the other hand, shows the contour surfaces of a few representative quantities
where the Schwarzschild (a = 0) and the Kerr (a = 0.99) black holes are compared.

4.6. Non–rotating neutron star in equilibrium

A crucial test for numerical relativity, where both the Einstein and the relativistic Euler equations must
be accounted for, is represented by the time evolution of an equilibrium neutron star. In the non–rotating
case, this amounts to solving the so called Tolman–Oppenheimer–Volkoff (TOV) system, which we report
here for completeness [150, 125, 137]

dm
dr
= 4πr2e , (93)
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Figure 7: 3D simulation of an initially perturbed Schwarzschild black hole (spin a = 0) in 3D Cartesian Kerr-Schild coordinates using
a fourth order well-balanced ADER-DG scheme. Top left: time series of the constraint violations until time t = 1000 M. It is clearly
visible that the initial perturbation decays exponentially in time and that the numerical solution returns to the stationary equilibrium.
From top right to bottom right: 1D cuts along the z axis (x = y = 0) for the lapse α, the metric tensor component γ11 and the extrinsic
curvature component K11 at time t = 1000 M and comparison with the exact solution.
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Figure 8: 3D simulation of an initially perturbed Kerr black hole (spin a = 0.5) in 3D Cartesian Kerr-Schild coordinates using a fourth
order well-balanced ADER-DG scheme. Top left: time series of the constraint violations until time t = 1000 M. It is clearly visible
that the initial perturbation decays exponentially in time and that the numerical solution returns to the stationary equilibrium. From
top right to bottom right: 1D cuts along the z axis (x = y = 0) for the lapse α, the metric tensor component γ33 and the extrinsic
curvature component K33 at time t = 1000 M and comparison with the exact solution.
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Figure 9: 3D simulation of an initially perturbed Kerr black hole (spin a = 0.99) in 3D Cartesian Kerr-Schild coordinates using a
fourth order well-balanced ADER-DG scheme. Top left: time series of the constraint violations until time t = 1000 M. It is clearly
visible that the initial perturbation decays exponentially in time and that the numerical solution returns to the stationary equilibrium.
From top right to bottom right: 1D cuts along the z axis (x = y = 0) for the lapse α, the metric tensor component γ33 and the extrinsic
curvature component K33 at time t = 1000 M and comparison with the exact solution.

dp
dr
= −

(e + p)(m + 4πr3 p)
r(r − 2m)

, (94)

dϕ
dr
= −

1
e + p

dp
dr

, (95)

where m(r) is the mass enclosed within the radius r, ϕ is the unknown metric function in the line ele-
ment (72), while e−2ψ = 1 − 2m

r . The equation of state adopted is that of a polytropic gas, namely p = K ργ.
The TOV system (93)–(95) constitutes a set of three ODEs, which we have solved using a tenth order

accurate discontinuous Galerkin scheme, see [58]. For high order ADER-DG schemes, in fact, simple initial
data computed via Runge-Kutta ODE integrators are not accurate enough. We have adopted a stable model
with parameters which have by now become canonical in numerical relativity [78], namely a central rest
mass density ρc = 1.28×10−3, K = 100 and γ = 2. Having done that, the numerical integration of (93)–(95)
provides all the radial profiles as well as the remaining physical characteristics of the star, i.e. a total mass
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Figure 10: Contour surfaces of initially perturbed black hole spacetimes in 3D Cartesian Kerr-Schild coordinates at t = 1000 M using
a fourth order well-balanced ADER-DG scheme. Left: Schwarzschild black hole (a = 0). Right: Kerr black hole (a = 0.99). From
top to bottom: lapse α, shift β2 and extrinsic curvature component K33.
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Figure 11: 1D cuts of some hydrodynamic and metric quantities of the TOV star obtained with the new well-balanced third order
ADER-FV scheme at the final time t = 1000 M.
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M = 1.4 M⊙ and a radius R = 9.585 M⊙ = 14.15 km. When performing the coordinate transformation

dr̄
r̄
=

(
1 −

2m
r

)−1/2 dr
r
, (96)

see [33], then the spatial part of the metric (72) becomes conformally flat, namely

ds2 = −e2ϕdt2 + e2ψ̄(dr̄2 + r̄2dθ2 + r̄2 sin2 θdϕ2) = −e2ϕdt2 + e2ψ̄(dx̄2 + dȳ2 + dz̄2) , (97)

thus generating a spatial metric that is just γi j = (r/r̄)2ηi j. In the space outside the star, due to Birkoff’s
theorem, the spacetime is that of a Schwarzschild solution produced by a mass M, i.e.

e2ϕ = 1 −
2M

r
, r̄ =

1
2

(√
r2 − 2Mr + r − M

)
, (98)

while all the hydrodynamic variables collapse to zero. For this test problem the full Einstein–Euler system
is evolved in the domainΩ = [−16,+16]3 until t = 1000 M using a third order ADER-WENO finite volume
scheme with 603 elements. We set the damping coefficients to κ1 = κ2 = 0.05. We stress that, thanks to our
new conversion from the conservative to the primitive variables (see Sect. 3.4), there is no need to insert
a low density atmosphere in the exterior of the neutron star. For this test the fluid pressure was initially
perturbed by adding a small fluctuation p′ = p0 exp

(
− 1

2
x2

σ2

)
to the pressure obtained from the TOV solution,

with amplitude p0 = 10−7 and halfwidth σ = 0.2.
To obtain better results, and only for this test, we had to resort to a well-balanced third order ADER-FV

scheme [70], which became necessary for its increased robustness with respect to ADER-DG, especially
at the surface of the star. Figure 11 shows the results of our computations, by reporting the 1D-cuts of a
few representative quantities at the final time, compared to the reference equilibrium solution. A perfect
matching is obtained, apart for very small deviations in the profiles of the velocity (along x) and in the trace
of the extrinsic curvature K. To the best of our knowledge, this is the first time that a numerical relativity
code can evolve a TOV star in a (matter) vacuum atmosphere with ρ = p = 0.

In addition, in Fig. 12 we report the time evolution of the central rest–mass density (left panel, nor-
malized to its initial value) and of the central lapse (right panel). We just mention briefly that from this
oscillating behavior it is possible to extract the normal modes of oscillation of the neutron star, comparing
them with those obtained through a perturbative analysis and inferring fundamental aspects of neutron star
physics [79]. As we are not interested to enter such details in this work, we postpone further analysis to
future investigations.

Finally, Fig. 13 shows the behaviour of the Einstein constraints during the evolution. The left panel
refers to the same simulation reported in Fig. 11, and it shows that the L2 norm of the Einstein constraints
remains low and stationary all along the evolution. The right panel refers instead to a second simulation
with the third–order ADER-DG scheme. In this case we have compared the well-balanced (WB) algorithm
with the not well-balanced (NOWB) one. The difference is remarkable, since in the not well-balanced
evolution (NOWB) the Einstein constraints start increasing around t ∼ 300, entering an exponential grow
which eventually makes the code crash.

4.7. Two puncture black holes

As a last test we have analysed the head-on collision of two nonrotating black holes, which are modelled
as two moving punctures. The initial conditions can be obtained by the TwoPunctures initial data code [9],
and are prescribed as follows:

• equal black hole masses, M = 1, with no spin;

• initial positions given by x− = (−1, 0, 0) and x+ = (+1, 0, 0);
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Figure 14: Contour surfaces of the lapse for the two punctures black holes. The solution is reported at six different times: t =
0, 5, 7, 8, 10, 20 M.
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• zero linear momenta;

• zero initial extrinsic curvature.

We have performed this test to the purpose of showing the ability of the DG scheme based on our improved
Z4 implementation of the Einstein equations to solve moving punctures, irrespective of the possibility
of extracting gravitational waves, which will be the subject of a future research. The three-dimensional
computational domain is given by Ω = [−60; 60]3 and flat Minkowski spacetime is imposed as boundary
condition everywhere. We use adaptive mesh refinement (AMR) with time accurate local time stepping [70]
and one level of refinement with refinement factor ϱ = 3 inside the box [−10, 10]3. The subcell finite volume
limiter is always activated within the box [−3, 3]3. The numerical relevant parameters are set as κ1 = 0.2,
κ2 = 0.2, c = 0, µ = 0.0.

For this test, the activation of the gamma–driver is mandatory. In order for the evolution to proceed
successfully, we have found that it is necessary to perform the following actions: in the inner region the
lapse α is flattened as

α =
αr6 + ϵαmin

r6 + ϵ
, (99)

where αmin = 0.01, ϵ = 10−4, in such a way that the spacetime evolution is effectively frozen. Simultane-
ously, all the metric terms are filtered as

f = erf
(
γmax

γi j

[
1 +

( r
0.4

)4
])
, (100)

γi j = γmax(1 − f ) + γi j f , (101)
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Figure 15: Time evolution of the constraint violations for two punctures black holes.

34



so as to avoid metric spikes, but rather reaching a smooth maximum value at γmax ∼ 25. In addition, since
there is not an exact solution for this test, the well-balancing property is switched off completely.

In Figure 14 we present the contour iso-surfaces of the lapse at different times, showing the merger
process of the two black holes. In Figure 15 the time evolution of the Hamiltonian and momentum con-
straints are reported, showing a stable evolution of the system until the end of the merger process. To the
very best knowledge of the authors, this is the very first stable 3D simulation of a head-on collision of two
puncture black holes carried out with a high order DG scheme applied to the first order reformulation of the
Z4 system of the Einstein field equation.

5. Conclusions

In this paper we have investigated the first–order version of the Z4 formulation of the Einstein–Euler
equations, originally proposed by [24, 25], via a new well-balanced discontinuous Galerkin scheme for non
conservative systems. We have shown substantial advantages with respect to its analogous first–order CCZ4
version, already discussed in [63]. Along with an obvious simpler form of the equations, when compared
to CCZ4, in the Z4 system the Zµ four vector is an evolved quantity, allowing for a direct monitoring of the
Einstein constraints violations. Strong hyperbolicity has been verified by computing the full set of eigen-
vectors for a general metric in case of frozen shift. The new high order well-balanced ADER-DG scheme
for conservative and non-conservative systems relies on the framework of path-conservative schemes. The
choice of the path is irrelevant in the case of the Einstein field equations, since the non-conservative part of
the system concerns only the metric, which cannot develop discontinuities as all associated characteristic
fields are linearly degenerate. We have verified the nominal order of convergence of our new scheme up to
seventh order in space and time. Two additional and fundamental features make the new numerical scheme
particularly robust and attractive:

1. The overall scheme is well-balanced, in the sense that it can preserve stationary equilibrium solutions
exactly up to machine precision. This has been obtained in a pragmatic but very effective way by
subtracting the discretized equilibrium solution from the evolved one during the simulation. For
highly dynamical systems, on the other hand, the well-balancing property is not useful and hence not
adopted.

2. The conversion from the conservative to the primitive variables, which has been plaguing relativistic
hydrodynamic codes for so long, has been made substantially more robust by the introduction of
a special filter function, which avoids division by zero and thus the divergence of the velocity in
regimes of very low rest mass densities. To the best of our knowledge, this is the very first time that
compact objects like neutron star can be simulated by setting ρ = 0 outside the object, instead of
requiring a numerical atmosphere.

After these improvements, we have been able to reproduce all the standard tests of numerical relativity with
unprecedented accuracy in the computation of stationary solutions. In particular, and to the best of our
knowledge, this is the first time that a stationary black hole (including an extreme Kerr one with a = 0.99)
has been evolved with a high order DG scheme in three space dimensions within the 3+1 formalism up to
t = 1000M, and with no limitation to proceed even further. Our new approach could be beneficial for the
numerical study of quasi–normal modes (QNM) of oscillations of black holes, which represents a fertile
field of research in high energy astrophysics (see, among the others, [13].)

Second, our new filter in the conversion from the conserved to the primitive variables allowed us to
evolve a TOV star in true vacuum, namely with p = ρ = 0 outside the star. This new feature is likely to play
a major role in future applications of high energy astrophysics where very low density regions are involved.

Finally, at the level of a proof of concept calculation and with no intention yet to compute the gravita-
tional wave emission from a binary system, we have obtained first encouraging preliminary results concern-
ing the head–on collision of two equal masses black holes. This demonstrates the possibility to account for
a physical problem that was previously considered off–limits for the original Z4 formulation.
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Future work will concern the application of the new numerical scheme to the simulation of the inspi-
ral and merger of binary black holes and binary neutron star systems with the calculation of the related
gravitational waves.

6. Acknowledgments

This work was financially supported by the Italian Ministry of Education, University and Research
(MIUR) in the framework of the PRIN 2022 project High order structure-preserving semi-implicit schemes
for hyperbolic equations and via the Departments of Excellence Initiative 2018–2027 attributed to DICAM
of the University of Trento (grant L. 232/2016). M. D. and I. P. are members of the INdAM GNCS group
in Italy.

E. G. is member of the CARDAMOM team at the Inria center of the University of Bordeaux and grate-
fully acknowledges the support received from the European Union’s Horizon 2020 Research and Innova-
tion Programme under the Marie Skłodowska-Curie Individual Fellowship SuPerMan, grant agreement No.
101025563, and the support and funding received from the European Union with the ERC Starting Grant
ALcHyMiA (No. 101114995). Views and opinions expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union or the European Research Council Executive Agency.
Neither the European Union nor the granting authority can be held responsible for them.

We would kindly like to thank Carlos Palenzuela, Luciano Rezzolla and Konrad Topolski for the inspir-
ing discussions.

Appendix A. The eigenstructure of the first–order Z4 system

We stress that the Euler and the Einstein sector of the full PDE given by (32)–(44) are coupled only
through the source terms, since all the metric derivatives arising in the matrix ∂F(Q)/∂Q, and corresponding
to the Euler block, have been moved to the source terms on the right hand side as auxiliary variables. Hence,
with no loss of generality, we can analyze the eigenstructure of the Einstein–Euler system by focusing on
the Einstein block, more specifically by setting to zero all the hydrodynamic variables (D, S 1, S 2, S 3, E),
whose eigenvectors are well known. In addition, assuming the 1+log gauge condition with zero shift
(βi = 0, s = 0), excluding the passive quantity K0 from the analysis, and using c = 0, the remaining 55
variables for the state vector Q relative to the matter and spacetime evolution are given by

QT =
(
D, S 1, S 2, S 3, E, lnα, β1, β2, β3, γ11, γ12, γ13, γ22, γ23, γ33,K11,K12,K13,K22,K23,K33,Θ,Z1,Z2,Z3,

A1, A2, A3, B 1
1 , B

1
2 , B

1
3 , B

2
1 , B

2
2 , B

2
3 , B

3
1 , B

3
2 , B

3
3 ,D111,D112,D113,D122,D123,D133,D211,D212,D213,

D222,D223,D233,D311,D312,D313,D322,D323,D333,
)
. (A.1)

Under such circumstances, the eigenvalues are given by

λ1 =
√
γ11α e (multiplicity 1) ,

λ2 = −
√
γ11α e (multiplicity 1) ,

λ3,··· ,7 =
√
γ11α (multiplicity 5) ,

λ8,··· ,12 = −
√
γ11α (multiplicity 5) ,

λ13,··· ,53 = 0 (multiplicity 41) ,
λ54 =

√
2
√
α γ11 (multiplicity 1) ,

λ55 = −
√

2
√
α γ11 (multiplicity 1) ,

(A.2)

with corresponding eigenvectors:

rT
1 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

√
γ11e , 0 , 0 , 0 , 0 , 0 , 1/2

γ113/2ee2α − 2
α

,−1/2
γ11 e2α − 2

α
, 0 , 0 ,
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2
γ11

α
, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

)
(A.3)

rT
2 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,−

√
γ11e , 0 , 0 , 0 , 0 , 0 ,−1/2

γ113/2e(e2α − 2)
α

,

−1/2
γ11 (e2α − 2)

α
, 0 , 0 , 2

γ11

α
, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

)
(A.4)

rT
3 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,−2

γ12√
γ11

,

√
γ11 , 0 , 0 , 0 , 0 , 0 , γ12 ,−γ11 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 ,−2
γ12

γ11 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.5)

rT
4 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,−2

γ13√
γ11

, 0 ,
√
γ11 , 0 , 0 , 0 , 0 , γ13 , 0 ,−γ11 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

−2
γ13

γ11 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.6)

rT
5 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,−

γ22√
γ11

, 0 , 0 ,
√
γ11 , 0 , 0 , 0 , γ22 ,−γ12 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

−
γ22

γ11 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.7)

rT
6 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,−2

γ23√
γ11

, 0 , 0 , 0 ,
√
γ11 , 0 , 0 , 2 γ23 ,−γ13 ,−γ12 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 ,−2
γ23

γ11 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.8)

rT
7 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,−

γ33√
γ11

, 0 , 0 , 0 , 0 ,
√
γ11 , 0 , γ33 , 0 ,−γ13 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

−
γ33

γ11 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.9)

rT
8 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

γ22√
γ11

, 0 , 0 ,−
√
γ11 , 0 , 0 , 0 , γ22 ,−γ12 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

−
γ22

γ11 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.10)

rT
9 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

γ33√
γ11

, 0 , 0 , 0 , 0 ,−
√
γ11 , 0 , γ33 , 0 ,−γ13 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

−
γ33

γ11 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.11)

rT
10 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2

γ12√
γ11

,−

√
γ11 , 0 , 0 , 0 , 0 , 0 , γ12 ,−γ11 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 ,−2
γ12

γ11 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.12)

rT
11 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2

γ13√
γ11

, 0 ,−
√
γ11 , 0 , 0 , 0 , 0 , γ13 , 0 ,−γ11 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 ,−2
γ13

γ11 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.13)

rT
12 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2

γ23√
γ11

, 0 , 0 , 0 ,−
√
γ11 , 0 , 0 , 2 γ23 ,−γ13 ,−γ12 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 ,−2
γ23

γ11 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.14)

rT
13 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1
)

(A.15)
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rT
14 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0
)

(A.16)

rT
15 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0
)

(A.17)

rT
16 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.18)

rT
17 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.19)

rT
18 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0
)

(A.20)

rT
19 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 ,

0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.21)

rT
20 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.22)

rT
21 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.23)

rT
22 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.24)

rT
23 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.25)

rT
24 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.26)

rT
25 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.27)

rT
26 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.28)

rT
27 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.29)

rT
28 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.30)

rT
29 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.31)

rT
30 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.32)

rT
31 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.33)
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rT
32 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,−1/2

γ12

γ11 , 1/2 , 0 ,−
γ12

γ11 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.34)

rT
33 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,−1/2

γ13

γ11 , 0 , 1/2 ,−
γ13

γ11 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.35)

rT
34 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/2

−γ122
γ33 + γ132

γ22

γ11 γ12 ,

−1/2
−γ11 γ12 γ33 − γ11 γ13 γ23 + 2 γ12 γ132

γ11 γ12 , 1/2
−γ11 γ12 γ23 − γ13 γ22 γ11 + 2 γ122

γ13

γ11 γ12 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,−
γ132

γ11 γ12 , 0 , 0 ,
γ13

γ12 , 1 , 0 , 0 ,
γ12

γ11 , 0 , 0 , 0
)

(A.36)

rT
35 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/2

γ122
γ33 − γ132

γ22

γ11 γ12 ,

−1/2
γ11 γ12 γ33 + γ11 γ13 γ23 − 2 γ12 γ132

γ11 γ12 , 1/2
γ11 γ12 γ23 + γ13 γ22 γ11 − 2 γ122

γ13

γ11 γ12 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
γ132

γ11 γ12 , 0 , 0 ,−
γ13

γ12 , 0 , 0 , 0 ,−
γ12

γ11 , 0 , 1 , 0
)

(A.37)

rT
36 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/2

−γ11 γ13 γ23 + γ13 γ22 γ11

γ11 γ13 ,

−1/2
−γ112

γ23 + γ11 γ13 γ13

γ11 γ13 , 1/2
−γ112

γ22 + γ11 γ132

γ11 γ13 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

−
γ13

γ13 , 0 , 0 ,
γ11

γ13 , 0 , 0 , 1 , 0 , 0 , 0 , 0
)

(A.38)

rT
37 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/2

−γ11 γ13 γ23 + γ13 γ22 γ11

γ11 γ13 ,

−1/2
−γ112

γ23 + γ11 γ13 γ13

γ11 γ13 , 1/2
−γ112

γ22 + γ11 γ132

γ11 γ13 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

−
γ13

γ13 , 1 , 0 ,
γ11

γ13 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.39)

rT
38 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/2

2 γ11 γ13 γ23 − 2 γ13 γ22 γ11

γ11 γ13 ,

−1/2
2 γ112

γ23 − 2 γ11 γ13 γ13

γ11 γ13 , 1/2
2 γ112

γ22 − 2 γ11 γ132

γ11 γ13 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 ,

2
γ13

γ13 , 0 , 0 ,−2
γ11

γ13 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.40)

rT
39 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.41)

rT
40 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.42)

rT
41 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.43)

rT
42 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.44)

rT
43 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

39



0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.45)

rT
44 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.46)

rT
45 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.47)

rT
46 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.48)

rT
47 =

(
0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.49)

rT
48 =

(
0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.50)

rT
49 =

(
0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.51)

rT
50 =

(
0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.52)

rT
51 =

(
0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.53)

rT
52 =

(
0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.54)

rT
53 =

(
1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.55)

rT
54 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/2

√
2
√
α γ11

γ11 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 1/2
α

γ11 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.56)

rT
55 =

(
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,−1/2

√
2
√
α γ11

γ11 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 1/2
α

γ11 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
)

(A.57)
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[20] A. Bermúdez, X. López, and M.E. Vázquez-Cendón. Numerical solution of non-isothermal non-adiabatic flow of real gases in

pipelines. Journal of Computational Physics, 323:126–148, 2016.
[21] A. Bermudez and M.E. Vázquez-Cendón. Upwind methods for hyperbolic conservation laws with source terms. Computers &

Fluids, 23(8):1049–1071, 1994.
[22] S. Bernuzzi and D. Hilditch. Constraint violation in free evolution schemes: Comparing the BSSNOK formulation with a

conformal decomposition of the Z4 formulation. Physical Review D, 81(8):084003, 2010.
[23] C. Birke, W. Boscheri, and C. Klingenberg. A Well-Balanced Semi-implicit IMEX Finite Volume Scheme for Ideal Magneto-

hydrodynamics at All Mach Numbers. Journal of Scientific Computing, 98:34, 2024.
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