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ABSTRACT

Access control is a fundamental component of IT systems to guaran-
tee the confidentiality and integrity of sensitive resources. However,
access control systems have inherent limitations: once permissions
have been assigned to users, access control systems do not provide
any means to prevent users from misusing such permissions. The
problem of privilege misuse is typically addressed by employing
auditing mechanisms, which verify users’ activities a posteriori.
However, auditing does not allow for the timely detection and mit-
igation of privilege misuse. In this work, we propose a framework
that complements access control with anomaly detection for the
run-time monitoring of access requests and raises an alert when
a user diverges from her normal access behavior. To detect anoma-
lous access requests, we propose a novel approach to build user
profiles by eliciting patterns of typical access behavior from histor-
ical access data. We evaluated our framework using the access log
of a hospital. The results show that our framework has very few
false positives and can detect several attack scenarios.
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1 INTRODUCTION

Access control systems are typically employed as the first line of
defense to guarantee the confidentiality and integrity of sensitive

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

ARES 2023, August 29-September 1, 2023, Benevento, Italy
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0772-8/23/08.
https://doi.org/10.1145/3600160.3604988

Inez L. Wester
Eindhoven University of Technology
Eindhoven, The Netherlands
il wester@student.tue.nl

Nicola Zannone
Eindhoven University of Technology
Eindhoven, The Netherlands
n.zannone@tue.nl

resources and data. In particular, access control systems ensure that
only authorized users can access resources based on predefined
access control policies specifying users’ permissions.

The level of security offered by an access control system mainly
depends on the correctness of the employed access control policies.
To this end, alarge body of research has proposed principles to guide
the specification of access control policies (e.g., least privilege and
separation of duties) [12] as well as tools for their verification [32].
Despite these research efforts, once access privileges are assigned
to a user, there is no guarantee that the user will not misuse them.

Privilege misuse is one of the foremost causes of data breaches
[34], where the privileges associated with a particular user are used
inappropriately or fraudulently to steal sensitive information or sab-
otage the system. Privilege misuse is typically carried out by insider
threats, i.e. legitimate users of the system that exploit the assigned
permissions, or by cyber attackers obtaining the credentials of a
privileged user. Another example of privilege misuse comes from
the medical domain, where most hospitals use the Break-The-Glass
(BTG) protocol to handle access to patient data in emergencies. This
protocol allows a user (e.g., a doctor) to override the access control
policies in force and gain access to the requested data [2]. However,
the unrestricted access granted by the BTG protocol leaves the sys-
tem vulnerable to data breaches because users can exploit the proto-
col to obtain access to patient data that they normally cannot access.

The detection of privilege misuse is typically addressed using
auditing methods for the a-posteriori analysis of system access
logs to identify data accesses corresponding to privilege misuse
[3, 14, 22, 26, 27]. Unfortunately, these methods do not proactively
protect against misuse but only help identify one after the fact.
A few works propose approaches for identifying unsafe data ac-
cesses at run-time based on a risk score [4, 28] or by eliciting ad-
hoc constraints from access logs [3]. However, these approaches
merely block potentially unsafe requests, which is undesirable in
mission-critical systems such as hospitals where lives are at stake,
or introduce a significant burden in policy administration.

To provide a proactive solution for detecting privilege misuse, in
this work, we propose a novel framework that complements access
control with anomaly detection for run-time monitoring and timely
detection of privilege misuse. Our anomaly detection system checks
if access requests deviate from the requester’s typical behavior and,
if so, triggers an alert indicating potential misuse of privileges. To
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this end, we propose a new method to build user profiles that en-

compass the usual access behaviors of individual users. In particular,

we extract access patterns by applying clustering to access events
recorded in access logs. We evaluated the effectiveness of our frame-
work using a real-life dataset recording data accesses at a hospital.

The main contribution of our work can be summarized as follows:
e Our framework provides an additional layer of protection by

leveraging anomaly detection to determine at run-time whether
access requests authorized by the access control system pose risks
of privilege misuse. Contrary to approaches based on auditing,
our framework allows for the timely detection and mitigation
of privilege misuse. Moreover, by flagging anomalous requests,
rather than denying them altogether, our framework allows the
employment of different mitigation strategies based on the con-
text of use and application domain (e.g., requiring the requester’s
supervisor to confirm the request’s legitimacy).

o Our approach for user profiling allows identifying behavioral pat-
terns able to discriminate users (even with the same role) based
on their access behaviors, thus providing fine-grained detection
capabilities. Moreover, our approach can construct a profile also
for those users for whom historical data are scarce.

e Our evaluation shows that our framework returns very few false
positives (false positive rate <0.001) and can detect many attack
scenarios representative of privilege misuse.

The remainder of the paper is structured as follows. Section 2
discusses related work. Section 3 presents our framework for user
profiling and run-time monitoring of access requests. Section 4
describes a prototype implementation of our framework based on
areal access log of a hospital, and Section 5 presents its evaluation.
Section 6 discusses our findings, and Section 7 concludes the paper.

2 RELATED WORK

This work proposes an anomaly detection system that leverages
machine learning (ML) and, specifically, clustering to build user
profiles enabling the timely detection of privilege misuse. Next, we
discuss related research on the use of ML techniques and anomaly
detection in the context of access control.

ML-based access control. An extensive body of research has applied
ML for the mining and engineering of attribute-based access con-
trol (ABAC) policies [1, 6, 7, 19, 20]. These works extract ABAC
policy rules from access logs using different types of ML algorithms:
association rule mining [1], support vector machines (SVM) [7],
decision trees [6, 7], and k-modes clustering [20]. However, access
logs are typically incomplete [33] and, thus, the mined policies
might not fully capture the access constraints in place. Other works
leverage ML to manage changes to access control policies [17, 35].
Xiang et al. propose P-DIFF [35], a tool that helps system admin-
istrators detect unintended changes to access control policies. This
tool uses decision trees to infer access control policies from access
logs. Then, when an access request that was denied based on the
policy inferred from the logs is now granted by the enforced policy,
P-DIFF notifies the system administrator, who can validate the pol-
icy change. Gumma et al. propose PAMMELA [17], a methodology
that leverages supervised learning to augment an existing access
control policy with access rules that accommodate organizational
changes. The last body of research in this area proposes to replace
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policy-based evaluation engines with an ML model [10, 24, 25].
Chang et al. [10] propose a time-constrained access control model
based on SVM. Liu et al. [24] propose EPDE-ML, an ABAC engine
based on Random Forest. Nobi et al. [25], instead, present an access
decision-making engine based on neural networks. However, ML
models often generate false positives and false negatives, which
can result in data breaches or affect business continuity.

Anomalous user behavior in access control. Some works have investi-
gated methods for identifying possible unsafe data access, especially
for uncovering privilege misuses [4, 28]. For instance, Srivastava
et al. [28] present a risk-adaptive role-based access control model
for hospital management systems, which uses Random Forest to
determine if a request is legitimate or not. Differently from other
works relying on ML for access decision-making [10, 24, 25], the
decision is based on a risk score computed using contextual features
extracted from access logs, such as time of access, location, type
of request (emergency or normal), and previous history (number
of requests the user made for the same data in the past), and the
relevance of the requested data to the requester. However, this ap-
proach generates a very high number of false negatives (19%, as
reported in [28]), making it unsuitable in practical situations. Sim-
ilarly, Baracaldo et al. [4] present a framework that extends RBAC
to account for the risk of permissions being misused by a role and
the trust the system has in its users based on their past behavior.
When a user’s trust falls below a certain threshold, the framework
removes her privileges. While this approach has the potential to
prevent privilege misuse, it lacks the flexibility necessary to handle
misclassifications. Another line of research investigates solutions
based on behavioral models and anomaly detection techniques
[2, 3, 30]. For instance, Alizadeh et al. [2] and Tasali et al. [30] pro-
pose approaches to detect anomalous access requests related to the
use of the Break-The-Glass (BTG) protocol. However, these works
only support the auditing of access requests in an a-posteriori fash-
ion to identify misuses of the BTG protocol. On the other hand,
Argento et al. [3] propose to monitor user behavior at run-time
to learn behavioral profiles of users accessing resources. However,
this work focuses on machine-assisted policy administration, where
behavioral profiles are used to refine the access control rules in
place. Yet, misclassification can result in too stringent constraints,
which can affect the correct functioning of the system.

Contribution. Compared to previous works, our framework does
not aim to replace traditional access control systems with an ML-
based system, which might result in data breaches due to false
positives, or to mine ad-hoc constraints to handle behavioral as-
pects, which might be too inflexible in critical-mission systems and
introduce burden in policy administration. Rather, our framework
aims to enhance existing access control systems with a monitoring
component that raises an alert when an anomalous access request
is detected, thus effectively providing an additional layer of pro-
tection. Conversely to auditing methods that rely on a posteriori
analysis of access logs, our framework enables the detection of
anomalous requests at run-time, allowing the access control system
to promptly react to privilege misuses by applying strategies to
prevent or mitigate the risk of abuse.
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Figure 1: System overview

3 OUR APPROACH

This section presents our framework, which augments a traditional
access control system with an anomaly detection system to monitor
access requests at run-time and provide timely feedback on anoma-
lous requests. Next, we introduce the underlying threat model; we
then present the system architecture and its main components.

3.1 Threat Model

Our framework aims to detect situations in which the permissions
associated with a user are exploited to perform malicious actions.
We distinguish between two categories of attackers: insider threats
abusing the assigned permissions to exfiltrate confidential or sen-
sitive information and external attackers who have stolen the cre-
dentials (username and password) of a legitimate user (e.g., via a
phishing attack) and impersonate the user to steal sensitive data.
Contrarily to approaches based on auditing [2, 30], our framework
allows for the timely detection of anomalous requests representing
the abuse of privileges from insider threats or external attackers.

3.2 System Overview

The proposed system consists of three main components depicted in
Fig. 1. The blue box represents the access control component, which
follows the traditional functioning of access control systems. When
a user requests access to sensitive information, the request is inter-
cepted by the policy enforcement point (PEP), which forwards it to
Context Handler (CH). The CH augments the request with attributes
of the user, the resource, the action, or the environment, which
might be required for policy evaluation. The request is then for-
warded to the policy decision point (PDP), which evaluates it against
the security policies to determine whether access should be granted.

In a traditional access control system, the decision (permit or
deny) is sent to the PEP for its enforcement. If the request is evalu-
ated to permit (or a deny decision is overwritten, for instance, using
the BTG protocol in hospitals), access to the requested information
is granted to the user. However, this approach does not account for

potential risks where a user has abused his privileges or where an
external attacker has impersonated a legitimate user of the system.

To mitigate these risks, we complement the access control system
with an anomaly detection system (red box in Fig. 1). In particular,
the anomaly detection system evaluates the access request at run-
time by checking whether the request matches the typical access
behavior of the user. If the request is deemed anomalous for the
user, access can be denied altogether, or additional controls can be
employed to mitigate the risk of misuse (e.g., requiring the user’s
supervisor to confirm the request’s legitimacy). Although an inves-
tigation and definition of possible mitigation strategies are outside
the scope of this work, we will discuss them in Section 6.

The anomaly detection system relies on user profiles represent-
ing the typical access behavior of users within the system. These
profiles are constructed from historical access data by identifying
patterns of access behavior, hereafter referred to as behavioral pat-
terns (green box in Fig. 1). We assume behavioral patterns and user
profiles are regularly updated to capture changes in user behavior
over time, e.g. when a user is assigned to a new job function.

In the remainder of the section, we discuss the approach em-
ployed for building user profiles and detecting anomalous requests.

3.3 User Profiling

Our framework relies on user profiles representing the users’ nor-
mal access behavior to detect anomalous requests. In this section,
we describe the approach employed for user profiling, which encom-
passes selecting and extracting relevant features, eliciting behav-
ioral patterns from historical data, and constructing user profiles
from the extracted behavioral patterns.

3.3.1 Feature Selection and Extraction. Anomaly detection systems
aim to discover behaviors that “stand out of the ordinary”. To this
end, an essential step is to identify the features that allow capturing
‘interesting’ user behaviors. In our context, a feature is an individual
measurable property or a characteristic of access events. The choice
of relevant features mainly depends on the data at hand and the be-
haviors to be captured. In this work, we are interested in contextual
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ID | Log-time UserlD Patientlr | Protocol Explanation | IP Inventory Computer | LastActive | Wall outlet | Division | Rale
Type

1 2015-05-06 16:27:34 20009381 7830053 Mormal MNULL 1451176585 11-036-0465 Desktop Jul 8 2015 AD1-412-83 Divl BA-behandelend
12:05AM arts

2 | 201505406 16:27:35 | 20003538 | 4511892 BTG-protocol NULL 145.117.72.157 10-020-0866 | Deskiop JulE2015 | Q3-500-C2 | DivP Ca-co assistent
12:46AM

3 | 20150506 16:37:35 | 40001541 | 9832805 ETG-protacol | Treatment 145 177.65.134 110200866 | Desktop JIB201E | ADZ72A1 | DiP BA-behandelend
12:504M arts

4 | 20150506 16:37:48 | 30005937 | 3458400 Narmal NULL 145117138181 | 11.010-0866 | Desktop JIB201E | G4-120AZ | DwB BA-behandalend
12:494M arts

5 | 20150506 16:28:08 | 30005084 | 8887321 Tarmal NULL 145.117.138.26 10-020-1143 | Desktop JIB2015 | G4-210-A6 | DiA Medische
12:464M Administratie

Figure 2: Excerpt of raw data logs

features that capture the behaviors exhibited by users accessing
resources within the systems and might signal privilege misuse.

A feature can be an attribute recorded in the historical data or can
be extracted from historical data to characterize relevant user be-
haviors. Examples of contextual features that can be derived directly
from historical data could be the time of the access, the location from
which it was made, or the type of access. The location from which
the request originated can be used, for instance, to detect an external
attacker impersonating a legitimate user who does not have phys-
ical access to the organization’s buildings. It is worth noting that
these contextual features are often recorded in access logs. As an ex-
ample, Fig. 2 shows the excerpt of a real-life log recording accesses
to patient data at a hospital, which provides insights into when a re-
quest was made (log-time) and the location from where it originated
(IP and wall-outlet) (we refer to Section 4.1 for details on the log).

Other contextual features, such as the number of accesses and
amount of accessed data, can be used to detect privilege misuse
[3]. For instance, access to abnormal amounts of data can indicate
an attempt at data exfiltration. The definition of these features is
often based on common sense and domain knowledge and typically
depends on the information available in the raw data. We discuss
the feature extraction process on a real-life log in Section 4.2.

Although several features can be conceived for anomaly detec-
tion, employing a large feature set does not necessarily imply better
results. High-dimensional data typically affect the performance of
machine learning algorithms and create extremely complex models
with often lower accuracy [9]. We discuss the selection of features
that allow eliciting reliable behavioral patterns in Section 4.2.

3.3.2 Behavioral Pattern Elicitation. The next step is to extract pat-
terns of typical access behavior from historical access data based on
the identified features. As historical data are typically unlabeled, i.e.,
the behavioral patterns of interest are unknown a priori, we rely on
an unsupervised learning approach and, particularly, on clustering.

One of the most used clustering algorithms is K-means [23]. K-
means is a relatively generic algorithm that is easily adaptable to
new features. However, K-means only supports numerical features.
As the features of interests can be both numerical and categorical
(see Section 4.2), we employ K-prototypes [13] to extract behavioral
patterns. This clustering algorithm extends K-modes [18], a variant
of K-means tailored to categorical data, to handle both categorical
and numerical features.! Every data point is assigned to the cluster

!As an alternative to K-prototypes, we tested K-means using a one-hot encoding,
i.e., each value of categorical features is encoded as a binary feature. This approach,
however, is not only memory intensive but also requires adjusting the weighing of the
introduced features. Indeed, splitting categorical features into multiple binary features
would skew the results toward features with a higher number of values. For instance,
in our dataset (Section 4), the feature wall-outlet has 2667 unique values. Thus, the
clustering is extremely dependent on wall-outlet, disregarding nearly all other features.

where its distance to the mean of that cluster is the smallest, for
a given distance metric. K-prototypes uses the Gower distance to
determine a numerical value for categorical data by comparing the
categorical values to the numerical data already in the dataset [16].
Similarly to K-means, K-prototypes requires the number of clusters
as an input parameter. Following best practices [29], we employ
the elbow method to determine the optimal number of clusters.

We also considered the mean-shift algorithm [11] and the Density-
Based Spatial Clustering of Application with Noise (DBSCAN) algo-
rithm [31] in our study. The mean-shift algorithm shifts the clusters
to higher-density clusters iteratively; however, it does not work
well with high dimensional data [8]. On the other hand, DBSCAN
requires a density drop between clusters [21], which a preliminary
analysis of our dataset shows could not be guaranteed.

3.3.3  Profile Construction. The obtained behavioral patterns are
used to build user profiles. Intuitively, a user profile represents
the typical access behaviors of a user. To determine whether a be-
havioral pattern belongs to a user’s profile, we consider all data
accesses made by the user and check if any of them occur in the
cluster representing the behavioral pattern. A user profile consists
of all behavioral patterns exhibited by the user. Formally: Let R be
the set of access events in the historical data and By, ..., B, C R the
behavioral pattern extracted from R. Given a user u with historical
data R, € R, the profile of u, denoted as Py, is defined as:
P, ={B; | 3r e R, N B;}

The definition above assumes that a behavioral pattern is part of
a user profile if the user made at least one access that matches the
behavioral pattern. However, our approach can be generalized and
allows one to tune the sensitivity of the anomaly detection system,
e.g., by including behavioral patterns in a profile only if at least a
certain percentage of the user’s accesses are in the respective cluster.

It is worth noting that our approach builds profiles at the level of
individual users instead of at the level of roles as done in prior work
[26]. This way, the obtained user profiles can better characterize
the differences in behaviors of users in the same job position. At the
same time, our approach builds user profiles from behavioral pat-
terns extracted from the access events of all users rather than only
from the events of each user individually. As shown in previous
studies, the latter can be problematic when the historical data avail-
able for some users is scarce [2], while our approach can construct a
profile for a user even if she performed few data access in the past.

3.4 Anomaly Detection System

The anomaly detection system aims to determine whether an access
request is normal or anomalous for the requester based on her user
profile. To this end, the anomaly detection system should determine
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to which behavioral pattern an incoming request belongs and verify
whether that behavioral pattern belongs to the requester’s profile.
This can be seen as a classification problem. The choice of classifi-
cation model to be used depends on the characteristics of the data,
their dimensionality, and the algorithm employed for clustering.
We selected the classification model for our prototype based on
an experimental evaluation of widely used classification models
(Section 4.2). We evaluated existing classification models in terms
of both classification accuracy and computational performance.
The first metric is used to assess their efficacy, whereas the latter
determines the feasibility of the approach in a run-time setting.

It is worth noting that the contextual features used for the classi-
fication of requests should be the same as the ones used to construct
the behavioral patterns (cf. Section 3.3.1). To this end, we assume
that the Context Handler enriches the request with the selected fea-
tures before passing it to the anomaly detection system (represented
by the arrow labeled ‘permit’ to the Context Handler in Fig. 1).

4 PROTOTYPE IMPLEMENTATION

To evaluate our framework, we developed a prototype based on the
real-life access log recorded by a hospital in the Netherlands [2].

4.1 Dataset

The dataset contains events recording the accesses to patient in-
formation made by the hospital staff over one month. Each event
records either a “regular” access request (along with the correspond-
ing decision) or an invocation of the BTG protocol. When a user
requests access to patient data, the hospital IT system evaluates the
request against the security policies in place. If the policies autho-
rize the request, access is granted. Otherwise, the system prompts
the user to invoke the BTG protocol, in which case the user has to
indicate the reason for which she wants to access the data; if the
user decides to use the BTG protocol, access to the data is granted to
the user. For our evaluation, we considered the access requests and
invocations of the BTG protocol made by users with the role “Behan-
delend Arts” (i.e., doctor), for a total of 447,877 events. Detailed sta-
tistics of the dataset used for the evaluation are reported in Table 1.

The dataset comprises 12 features, as shown in Fig. 2. Feature log-
timerecords the time of the request; userID is the unique identifier of
the requester, and parientNr is the unique identifier of the patient for
which the data were requested; protocol indicates whether the access
request is regular along with the access decision (permit or deny) or
whether the BTG protocol was invoked, in which case explanation
reports the reason for invoking the BTG protocol (e.g., New Patient,
Treatment, Research); explanation is NULL for regular accesses. The
log also contains information about the machine from which the
access request was made, namely features IP-address, inventory num-
ber of the computer, and its type (desktop or laptop). Feature last ac-
tive indicates the last time the user was active, which in most cases is
very close to the time when the log was retrieved. Feature wall-outlet
represents the identifier of the network socket (e.g., ID H2-259-A5
denotes the building (H), the floor number (2), the room number
(259), and the room socket number (A5)), which uniquely identifies
the location of the computer from which the request was made
in the hospital, and division indicates from which division of the
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Table 1: Data used in the experiment

nr. features 12
total nr. requests 4478717
nr. granted requests 425404
nr. BTG invokations 15572
nr. unique users 1522
nr. unique users who invoked the BTG protocol 525

hospital the data were requested,; finally, feature role denotes the job
position of the user at the hospital (in our case “Behandelend Arts”).

4.2 Implementation Details

To build the anomaly detection system, we used the access requests
that were permitted by the hospital IT system (hereafter referred
to as granted requests). In particular, we used 95% of the granted re-
quests made by users with the role “Behandelend Arts” to build the
user profiles; the other 5% was used for validation (see Section 5.1).

Feature Extraction and Selection. We analyzed the features in our
dataset (cf. Section 4.1) to identify relevant contextual features for
the construction of user profiles. Features userID, role, and protocol
were used to determine which requests should be considered for the
construction of user profiles. In particular, role and protocol were
employed to identify the requests used for the elicitation of the be-
havioral patterns (i.e., granted requests made by users with the role
“Behandelend Arts”), whereas userID was used to associate the be-
havioral patterns belong to user profiles. We did not consider feature
explanation as this feature is only meaningful for BTG invocations.

For features division and log-time, we leveraged the analysis
of the access log presented in [2]. This analysis shows that many
more data accesses were made during working days compared to
non-working days (i.e., weekends and holidays). A similar pattern
emerges by comparing accesses made during working and non-
working hours. Based on these observations, we extracted two fea-
tures from log-time: feature shift, which denotes whether the data
were requested during the day shift (between 7:00 and 19:00) or the
night shift (between 19:00 and 7:00), and work schedule, which indi-
cates whether the requests was made during working days or non-
working days. The analysis in [2] also reveals notable differences
in access behaviors based on the division from which patient data
were accessed. Therefore, we included this feature in our analysis.

We additionally considered the other features in the access log,
which were not investigated in [2]. An analysis of inventory, IP, and
wall-outlet shows that these features are strongly intercorrelated.
In particular, their Cramér’s V, which measures the association
between two categorical variables, is nearly 1, indicating a strong
association between these variables. Thus, we only used wall-outlet
for clustering. We performed Principal Component Analysis (PCA)
to evaluate the impact of patientNr and computer type on clustering
and observed that their use negatively affects clustering, resulting
in less well-marked behavioral patterns. In particular, patientNr is
an identifier that carries no contextual information about the type
of patient (e.g., the division in which she is treated or the disease she
is affected) or the type of data accessed. Feature last active reports
the last time the user was active within the system, which in our
dataset is close to the date on which the dataset was retrieved from
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Table 2: Cluster analysis

clusterID division weekly daily hourly wall-outlet shift schedule nr.requests nr. users
1 DIVA 179 21 16 G3-155-A8 day weekend 17974 455
2 DIVB 1928 285 103 A01-127-A3 day working day 8666 2
3 DIVB 1918 287 74 A01-127-A6  night working day 5875 2
4 DIVB 194 37 10 F3-251-A2 night working day 23508 569
5 DIVA 290 68 32 G6-255-A5 day  working day 106717 262
6 DIVB 184 24 9 F3-251-A2 night weekend 7232 277
7 DIVA 112 27 11 F3-251-A2 day  working day 234161 1504
total DIVA 233 47 19 A01-127-A3 day working day 404133 1522
E ) role “Behandelend Arts”), which make many requests around the
£ t same time every day as demonstrated by the extremely high count
Sswt ! i of weekly requests. The main difference between these two clusters
> . 10 N is that one comprises requests made during the day shift and the
# clusters

Figure 3: K-Prototypes clustering costs for different k

the IT system for all requests. Accordingly, it is not representative
of user access behavior and, thus, discarded from the analysis.

To capture behaviors that can potentially signal the occurrence
of privilege misuse, we also extracted contextual features represent-
ing the number of requests the requester made per hour (hourly),
per day (daily), and per week (weekly). These features allow us,
for instance, to flag cases where a user is attempting to exfiltrate
abnormal amounts of patient data. To compute these features, we
leveraged the historical access data. However, their computation
varies for the requests used to elicit the behavioral patterns and for
the requests used for validation. For the training data, we looked up
in the historical data how many requests the user made at each hour
(day and week, respectively) based on the request’s log-time and
computed the number of requests in the given period for all those
requests. This allows us to build behavioral patterns accounting
for the amount of data requested by users (measured in terms of
the number of requests). The computation of the features for the
requests in the validation dataset is similar, but the feature values
are computed on a request basis. In particular, for each request,
we compute the number of requests the user made in the previous
hour, on that day, and in that week, respectively. This allows us to
simulate the run-time functioning of the system.

Overall, we selected seven contextual features from the consid-
ered features: four are categorical (shift, schedule, division, wall-
outlet), and the others are numerical (hourly, daily, and weekly).

Behavioral Pattern Elicitation. As discussed in Section 3.3.2, we em-
ployed K-prototypes to elicit behavioral patterns from the dataset of
granted requests. Fig. 3 shows the application of the elbow method
from 2 to 16 clusters to our dataset, concluding that the best number
of clusters is 7. An overview of the seven clusters obtained using
K-prototypes is presented in Table 2. The first column reports the
clusterID, and the next seven columns report the most frequent
feature value in the cluster for categorical features and the average
feature value for numerical features. The last two columns show the
number of requests and unique users in each cluster, respectively.

We can observe that some clusters stand out. Clusters 2 and 3
consist of requests made only by two users, which indicates that
these two users exhibit distinct behavioral patterns. These users
turned out to be two bots (registered within the system with the

other requests made during the night shift (we refer to Fig. 7 for
an in-depth analysis of feature shift). On the other hand, cluster 7
comprises the access requests made by 1504 unique users, with
only 18 users not having any requests in this cluster. Therefore, we
can conclude that this cluster captures a general behavioral pattern
common to almost all doctors in the hospital. This observation is
also supported by the number of requests in the cluster, which is
more than half of all requests in the dataset.

When looking at the clusters’ features, we can observe that
DIVA and DIVB are the most dominant divisions in all clusters.
This can be explained by the fact that these two divisions are the
most frequent in the dataset, with DIVA occurring in 23.4% of the
access events in the dataset and DIVB in 16.4%. The distribution
of divisions per cluster in Fig. 4 shows that, while these feature
values are not discriminant for the obtained behavioral patterns,
less frequent divisions are more common in certain clusters.

User Profiles Construction. We constructed the user profiles by con-
sidering, for each user, the granted requests that the user made and
to which cluster(s) these requests belong (cf. Section 3.3.3). The
profile of a user, thus, encompasses all behavioral patterns exhibited
by the user. Fig. 5 shows the size of the obtained user profiles, and
Fig. 6 shows how frequently clusters occur together. For instance,
the first line of Fig. 6 shows that, among the 455 users exhibiting the
first behavioral pattern, 319 users also exhibit the fourth behavioral
pattern and 124 users the fifth behavioral pattern.

We can observe that the profile of all users comprises from 1 to 5
clusters of requests and that the behavioral patterns are distributed
across the board, indicating that the extracted behavioral patterns
can discriminate the behavior of different users. It is worth noting
that the profile of 57 users consists of 5 clusters; these clusters
represent all behavioral patterns exhibited by humans (recall that
two clusters comprise the requests made by bots).

Request Classifier. To determine whether an access request is anoma-
lous for a given user, the anomalous detection system should deter-
mine whether the request falls in any behavioral pattern associated
with that user. As discussed in Section 3.4, we do this by employing
a classifier that, given an access request, classifies it into one of the
extracted behavioral patterns. We tested several classification mod-
els to determine which one is more suitable for our purpose. For
our assessment, we used the portion of the dataset used to extract
the behavioral patterns, where 85% of the data was used to train the
classifier, and the remaining 15% was used for validation; the cluster
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Figure 6: Cluster confusion matrix

Table 3: Classifier evaluation

Algorithm Accuracy
Multi Layer Perceptron (MLP) 99.93%
K-nearest neighbor (KNN) 99.93%
Random Forest 99.92%
Decision Tree 99.83%
Support Vector Classifier (SVC) 99.74%
Naive Bayes 90.79%
AdaBoost Classifier 93.25%
Quadratic Discriminant Analysis 22.07%

IDs were used as classification labels. A summary of the tested clas-
sification models along with their accuracy is reported in Table 3.

We can observe that SVC, K-Nearest Neighbors, Decision Tree,
Random Forester, and MLP all perform well in terms of classification
accuracy. As their accuracy is nearly identical, we selected the clas-
sifier model based on their computational performance to ensure a
fast evaluation process at run-time. Our investigation showed that
SVC has a hefty evaluation time (0.67 ms per request on average)
compared to the other algorithms (less than 0.1 ms per request);
thus, we discarded this classification model. Among the remain-
ing algorithms, we chose K-Nearest Neighbors because the cluster
relations made by K-means are easier to capture by this algorithm.

The K-Nearest Neighbor algorithm takes k of nearest neighbors
to the request to be classified and chooses the most dominant cluster
among its nearest neighbors. We tested the algorithm for various
values of k and observed that the best performances are obtained
when k is equal to 3, as shown in Table 4.

5 EVALUATION

To assess the performance of our framework and its practical feasi-
bility, we conducted two experiments. In the first experiment, we

Table 4: Number of neighbors (k) for K-Nearest Neighbors
nr neighbors  Accuracy

99.89%
99.91%
99.93%
99.91%
99.87%
99.85%
99.83%
99.78%
99.61%
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generated synthetic anomalous behaviors based on predefined at-
tack scenarios and evaluated the ability of the framework to detect
such behaviors. In the second experiment, we used the prototype
to evaluate the invocations of the Break-The-Glass (BTG) protocol
at the hospital to assess our framework in a real setting.

5.1 Experiment 1: Attack Scenarios

5.1.1 Settings. This experiment aims to evaluate the effectiveness
of our framework in discriminating anomalous behaviors from
legitimate behaviors. To this end, we used the 5% of the granted
requests that were not used to build user profiles to evaluate its
ability in recognizing legitimate behaviors. For our evaluation, we
assume these requests to be legitimate. To evaluate the ability of the
approach to detect anomalous behaviors, we artificially generated
anomalous access events based on predefined attack scenarios.

In total, we defined five attack scenarios (Table 5), each represent-
ing how a user of the system (or an external attacker impersonating
a legitimate user of the system) can deviate from her normal behav-
ior. Based on these attack scenarios, we generated anomalous access
events semi-randomly. The users of these requests were chosen
manually to ensure they do not exhibit behaviors in line with the at-
tack scenario. The feature parametrization of the generated anoma-
lous access events was derived from the analysis of behavioral pat-
terns and user profiles presented in Section 4.2; request features that
are not relevant to the attack scenario were generated randomly.

We assessed the results in terms of true positives (TP), false pos-
itives (FP), true negatives (TN), and false negatives (FN), where the
positives indicate the number of requests flagged by the system
as anomalous, and the negatives indicate the number of requests
flagged by the system as legitimate. To better assess how well the
system performs, we also compute the accuracy (i.e., the proportion
of correct predictions — both true positives and true negatives —
among the total number of cases examined), precision (i.e., number
of true positives divided by all positives), recall (i.e., number of
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Table 5: Attack scenarios

1 Unusual number of requests: The number of requests made by
the user exceeds his average number of weekly and daily requests.

2 Unusual working shift: A user requests access to patient data
during a night shift when he does not normally do it.

3 Unusual working schedule: A user requests access during the
weekend when he normally does it during non-working days.

4 Unusual working days: A user requests patient data during
working days in which he has never requested before.

5 Unusual working locations: A user requests patient data from
locations from where he has never requested before.

Table 6: Attack scenario evaluation

TP FP TN FN Accuracy Precision Recall F1-score

no scenario - 6 21260 - 0.999 - - -
scenario 1 4486 6 21260 1505 0.945 0.999 0.749 0.856
scenario 2 317 6 21260 0 0.999 0.981 1.000  0.990
scenario3 241 6 21260 0 0.999 0.976 1.000  0.904
scenario 4 0 6 21260 78 0.998 0.000 0.000 0.000
scenario 5 80 6 21260 385 0.982 0.930 0.183  0.306
total 5124 6 21260 1968  0.930 0.999 0.723  0.839

true positives divided by the true positives and false negatives) and
fl-score (i.e., the harmonic mean of the precision and recall).

5.1.2  Results. Table 6 reports the results of the first experiment,
where no scenario refers to the case where only legitimate re-
quests are considered and scenario X to the cases where the attack
instances of the corresponding scenario are considered along with
the legitimate requests; in total, the results for legitimate requests
are counted only once. We can observe that the system has an over-
all accuracy of 93% and a recall of 72.3%. In particular, for legitimate
requests (no scenario in Table 6), it has a very low false positive rate,
with only 6 requests out of the 21266 legitimate requests flagged as
anomalous (corresponding to an accuracy of 99.9%). On the other
hand, the system was able to detect 72.3% of the simulated attacks.
However, we note a large variation per attack scenario. Next, we
discuss the results for each attack scenario individually.

Attack Scenario 1: Unusual number of requests. As shown in Ta-
ble 6, the system was able to detect 74.9% of the attack instances
(recall) for the first attack scenario, while a quarter of the instances
were labeled as normal. This result is expected as an alert is raised
only when the cumulative number of weekly and daily requests
exceeds what is typically requested by the user. Recall that, in our
experiment, we simulated the actual functioning of the system and
computed the cumulative number of requests on a request basis.
Accordingly, the first few requests of the user were in line with
their behavioral patterns and, thus, considered legitimated by the
anomaly detection system. For example, consider a doctor who
usually accesses the data of 50 patients per day; if one day he sud-
denly accesses the data of hundreds of patients, the first 50 requests
would be recognized as legitimate by the anomaly detection system
and, only when the amount of requested data requested exceeds
normal usage, the anomaly detection system raises an alert. The
results show that the detection system can detect this attack when
discrepancies with users’ behavioral patterns emerge.
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Attack Scenario 2: Unusual working shift. This attack scenario covers
situations in which users who usually do not request patient data
during the night shifts suddenly do. For example, an employee
working in the administration requests access to patient data during
the night when he has previously requested data only during the
day. The results for the second attack scenario show a recall of 100%,
indicating that all cases are flagged as anomalous by the system.
This highlights that the shift is a strong indicator for discriminating
user behaviors, as also illustrated by the shift distribution per cluster
in Fig. 7, which shows that all access events in each cluster occurred
either during the day shift or during the night shift.

Attack Scenario 3: Unusual working schedule. This attack scenario
represents situations in which users who usually do not access
patient data during non-working days suddenly request patient
data during those days. For example, a doctor requests access to
patient data during the weekend, when he usually places access
requests only during working days. The results show that the sys-
tem can detect all attack instances of this type (100% recall). Again,
this is due to the ability of the clustering algorithm to distinguish
between requests made on working days and requests made during
non-working days, as shown in Fig. 8. From the figure, we can
observe that only the behavioral patterns exhibited by the bots
(clusters 2 and 3) comprise requests made during both working and
non-working days; all other clusters consist of requests made either
during working days or during the weekend.

Attack Scenario 4: Unusual working day. This attack scenario repre-
sents situations where an attacker requests access to data on differ-
ent working days from when they usually do. For example, a doctor
requests access to patient data on Friday when he typically does
only on Tuesday and Thursday. The results show that the system is
not able to detect these cases (0% recall). This result is not surprising
when looking at the day distribution of requests per the cluster in
Fig. 8. We can observe that all clusters comprising requests made
during working days include requests made during every working
day. It is worth noting that we used a Boolean feature (working days
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vs. non-working days) to capture day-related information in the
construction of behavioral patterns (cf. Section 4.2). Therefore, we
argue that the detection system was not trained to distinguish re-
quests made during different working days. We did additional exper-
iments in which we clustered access events on individual weekdays.
However, we obtained virtually identical behavioral patterns, with
no clear distinction between requests over different working days.

Attack Scenario 5: Unusual Working Location. This attack scenario
covers situations in which, for example, a doctor places requests
to access patient data from a division different from the one from
which he typically works. The results in Table 6 show that the sys-
tem can only partially detect requests made from unusual locations.
In particular, the system did not flag as anomalous any request made
from a location from which the user never requested before and
only detected some attack instances when the user has requested
patient data from different locations. These results are partially due
to the low discriminant power of the features representing location
information (wall-outlet and division). An inspection of the distribu-
tion of division (cf. Fig. 4) and wall-outlet (not reported here for the
lack of space) per cluster shows that the values used to generate
the attack instances were also present in some behavioral patterns
associated with the user. Overall, a realistic location switch was
difficult to simulate due to the lack of context information when
generating the attack instances for this scenario.

5.2 Experiment 2: BTG Requests

5.2.1 Settings. The second experiment aims to evaluate the practi-
cal applicability of our framework in a real-life setting. In particular,
we used the prototype implementation trained using the granted
requests, as described in Section 4, to evaluate the 15572 invoca-
tions of the BGT protocol at the hospital (cf. Table 1). This allows
us to assess the framework in the context of actual data accesses
performed by the hospital staff and, thus, to gain insights into its
practicality in real-life situations. As the legitimacy of the BTG
invocations is unknown, we only provide a qualitative evaluation.
In particular, we assess how frequently an anomalous request is
detected and, thus, how often the system should take action to
mitigate the potential risks of misuse of the BTG protocol.

5.2.2  Results. Our analysis shows that, out of the 15572 BTG in-
vocations in our dataset, 15533 were classified as normal and 23 as
anomalous; the remaining 16 BTG invocations are from 8 users who
do not have a user profile (i.e., they never made regular requests
and only accessed patient data using the BTG protocol within the
data collection period). As our system returns very few false alerts
(cf. Section 5.1.2), these requests are likely to represent anomalous
behaviors within the hospital. An inspection of these access events
shows that 19 of the 23 flagged BTG invocations were made at night,
either to add a new patient or to consult on existing patients. On
the other hand, for the four requests made during the day, ‘research’
was provided as an explanation for using the BTG protocol.

The 23 anomalous BTG invocations were made by 14 users, out
of the 525 users who invoked the BTG protocol (cf. Table 1); their
distribution per user is reported in Fig. 9. We can observe that the
number of anomalous requests per user ranges from one request
(nine users) to four requests (one user). On the other hand, none of
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the users who do not have a user profile did more than three BTG in-
vocations. All their requests were made during the day and have as
an explanation either ‘consulting with a colleague’ or ‘adding a new
patient’, with only two cases where the explanation was ‘research’.

6 DISCUSSION

In this section, we elaborate upon some key observations obtained
from our experiments and discuss the limitations of our approach.

Adversarial Attacks. A key aspect of our system is constructing user
profiles representing patterns of typical access behavior. Since this
process relies on clustering, it may be subject to attacks that could
lead to altering the clustering output. For example, user profiling
could be subject to poisoning and obfuscation attacks [5]. In a poison-
ing attack, an adversary tries to poison the dataset used for cluster-
ing by injecting carefully crafted samples to compromise the whole
clustering process. In our system, an attacker can inject a large num-
ber of access requests that lead to generating clusters that no longer
discriminate users’ behavior. On the other hand, in obfuscation at-
tacks, the adversary’s goal is to hide a given set of initial attack
samples within some existing clusters, possibly without altering the
clustering results for the other samples. An example of this attack is
an insider threat that generates access requests to be included in one
of the clusters representing normal user behavior. The effectiveness
of such attacks is determined mainly by the information available
to the adversary about the attacked system. The attacker should
have full knowledge of the attacked system, meaning he knows
the behavior of legitimate users, the clustering algorithm, and the
features used for clustering. This might be a realistic assumption
for an insider threat who can gain full knowledge of the system by
colluding with other system users, e.g., a system administrator. On
the other hand, an external attacker can be considered a weaker
adversary because it might be more difficult for such an attacker to
acquire knowledge about the behavior of the users of the system as
well as about the technical details of the anomaly detection system.

Sensitivity of the anomalous detection system. Our experiments show
that our framework returns very few false positives (cf. no scenario
in Section 5.1). Although the discriminant power of some features
in our dataset (e.g., shift and schedule) and the clustering algorithm
could have positively contributed to these results, the low false pos-
itive rate is also due to our approach for building user profiles. We
employed a lenient approach where a behavioral pattern is added
to the profile of a user if the user made at least a similar request in
the past (cf. Section 3.3.3). Nonetheless, our approach is flexible and
can be easily customized to restrict the behavioral patterns forming
user profiles, for example, by requiring a minimum percentage of
requests in a given cluster or by employing outlier detection ap-
proaches to remove unusual access events from the data used to
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build user profiles. Further research is needed to investigate how
to tune the sensitivity of the anomaly detection system.

Handling new users. Our approach requires that a profile is as-
sociated with each user to determine whether their requests are
anomalous. Nonetheless, the evaluation of BTG invocations at the
hospital in Section 5.2 shows this might not be the case in real-life
settings, where we encountered eight users for which it was im-
possible to define a user profile due to the lack of data. While, in
our experiments, this is mainly due to the restricted data collection
period (one month), this issue can generally be encountered with
new users. In these cases, a ‘default’ profile should be assigned to
those users. However, the definition of such a profile can introduce
risks because it would associate behaviors not typically exhibited
by the user. An analysis of the elicited behavioral patterns can assist
in the definition of a ‘default’ profile. For instance, the analysis in
Section 4.2 shows that the behavioral patterns corresponding to clus-
ter 7 occur in the profile of 1504 out of the 1522 users with the role
“Behandelend Arts”. Therefore, one could safely assume that this
behavioral pattern represents a typical behavior of users with that
role and can be leveraged to define a default profile for new doctors.

No one-size-fits-all mitigation strategy. A common issue of all anom-
aly detection systems is false positives [15]. Therefore, anomalous
access requests cannot be merely denied, especially in mission-
critical systems such as hospitals. Mitigation strategies can be em-
ployed to mitigate the risks of privilege misuse while guaranteeing
the correct functioning of the system. The choice of the strategy to
be used might depend on several factors, e.g., the sensitivity of the
requested information and its context of usage. For instance, anoma-
lous requests for patient data for research purposes (cf. Section 5.2)
might undergo the approval of the requester’s supervisor, before
they can be granted. An investigation of mitigation strategies and
the definition of automated methods for their selection based on
contextual information are interesting directions for future work.

7 CONCLUSION

In this work, we presented a framework that complements a tradi-
tional access control system with anomaly detection to identify priv-
ilege misuses. To this end, we proposed a novel approach to building
user profiles by eliciting patterns of typical access behavior from
historical data. Our framework relies on the constructed user pro-
files for run-time monitoring of access requests and raises an alert
when a user’s request diverges from her profile. We evaluated our
framework using a dataset recording access to patient data in a hos-
pital. The results show that it raises a low number of false positives
(99.9% accuracy) and can detect several attack scenarios. We also
applied our framework to evaluate BTG invocations at the hospital,
thus demonstrating its practical applicability in real-life settings.
Our analysis only focused on requests of users with the role
“Behandelend Arts”. We plan to extend our prototype to consider
other roles within the hospital. We also plan to investigate mitiga-
tion strategies to reduce the risk of privilege misuse and automated
methods for their selection based on contextual information.

ACKNOWLEDGMENTS
This work is funded by the EDA project WINLAS.

Gelareh Hasel Mehri, Inez L. Wester, Federica Paci, and Nicola Zannone

REFERENCES

[1] A. Abu Jabal, E. Bertino, J. Lobo, M. Law, A. Russo, S. Calo, and D. Verma. 2020.
Polisma - A Framework for Learning Attribute-Based Access Control Policies. In
ESORICS. Springer, 523-544.

[2] M. Alizadeh, S. Peters, S. Etalle, and N. Zannone. 2018. Behavior analysis in the
medical sector: theory and practice. In SAC. ACM, 1637-1646.

[3] L. Argento, A. Margheri, F. Paci, V. Sassone, and N. Zannone. 2018. Towards
Adaptive Access Control. In DBSec. Springer, 99-109.

[4] N.Baracaldo and J. Joshi. 2013. An adaptive risk management and access control
framework to mitigate insider threats. Computers & Security 39 (2013), 237-254.

[5] B. Biggio, I Pillai, S. Rota Bulo, D. Ariu, M. Pelillo, and F. Roli. 2013. Is Data
Clustering in Adversarial Settings Secure?. In AlSec. ACM, 87-98.

[6] T. Bui and S. Stoller. 2020. A Decision Tree Learning Approach for Mining
Relationship-Based Access Control Policies. In SACMAT. ACM, 167-178.

[7] L. Cappelletti, S. Valtolina, G. Valentini, M. Mesiti, and E. Bertino. 2019. On the
Quality of Classification Models for Inferring ABAC Policies from Access Logs.
In Big Data. IEEE, 4000-4007.

[8] S. Chakraborty, D. Paul, and S. Das. 2021. Automated Clustering of High-
dimensional Data with a Feature Weighted Mean Shift Algorithm. In Conference
on Artificial Intelligence. AAAI Press, 6930-6938.

[9] G. Chandrashekar and F. Sahin. 2014. A survey on feature selection methods.

Computers & Electrical Engineering 40, 1 (2014), 16-28.

C. Chin-Chen, L. Iuon-Chang, and L. Chia-Te. 2006. An Access Control System

with Time-constraint Using Support Vector Machines. Int. J. Secur. Netw. 2 (2006).

[11] D Comaniciu and P Meer. 2002. Mean shift: a robust approach toward feature
space analysis. TPAMI 24, 5 (2002), 603-619.

[12] S.De Capitani di Vimercati, S. Paraboschi, and P. Samarati. 2003. Access control:
principles and solutions. Software: Practice and Experience 33, 5 (2003), 397-421.

[13] NJ de Vos. 2015-2021. kmodes categorical clustering library. https://github.com/

nicodv/kmodes.

P Duessel, S Luo, U Flegel, S Dietrich, and M Meier. 2020. Tracing Privilege

Misuse Through Behavioral Anomaly Detection in Geometric Spaces. In SADFE.

G. Fernandes, J. Rodrigues, L. Carvalho, J. Al-Muhtadi, and M. Proencga. 2019. A

comprehensive survey on network anomaly detection. Telecommun. Syst. 70, 3

(2019), 447-489.

[16] John C Gower. 1971. A general coefficient of similarity and some of its properties.
Biometrics 27, 4 (1971), 857-871.

[17] V. Gumma, B. Mitra, S. Dey, P. Patel, S. Suman, and S. Das. 2021. PAMMELA:
Policy Administration Methodology using Machine Learning. CoRR (2021).

[18] JJi, T Bai, C Zhou, C Ma, and Z Wang. 2013. An improved k-prototypes clustering

algorithm for mixed numeric and categorical data. Neurocomputing 120 (2013).

L. Karimi, M. Aldairi, J. Joshi, and M. Abdelhakim. 2022. An Automatic Attribute-

Based Access Control Policy Extraction From Access Logs. TDSC 19, 4 (2022).

L Karimi and J Joshi. 2018. An Unsupervised Learning Based Approach for Mining

Attribute Based Access Control Policies. In Big Data. IEEE, 1427-1436.

K Khan, SU Rehman, K Aziz, S Fong, and S Sarasvady. 2014. DBSCAN: Past,

present and future. In ICADIWT. IEEE, 232-238.

P. Legg, O. Buckley, M. Goldsmith, and S. Creese. 2015. Caught in the act of an

insider attack: Detection and assessment of insider threat. In HST. IEEE, 1-6.

A.Likas, N. Vlassis, and J. Verbeek. 2003. The global k-means clustering algorithm.

Pattern Recognition 36, 2 (2003), 451-461. Biometrics.

P Nicopolitidis, A Liu, X Du, and N Wang. 2021. Efficient Access Control Permis-

sion Decision Engine Based on Machine Learning. Secur Comm Netw (2021).

M Nobi, R Krishnan, Y Huang, M Shakarami, and R Sandhu. 2022. Toward Deep

Learning Based Access Control. In CODASPY. ACM, 143—-154.

J Park and J Giordano. 2006. Role-based profile analysis for scalable and accurate

insider-anomaly detection. In IPCCC. IEEE, 463-470.

T Rashid, I Agrafiotis, and J Nurse. 2016. A New Take on Detecting Insider

Threats: Exploring the Use of Hidden Markov Models. In MIST. 47-56.

[28] K Srivastava and N Shekokar. 2020. Machine Learning Based Risk-Adaptive
Access Control System to Identify Genuineness of the Requester. In Modern
Approaches in Machine Learning and Cognitive Science: A Walkthrough. Springer.

[29] MA Syakur, BK Khotimah, EMS Rochman, and BD Satoto. 2018. Integration

k-means clustering method and elbow method for identification of the best

customer profile cluster. In ICVEE, Vol. 336. IOP Publishing.

Q Tasali, N Gyawali, and E Vasserman. 2020. Time Series Anomaly Detection in

Medical Break-the-Glass. In HotSoS. ACM.

[31] T M Thang and J Kim. 2011. The Anomaly Detection by Using DBSCAN Cluster-
ing with Multiple Parameters. In ICISA. IEEE, 1-5.

[32] Fatih Turkmen, Jerry den Hartog, Silvio Ranise, and Nicola Zannone. 2017. Formal
analysis of XACML policies using SMT. Computers & Security 66 (2017), 185-203.

[33] S Vavilis, A Ionut Egner, M Petkovic, and N Zannone. 2016. Role Mining with
Missing Values. In ARES. IEEE, 167-176.

[34] Verizon. 2021. Data Breach Investigations Report.

[35] C.Xiang, Y. Wu, B. Shen, M. Shen, H. Huang, T. Xu, Y. Zhou, X. Moore, C.and Jin,
and T. Sheng. 2019. Towards Continuous Access Control Validation and Forensics.
In CCS. ACM, 113-129.

[10

(14

(15

[19

™
=

[21

[22

[23

[24

[25

[26

~
=

'S
=


https://github.com/nicodv/kmodes
https://github.com/nicodv/kmodes

	Abstract
	1 Introduction
	2 Related Work
	3 Our approach
	3.1 Threat Model
	3.2 System Overview
	3.3 User Profiling
	3.4 Anomaly Detection System

	4 Prototype Implementation
	4.1 Dataset
	4.2 Implementation Details

	5 Evaluation
	5.1 Experiment 1: Attack Scenarios
	5.2 Experiment 2: BTG Requests

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

