®

Check for
updates

Introducing Agile Controllability
in Temporal Business Processes

1(=)

Roberto Posenato'®™) Marco Franceschetti?, Carlo Combi', and Johann Eder?

! Department of Computer Science, University of Verona, Verona, Italy
{roberto.posenato,carlo.combi}@univr.it
2 Institute of Computer Science, University of St. Gallen, St. Gallen, Switzerland
marco.franceschetti@unisg.ch
3 Department Informatics-Systems, University of Klagenfurt, Klagenfurt, Austria
johann.eder@aau.at

Abstract. Dynamic controllability is currently regarded as the most
adequate notion for checking the temporal correctness of business pro-
cesses with temporal constraints when a process model includes uncon-
trollable activities whose duration is revealed at the time of activity com-
pletion. However, dynamic controllability cannot take advantage when
an actual duration is revealed earlier, leading to unnecessary strict checks
for temporal correctness. We propose a novel notion of agile controllabil-
ity, which takes into account that uncontrollable durations are revealed
earlier and that in a viable execution strategy, a time point may depend
on time points whose value is known earlier. We formalize the notion of
agile controllability and present an effective checking procedure evalu-
ated by a software implementation within a publicly available modeling
and checking software tool.

Keywords: business processes - temporal constraints - agile
controllability - oracles

1 Introduction

Temporal business process models are subject to requirements stating constraints
on the durations and execution times of activities [12]. Durations state the mini-
mum or maximum permissible duration of activities, as well as whether an agent
may be responsible for deciding an activity duration within a predetermined
interval [17] or may only be able to observe the actual duration of an activity
that is controlled elsewhere. Temporal constraints restrict the permissible time
windows between the occurrence of events —start and end times of activities— or
temporal parameters [4].

Temporal process models are typically checked at design-time for temporal
correctness to ensure that compliance with these temporal requirements can be
achieved at run time, i.e., no temporal constraints violated [6]. For processes
entirely under the control of an agent, the satisfiability of temporal constraints
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

H. van der Aa et al. (Eds.): BPMDS 2024/EMMSAD 2024, LNBIP 511, pp. 87-99, 2024.
https://doi.org/10.1007/978-3-031-61007-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-61007-3_8&domain=pdf
https://doi.org/10.1007/978-3-031-61007-3_8

88 R. Posenato et al.

is accepted as an adequate notion for temporal correctness [3]. However, for pro-
cesses in which some activity durations, known as contingent durations, are not
controllable by the agent, satisfiability is insufficient [2]. Here, more sophisti-
cated notions such as dynamic controllability are required [13,17]. These notions
account for the fact that the actual duration of a contingent activity is only
known when it completes: for instance, the actual duration of a Web service call
is uncontrollable and known only when a value is returned, although Service
Level Agreements guarantee that this will happen within a specified interval.

Dynamic controllability requires that a viable execution strategy for a process
with contingent activities exists, in which later (greater) timepoints may depend
on earlier (smaller) time points but not vice versa. However, the assumption
that a contingent duration is only revealed at the time of activity completion
is frequently too restrictive. Indeed, although an activity duration might be
uncontrollable, the exact duration could be known before the activity completes.
For example, the shipment of an order whose duration is specified to be within
an uncontrollable (by the buyer) range of 6 to 10 days at the time of order
placement; however, within 2 days after placing an order, the actual duration
of the shipment is communicated - e.g., the shipment will take precisely seven
days. In such cases, knowing the exact duration in advance allows for more
flexible process scheduling since uncertainty for the agent is reduced earlier, and
the agent may use this information for scheduling activities that are after the
information time point but before the receipt of the ordered item. In the example,
the buyer can schedule an activity that has to be executed exactly 2 days before
the delivery since she already knows the delivery date.

Current state-of-the-art procedures for checking the dynamic controllability
of a process model are based on mapping the model into a Simple Temporal
Network with Uncertainty (STNU) [2,9]. However, the STNU lacks constructs
for modeling contingent durations that are revealed in advance. Hence, current
STNU procedures return potentially overly restrictive results for process mod-
els where contingent durations are known earlier. Specifically, these models are
classified as not dynamically controllable, while in reality, they can be scheduled
to avoid constraint violations thanks to duration information communicated in
advance. This misclassification leads to unnecessary and costly model redesign.
This shortcoming calls for a new representation of process models where contin-
gent durations are revealed before their completion, allowing an effective design-
time check for temporal correctness—the challenge we take on here.

The contribution of this paper is a conservative extension of the STNU that
overcomes the limitation of not being able to represent information on contingent
durations in advance. We introduce the concept of contingent oracle to represent
the point in time in which a contingent duration is revealed, allowing checking
the temporal correctness of such process models where contingent durations are
revealed in advance. We define agile controllability as the temporal correctness
of an STNU with contingent oracle nodes where an execution strategy is viable
if timepoints may depend only on time points, which are known earlier. We
discuss an algorithm to check agile controllability and, as proof of concept, an
open-source implementation.

Introducing Agile Controllability in Temporal Business Processes 89

(04
Define the
duration of —
_ -] Physical Activity |
. \ J hN
/ N
S[0,+00]SY, E[O,+m]E/,‘
~ — -
Sao T3 P
Physical
Activity
Monitoring

y

T2
Physical
Activity

Questionnaire

S[1,+e0]S

ISy Y
. Inform Patient + Enyisical Intervention O
xercises
[480,720] A
Psychological Psychological
Questionnaire monitoring

Fig. 1. BPMN diagram for the process for the patient pre-intervention period.

2 DMotivating Example

Figure 1 represents a motivating example, which we will briefly discuss here. The
example refers to managing patients’ activities before a surgical intervention. It is
becoming widely acknowledged that patients reaching some planned intervention
in an (as much as possible) good health state have a better recovery [11].

The process in the figure starts with the usual information to patients, who
must be aware of the following activities. Then, different threads of activities
are initiated. Two threads are related to the Physical and Psychological parts,
respectively. The proposed physical exercises depend on and can be refined with
respect to the results of different questionnaires the patient has to answer. After
the end of these activities, the intervention is performed. Focusing on the process
fragment related to the physical exercise activity and the related monitoring,
these activities are connected through some temporal constraints, representing
the allowed delays between their start and endpoints, respectively. Moreover,
activities are enriched with their allowed time duration. In the figure, only the
temporal duration and the temporal constraints relevant to our discussion are
reported. The notation for task durations and inter-task constraints is relatively
standard in the literature [1]. Tasks have a duration attribute represented as a
range [z,y], with 0 < < y < 0o, where z/y is the minimum/maximum allowed
time span for an activity to go from state “started” to “completed” [12]. Inter-
task constraints limit the time distance between the starting/ending instants of
two tasks and have the form Ig[u, v]IF, where Ig is the starting (S)/ending (E)
instant of the first task, while I is the starting/ending instant of the second
one [1].

Task T4 “Physical Exercises” (PE) activity has to be performed for a period
from 20 to 30 days (480 to 720h). Task T3 “Physical Activity Monitoring”
(PAM) has to start (at least) 1h after the start of physical exercises and end

90 R. Posenato et al.

1 to 2h before the exercises end to avoid noisy information during the initial
and final phases of physical activities. As the contingent duration of PE is not
determined by the system, it can only be observed when the task ends; hence
PAM cannot be set to end according to the required time distance before PE.
This observation holds both if we consider PAM a contingent task, having a
duration only observable by the system, and if we consider it a controllable task,
for which the system can set the duration. Indeed, in any case, the ending instant
of PAM, even if controllable, should be set with respect to the ending instant
of PE, which has to occur afterward. Thus, the PAM ending instant cannot be
adequately set unless there is some kind of early specification/knowledge about
the (contingent) duration of PE.

Let us now explicitly specify that the duration of PE is set by the activity O4
“Define the duration of Physical Activity” (DDPA). Let us also assume, for the
sake of simplicity, that the system can decide when the PAM has to end. From
this perspective, how do we derive when it is required to execute DDPA to make
the overall process model controllable? It is straightforward to verify that if the
system knows the overall duration of PE at least two hours before the effective
end of PE, then the end of PAM can be set, satisfying the given constraints.

To ensure that all temporal constraints specified in the process can be sat-
isfied in any execution, no matter how long contingent durations take, we want
to be able to check (at design time) the dynamic controllability of the process
model. This check is typically done by mapping the model into a proper temporal
constraint network (like Simple Temporal Network with Uncertainty).

3 STNUs and Oracles

The Simple Temporal Network with Uncertainty (STNU) [13] is a data struc-
ture that models temporal problems, such as time-constrained process models, in
which the execution of some events cannot be controlled. The STNU comprises
a set of timepoints and a set of temporal constraints. The timepoint set is parti-
tioned into controllable (executable) timepoints and uncontrollable (contingent)
ones; the constraint set is partitioned into regular and contingent ones.

To the best of our knowledge, in the current temporal business process models
and/or in the related temporal constraint networks, it is not possible to represent
the possibility that a contingent duration is known before the occurrence of the
corresponding contingent timepoint. Here, we consider the following issues:

— how to extend STNUs to represent contingent temporal constraints having
their duration acquired/known possibly before their occurrences?

— How to derive when such extended STNUs are controllable, i.e., how early do
we need to acquire/know the duration of some contingent link?

As the STNU does not allow decoupling the value of a contingent duration
and the time of occurrence of the associated timepoint, we introduce a new kind
of timepoint called (contingent) oracle. An oracle O¢ is a timepoint associated
bi-univocally with a contingent link (A4, C"). When O¢ is executed, it reveals the

Introducing Agile Controllability in Temporal Business Processes 91

duration of the associated contingent link. In other words, O¢ can reveal the
duration of the contingent link before the contingent timepoint C' occurs. We
extend the formal definition of an STNU in [7] with oracles as follows:

Definition 1 (STNU with Oracles). An STNU with Oracles (STNUO) is a
tuple (T,C, L,O), where:

— T is a finite, non-empty set of real-valued variables called timepoints. T is
partitioned into Ty, the set of executable timepoints and T¢, the set of con-
tingent timepoints. To C Tx, is the set of oracle timepoints.

— C is a set of binary (ordinary) constraints, each of the form'Y — X < § for
some X, Y € T and § € R.

— L is a set of contingent links, each of the form (A, x,y,C), where A € Tx,C €
To and 0 < x < y < 00. A is called the activation timepoint; C' contingent
timepoint. If (A1,21,y1,C1) and (Aa, x2,y2, Ca) are distinct contingent links,
then Cy # Cs.

- O: 7o — 1o is an injective function that associates an oracle with its corre-
sponding contingent timepoint. For each pair (O¢,C) such that O(O¢) = C,
there must exist the constraint Oc — C <0 in C.

We say that a controller executes an STNUO when it schedules its timepoints,
i.e., it assigns a value to each timepoint (for contingent ones, the assignment is
derived once the relative contingent duration is revealed).

An important property of the STNU is the dynamic controllability. An STNU
is dynamically controllable (DC) if there exists a dynamic execution strategy
(called viable execution strategy) that assigns the timepoints with the guarantee
that all constraints will be satisfied, irrespectively from the values (within the
specified bounds) of the contingent durations [7].

In the literature, there are several proposals to check dynamic controllability
based on constraint propagation techniques, defined on the distance graph cor-
responding to a given STNU (7,C, £) [8,13]. A distance graph associated with
an STNUO is the graph (7,€ = & U &), where the timepoints in 7 serve as
the graph’s nodes and the constraints in C and £ correspond to labeled, directed
edges in £. In particular: & = {X &Y | (Y — X < 6) € C} while for £, there are
two edges for each (A,x,y,C) € L: the lower-case (LC) edge A<2:C in &, rep-
resents the uncontrollable possibility that the duration C'— A may be as low as x;
the upper-case (UC) edge CE=%A in £, represents the uncontrollable possibility
that the duration C'— A may be as high as y.

A constraint propagation technique consists of applying constraint propaga-
tion rules in the distance graph to make explicit derived constraints from the exist-
ing ones in the STNU. The process terminates when either reaching quiescence,
i.e., no new constraints can be derived (the network is dynamically controllable),
or a negative circuit is found (the network is not dynamically controllable).

Now, let us consider the more structured case of Fig. 1. Using some transfor-
mation rules like the ones presented in [16], it is possible to represent the process
as an STNUO instance. Figure 2 represents an excerpt of the STNUO, focused
only on three activities of the process: T2, T3, O4, and T4. Each activity is

92 R. Posenato et al.

2
A2<:>Bz<07143<#04 B3<L.Q

1
5 0 720, ¢4:480

A4<— 4
480, Cy:—720

Az, Ba represent the starting/ending event of T2 ’Physical Activity Questionnaire’
As, Bs represent the starting/ending event of T3 ’Physical Activity Monitoring’
Ay, Cy represent the starting/ending event of T4 'Physical Exercises’

Oy represents the end of O4 'Define the duration of Physical Activity’

Fig. 2. STNU distance graph representing a possible conversion of a part of the BPMN
model in Fig. 1

represented by two timepoints, one representing the starting instant, the other
the ending one, and one or two constraints on its duration. According to the
kind of duration (controllable or not), the duration constraints can be ordinary
or contingent.

Let us consider each activity.

— T2 is a controllable activity. The execution agent can fix its duration. There-
fore, it is represented by the two timepoints Ay and Bs and by two ordinary
constraints between As and B, that impose that the duration must be in the
range [1,2]. Without loss of generality, we assume that the time granularity
is hours and that all constraint values are integers.

— T4 is a contingent activity since it is possible to fix when it must start, but
given a possible duration, the end of the activity can only be observed when
it occurs. Therefore, it is represented as two timepoints A4 and Cy, and by
two constraints representing the upper-case and lower-case of the contingent
link associated with the activity. The duration of such an activity must be in
the range of 20 to 30 days, i.e., [480, 720] using the time unit of hours.

— T3 is an activity that depends on T4. Therefore, its timepoints are As and
Bj, which are constrained to be just after A4 and one hour before Cj at least,
respectively.

— Last, O4 is an activity represented just by one timepoint, O4. We assume that
such activity is instantaneous since it represents just the instant in which the
duration of T4 is decided. In the original BPMN process, such activity is
constrained to be after the start of T3, which must start after T4. O4 reveals
a piece of information that can be crucial to executing the process without
violating any temporal constraint. Thus, it is the oracle associated with the
activity T4.

In [15], we proposed the definition of oracle dependency, and we extended the
ones of viable execution strategy and dynamic execution strategy when oracle
timepoints are present. Here, we recall the definition of agile controllability:
an STNU with contingent oracles (STNUO) is agilely controllable if it admits
a viable dynamic execution strategy with contingent oracles. We refer to agile
controllability (AC) as the property of being agilely controllable.

Introducing Agile Controllability in Temporal Business Processes 93

Table 1. Propagation rules for checking Agile Controllability of STNUO.

Rule Conditions Pre-existing and
generated edges
We—"——Y+———X
No Case (NC) T priy)
D:v cu
. X C A
Cross Case (CC) D#ZC;v<0 T o]
Label Removal (LR) v> - o — C;;” X
New Lower Case (nLC) —u < 0; Oc does not = C c 7 - A
existsorv—u>y—z 1 "% @g—u “°)
Oc¢ does not exist or v Ci—y
New Upper Case (nUC) v—uSy—z)i — C:UC— y o° jl
Cwv
* X——Y A
uUcC Y£C L pud S bi
f v UTF Ci-y D
X is mnot a contin- X A

c
— c:x
Oracle (ORC) gent node; Oc¢ exists; 5 “ g\l /
v—u<y—ax. 0 ®

Two different issues arise with the agile controllability of temporal BPM
models: (i) checking whether a given temporal BPM model with oracles is agilely
controllable and (ii) determining a schedule for the given model. In the following,
we discuss how to check the agile controllability of an STNUO.

4 Checking Agile Controllability

One possibility for checking the agile controllability is to exploit and expand
the approach proposed by Morris-Muscettola (MM) for checking the dynamic
controllability of STNUs, based on the constraint propagation [13].

In Table1, we propose the set of MM rules modified for checking the agile
controllability. In particular, the first three rules in the table are original, while
rules n.C, nUC, and UC* are a restriction of the corresponding original rules
LC and UC in [13], while ORC rule is a new one specific for considering oracles.

The rules were designed assuming the following properties:

— instantaneous reaction semantics; i.e., “when the environment decides the
duration of a contingent link, the agent can react at the same time executing
one or more other timepoints”.

— early-execution strategy; i.e., timepoints are executed at the first possible
instant. Rules are able to determine such an instant, but they do not deter-
mine the latest possible execution instant for each timepoint.

94 R. Posenato et al.

The MM DC-checking algorithm applies the rules in at most n? rounds, with
a cost of O(n?) each round, for a global execution time of O(n®), where n is the
number of network nodes.

The original rules allow us to determine a correct lower bound to the exe-
cution time of an executable X with respect to all possible durations of a con-
tingent link (A, z,y,C). When an executable X has to be “strictly” scheduled
with respect to the duration of a contingent link (A,x,y,C) with oracle, LC,

and UC determine a false negative cycle. For example, if there is a pattern like
10

X #C%A, applying LC and UC, the resulting constraints would be
X%A that represent a negative cycle. Since there are oracles in STNUOs
that can help to schedule such X, it is necessary to limit the application of the
original LC and UC rules (when oracles are available) to avoid a network being
classified as not controllable while it is agilely controllable.

A timepoint X is “strictly” scheduled with respect to a contingent link
(A, z,y,C) when: (i) X must occur before C (there is an edge between C' and
X with a negative value), (ii) the distance range between X and C is smaller
than the contingent allowed duration. In other words, if there is a pattern like
X#C%A, where —u < 0, v — u < y — x, and there is an oracle O¢
for contingent link (A4, z,y,C).

Therefore, the nLLC rule replaces LC. It must be applied only when there is
no oracle for the contingent link, or the span v — u is greater than or equal to
the span y — x. Indeed, when v —u > y — x, X can be scheduled for any possible
duration of the contingent link without the necessity of an oracle.

nUC and UC* rules replace UC. In the case of the propagation of the upper-
case labeled value of a contingent link, rule nUC must be considered, and it
must be applied only when the contingent link (A,z,y,C) does not have its
oracle node O¢, or when v — u > y — . When an upper-case labeled value has
been propagated, then the following propagations must be done by using rule
UC* (in [13] such a rule was included in the UC rule).

When nLLC and nUC cannot be applied, it is necessary to verify if it is possible
to exploit the presence of a possible oracle associated with the contingent link
to check whether X can be scheduled correctly. A possible rule that properly
constrains an oracle O¢ of a contingent C' and a node X that has to be “strictly”

scheduled is rule ORC in Table 1. Given a pattern X#C%A, where
—u < 0,v—u < y—x, and an oracle O¢ for contingent link (A,z,y,C), it is
necessary to require that O¢ must before both C' and X with a proper distance
for verifying whether it is possible to schedule X correctly w.r.t. any possible
duration of contingent link. Therefore, constraints C—=%0¢ and X&O¢ are
added. Constraints AZ=%0q, AL=%X, and X?=%A are then determined by
applying the NC rule; we propose to add such values directly to understand the
rule better.

The soundness of the rules in Table1 and the completeness of the general
algorithm have been presented in [15].

Introducing Agile Controllability in Temporal Business Processes 95

{C: +v— y}%

({Cw — =g l Y —= =
v’ (v Ci—y u
X A

Y -
_u/ t —u c:x
[Py w—

/7
{xfufu}xc

(a) Sample STNUO having labeled val- (b) Sample STNUO having labeled val-
ues generated by nL.C and nUC. ues generated by ORC.

Fig. 3. Approach for managing values produced by two complementary rules.

Rules nLLC and nUC are alternatives to rule ORC. Moreover, their applica-
tion to a specific timepoint may change during the propagation of constraints.
Indeed, it may be that a timepoint X becomes “strictly” scheduled w.r.t. a con-
tingent link (A, z,y,C) during the constraint propagation. In this case, all the
values determined by rules nLLC and nUC and propagated by the other rules con-
sidering X and the contingent link (A, z,y, C) must be removed, and the values
determined by ORC rule must be propagated. Thus, backtracking is required.

5 An Alternative Approach to Avoid Backtracking

Backtracking can slow down the actual computation of checking since it requires
considering backtracking for different nodes in different phases of the constraint
propagation.

Accepting the cost of more memory, it seems straightforward to properly
label some derived values (the ones derived by nLC/nUC and ORC when the
involved contingent link has an oracle) and use them only while they are valid.

In more detail, let us denote by {v}% a value derived by using the nL.C or
nUC rules involving a timepoint X and a contingent link (4, z,y,C). Figure 3a
shows an example of an STNUO where values determined by n.C and nUC rules
and then propagated to Y are labeled.

Then, let us denote by {v}x, a value derived by the rule ORC considering
a node X and a contingent link (A, z,y, C). Figure 3b shows an example of an
STNUO where values determined by ORC and then propagated are labeled.

It is also possible to have constraints that require combining different labeled
values such as X5, 4 15, Ty this case, we combine the values concatenating

the labels X ™“¥a, . Such a concatenation occurs only when the labels
do not contain opposite components. For example, the two constraint values
Xlvbee, 4 W50 F cannot be combined by the NC rule. Indeed, if X564 was
derived by the nUC rule on contingent link (A, z,y,C), while At¥e, e, ' was
derived by the ORC rule on the same contingent link, then the two values are
mutually exclusive and, therefore, cannot be combined in the constraint X —F.

96 R. Posenato et al.

Now, let us consider a case in which a negative cycle is detected. A negative
cycle is detected when there is a loop on a node having a negative value v. The
label ¢ associated with v can be one of the following:

— [is empty. It occurs when the negative cycle does not depend on any contin-
gent link having its oracle. The network is not AC.

— £ has only one component, e.g., {U}E The negative cycle depends on the
values the nLC/nUC rule determines involving X and C. All values having
label X must be ignored from now on. We say that X¢ is blocked. If the label
X was blocked in a previous phase of the constraint propagation, then it is
impossible to have a schedule for X satisfying all constraints. The network is
not AC.

— { has two or more components; e.g., {U}Xc%. In this case, label XoYp is
blocked. All values having a label containing any other combinations of X¢
and Yp (XcYp, XcYp, or XcYp) are still valid and they can be propagated.
If all other labels obtained by the combinations of X, Yp have been blocked
in the previous propagations; then it is impossible to find a configuration for
timepoints X, C, D that is agilely controllable. Hence, the network is not AC.

The AC-checking algorithm based on this technique made the same maximum
number of rule applications, O(n®), of the MM DC-checking one because it
applies a set of rules that work like MM rules. The difference in the AC-checking
algorithm is that each rule application can manage more labeled values instead
of just 3 like in an MM rule. A simple (gross) upper bound to the number of
values that could be present on each edge is 2!7x!I7cl Therefore, the complexity
is limited by O(n5217x/17cl) = O(2""), where n is the number of network nodes.

6 Proof of Concept

The presented approach was implemented as a proof-of-concept prototype in the
(freely available) CSTNU Tool, v. 1.42 [14]. It enables users to create different
kinds of temporal constraint networks and to verify automatically some prop-
erties like dynamic controllability or consistency (for some kinds of networks).
In particular, it allows one to verify the agile controllability of an STNUO by
the labeling technique. In case a network is agilely controllable, it returns the
minimal agilely controllable network and the information of which oracles are
necessary.

The screenshot from Fig.4 shows the CSTNU Tool after the checking of
the STNUO associated with the process in Fig.1. On the left side, there is
the initial network that can be edited. On the right side, there is the checked
network with minimal derived constraints (edges) and the auxiliary information
about the check (on the green status bar, here indicating that the process model
derived from the motivating example is agilely controllable).

Currently, the tool can only manage networks having a limited number (26)
of pairs of “(contingent, strictly scheduled external node)” for efficiency reasons.

Introducing Agile Controllability in Temporal Business Processes 97

Fig. 4. Determining Agile Controllability of an STNUO in CSTNU Tool. (Color figure
online)

We conducted some experiments considering the STNU benchmarks made
available in [14]. In particular, we considered 30 random instances of the sub-
benchmark “DC 500”, which consists of DC STNU instances of 500 nodes (50
contingent ones) representing random temporal business processes. We reduced
them to STNUO instances of 30 nodes (5 contingent and 2 oracles) and we ver-
ified that the average AC checking time results to be around 3s. The bench-
mark is available at http://profs.scienze.univr.it/~posenato/software/cstnu/
benchmarkWrapper.html. The Java program to view/edit/test such instances
is TNEditor [14].

7 Discussion and Conclusion

Verifying the possibility of achieving compliance of executions with process
models is typically a design-time activity [6]. Specifically for temporal pro-
cesses [12,16], dynamic controllability is the most advanced property that ensures
the satisfaction of all temporal requirements, irrespective of uncontrollable exe-
cution aspects [2]. Dynamic controllability has been studied in several works
such as [7,8,10,17]. However, since it is not possible to take advantage of early
notification of the actual duration of contingent activities for scheduling the
executions, processes relying on such a possibility cannot be represented (hence
verified) adequately [15].

The proposed STNU with oracles increases the modeling expressiveness for
the temporal perspective of real-world processes that, until now, could not be
formalized, in particular with respect to the early specification of contingent
tasks. The proposed contingent durations with an associated contingent oracle
resemble parameter nodes, which were introduced for the STNU in [4] and the
Conditional STNU in [5]. Like contingent links, they are not under the con-
trol of the system. However, their value is revealed when the network execution
starts, i.e., at time zero, before any other activity; additionally, parameter nodes
are not associated with a duration. Conversely, an oracle node may reveal the
associated contingent duration any time after the start of network execution.
Therefore, existing algorithms to check the dynamic controllability of parame-
terized (C)STNUs are not applicable in the presence of contingent oracles.

http://profs.scienze.univr.it/~posenato/software/cstnu/benchmarkWrapper.html
http://profs.scienze.univr.it/~posenato/software/cstnu/benchmarkWrapper.html

98 R. Posenato et al.

With the introduction of Agile Controllability, we propose a new notion of
temporal correctness of process models that allows verifying temporal compli-
ance at design time for scenarios with early notification of contingent durations.
A constraint propagation algorithm based on the new rules in Table 1 constitutes
a possible approach to the AC-checking of an STNU with contingent oracles. A
limitation of the new rule set is that it is not commutative, i.e., the result of a
complete constraint propagation (until network quiescence) depends on the order
of application of the rules [15]. It is possible, for instance, that the constraint
propagation algorithm initially applies rules nLC and nUC, but later on, the
conditions for applying such rules do not hold anymore due to the application
of other rules, making the application of the initial rules overconstraining. The
approach proposed in Sect.5 based on labeling constraints makes it sufficient,
during the constraint propagation, to ignore constraints with specific labels with-
out having to delete any derived constraints that should not have been derived.
While this has the benefit of avoiding backtracking and the resulting slowdown
in the AC-checking, the price to pay is in terms of memory, as more complex
labels have to be managed. We plan to design more sophisticated and efficient
AC-checking approaches using the proposed rule set in future work.

References

1. Combi, C., Gambini, M., Migliorini, S., Posenato, R.: Representing business pro-
cesses through a temporal data-centric workflow modeling language. IEEE Trans.
Syst. Man Cybern. Syst. 44(9), 1182-1203 (2014). https://doi.org/10.1109/TSMC.
2014.2300055

2. Combi, C., Posenato, R.: Controllability in temporal conceptual workflow
schemata. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009.
LNCS, vol. 5701, pp. 64-79. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03848-8_6

3. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell. 49(1—
3), 61-95 (1991)

4. Eder, J., Franceschetti, M., Kopke, J.: Controllability of business processes with
temporal variables. In: ACM SAC 2019, pp. 40-47 (2019). https://doi.org/10.1145/
3297280.3297286

5. Franceschetti, M., Posenato, R., Combi, C., Eder, J.: Dynamic controllability of
parameterized CSTNUs. In: ACM SAC 2023, pp. 965-973 (2023). https://doi.org/
10.1145/3555776.3577618

6. Hashmi, M., Governatori, G., Lam, H.P., Wynn, M.T.: Are we done with business
process compliance: state of the art and challenges ahead. Knowl. Inf. Syst. 57(1),
79-133 (2018). https://doi.org/10.1007/s10115-017-1142-1

7. Hunsberger, L.: Efficient execution of dynamically controllable simple temporal
networks with uncertainty. Acta Inform. 53, 89-147 (2016)

8. Hunsberger, L., Posenato, R.: A faster algorithm for converting simple tempo-
ral networks with uncertainty into dispatchable form. Inf. Comput. 293, 105063
(2023). https://doi.org/10.1016/j.ic.2023.105063

9. Hunsberger, L., Posenato, R., Combi, C.: The dynamic controllability of condi-
tional STNs with uncertainty. In: Workshop PlanEx@QICAPS-2012 (2012). http://
arxiv.org/abs/1212.2005

https://doi.org/10.1109/TSMC.2014.2300055
https://doi.org/10.1109/TSMC.2014.2300055
https://doi.org/10.1007/978-3-642-03848-8_6
https://doi.org/10.1007/978-3-642-03848-8_6
https://doi.org/10.1145/3297280.3297286
https://doi.org/10.1145/3297280.3297286
https://doi.org/10.1145/3555776.3577618
https://doi.org/10.1145/3555776.3577618
https://doi.org/10.1007/s10115-017-1142-1
https://doi.org/10.1016/j.ic.2023.105063
http://arxiv.org/abs/1212.2005
http://arxiv.org/abs/1212.2005

10.

11.

12.

13.

14.

15.

16.

17.

Introducing Agile Controllability in Temporal Business Processes 99

Hunsberger, L., Posenato, R., Combi, C.: A sound-and-complete propagation-based
algorithm for checking the dynamic consistency of conditional simple temporal net-
works. In: 22nd International Symposium on Temporal Representation and Rea-
soning (TIME 2015) (2015). https://doi.org/10.1109/TIME.2015.26

Kagedan, D., Ahmed, M., Devitt, K., Wei, A.: Enhanced recovery after pancreatic
surgery: a systematic review of the evidence. HPB 17, 11-16 (2015)

Lanz, A., Reichert, M., Weber, B.: Process time patterns: a formal foundation. Inf.
Syst. 57, 3868 (2016). https://doi.org/10.1016/J.1S.2015.10.002

Morris, P.H., Muscettola, N.: Temporal dynamic controllability revisited. In: 20th
National Conference on Artificial Intelligence (AAAI-2005) (2005). https://cdn.
aaai.org/AAAI/2005/AAAI05-189.pdf

Posenato, R.: CSTNU tool: a Java library for checking temporal networks. Soft-
wareX 17, 100905 (2022). https://doi.org/10.1016/j.softx.2021.100905

Posenato, R., Franceschetti, M., Combi, C., Eder, J.: Some results and challenges
Extending Dynamic Controllability to Agile Controllability in Simple Temporal
Networks with Uncertainties. Technical report 1/2023, Dip. Informatica-Univ. di
Verona (2023). https://iris.univr.it/handle/11562/1116013

Posenato, R., Zerbato, F., Combi, C.: Managing decision tasks and events in time-
aware business process models. In: Weske, M., Montali, M., Weber, 1., vom Brocke,
J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 102-118. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98648-7_7

Vidal, T., Fargier, H.: Handling contingency in temporal constraint networks: from
consistency to controllabilities. J. Exp. Theor. Artif. Intell. 11(1), 23-45 (1999)

https://doi.org/10.1109/TIME.2015.26
https://doi.org/10.1016/J.IS.2015.10.002
https://cdn.aaai.org/AAAI/2005/AAAI05-189.pdf
https://cdn.aaai.org/AAAI/2005/AAAI05-189.pdf
https://doi.org/10.1016/j.softx.2021.100905
https://iris.univr.it/handle/11562/1116013
https://doi.org/10.1007/978-3-319-98648-7_7

	Introducing Agile Controllability in Temporal Business Processes
	1 Introduction
	2 Motivating Example
	3 STNUs and Oracles
	4 Checking Agile Controllability
	5 An Alternative Approach to Avoid Backtracking
	6 Proof of Concept
	7 Discussion and Conclusion
	References

