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Abstract

In this paper we give a new abstract framework for the study of Knuth-Bendix type com-

pletion procedures, which are regarded as semidecision procedures for theorem proving.

First, we extend the classical proof ordering approach started in [6] in such a way that

proofs of different theorems can also be compared. This is necessary for the application of

proof orderings to theorem proving derivations. We use proof orderings to uniformly define

all the fundamental concepts in terms of proof reduction.

A completion procedure is given by a set of inference rules and a search plan. The inference

rules determine what can be derived from given data. The search plan chooses at each step of

the derivation which inference rule to apply to which data. Each inference step either reduces

the proof of a theorem or deletes a redundant sentence. Our definition of redundancy is based

on the assumed proof ordering. We have shown in [16] that our definition subsumes those

given in [50, 13].

We prove that if the inference rules are refutationally complete and the search plan is fair,

a completion procedure is a semidecision procedure for theorem proving. The key part of

this result is the notion of fairness. Our definition of fairness is the first definition of fairness

for completion procedures which addresses the theorem proving problem. It is new in three

ways: it is target oriented, that is it keeps the theorem to be proved into consideration, it is

explicitly stated as a property of the search plan and it is defined in terms of proof reduction,

so that expansion inferences and contraction inferences are treated uniformly. According to

this definition of fairness, it is not necessary to consider all critical pairs in a derivation for

the derivation to be fair. This is because not all critical pairs are necessary to prove a given

theorem. Considering all critical pairs is an unnecessary source of inefficiency in a theorem

proving derivation.

We also show that the process of disproving inductive theorems by the so called induc-

tionless induction method is a semidecision process. Finally, we present according to our

framework, some equational completion procedures based on Unfailing Knuth-Bendix comple-

tion.
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1 Introduction

The Knuth-Bendix completion procedure [49] computes a possibly infinite confluent rewrite system

equivalent to a given set of equations [38]. If a set of equations E and an equation s ' t are given,

it semidecides whether s ' t is a theorem of E, as first remarked in [51, 39]. These results hold

if the procedure does not fail on an unoriented equation. Unoriented equations can be handled

by adopting the Unfailing Knuth-Bendix method [35, 11], which gives a ground confluent set of

equations.

Many completion procedures, related to Knuth-Bendix to different extents, have been de-

signed. They include procedures for equational theories with special sets of axioms [54, 41, 7],

Horn logic with equality [50, 27], first order logic [31, 32, 46, 8], first order logic with equal-

ity [33, 34, 36, 37, 57, 60, 12, 13], inductive theorem proving in equational and Horn theories

[40, 29, 50] and logic programming [20, 21, 22, 15]. Surveys have been given in [24, 25].

A completion procedure is composed of inference rules and a search plan. The inference rules

determine what can be derived from given data. The search plan chooses at each step of the

derivation which inference rule to apply to which data and therefore it determines the unique

derivation that the procedure computes from a given input.

The interpretation of Knuth-Bendix completion as generator of confluent systems is by far

the most well known one, whereas theorem proving is basically regarded as a side effect of the

generation of a confluent system. This view of completion is not acceptable from the theorem

proving perspective, because a procedure which is guaranteed to eventually generate a confluent

system cannot be efficient as theorem prover. In this work we reverse the traditional way of pre-

senting completion procedures: we present them as semidecision procedures with the generation

of confluent systems as a special side effect.

The interpretation of completion as semidecision procedure appeared first in [39]. Huet proved

that if the search plan is fair, the limit of an unfailing Knuth-Bendix derivation is a confluent

rewrite system and, as a consequence, if a theorem s ' t is given to the procedure, it semidecides

the validity of s ' t. The same result was obtained in a more general framework in [6].

We decouple the interpretation of completion as semidecision procedure from the interpreta-

tion of completion as generator of confluent systems. We prove that if the inference rules are

refutationally complete and the search plan is fair, a completion procedure is a semidecision pro-

cedure. Refutational completeness means that for all unsatisfiable inputs, there exist successful

derivations by the inference rules of the strategy. Fairness means that whenever successful deriva-

tions exist, the search plan guarantees that the computed derivation is successful, that is all the

inference steps which are necessary to prove the goal are eventually done. In particular, all the

critical pairs which are necessary to prove the goal are eventually considered. We give a new

definition of fairness to capture this concept.

This notion of fairness is the key difference between completion for theorem proving and

completion for the generation of confluent systems. In Huet’s landmark paper [39] and in all

the following work on completion [6, 9, 57, 13], fairness of a derivation consists in eventually

considering all critical pairs. We call this property uniform fairness in order to distinguish it
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from fairness for theorem proving. Uniform fairness is necessary for the limit of a derivation

to be confluent, but it is not necessary for theorem proving, because not all the critical pairs

are necessary to prove a given theorem. All the definitions of fairness of completion procedures

appeared so far in the literature [39, 9, 57, 13] require uniform fairness, because they do not

separate theorem proving from the generation of a confluent system.

Therefore, we have proved Huet’s classical result from weaker, strictly theorem proving ori-

ented hypotheses, which do not imply any confluence property of the limit of the derivation, since

such properties are not necessary for theorem proving. In our view, a completion procedure is

first a theorem proving procedure, which also has the property of eventually generating confluent

sets if it is uniformly fair.

The so called inductionless induction method is covered by the semidecision concept as well:

completion for inductionless induction [40] is a semidecision procedure for disproving inductive

theorems.

We conclude our work by presenting some completion procedures for equational logic: we

show that the basic Unfailing Knuth-Bendix procedure [35, 11] and some of its extensions, such

as the AC-UKB procedure [54, 41, 7, 1] with Cancellation laws [36], the S-strategy [35] and the

Inequality Ordered Saturation strategy [3] fit nicely in our framework. To our knowledge, this is

the first presentation of these extensions of the UKB procedure as sets of inference rules.

Our entire approach to completion procedures is coherently based on a notion of proof reduc-

tion. In theorem proving, one wants to reduce one single proof, the proof of the target theorem:

the derivation halts successfully if the target has been reduced to some trivially true theorem,

such as s ' s, whose proof is empty. In traditional completion, one wants to reduce all proofs: for

instance, in Knuth-Bendix completion all equational proofs have to be reduced to rewrite proofs.

In this proof reduction framework, fairness guarantees that the proof of the target is eventually

reduced, whereas uniform fairness guarantees that all proofs are eventually reduced.

In order to formalize all concepts in terms of proof reduction, we need a notion of well founded

proof ordering. Our starting point is the proof orderings approach originally given in [6, 9].

However, proof orderings as in [6] do not apply to a theorem proving derivation, because they

allow to compare only two proofs of the same theorem. In theorem proving, the target is modified

by inference steps applying to the theorem itself. Therefore, we give a new notion of proof

ordering, where proofs of different theorems can be compared.

In this paper we concentrate on theorem proving. In [16], we compare our study of fairness

with previous definitions of fairness in [9, 57, 13]. In [17], we complete our framework with a

full generalization of Huet’s theorem in [39] and of its extensions in [50, 13] for uniformly fair

derivations.

In the following we assume that the reader is familiar with basic concepts and notations

about theorem proving, term rewriting systems, completion procedures and orderings. We refer

to [25, 26] for basic definitions and notations.
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2 Completion procedures for theorem proving

2.1 Proof orderings for theorem proving

Given a finite set of sentences S, we denote by Th(S) the theory of S, Th(S) = {ϕ|S |= ϕ}, and

we say that S is a presentation of the theory Th(S). The input for a theorem proving procedure

is a pair (S;ϕ), where S is a presentation of a theory and ϕ the target. A theorem proving problem

is to decide whether ϕ ∈ Th(S) and a theorem proving derivation is a sequence of deductions

(S0;ϕ0) ` (S1;ϕ1) ` . . . ` (Si;ϕi) ` . . .,

where at each step the problem of deciding ϕi ∈ Th(Si) reduces to the problem of deciding

ϕi+1 ∈ Th(Si+1). A step (Si;ϕi) ` (Si+1;ϕi), where the presentation is modified, is a forward

reasoning step. A step (Si;ϕi) ` (Si;ϕi+1), where the target is modified, is a backward reasoning

step, which derives a new goal from the current one. Informally, the derivation halts successfully

at stage k if ϕk ∈ Th(Sk) is trivially true and therefore it can be asserted that ϕ0 ∈ Th(S0). In

this section we introduce a notion of proof ordering, which allows us to describe a theorem proving

derivation as a proof reduction process.

We denote proofs by capital Greek letters: Υ(S, ϕ) denotes a proof of ϕ from axioms in S.

Proofs are often represented as trees whose nodes are labeled by sentences: the tree associated to

Υ(S, ϕ) has ϕ as label of the root, elements in S as labels of the leaves and a node ψ has children

ψ1 . . . ψn if ψ is derived from ψ1 . . . ψn by a step in Υ(S, ϕ). In equational logic, such a proof can

also be represented as a chain [6]

s1↔l1'r1 s2↔l2'r2 . . .↔ln−1'rn−1 sn,

where s1↔l1'r1 s2 means that the equality of s1 and s2 is established by the equation l1 ' r1
because s1 and s2 are c[l1σ] and c[r1σ] for some context c and substitution σ. We write s→l'r t

if s � t is known a priori.

An ordering on proofs is defined in general starting from some ordering on the data involved in

the proofs. We recall that a simplification ordering on terms is a monotonic and stable ordering,

i.e. s � t implies c[sσ] � c[tσ] for all contexts c and substitutions σ, with the property that a

term is greater than any of its subterms. A simplification ordering is well founded. A complete

simplification ordering is also total on the set of ground terms. Some well known simplification

orderings are the recursive path ordering [19], the lexicographic path ordering [45] and the Knuth-

Bendix ordering [49]. Such orderings are surveyed in [23]. Our first basic assumption is to have a

complete simplification ordering � on terms. We prefer to have a simplification ordering, even if a

well founded, monotonic and stable ordering total on ground terms is sufficient. Given a complete

simplification ordering � on terms, it is possible to define complete simplification orderings on

equations, clauses and sets of clauses based on �, as shown for instance in [37].

A proof ordering is a monotonic, stable and well founded ordering on proofs [6]. As an example

we give the following proof ordering from [27]:

Example 2.1 A proof ordering to compare two ground equational proofs Υ(E, s ' t) = s↔∗E t
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and Υ′(E′, s ' t) = s↔∗E′ t, can be defined as follows. We associate to a ground equational step

s↔l'r t the triple (s, l, t), if s � t. We compare these triples by the lexicographic combination

>e of the complete simplification ordering �, the strict encompassment ordering •� and again the

ordering �. The encompassment ordering •� is the composition of the subterm ordering and the

subsumption ordering: t •�s if t|u = sσ for some position u and substitution σ; t •�s if t •�s and

s 6= t [25]. Then we compare two proofs Υ(E, s ' t) and Υ′(E′, s ' t) by the multiset extension

>emul of >e.

The proof orderings defined in [6] allow us to compare only two proofs Υ(S, ϕ) and Υ′(S′, ϕ) of

the same theorem ϕ in different presentations S and S′ of a theory. This notion of proof ordering

is not suitable for theorem proving, because in a theorem proving derivation

(S0;ϕ0) ` (S1;ϕ1) ` . . . ` (Si;ϕi) ` . . .

both the presentation and the target are transformed. In order to compare the proof of ϕi in

Si and the proof of ϕi+1 in Si+1, we need a proof ordering such that two proofs Υ(S, ϕ) and

Υ′(S′, ϕ′) may be comparable. Proof orderings with this property do exist and can actually be

obtained quite easily. For instance the proof ordering of the previous example can be transformed

into a proof ordering for proofs of different theorems as follows:

Example 2.2 We can compare any two ground equational proofs Υ(E, s ' t) = s↔∗E t and

Υ′(E′, s′ ' t′) = s′↔∗E′ t′ by comparing the pairs ({s, t}, s↔∗E t) and ({s′, t′}, s′↔∗E′ t′) by the

lexicographic combination >u of the multiset extension �mul of the ordering � on terms and the

multiset extension >emul of >e.

Henceforth a proof ordering is a monotonic, stable, well founded ordering on proofs. The minimum

proof is the empty proof. We denote by true the theorem whose proof is empty. For instance in

equational logic, true is a trivial equality s ' s. Given a pair (S;ϕ), we can select a minimal

proof among all proofs of ϕ from S:

Definition 2.1 Given a proof ordering >p, we denote by Π(S, ϕ) a minimal proof of ϕ from S

with respect to >p, i.e. a proof such that for all proofs Υ(S, ϕ) of ϕ from S, Υ(S, ϕ) 6<p Π(S, ϕ).

Having introduced this notion of proof ordering, we can regard a theorem proving derivation

(S0;ϕ0) ` (S1;ϕ1) ` . . . ` (Si;ϕi) ` . . .,

as a process of reducing Π(S0, ϕ0) to the empty proof and ϕ0 to true. At each step Π(Si, ϕi) is

replaced by Π(Si+1, ϕi+1) and the derivation halts successfully at stage k if Π(Sk, ϕk) is empty

and ϕk is true.

Our generalization of the classical notion of proof orderings is more significant than it may

seem at a first glance. Proof orderings were introduced in [6] to prove correctness of the Knuth-

Bendix completion procedure as a procedure which generates possibly infinite, confluent term

rewriting systems. A derivation by Knuth-Bendix completion in that context is a process of

transforming a presentation
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S0 ` S1 ` . . . ` Si ` . . ..

In other words, it is a purely forward derivation. Since the purpose of such a derivation is to

transform a presentation, it is sufficient to be able to compare Π(Si, ϕ) and Π(Si+1, ϕ) for any

theorem ϕ in the theory.

This is not the case in theorem proving, since the purpose of a derivation is to prove a

specific theorem. Theorem proving requires backward reasoning, since a theorem proving problem

includes a target. Furthermore, backward reasoning is necessary to obtain a target-oriented and

therefore presumably efficient procedure. The classical proof orderings approach does not apply

to theorem proving because it does not provide for backward reasoning. On the other hand, our

proof orderings approach applies to both theorem proving and traditional completion.

2.2 Inference rules and search plans

Since completion procedures are theorem proving strategies with special properties, we start by

introducing some basic concepts about theorem proving strategies.

A theorem proving strategy is a pair P =< I; Σ >, where I is a set of inference rules and Σ is a

search plan. Inference rules in I decide what consequences can be deduced from the available data

and Σ decides which inference rule and which data to choose next. We discuss first the inference

rules and next the search plan. The general form of an inference rule f is:

f : S
S′

where S and S′ are sets of sentences. The rule says that given S, the set S′ can be inferred. We

distinguish between expansion inference rules and contraction inference rules, as they are called

in [27]. An expansion inference rule expands a given set S into a new set S′ by deriving new

sentences from sentences in S:

f : S
S′

where S ⊂ S′.

A contraction inference rule contracts a given set S into a new set S′ by either deleting some

sentences in S or replacing them by others:

f : S
S′

where S 6⊆ S′.

Different schemes for inference rules, called deduction and deletion, are given in [13]. We further

distinguish between inference rules which transform the presentation and inference rules which

transform the target. We assume that targets are clauses and therefore can be regarded as sets

of literals:

• Presentation inference rules:

– Expansion inference rules: f :
(S;ϕ)
(S′;ϕ)

where S ⊂ S′.

– Contraction inference rules: f :
(S;ϕ)
(S′;ϕ)

where S 6⊆ S′.
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• Target inference rules:

– Expansion inference rules: f :
(S;ϕ)
(S;ϕ′)

where ϕ ⊂ ϕ′.

– Contraction inference rules: f :
(S;ϕ)
(S;ϕ′)

where ϕ 6⊆ ϕ′.

Example 2.3 Deduction of a critical pair in Unfailing Knuth-Bendix completion is an expansion

inference rule on the presentation, since it adds to the given set a new equation:

(E ∪ {p ' q, l ' r}; ŝ ' t̂)
(E ∪ {p ' q, l ' r, p[r]uσ ' qσ}; ŝ ' t̂)

p|u 6∈ X (p|u)σ = lσ

pσ 6� qσ, p[r]uσ
where X is the set of variables, σ is a most general unifier and � is the assumed complete

simplification ordering on terms. Simplification of the target is a contraction inference rule:

(E ∪ {l ' r}; ŝ ' t̂)
(E ∪ {l ' r}; ŝ[rσ]u ' t̂)

ŝ|u = lσ

ŝ � ŝ[rσ]u

The inference rules are required to be sound. A presentation inference rule is sound if Th(S′) ⊆
Th(S), since an application of a presentation rule involves the presentation only. A target inference

rule is sound if Th(S ∪ {ϕ′}) ⊆ Th(S ∪ {ϕ}).

Deduction by presentation rules is deduction of consequences from the axioms or forward

reasoning. A target rule applies to both the presentation and the target to infer a new target:

deduction by target rules is backward reasoning. The Knuth-Bendix procedure computing critical

pairs and simplifying rewrite rules to obtain a canonical system performs exclusively forward

reasoning. If a theorem to be proved is given as target, the procedure also performs some backward

reasoning, when it simplifies the target.

Finally, a search plan Σ decides which inference rule should be applied to what data at any

given step during a derivation. It may set a precedence on the inference rules and a well founded

ordering on data and proceed accordingly:

Example 2.4 A Simplification-first search plan [35] for Unfailing Knuth-Bendix completion is a

search plan where Simplification has priority over Deduction. Therefore Deduction is considered

only if Simplification does not apply to any equation. Equations can be sorted by the multiset

extension �mul of the ordering on terms, or by size, or by age such as in a first-in first-out plan.

2.3 Completion procedures

A completion procedure has then three components < Ip, It; Σ >, where Ip is the set of presenta-

tion inference rules, It is the set of target inference rules and Σ is the search plan.

A derivation by a completion procedure is a process of proof reduction. A target inference step

modifies the target and therefore it affects the proof of the target. We require that the proof of

the target is reduced:

Definition 2.2 A target inference step (S;ϕ) ` (S;ϕ′) is proof-reducing if Π(S, ϕ) ≥p Π(S, ϕ′).

It is strictly proof-reducing if Π(S, ϕ) >p Π(S, ϕ′).
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Example 2.5 Simplification of the target as given in Example 2.3 is strictly proof-reducing. We

assume the proof ordering >u introduced in Example 2.2. We have {ŝ, t̂}�mul{ŝ′, t̂′}, since ŝ � ŝ′

and t̂ = t̂′, assuming ŝ is simplified to ŝ′. Therefore Π(E, ŝ ' t̂) >u Π(E, ŝ′ ' t̂′).

For a presentation inference step we allow more flexibility:

Definition 2.3 Given two pairs (S;ϕ) and (S′;ϕ′), the relation (S;ϕ) �p,T (S′;ϕ′) holds if

1. either Π(S, ϕ) >p Π(S′, ϕ′)

2. or

(a) Π(S, ϕ) = Π(S′, ϕ′),

(b) ∀ψ ∈ T , Π(S, ψ) ≥p Π(S′, ψ) and

(c) ∃ψ ∈ T such that Π(S, ψ) >p Π(S′, ψ).

Definition 2.4 A presentation inference step (S;ϕ) ` (S′;ϕ) is proof-reducing on T if (S;ϕ)�p,T
(S′;ϕ) holds. It is strictly proof-reducing if Π(S, ϕ) >p Π(S′, ϕ).

The condition (Si;ϕi) �p,T (Si+1;ϕi+1) says that either the step reduces the proof of the target,

or it reduces the proof of at least one theorem in T , while it does not increase the proof of any

theorem in T . A step which reduces the proof of the target is proof-reducing, regardless of its

effects on other theorems. On the other hand, an inference step on the presentation may not

immediately decrease the proof of the target and still be necessary to decrease it eventually. Such

a step is proof-reducing too, if it does not increase any proof and strictly decreases at least one.

Example 2.6 Deduction of a critical pair as given in Example 2.3 is proof-reducing. We assume

the proof ordering >u introduced in Example 2.2. Given two equations l ' r and p ' q, a critical

overlap of l ' r and p ' q is any proof s←l'r v→p'q t, where v is c[pτ ] for some context c

and substitution τ and (p|u)τ = lτ for some non variable subterm p|u of p. The Deduction rule

applied to l ' r and p ' q generates the critical pair p[r]uσ ' qσ, where σ is the mgu of p|u
and l and therefore τ = σρ for some substitution ρ. Such a Deduction step affects a minimal

proof by replacing any occurrence of the critical overlap s←l'r v→p'q t by the equational step

s↔p[r]uσ'qσ t, justified by the critical pair. We have {(v, l, s), (v, p, t)}>emul{(s, p[r]uσ, t)} or

{(v, l, s), (v, p, t)}>emul{(t, qσ, s)}, depending on whether s � t or t � s, since v � s, t. Therefore

Π(E,ψ) >u Π(E ∪ {p[r]uσ ' qσ}, ψ) if the minimal proof of ψ in E contains a critical overlap

between l ' r and p ' q, Π(E,ψ) = Π(E ∪ {p[r]uσ ' qσ}, ψ) otherwise.

This notion of proof reduction applies to presentation inference steps which are either expansion

steps or contraction steps which replace some sentences by others. A contraction step which

deletes sentences without adding any cannot reduce any minimal proof. In order to characterize

these steps, we introduce a notion of redundancy:

Definition 2.5 A sentence ϕ is redundant in S on domain T if ∀ψ ∈ T , Π(S, ψ) = Π(S∪{ϕ}, ψ).
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A sentence is redundant in a presentation if adding it to the presentation does not affect any

minimal proof.

Example 2.7 An inference rule of Unfailing Knuth-Bendix completion, which deletes an equation

without adding any is Functional subsumption:

(E ∪ {p ' q, l ' r}; ŝ ' t̂)
(E ∪ {l ' r}; ŝ ' t̂)

(p ' q) •�(l ' r)

where (p ' q) •�(l ' r) means that p = c[lσ] and q = c[rσ] for some context c and substitution σ,

where either c is not empty or σ is not a renaming of variables. An equation p ' q subsumed by

l ' r is redundant according to the proof ordering >emul and therefore to the proof ordering >u
as defined in Example 2.2. No minimal proof contains a step s↔p'q t since the step s↔l'r t is

smaller: either {(s, p, t)}>emul{(s, l, t)} or {(t, q, s)}>emul{(t, r, s)}, depending on whether s � t
or t � s, since p •�l and q •�r.

A notion of redundant clauses was introduced in [57] and in [13], where the term “redundant” was

first used. We show in [16] that redundant clauses according to [57] and [13] are also redundant

in our sense.

Definition 2.6 An inference step (S;ϕ) ` (S′;ϕ′) is reducing on T if either it is proof-reducing

on T or it deletes a sentence which is redundant in S on domain T .

Definition 2.7 An inference rule f is reducing if all the inference steps (S;ϕ)`f (S′;ϕ′) where

f is applied are reducing.

We have finally all the elements to define a completion procedure:

Definition 2.8 A theorem proving strategy C =< Ip, It; Σ > is a completion procedure on domain

T if for all pairs (S0;ϕ0), where S0 is a presentation of a theory and ϕ0 ∈ T , the derivation

(S0;ϕ0)`C(S1;ϕ1)`C . . .`C(Si;ϕi)`C . . .

has the following properties:

• monotonicity: ∀i ≥ 0, Th(Si+1) ⊆ Th(Si),

• relevance: ∀i ≥ 0, ϕi+1 ∈ Th(Si+1) if and only if ϕi ∈ Th(Si) and

• reduction: ∀i ≥ 0, the step (Si;ϕi)`C(Si+1;ϕi+1) is reducing on T .

The domain T is the set of sentences where the inference rules of the completion procedure are

reducing. For instance, for the Knuth-Bendix completion procedure T is the set of all equations.

For the Unfailing Knuth-Bendix procedure, T is the set of all ground equations.

The monotonicity and relevance properties establish the soundness of the presentation and

the target inference rules respectively. Monotonicity ensures that a presentation inference step

does not create new elements which are not true in the theory, while relevance ensures that a

target inference step replaces the target by a new target in such a way that proving the latter

9



is equivalent to proving the former. For instance, a simplification step which reduces a target ϕ

to ϕ′ satisfies the relevance requirement because if ϕ′ is true, ϕ is true as well. An interesting

expansion inference rule for the target, called Ordered saturation will be described in detail in

Section 3.3.

Reduction is the property which characterizes completion procedures. Clearly, if all the infer-

ence rules of a procedure are reducing, the procedure has the reduction property. We shall see

in the second part that the inference rules of the known equational completion procedures are

reducing. Most inference rules are reducing because they are suitably restricted by the complete

simplification ordering � on terms. A complete simplification ordering on data turns out to be a

key element in characterizing a theorem proving strategy as a completion procedure.

2.4 Completion procedures as semidecision procedures

Given an input pair (S0;ϕ0), a completion procedure works by reducing the proof Π(S0, ϕ0). If

the proof of the target is minimal, the process halts. Since the empty proof is smaller than any

other proof, the computation halts at stage k if Π(Sk, ϕk) is empty and ϕk is true.

A procedure is complete if, whenever ϕ0 is a theorem of S0, the derivation from (S0;ϕ0) reduces

ϕ0 to true and halts. Completeness involves both the inference rules and the search plan. First,

it requires that whenever ϕ0 ∈ Th(S0), there exist successful derivations by the inference rules

of the procedure. Second, it requires that whenever successful derivations exist, the search plan

guarantees that the computed derivation is successful. We call these two properties refutational

completeness of the inference rules and fairness of the search plan respectively.

In order to describe them, we introduce a structure called I-tree. Given a theorem proving

problem (S0;ϕ0) and a set of inference rules I, the application of I to (S0;ϕ0) defines a tree, the

I-tree rooted at (S0;ϕ0). The nodes of the tree are labeled by pairs (S;ϕ). The root is labeled

by the input pair (S0;ϕ0). A node (S;ϕ) has a child (S′;ϕ′) if (S′;ϕ′) can be derived from (S;ϕ)

in one step by an inference rule in I. The I-tree rooted at (S0;ϕ0) represents all the possible

derivations by the inference rules in I starting from (S0;ϕ0).

A set I of inference rules is refutationally complete if whenever ϕ0 ∈ Th(S0), the I-tree rooted

at (S0;ϕ0) contains successful nodes, nodes of the form (S; true). More precisely, we define

completeness as follows:

Definition 2.9 A set I = Ip ∪ It of inference rules is refutationally complete if whenever ϕ ∈
Th(S) and Π(S, ϕ) is not minimal, there exist derivations

(S;ϕ)`I(S1;ϕ1)`I . . .`I(S′;ϕ′)

such that Π(S, ϕ) >p Π(S′, ϕ′).

A set of inference rules is refutationally complete if it can reduce the proof of the target whenever

it is not minimal. Since a proof ordering is well founded, it follows that if ϕ ∈ Th(S), the I-tree

rooted at (S;ϕ) contains successful nodes. The advantage of giving the definition of completeness

in terms of proof reduction is that the problem of proving completeness of I is reduced to the

problem of exhibiting a suitable proof ordering.
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Given a completion procedure C =< Ip, It; Σ >, I = Ip ∪ It, the I-tree rooted at (S0;ϕ0)

represents the entire search space that the procedure can potentially derive from the input (S0;ϕ0).

The search plan Σ selects a path in the I-tree: the derivation from input (S0;ϕ0) controlled by Σ

is the path selected by Σ in the I-tree rooted at (S0;ϕ0). Once both a set of inference rules and

a search plan are given, the derivation from (S0;ϕ0) is unique. A pair (Si;ϕi) reached at stage

i of the derivation is a visited node in the I-tree. Each visited node (Si;ϕi) has generally many

children, but the search plan selects only one of them to be (Si+1;ϕi+1). A search plan Σ is fair

if whenever the I-tree rooted at (S0;ϕ0) contains successful nodes, the derivation controlled by Σ

starting at (S0;ϕ0) is guaranteed to reach a successful node. Similar to completeness, we define

fairness in terms of proof reduction:

Definition 2.10 A derivation

(S0;ϕ0)`C(S1;ϕ1)`C . . .`C(Si;ϕi)`C . . .

controlled by a search plan Σ is fair if and only if for all i ≥ 0, if there exists a path

(Si;ϕi)`I . . .`I(S′;ϕ′)

in the I-tree rooted at (S0;ϕ0) such that Π(Si, ϕi) >p Π(S′, ϕ′), then there exists an (Sj ;ϕj)

for some j > i, such that Π(S′, ϕ′) ≥p Π(Sj , ϕj). A search plan Σ is fair if all the derivations

controlled by Σ are fair.

If the inference rules allow to reduce the proof of the target at (Si;ϕi), a fair search plan guarantees

that the proof of the target will be indeed reduced at a later stage (Sj ;ϕj).

If the inference rules are complete and the search plan is fair, a completion procedure on

domain T is a semidecision procedure for Th(S) ∩ T for all presentations S:

Theorem 2.1 Let C =< Ip, It; Σ > be a completion procedure. If the set I = Ip ∪ It of inference

rules is refutationally complete and the search plan Σ is fair, then for all derivations

(S0;ϕ0)`C(S1;ϕ1)`C . . .`C(Si;ϕi)`C . . .,

where ϕ0 ∈ Th(S0), ∀i ≥ 0, if Π(Si, ϕi) is not minimal, then there exists an (Sj , ϕj), for some

j > i, such that Π(Si, ϕi) >p Π(Sj , ϕj).

Proof: if Π(Si, ϕi) is not minimal, then by completeness of the inference rules, there exists a path

(Si;ϕi)`I . . .`I(S′;ϕ′) such that Π(Si, ϕi) >p Π(S′, ϕ′). By fairness of the search plan, there

exists an (Sj ;ϕj), for some j > i, such that Π(Si;ϕi) >p Π(S′, ϕ′) ≥p Π(Sj , ϕj). 2

Corollary 2.1 If a completion procedure C on domain T has refutationally complete inference

rules and fair search plan, then for all inputs (S0;ϕ0), if ϕ0 ∈ Th(S0) then

• the derivation (S0;ϕ0)`C(S1;ϕ1)`C . . .`C(Si;ϕi)`C . . . halts at stage k for some k ≥ 0 and

• ϕk = true.

Proof: if ϕ0 ∈ Th(S0), the derivation halts at some stage k by Theorem 2.1 and the well foun-

dedness of >p. Therefore, the proof Π(Sk, ϕk) is minimal. Since we assume a proof ordering such
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that any two proofs can be compared, the only minimal proof is the empty proof and ϕk is true.

2

In the following, we often write that a completion procedure is complete as a short hand for a

completion procedure with complete inference rules and fair search plan.

2.5 Completion procedures as generators of decision procedures

In this paper we regard a completion procedure as a theorem proving procedure. In [17] we extend

our framework to include completion procedures as generators of decision procedures.

If the search plan of a completion procedure satisfies a stronger fairness property, which we

call uniform fairness, the procedure generates a possibly infinite saturated set. Uniform fairness is

the fairness property which has been required so far for completion procedures [39, 9, 57, 13]. It

basically consists in eventually considering all the inference steps. Saturated set is a generalization

of confluent system: a set is saturated if no non-trivial consequences can be added [50, 13]. In

[17], we define both uniform fairness and saturated set in terms of our notion of redundancy and

we show that our definitions are equivalent to those given in [50, 13].

If a presentation is saturated, the derivations from that presentation are linear input deriva-

tions [18], that is derivations where each inference step applies to the goal to be proved. If linear

input derivations from a saturated set are guaranteed to be well founded, a saturated set is a

decision procedure and the completion procedure is a generator of decision procedures.

The well foundedness of the derivations is implied by additional requirements, which depend

on the logic. In equational logic, a derivation s→∗ ◦←∗ t made only of well founded simplification

steps by a confluent rewrite system is a well founded linear input derivation and a confluent system

is a decision procedure. Sufficient conditions for well-foundedness of derivations for ground targets

in Horn logic with equality are also known [50, 13].

In [17], we give a full generalization of the classical results in [39], which covers also the

extensions to Horn logic with equality in [50, 13].

Very few theories have a finite saturated presentation and even fewer satisfy the additional

requirement for a saturated presentation to be a decision procedure. Therefore, the interpretation

of completion as semidecision procedure which we have developed here is more useful in practice.

3 Completion procedures in equational logic

In the second part of this work we give a new presentation of some Knuth-Bendix type completion

procedures for equational logic, in the framework developed so far.

3.1 Unfailing Knuth-Bendix completion

The Unfailing Knuth-Bendix procedure [35, 11] is a semidecision procedure for equational theories.

A presentation is a set of equations E0 and a theorem is an equational theorem ∀x̄s0 ' t0. A

12



derivation by UKB has the form

(E0; ŝ0 ' t̂0)`UKB(E1; ŝ1 ' t̂1)`UKB . . . (Ei; ŝi ' t̂i)`UKB . . .

where we denote by ŝ0 ' t̂0 an equality which contains only universally quantified variables and

therefore can be regarded as a ground equality. A derivation halts at stage k if ŝk and t̂k are

identical. We assume that � is a complete simplification ordering such that ∀s, true ≺ s and we

extend the encompassment ordering to equations: (p ' q) •�(l ' r) if p|u = lσ and q|u = rσ,

(p ' q) •�(l ' r) if (p ' q) •�(l ' r) but (p ' q) 6= (l ' r). At each step of the completion process

the pair (Ei+1; ŝi+1 ' t̂i+1) is derived from the pair (Ei; ŝi ' t̂i) by applying one of the following

inference rules:

• Presentation inference rules:

– Simplification:

(E ∪ {p ' q, l ' r}; ŝ ' t̂)
(E ∪ {p[rσ]u ' q, l ' r}; ŝ ' t̂)

p|u = lσ p � p[rσ]u
p •�l ∨ q � p[rσ]u

– Deduction:

(E ∪ {p ' q, l ' r}; ŝ ' t̂)
(E ∪ {p ' q, l ' r, p[r]uσ ' qσ}; ŝ ' t̂)

p|u 6∈ X (p|u)σ = lσ

pσ 6� qσ, p[r]uσ
– Deletion:

(E ∪ {l ' l}; ŝ ' t̂)
(E; ŝ ' t̂)

– Functional subsumption:

(E ∪ {p ' q, l ' r}; ŝ ' t̂)
(E ∪ {l ' r}; ŝ ' t̂)

(p ' q) •�(l ' r)

• Target inference rules:

– Simplification:

(E ∪ {l ' r}; ŝ ' t̂)
(E ∪ {l ' r}; ŝ[rσ]u ' t̂)

ŝ|u = lσ

ŝ � ŝ[rσ]u

– Deletion:
(E; ŝ ' ŝ})
(E; true)

The main inference rule of UKB is Simplification. A simplification step consists in applying an

equation in Ei to simplify either another equation in Ei or the goal ŝi 6= t̂i. The step is performed

only if p � p[rσ]u, that is a term is replaced by a smaller term. The condition p •�l ∨ q � p[rσ]u
is explained as follows. If q � p, that is simplification applies to the smaller side of p ' q, the

condition q � p[rσ]u is trivially satisfied and no other restriction is needed. If q 6� p, simplification

applies to the greater side of p ' q or p ' q is not ordered. If p •�l, either p is a proper instance of

l or l matches a proper subterm of p. Otherwise, p
•
= l, that is p and l are equal up to variables

renaming, but q � p[rσ]u, that is the newly generated term p[rσ]u is smaller than both sides of

the simplified equation p ' q. We are going to see in a few paragraphs (Lemma 3.1) how these

conditions ensures that Simplification is proof-reducing.
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The Deduction inference rule is the only expansion rule of UKB. It works by checking for a

superposition between two equations p ' q and l ' r. Two given equations superpose if there

exists a non variable subterm, say p|u, which unifies with mgu σ with a side l of the other

equation l ' r. This means that the term pσ is equal to both qσ and p[r]uσ. The new equation

p[r]uσ ' qσ is called a critical pair. A critical pair is generated only if pσ 6� qσ, p[r]uσ, that is

the two equations are applied according to the simplification ordering. The original definitions

of Simplification and Deduction given in [35] have slightly different conditions. Simplification

requires that lσ � rσ and superposition requires that pσ 6� qσ and lσ 6� rσ. We adopt here

the conditions given in [27], because they put weaker requirements on simplification and stronger

requirements on superposition than the original ones. However, these conditions may be more

expensive to compute, since they require to perform both substitution application and term

replacement.

The Functional subsumption inference rule deletes an equation p ' q because it is subsumed

by another equation l ' r, that is p = c[lσ] and q = c[rσ] for some context c and substitution σ,

where either c is not empty or σ is not a renaming of variables.

Simplification is the most important among the above inference rules, because it reduces

dramatically the number and the size of the generated equations. A search plan for UKB should

give to Simplification the highest priority among all the inference rules, so that the target and

the presentation are always kept fully simplified. A search plan with this property is called

Simplification-first [35]. If Simplification is not applied, the Deduction inference rule rapidly

saturates the memory space with equations, making impossible to reach a proof in reasonable

time.

In order to characterize the UKB procedure as a completion procedure, we define a proof

ordering >UKB to compare the proofs Π(Ei, ŝi ' t̂i). We use the ordering >u introduced in

Example 2.2. We recall that we write and equational proof step s↔l'r t meaning that s and t

are c[lσ] and c[rσ] for some context c and substitution σ. We write s→l'r t if s � t is known

a priori. Then Π(Ei, ŝi ' t̂i) >UKB Π(Ej , ŝj ' t̂j) holds if and only if ({ŝi, t̂i}, ŝi↔∗Ei
t̂i) >u

({ŝj , t̂j}, ŝj↔∗Ej
t̂j) holds.

Lemma 3.1 The presentation inference rules of the UKB procedure are reducing.

Proof: we show that Deduction and Simplification are proof-reducing, Deletion and Functional

subsumption delete redundant equations:

• the proof for Deduction was given in Example 2.6.

• A Simplification step where an equation p ' q is simplified to p[rσ]u ' q by an equation

l ' r, affects a minimal proof by replacing a step s↔p'q t by two steps s→l'r v↔p[rσ]u'q t.

– If t � s, we have {(t, q, s)}>emul{(s, l, v), (t, q, v)} since t � s and s � v.

– If s � t,

∗ if p •�l, we have

· if t � v, {(s, p, t)}>emul{(s, l, v), (t, q, v)} since p •�l and s � t,

14



· if v � t, {(s, p, t)}>emul{(s, l, v), (v, p[rσ]u, t)} since p •�l and s � v;

∗ if p
•
= l and q � p[rσ]u, t � v follows from q � p[rσ]u by stability and monotonicity

of � and we have {(s, p, t)}>emul{(s, l, v), (t, q, v)} since t � v and s � t.

• A trivial equation l ' l is redundant: no minimal proof contains a step s↔l'l s since the

subproof given by the single term s is smaller: {(s, l, s)}>emul{ε}, where the empty triple

ε is the proof complexity of s.

• the proof for Functional subsumption was given in Example 2.7. 2

Lemma 3.2 The target inference rules of the UKB procedure are strictly proof-reducing.

Proof: the proof for Simplification was given already in Example 2.5. For a Deletion step we

have {ŝi, t̂i}�mul{true}, since true is smaller than any term. Therefore Π(Ei, ŝi ' t̂i) >UKB
Π(Ei, ŝi+1 ' t̂i+1). 2

We can then show that UKB is a completion procedure:

Theorem 3.1 The Unfailing Knuth-Bendix procedure is a completion procedure on the domain

T of all ground equalities.

Proof: for all equational presentations E0 and for all ground targets ŝ0 ' t̂0 the derivation

(E0; ŝ0 ' t̂0)`UKB(E1; ŝ1 ' t̂1)`UKB . . . (Ei; ŝi ' t̂i)`UKB . . .

has the monotonicity, relevance and reduction properties. Monotonicity and relevance follow by

soundness of the inference rules, which is proved among others in [39, 6, 9]. Reduction follows

from Lemma 3.1 and Lemma 3.2. 2

If a fair search plan is provided, the UKB procedure is a semidecision procedure for equational

theories:

Theorem 3.2 (Hsiang and Rusinowitch 1987) [35], (Bachmair, Dershowitz and Plaisted 1989)

[11] An equation ∀x̄s ' t is a theorem of an equational theory E if and only if the Unfailing

Knuth-Bendix procedure derives true from (E; ŝ ' t̂).

3.2 Extensions: AC-UKB and cancellation laws

Many equational problems involve associative and commutative (AC) operators. An AC function

f satisfies the equations

f(f(x, y), z) ' f(x, f(y, z)) (associativity) and

f(x, y) ' f(y, x) (commutativity).

Handling associativity and commutativity as any other equation turns out to be very inefficient,

since commutativity may generate a very high number of equations through the Deduction infer-

ence rule. Also, many instances of commutativity may not be ordered by the chosen simplification
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ordering, so that simplification does not apply as often as it is desirable to reduce the size and

the number of the equations.

The efficiency of the UKB strategy can be greatly improved if associativity and commutativity

are not given in the input, but built in the inference rules. The UKB procedure with associativity

and commutativity built in the inference rules is called AC-UKB [1]. The basic idea is to replace

syntactic identity by equality modulo AC. Let AC be a set of associativity and commutativity

axioms. Two terms s and t are equal modulo AC, if s ' t is a theorem of AC, which we write

s =AC t. The inference rules of the UKB procedure are modified in such a way that any two

terms which are equal modulo AC are regarded as identical.

The first modification is to require that the complete simplification ordering on terms � is

in some sense “compatible” with replacing identity by equality modulo AC. More precisely, this

“compatibility” requirement is a commutation property. Given two relations R and S, we say

that R commutes over S if S ◦ R ⊆ R ◦ S, where ◦ is composition of relations. The complete

simplification ordering � is required to commute over =AC : this means that for any two terms

s and t, if there is a third term r such that s =AC r and r � t, there is also a term r′ such

that s � r′ and r′ =AC t. Secondly, matching and unification are replaced by AC-matching and

AC-unification. A term s matches a term t modulo AC if there is a substitution σ such that

sσ =AC t. Similarly, two terms s and t unify modulo AC if there is a substitution σ such that

sσ =AC tσ. Finally, the strict encompassment ordering •� is replaced by the ordering •�AC , that is

s •�ACt if and only if s •�r and r =AC t for some term r.

The set of inference rules of the UKB procedure is therefore modified as follows:

• Presentation inference rules:

– Simplification:

(E ∪ {p ' q, l ' r}; ŝ ' t̂)
(E ∪ {p[rσ]u ' q, l ' r}; ŝ ' t̂)

p|u =AC lσ p � p[rσ]u
p •�AC l ∨ q � p[rσ]u

– Deduction:

(E ∪ {p ' q, l ' r}; ŝ ' t̂)
(E ∪ {p ' q, l ' r, p[r]uσ ' qσ}; ŝ ' t̂)

p|u 6∈ X (p|u)σ =AC lσ

pσ 6� qσ, p[r]uσ
– Extension:

(E ∪ {f(p, q) ' r}; ŝ ' t̂)
(E ∪ {f(p, q) ' r, f(p, q, z) ' f(r, z)}; ŝ ' t̂)

f is AC

f(p, q) 6� r
– Deletion:

(E ∪ {l ' l}; ŝ ' t̂)
(E; ŝ ' t̂)

– Functional subsumption:

(E ∪ {p ' q, l ' r}; ŝ ' t̂)
(E ∪ {l ' r}; ŝ ' t̂)

(p ' q) •�AC(l ' r)

• Target inference rules:

– Simplification:

(E ∪ {l ' r}; ŝ ' t̂)
(E ∪ {l ' r}; ŝ[rσ]u ' t̂)

ŝ|u =AC lσ

ŝ � ŝ[rσ]u
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– Deletion:
(E; ŝ ' ŝ)
(E; true)

This set of inference rules is obtained from the set of inference rules of the UKB procedure by

replacing identity by equality modulo AC as explained above and by adding a new inference rule,

called Extension. The Extension inference rule is a specialized version of the Deduction inference

rule, designed to compute superpositions of equations in E onto associativity axioms. Namely,

if f(p, q) ' r is an equation in E, f is AC and f(p, q) 6� r, the equation f(p, q) ' r trivially

superposes onto the associativity axiom f(f(x, y), z) ' f(x, f(y, z)), yielding the critical pair

f(p, f(q, z)) ' f(r, z), which we write in flattened form as f(p, q, z) ' f(r, z). These critical pairs

are called extended rules. Computing the extended rules is sufficien to ensure completeness of the

AC-UKB procedure: no other critical pairs between E and AC need to be computed [54].

The extension of UKB to AC-UKB is feasible because algorithms for AC-matching and AC-

unification are available. An algorithm for AC-unification, its application in a completion proce-

dure and the extended rules first appeared in [58, 59, 54]. The correctness of the AC-unification

algorithm was proved in [28]. General theoretical frameworks for working with equations modu-

lo a set of axioms A are given in [41] and in [7]. These results are surveyed in [25] and more

specifically for unification problems in [44].

The UKB or AC-UKB procedure can be further improved by building in the inference rules

for the cancellation laws. A function F is right cancellable if it satisfies the right cancellation law

∀x, y, z f(x, y) = f(z, y) ⊃ x = z

The left cancellation law is defined symmetrically. Cancellation laws may reduce considerably the

size of the equations. They are implemented as inference rules as follows [36]:

Cancellation 1:

(E ∪ {f(p, u) ' f(q, v)}; ŝ ' t̂)
(E ∪ {f(p, u) ' f(q, v), pσ ' qσ}; ŝ ' t̂)

uσ = vσ

Cancellation 2:

(E ∪ {f(d1, d2) ' y}; ŝ ' t̂)
(E ∪ {f(d1, d2) ' y, d1σ ' x}; ŝ ' t̂)

y ∈ V (d1) σ = {y 7→ f(x, d2)}
y 6∈ V (d2) x is a new variable

Cancellation 3:

(E ∪ {f(p1, q1) ' r1, f(p2, q2) ' r2}; ŝ ' t̂)
(E ∪ {f(p1, q1) ' r1, f(p2, q2) ' r2, p1σ ' p2σ}; ŝ ' t̂)

q1σ = q2σ

r1σ = r2σ

where the function f is right cancellable. In Cancellation 2, if the substitution σ = {y 7→ f(x, d2)}
is applied to the given equation, it becomes f(d1σ, d2) ' f(x, d2), since y does not occur in d2.

The cancellation law reduces this equation to d1σ ' x.

In order to prove that the UKB procedure with the cancellation inference rules is a completion

procedure, we need to prove that the Cancellation inference rules are proof-reducing. We adopt the

17



proof ordering >UKBC defined as follows: a ground equational step s ' t justified by an equation

l ' r has complexity measure (s, lσ, l, t), if s is c[lσ], t is c[rσ] and s � t. Complexity measures

are compared by the lexicographic combination >ec of the orderings �, •�, •� and �. Proofs

are compared by the lexicographic combination >uc of the multiset extansions �mul and >ecmul:

Π(Ei, ŝi ' t̂i) >UKBC Π(Ej , ŝj ' t̂j) if and only if ({ŝi, t̂i}, ŝi↔∗Ei
t̂i) >uc ({ŝj , t̂j}, ŝj↔∗Ej

t̂j).

The proof of Lemma 3.1 is unaffected if >UKBC replaces >UKB.

Lemma 3.3 The Cancellation inference rules are proof-reducing.

Proof: we show that if (Ei; ŝi ' t̂i)`UKB(Ei+1; ŝi ' t̂i) is a Cancellation step, then if Π(Ei, ŝ '
t̂) 6= Π(Ei+1, ŝ ' t̂), that is the inference step affects the proof of ŝ ' t̂, Π(Ei, ŝ ' t̂)>ecmul Π(Ei+1,

ŝ ' t̂) holds.

• An application of the rule Cancellation 1 to an equation f(p, u) ' f(q, v) affects any minimal

proof in Ei which contains a step s↔ t such that s = c[f(p, u)τ ], t = c[f(q, v)τ ] and τ •≥ σ,

where •≥ is the subsumption ordering and σ is the mgu such that uσ = vσ of the application

of Cancellation 1. The step s↔f(p,u)'f(q,v) t has complexity (s, f(p, u)τ, f(p, u), t), if s � t.
In the minimal proofs in Ei+1 the step s↔f(p,u)'f(q,v) t is replaced by a step s↔pσ'qσ t

justified by the new equation pσ ' qσ generated by the application of Cancellation 1. The

step s↔pσ'qσ t has complexity (s, pτ, pσ, t). Since f(p, u)τ •�pτ , {(s, f(p, u)τ, f(p, u), t)} >ec

{(s, pτ, pσ, t)} follows. A symmetric argument applies if t � s.

• An application of the rule Cancellation 2 to an equation f(d1, d2) ' y affects any mini-

mal proof in Ei which contains a step s↔ t such that s = c[f(d1, d2)τ ], t = c[yτ ] and

τ •≥ σ, where σ is {y 7→ f(x, d2)}. Since y ∈ V (d1), we have f(d1, d2)τ � yτ by the

subterm property and therefore s � t by monotonicity, so that the step s↔ t has complex-

ity (s, f(d1, d2)τ, f(d1, d2), t). In the minimal proofs in Ei+1 the step s↔ t is replaced by

a step s↔d1σ'x t justified by the new equation d1σ ' x generated by the application of

Cancellation 2. The step s↔d1σ'x t has complexity (s, d1τ, d1σ, t). Since f(d1, d2)τ •�d1τ ,

{(s, f(d1, d2)τ, f(d1, d2), t)}>ecmul{(s, d1τ, d1σ, t)} follows.

• An application of the rule Cancellation 3 to two equations f(p1, q1) ' r1 and f(p2, q2) '
r2 affects any minimal proof in Ei which contains a subproof s↔ u↔ t such that s =

c[f(p1, q1)τ ], u = c[r1τ ], t = c[f(p2, q2)τ ] and τ •≥ σ, where σ is the mgu such that q1σ =

q2σ and r1σ = r2σ of the application of Cancellation 3. It follows that q1τ = q2τ and

r1τ = r2τ too. The subproof s↔ u↔ t is replaced in any minimal proof in Ei+1 by a single

step s↔p1σ'p2σ t justified by the new equation p1σ ' p2σ generated by the application of

Cancellation 3.

1. If s � t � u, the subproof s↔ u↔ t has complexity {(s, f(p1, q1)τ, f(p1, q1), u), (t, f(p2,

q2)τ, f(p2, q2), u)} and the step s↔p1σ'p2σ t has complexity (s, p1τ, p1σ, t). Since f(p1,

q1)τ •�p1τ , the result follows. A symmetric argument applies if t � s � u.

2. If s � u � t, the subproof s↔ u↔ t has complexity {(s, f(p1, q1)τ, f(p1, q1), u), (u, r1τ,

r1, t)} and the step s↔p1σ'p2σ t has complexity (s, p1τ, p1σ, t). Since f(p1, q1)τ •�p1τ ,

the result follows. A symmetric argument applies if t � u � s.
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3. If u � s � t, the subproof s↔ u↔ t has complexity {(u, r1τ, r1, s), (u, r1τ, r1, t)} and

the step s↔p1σ'p2σ t has complexity (s, p1τ, p1σ, t). Since u � s, the result trivially

follows. A symmetric argument applies if u � t � s. 2

The UKB or AC-UKB procedure enriched with the inference rules for cancellation is complete

[36]. Most of the experimental results reported in [1, 2, 14, 3, 5] are obtained by AC-UKB with

the inference rules for cancellation.

3.3 Efficiency of the Unfailing Knuth-Bendix procedure

The UKB procedure is complete, but it is not very efficient in general. The main source of

inefficiency is the Deduction inference rule, that is the forward reasoning component of UKB.

All the backward reasoning steps are Simplification steps, which are strictly proof-reducing. On

the other hand, a Deduction step is guaranteed to reduce the proof of some theorem, but not

necessarily the proof of the target. The UKB procedure is inefficient because it generates many

critical pairs which do not help in proving the target.

Therefore, our goal is to reduce the number of critical pairs generated or equivalently to

perform less forward reasoning and more backward reasoning.

For the forward reasoning part, a possible approach to the problem consists in designing search

plans which generate first the critical pairs that are estimated to be likely to reduce the proof

of the target. Since the effect of a critical pair on the target cannot be completely determined a

priori, such a search plan is based on heuristical criteria that measure how useful a critical pair is

expected to be with respect to the task of simplifying the goal. Some examples of these heuristics

are given in [3, 4].

For the backward reasoning part, we observe that if the target ŝi ' t̂i is fully simplified with

respect to Ei, ŝi ' t̂i is minimal in the ordering �mul among all the ground equations E-equivalent

to the input target s0 ' t0, where E =
⋃

0≤j≤iEj . If a Simplification-first plan is adopted, UKB

maintains a minimal target. Therefore, it could seem that no improvement can be obtained on

the target side. However, we shall see that this is not the case.

The notion of minimal target is relative to the assumed partially ordered set (poset) of targets.

If we assume the poset of ground equalities ordered by �mul, ŝi ' t̂i is minimal among the ground

equations E-equivalent to the input target s0 ' t0. The situation changes if we assume as poset

of targets the poset of disjunctions of ground equalities ordered by an ordering �′mul defined

as follows: N1�′mulN2 if min(N1)�mulmin(N2), where N1 and N2 are disjunctions of ground

equalities and min(N) is the smallest equality in N according to �mul. Since the equalities

are ground and the simplification ordering is total on ground, there is a smallest element in a

disjunction and this ordering is well defined. Furthermore, the poset of equalities is embedded1

1Given two posets P1 = (D1, >1) and P2 = (D2, >2), an embedding h:P1 → P2 is an injective function h:D1 →
D2 which preserves the ordering: for all x, y ∈ D1, x >1 y implies h(x) >2 h(y). The function which maps a ground

equality into the disjunction given by the ground equality itself is clearly an embedding of the poset of ground

equalities into the poset of disjunctions of ground equalities, since the smallest element in a disjunction given by a

single equality is the equality itself.
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in the poset of disjunctions.

We show why the backward reasoning part of UKB is not guaranteed to compute a minimal

target if the poset of disjunctions is assumed. Let (Ei; ŝi ' t̂i) be the current stage in an UKB

derivation and l ' r be an un-orientable equation in Ei, such that ŝi|u = lσ for some position u

and substitution σ, but ŝi ≺ ŝi[rσ]u. In other words, l matches a subterm of ŝi but Simplification

does not apply because ŝi would not be replaced by a smaller term. However, we assume that the

target ŝi[rσ]u ' t̂i is generated nonetheless and that by simplification it reduces to an equation

which is smaller than ŝi ' t̂i, that is ŝi[rσ]u→∗Ei
ŝ′, t̂i→∗Ei

t̂′ and {ŝ′, t̂′}≺mul{ŝi, t̂i}. If these

conditions hold, we have that the disjunction ŝi ' t̂i∨ ŝ′ ' t̂′ is smaller than the disjunction given

by ŝi ' t̂i alone in the poset of disjunctions defined above. Therefore, if we assume the poset of

disjunctions as posets of targets, it is not true that UKB maintains a minimal target.

The intuition behind the choice of considering disjunctions of equalities rather than equalities

is that if we consider more than one target equality, we have a greater chance to find a short proof.

In order to work on disjunctions of equalities, we need to add to the UKB procedure an expansion

inference rule, so that the target is eventually expanded into a disjunction of ground equalities.

Such an expansion inference rule must satisfy the relevance requirement, so that proving the

validity of any of the equalities in the disjunction is equivalent to prove the input target s0 ' t0.
Also, the application of such rule must be restricted, in order to avoid the generation of a high

number of target equalities, which may slow down the search for a solution.

This new inference rule is superposition of an un-orientable equation onto a target equality

ŝ ' t̂ to generate a new target equality. A newly generated target equality is first simplified as

much as possible and then it is kept only if it is smaller than ŝ ' t̂:

Ordered saturation:

(E ∪ {l ' r};N ∪ {ŝ ' t̂})
(E ∪ {l ' r};N ∪ {ŝ ' t̂, ŝ′ ' t̂′})

ŝ|u = lσ ŝ[rσ]u→∗E ŝ′ t̂→∗E t̂′

{ŝ′, t̂′}≺mul{ŝ, t̂}

Ordered saturation applies if ŝ ≺ ŝ[rσ]u, since if ŝ � ŝ[rσ]u holds, simplification would apply. The

target equality ŝ′ ' t̂′ might have a shorter proof than the other target equalities. We do not

know which one has the shortest proof. We keep all of them to broaden our chance of reaching

the proof as soon as possible.

In addition, we need to modify the Deletion inference rule, since the computation halts suc-

cessfully as soon as an equality in the disjunction is reduced to a trivial equality:

Deletion:
(E;N ∪ {ŝ ' ŝ})

(E; true)

The procedure obtained by adding Ordered saturation to UKB and by modifying Deletion as

above, is called the Inequality Ordered-Saturation strategy (IOS) [3]. A derivation by the IOS

strategy has the form

(E0;N0)`IOS(E1;N1)`IOS . . .`IOS(Ei;Ni)`IOS . . .
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where the set N0 contains the initial goal ŝ0 ' t̂0 and at stage i, Ni is the current set of target

equalities. The derivation halts at stage k if Nk contains a target ŝi ' t̂i such that ŝi and t̂i are

identical and the clause in Nk reduces to true.

In order to show that the IOS strategy is a completion procedure, we assume a proof or-

dering >IOS defined as follows: Π(E;N) >IOS Π(E′;N ′) if and only if Π(E;min(N)) >UKB
Π(E′;min(N ′)). In other words the proof of a disjunction is represented by the proof of the

smallest target in the disjunction.

Lemma 3.4 The Ordered saturation inference rule is proof-reducing.

Proof: we show that if (Ei;Ni)`IOS(Ei;Ni+1) is an Ordered saturation step, then Π(Ei, Ni) ≥IOS
Π(Ei, Ni+1). Since Ni ⊂ Ni+1, min(Ni)�mulmin(Ni+1) and the result follows. 2

Theorem 3.3 The Inequality Ordered-Saturation strategy is a completion procedure.

Proof: it follows from Theorem 3.1 and Lemma 3.4. 2

The IOS strategy has been implemented and observed to perform better than the UKB procedure

[3]. In practice, few target equalities are kept, so that the overhead of handling them is negligible

with respect to the advantage of keeping more than one target.

3.4 The S-strategy

The S-strategy [35] is an extension of the UKB procedure to the logic of equality and inequality.

A presentation is a set of equations E0 and a theorem ϕ is a sentence Q̄x̄ s0 ' t0 ∨ . . . ∨ sn ' tn,

where Q̄x̄ is any sequence of quantifier-variable pairs. A theorem ϕ in this form is transformed

into a target N0 = s0 ' t0∨ . . .∨sn ' tn, where all variables are implicitly existentially quantified,

by replacing all the universally quantified variables by constants and by dropping the quantifiers.

If ϕ is ∀x̄s0 ' t0, N0 is ŝ0 ' t̂0 and the S-strategy reduces to the UKB procedure. A computation

has the form

(E0;N0)`S(E1;N1)`S . . .`S(Ei;Ni)`S . . .

where ∀i ≥ 0, Ei is a set of equalities and Ni is a disjunction of target equalities with existentially

quantified variables. A derivation halts at stage k if Nk contains a target si ' ti whose sides are

unifiable. The set of inference rules of UKB is modified as follows:

• Presentation inference rules:

– Simplification:

(E ∪ {p ' q, l ' r};N)
(E ∪ {p[rσ]u ' q, l ' r};N)

p|u = lσ p � p[rσ]u
p •�l ∨ q � p[rσ]u

– Deduction:

(E ∪ {p ' q, l ' r};N)
(E ∪ {p ' q, l ' r, p[r]uσ ' qσ};N)

p|u 6∈ X (p|u)σ = lσ

pσ 6� qσ, p[r]uσ
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– Deletion:
(E ∪ {l ' l};N)

(E;N)
– Functional subsumption:

(E ∪ {p ' q, l ' r};N)
(E ∪ {l ' r};N)

(p ' q) •�(l ' r)

• Target inference rules:

– Simplification:

(E ∪ {l ' r};N ∪ {s ' t})
(E ∪ {l ' r};N ∪ {s[rσ]u ' t})

s|u = lσ

s � s[rσ]u
– Deduction:

(E ∪ {l ' r};N ∪ {s ' t})
(E ∪ {l ' r};N ∪ {s ' t, s[r]uσ ' tσ})

s|u 6∈ X (s|u)σ = lσ

sσ 6� s[r]uσ
– Deletion:

(E;N ∪ {s ' t})
(E; true)

sσ = tσ

The Deduction inference rule applies to both equalities and inequalities. In the second case no

ordering based condition applies to the inequality. The Deletion rule for the target is modified

because the target contains variables: a contradiction is detected when the two sides of a target

equality unify.

In order to characterize the S-strategy as a completion procedure, we define the following

ordering: Π(Ei;Ni) >S Π(Ei+1;Ni+1) if and only if Π(Êi; ŝi ' t̂i) >UKB Π(Êi+1; ŝi+1 ' t̂i+1),

where ∀i ≥ 0, Êi ∪ {ŝi 6= t̂i} is the smallest finite unsatisfiable set of ground instances of clauses

in Ei ∪ ¬Ni. We show that this ordering is well defined. First we show how the pair (Êi; ŝi ' t̂i)
is defined. Ni is a theorem of Ei if and only if Ei ∪¬Ni is unsatisfiable, where Ni is a disjunction

of equations s0 ' t0 ∨ . . . ∨ sn ' tn with existentially quantified variables and therefore ¬Ni is a

conjunction of inequalities s0 6= t0 ∧ . . . ∧ sn 6= tn with universally quantified variables. By the

Herbrand Theorem [18], the set Ei ∪ ¬Ni is unsatisfiable if and only if there is a finite subset of

ground instances of the clauses in Ei∪¬Ni which is unsatisfiable. Since ¬Ni is a set of inequalities

with universally quantified variables, an unsatisfiable ground instance of Ei∪¬Ni needs to contain

just one ground inequality: Êi ∪ {ŝi 6= t̂i} is the smallest such set with respect to the ordering

�mul. Since � is total on ground terms, there exists a smallest set.

The above definition of the ordering >S says that the complexity of the proof Π(Ei;Ni)

is measured by the complexity of the ground proof Π(Êi; ŝi ' t̂i) and that the impact of the

inference steps on Π(Ei;Ni) is measured by the impact of the inference steps on Π(Êi; ŝi ' t̂i).

This approach is correct if to every inference step on (Ei;Ni) corresponds an inference steps on

(Êi; ŝi ' t̂i) and vice versa. In order to prove this, we need the following lemma, which rephrases

for the S-strategy the Paramodulation Lifting Lemma. We recall that a ground substitution is

E-irreducible if it does contain any pair {x 7→ t} such that t can be simplified by an equation in

E.

Lemma 3.5 (Peterson 1983) [55], (Hsiang and Rusinowitch 1987) [37] If σ is a ground, E-

irreducible substitution, then for all inference rules f of S-strategy, if (Eσ; sσ ' tσ)`f (E′; s′ ' t′),
then (E; s ' t)`f (E′′; s′′ ' t′′), where E′ and s′ ' t′ are instances of E′′ and s′′ ' t′′ respectively.
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Lemma 3.6 (Ei;Ni)`S(Ei+1;Ni+1) if and only if (Êi; ŝi ' t̂i)`S(Êi+1; ŝi+1 ' t̂i+1).

Proof:

⇒) An inference step on (Ei;Ni) is trivially an inference step on (Êi; ŝi ' t̂i), since an inference

step on non ground clauses is trivially an inference step on all their instances.

⇐) Since (Êi; ŝi ' t̂i) is minimal, Êi ⊆ Eiσ and ŝi ' t̂i ∈ Niσ for an Ei-irreducible substitution

σ. Therefore, by Lemma 3.5, an inference step on (Êi; ŝi ' t̂i) is an inference step on (Ei;Ni). 2

We can finally state the following theorem:

Theorem 3.4 The S-strategy is a completion procedure on the domain T of all ground equalities.

Proof: monotonicity and relevance follow from the soundness of the inference rules. By the

definition of the ordering >S , the inference rules of S-strategy are proof-reducing if they are proof-

reducing on ground proofs with respect to the ordering >UKB. This follows from Lemma 3.1 and

Lemma 3.2, since target Deduction is just target Simplification if the target is ground. 2

If a fair search plan is provided, the S-strategy is is a semidecision procedure for theories in the

logic of equality and inequality:

Theorem 3.5 (Hsiang and Rusinowitch 1987) [35] A sentence Q̄x̄ s0 ' t0 ∨ . . . ∨ sn ' tn is

a theorem of an equational theory E if and only if the S-strategy derives true from (E; s0 '
t0 ∨ . . . ∨ sn ' tn).

4 Semidecision procedures for disproving inductive theorems

The Knuth-Bendix completion procedure has been also applied to disprove inductive theorem in

equational theories. This method has been called inductionless induction, proof by consistency

or proof by the lack of inconsistency by several authors [53, 30, 40, 52, 42, 29, 47, 48, 10, 43].

Extensions of this method to Horn logic with equality are explored in [50].

First of all, we show that a completion procedure applied to disprove inductive theorems is

a semidecision procedure. We denote by G(S) the set of all ground terms on the signature of a

presentation S and we use Ran(σ) to represent the range of a substitution σ, so that a ground

substitution is a substitution such that Ran(σ) ⊂ G(S). A clause ϕ is an inductive theorem of

S, written S |=Ind ϕ, if and only if for all ground substitutions σ, ϕσ ∈ Th(S). We denote by

Ind(S) the set of all the inductive theorems of S, Ind(S) = {ϕ| S |=Ind ϕ}, by GTh(S) the set

of all the ground theorems of S, GTh(S) = {ϕ| ϕ ∈ Th(S), ϕ ground} and by G(ϕ) the set of all

the ground instances of ϕ, G(ϕ) = {ϕσ| Ran(σ) ⊂ G(S)}.

The set Ind(S) is not semidecidable. Even if we have a decision procedure for G(ϕ)∩GTh(S),

we still cannot prove that ϕ is an inductive theorem, because the set G(ϕ) is infinite. However,

the complement problem, that is proving that ϕ is not an inductive theorem of S, is semidecidable

in certain theories.
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If ϕ 6∈ Ind(S), then there is a ground instance ϕσ such that ϕσ 6∈ GTh(S). Therefore

GTh(S ∪ {ϕ}) 6= GTh(S), since ϕσ ∈ GTh(S ∪ {ϕ}) for all ground instances ϕσ. Thus, we can

prove that ϕ is not an inductive theorem of S by proving the following target:

Φ0 = ∃σ Ran(σ) ⊂ G(S) ∃ψ ∈ S ∪ {ϕ} such that ψσ ∈ GTh(S ∪ {ϕ})−GTh(S).

If there exists an oracle O to decide such target, a completion procedure C =< Ip, It; Σ;O >

equipped with the oracle O will be a semidecision procedure for disproving inductive theorems.

A derivation has the form

(S ∪ {ϕ}; Φ0)`C(S1; Φ1)`C . . . (Si; Φi)`C . . .,

where at each step the target is

Φi = ∃σ Ran(σ) ⊂ G(S) ∃ψ ∈ Si such that ψσ ∈ GTh(Si)−GTh(S).

No inference step applies to the target: the procedure takes as input the presentation S∪{ϕ} given

by the original presentation and the inductive conjecture and it proceeds by applying inference

rules to the presentation until it obtains a presentation Sk such that the oracle applied to Sk
answers positively and replaces Φk by true.

In the equational case, an oracle to decide Φi is available only under the assumption that the

input set of equations E is ground confluent. Under this hypothesis, Φi is true if and only if there

are two ground E-irreducible terms s and t such that siσ→∗E s, tiσ→∗E t and s ' t ∈ GTh(Ei).

Therefore, we can restrict our attention to ground E-irreducible terms.

A first oracle was given in [40] for equational presentations satisfying the principle of definition:

the signature of E is given by the disjoint union of a set C of constructors and a set D of defined

symbols, such that the set T (C) of all ground constructor terms is free and all function symbols in

D are completely defined on C, that is for all ground term t ∈ T (F ), there exists a unique ground

constructor term t′ ∈ T (C) such that t↔∗E t′.

A more general oracle was proposed in [42] for the Knuth-Bendix completion procedure and

extended to the UKB procedure in [10]. This test is based on ground reducibility: a term t is

ground E-reducible if for all ground substitutions σ, tσ is E-reducible. Ground E-reducibility

is decidable [56] only if E is a ground confluent rewrite system. Therefore, the test in [42, 10]

applies only if the input presentation E is ground confluent and all its equations can be oriented

into rewrite rules.

In order to characterize an inductive theorem proving strategy as a completion procedure, we

define the proof of the target Φi as follows:

Π(Si,Φi) = Π(Si,min{ψσ| ψ ∈ Si, ψσ ∈ GTh(Si)−GTh(S)}),

that is the proof of the target is the proof of the smallest ground instance of some clause in Si
which is a theorem in Si but not in S.

In the equational case, a completion procedure which eventually generates a ground confluent

set of equations, is able to reduce the proofs of all ground theorems and therefore the proof of the

target. However, this is not necessary. Since the proof of the target is the proof of the smallest

ground theorem which is not a theorem of the original presentation, we can restrict our attention

to a smaller set of ground theorems:
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Definition 4.1 (Fribourg 1986) [29] Given a ground confluent presentation E, a set of substi-

tutions H is E-inductively complete if for all ground substitutions ρ, there exist a substitution

σ ∈ H and a ground substitution τ such that ρ→∗E στ .

We denote by HE one such set and by IT E the domain of all the ground equations which are

instances of substitutions in HE , that is IT E = {(l ' r)στ | σ ∈ HE , (l ' r)στ is ground}. The

proof of the target is the proof of the smallest ground theorem which is not a theorem of the

original presentation. This smallest ground theorem is in IT E and therefore reducing the proofs

of the theorems in IT E is sufficient to guarantee that the proof of the target is reduced, as was

first proved in [29] for the application of Knuth-Bendix completion to disprove inductive theorems

in equational theories:

Theorem 4.1 (Fribourg 1986) [29] A completion procedure C =< Ip, It; Σ;O > on the domain

IT E, with complete inference rules and fair search plan is a semidecision procedure for the com-

plement of Ind(E) for all equational presentations E, for which the oracle O is computable.

As a consequence, the Deduction inference rule of UKB can be restricted in such a way that a

superposition between l ' r and p ' q at position u in p ' q is performed only if the set of mgus

{σ|lσ = (p|u)σ, l ' r ∈ Ei} is E-inductively complete. The position u is called completely super-

posable in [29]. This result requires an algorithm to detect the completely superposable positions.

An equivalent characterization is the following: a position u in p is completely superposable if for

all ground instances (p|u)ρ there is an equation l ' r in E such that (p|u)ρ = lσ and lσ � rσ. This

shows that the problem of detecting completely superposable positions is basically an instance of

the ground reducibility problem. However, if the presentation satisfies the principle of definition,

a position u is completely superposable if p|u is a term which has a defined symbol at the root

and only constructor symbols and variables at the positions below the root. Therefore, the above

theorem can be applied in practice to presentations satisfying the principle of definition.

5 Conclusions

We have given a new abstract framework for the study of Knuth-Bendix type completion proce-

dures, which are regarded as semidecision procedures for theorem proving.

All the fundamental concepts are uniformly defined in terms of proof reduction with respect

to a well founded proof ordering. In order to do this, we have given a new, more general notion

of proof ordering, such that also proofs of different theorem can be compared.

A completion procedure is given by a set of inference rules and a search plan. We have

emphasized the distinction between these two components throughout our work. This distinction

is often overlooked in the literature, where most theorem proving strategies are presented by

giving the set of inference rules only, whereas the search plan is what ultimately turns a set of

inference rules into a procedure.

If the inference rules are refutationally complete and the search plan is fair, a completion

procedure is a semidecision procedure for theorem proving. The key part of this result is the
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notion of fairness. Our definition of fairness is the first definition of fairness for completion

procedures which addresses the theorem proving problem. It is new in three ways: it is target

oriented, that is it keeps the theorem to be proved into consideration, it is explicitly stated as

a property of the search plan and it is defined in terms of proof reduction, so that expansion

inferences and contraction inferences are treated uniformly. We have also shown that the process

of diproving inductive theorems by the so called inductionless induction method is a semidecision

process.

In the second part of this work, we have presented some equational completion procedures

based on Unfailing Knuth-Bendix completion, which include the AC-UKB procedure with Can-

cellation laws, the S-strategy and the Inequality Ordered Saturation strategy. These extensions

of UKB had not been presented in a unified framework for completion before.

Directions for further research include the study of efficient, fair, but not uniformly fair, search

plans and the full extension of this approach to completion procedures for Horn and first order

logic with equality.
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