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Abstract: This paper explores the allocation process of Financial Transmission Rights (FTRs) in the
Italian electricity market. FTRs are financial instruments allowing market participants to hedge
against transmission congestion, also playing a critical role in ensuring the efficient use of the
transmission system. We present a linear programming (LP) model that simulates the FTRs allocation
process, taking into account the transmission capacity limits of the electric network when the total
revenue is considered as the utility function. Obtained results highlight that our solution allows us to
develop better investment and bidding strategies for optimal transmission management dynamics.
In particular, numerical simulations show good results, with an overall MAPE of approximately 7%,
indicating that the model accurately predicts the allocation of transmission rights across the network.
Overall, the paper provides insights into the inner workings of the FTR allocation process in Italy,
also providing improved market efficiency while increasing revenue for market participants.

Keywords: linear programming; transmission congestion; financial transmission rights; Italian
electricity market; optimal bidding; bidding strategies; optimal management

1. Introduction

Economists have faced significant challenges in devising efficient market mechanisms
for electric power. As electricity cannot be easily stored, generation and demand for
power on the grid must be kept within a close tolerance at all times. Some approaches to
achieve this goal involve generating accurate predictions for next-day imbalances [1] and
modeling Battery Energy Storage Systems (BESS) [2]. Moreover, the increased integration
of renewable energy sources and the growing complexity of power flows can lead to
congestion in the transmission network [3].

Congestion management is an important aspect of operating restructured power sys-
tems [4–7]. Transmission congestion occurs when the available transmission capacity is
insufficient to meet the demand for energy transfer between different zones. This can
happen due to a variety of reasons, such as limited transmission line capacity, unfore-
seen changes in generation or demand, or network outages. When congestion occurs, it
can lead to sub-optimal utilization of available resources, increased costs, and potential
reliability issues.

Many restructured power systems use market mechanisms to manage congestion.
These mechanisms include locational marginal pricing (LMP), which assigns prices to differ-
ent locations in the grid based on the marginal cost of congestion [8–14]. Market participants
can then use these prices to make decisions regarding generation and consumption.

Uncertain network congestion led to the development of a financial instrument de-
signed to mitigate the risks associated with variations in locational prices [8]. In U.S.
electricity markets, this financial product is called a Financial Transmission Right (FTR)
and was introduced in the early 1990s [15].

FTRs are financial instruments used in the electricity market to manage the risk of
congestion in the transmission system [8,16]. They provide a hedge against the potential
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financial losses incurred due to the congestion of the transmission network, which can limit
the ability to move power from one location to another [17–19]. FTR parameters include
source, sink, validity period, and MW amount, and their values are determined based on
hourly LMP outcomes. FTR owners are paid by the transmission system operator (TSO)
according to these values.

Several papers have already discussed the importance of FTRs. A survey on the
evolution of the FTR concept is given in [20]. In the Italian context, ref. [21] analyzes the
evolution of the power congestion costs problem, the price formation, and the role of
renewable sources, and focuses on the difficulties of the electricity grid and the role of
congestion risk management in the power grid in the Italian electricity market.

The allocation of FTRs is typically done through an auction process regulated by the
TSO for electricity. The Italian TSO is called Terna https://www.terna.it/en (last accessed
10 July 2023), and it is responsible for ensuring the reliable and efficient operation of
the Italian electricity system, including the transmission of electricity from generators to
distribution companies and large industrial consumers. Terna also operates and manages
the high-voltage transmission grid in Italy. Further details are provided later in the paper.
From the view of the mathematical modeling, the allocation of FTRs can be considered as a
highly constrained integer linear programming (LP) model [22–24].

LP is a well-known mathematical technique used to optimize a linear objective function
subject to a set of linear constraints [25–28]. The field of application ranges from portfolio
optimization [29–31], to transportation and planning [32], just to report some examples.
Moreover, LP is commonly used to model bids and auctions in various domains, including
electricity markets [33,34] and resource allocation processes [35–37]. In the context of FTRs,
Ref. [38] is one of the first attempts to provide a mathematical formulation of the auction
process based on LP for the PJM market. In [39], the problem is solved separately for the
peak and off-peak period of a month, as two problems are decoupled from one another. The
auction is tested on several case studies using the IEEE three-area RTS96 and a commercial
package, CPLEX https://www.gams.com/latest/docs/S_CPLEX.html (last accessed on
13 July 2023), is used for the solution of the LP optimization problems. In [40], the FTR
problem is re-formulated based on the fact that the power constraints data are available in
advance. Tests are performed on both standard IEEE test systems and large-scale systems
using data from the Western Electricity Coordinating Council (WECC).

The goal of this paper is to mimic the auction for issuing FTRs. This is achieved
by presenting an LP model that simulates the allocation process of FTRs in Italy, taking
into account the transit limitations of the electric network. This is carried out by closely
following the specifications provided by Terna in the “Avviso per l’assegnazione degli
strumenti di copertura contro il rischio di volatilità del corrispettivo di utilizzo della
capacità di trasporto” https://download.terna.it/terna/0000/1127/56.PDF (accessed on
12 May 2023) for the year 2019. To the best of our knowledge, this is the first paper
that addresses the Italian FTR allocation process. The main contributions of this paper
are twofold:

1. We provide a mathematical formulation of the FTR bidding procedure using an LP
approach in accordance with Terna guidelines; this gives the opportunity to study the
possible decisions that market players would take in order to maximize their revenue;
additionally, peak and off-peak conditions, as well as transit saturation, are also taken
into account; the framework is implemented in R using the library Rsymphony;

2. We test model efficiency by analyzing 2019 monthly bids, with promising results in
view of FTR allocation optimization; power constraints data are available in advance,
but monthly consumption for each zone is estimated from the previous year.

This paper is structured as follows. Section 2 provides an overview of the allocation
process of financial transmission rights based on the guidelines provided by Terna. Section 3
presents the LP model, including the decision variables, transit constraints, and objective
function. Section 4 presents the results of the simulations based on the monthly bids of 2019.
Finally, Section 5 concludes the paper, and some discussion for future directions is given.

https://www.terna.it/en
https://www.gams.com/latest/docs/S_CPLEX.html
https://download.terna.it/terna/0000/1127/56.PDF
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2. FTR Issuance Process

The allocation process of financial instruments as FTRs typically involves a market
operator (Terna in our case) who offers these hedging instruments through an auction.
Market participants, such as energy companies or traders, can participate in the auction by
submitting bids that specify the quantity of the instrument they want to purchase and the
price they are willing to pay. The market operator then accepts the bids starting from the
highest price until the available quantity of the instrument is exhausted.

The frequency of the auction in the Italian electricity market can vary depending on the
specific instrument being auctioned. For example, the auction for FTRs can be performed
monthly or quarterly. The frequency of the auction is typically specified in the auction
rules and can vary based on market conditions and regulatory requirements. The aim is
to balance the need for frequent hedging opportunities with the costs and administrative
burden of running the auction process. In this paper, monthly auctions are addressed.

The allocation of FTRs is an important mechanism for managing transmission conges-
tion, especially in a market such as Italy’s that is divided into different geographic market
zones: while in all other countries (except Scandinavia), the zones correspond to the entire
national territory (each country one zone), the Italian national territory was modeled in
terms of market zones. This was done partly for geographical reasons and partly to differ-
entiate purchase prices according to the balance between electricity generation capacity
and demand, which varies from zone to zone (thus providing appropriate “price signals”).
Where there is more supply, prices are lower, and vice versa.

Mathematically, the Italian electricity market can be viewed as a network modeled
as an oriented graph G = (V, E). The set V is composed of the zones: North (NORD),
Centre-North (CNOR), Centre-South (CSUD), South (SUD), Rossano (ROSS), Sicily (SICI),
and Sardinia (SARD). For the sake of generality, from now on, each zone will be referred to
with a number so that V = {1, . . . , N} and |V| = N. Then E is the set of oriented edges.
The reason why the network was represented as a direct graph is because of the asymmetric
transfer of energy between any two nodes. For example, Sicily produces much more energy
than it needs. Therefore, the energy flow from Sicily to the other zones is much larger
than the energy flow to Sicily. The set of edges can be represented by an adjacency matrix
T ∈ RN×N , defined as follows:

Tij =

{
1 if (i, j) ∈ E,
0 otherwise.

With the adjacency matrix it is easy to compute |E| = M, as it coincides with the
1-norm of the matrix T, that is

M = ‖T‖1 =
N

∑
i,j=1
|tij|.

3. A Linear Programming Model for Optimal Bidding Strategies

The allocation of FTRs in Italy is carried out using an LP procedure. The LP model
is designed to maximize the revenue obtained by the auctioneer subject to the transmis-
sion constraints and the rules for the auction. The LP model takes into account the bids
submitted by market participants for FTRs and the constraints on the transmission capacity
between different zones.

The general mathematical formulation of an LP problem is:

find a vector x
that maximizes ptx
subject to Ax ≤ b
and 0 ≤ x ≤ q,

(1)
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where

x: column vector of decision variables to be determined, i.e., accepted bids;
A: matrix of coefficients of the constraints on the decision variables;
b: column vector of constants on the right-hand side of the constraints;
p: column vector of coefficients of the objective function to be maximized, i.e., offered
prices;
q: column vector of bidden quantities;
the notation “≤” denotes element-wise inequality.

Peak and off-peak markets are considered separately. For every market type and for
every zone, the vectors are ordered starting from the highest-priced offer. The entries of the
vectors x, q and p are arranged as follows:

x = (

off-peak︷ ︸︸ ︷
x1

1, . . . , x1
n1︸ ︷︷ ︸

zone 1

, x2
1, . . . , x2

n2︸ ︷︷ ︸
zone 2

, . . . . . . , xN
1 , . . . , xN

nN︸ ︷︷ ︸
zone N

,

peak︷ ︸︸ ︷
x̃1

1, . . . , x̃1
ñ1︸ ︷︷ ︸

zone 1

, x̃2
1, . . . , x̃2

ñ2︸ ︷︷ ︸
zone 2

, . . . . . . , x̃N
1 , . . . , x̃N

ñN︸ ︷︷ ︸
zone N

)

q = (q1
1, . . . , q1

n1
, q2

1, . . . , q2
n2

, . . . . . . , qN
1 , . . . , qN

nN
, q̃1

1, . . . , q̃1
ñ1

, q̃2
1, . . . , q̃2

ñ2
, . . . . . . , q̃N

1 , . . . , q̃N
ñN

)

p = (p1
1, . . . , p1

n1
, p2

1, . . . , p2
n2

, . . . . . . , pN
1 , . . . , pN

nN
, p̃1

1, . . . , p̃1
ñ1

, p̃2
1, . . . , p̃2

ñ2
, . . . . . . , p̃N

1 , . . . , p̃N
ñN

)

The length of these vectors is D = d + d̃, where d = ∑N
i=1 ni and d̃ = ∑N

i=1 ñi.
The remaining part of the section is devoted to the explanation of the variables in-

volved and their definition.

3.1. Constraints

Constraints are conditions or limitations that must be satisfied in order for the solution
to be considered valid. They help to ensure that the solution is feasible and takes into
account important aspects of the allocation problem. Two main types of constraints have
been considered: domain constraints and transmission constraints.

3.1.1. Domain Constraints

Domain constraints in LP refer to restrictions on the possible values of the decision
variables in an LP model. These constraints limit the feasible region of the solution space
and ensure that the solution meets certain practical requirements or limitations. In the
context of FTR allocation through bidding, domain constraints are used to ensure that
the accepted quantities xi

j (or x̃i
j) are both non-negative and less than or equal to the

offered quantities qi
j (or q̃i

j). The latter constraint is important to ensure that the allocation
of transmission capacity is fair and efficient. By requiring that the accepted amount of
transmission capacity must be less than or equal to the offered amount, the constraint helps
to prevent bidders from overbidding and obtaining more transmission capacity than they
actually need. This translates into the following linear inequalities:

(off-peak) 0 ≤ xi
j ≤ qi

j j = 1, . . . , ni, i = 1, . . . , N (2)

(peak) 0 ≤ x̃i
j ≤ q̃i

j j = 1, . . . , ñi, i = 1, . . . , N. (3)

In this paper, all-or-nothing types of bids are considered. This type of bid requires a
bidder to accept the entire quantity of the asset being offered or none of it, as opposed to a
standard bid where a bidder can take any quantity of the asset that they are willing to pay
for. Therefore, Equations (2) and (3) become

(off-peak) xi
j ∈ {0, qi

j} j = 1, . . . , ni, i = 1, . . . , N (4)

(peak) x̃i
j ∈ {0, q̃i

j} j = 1, . . . , ñi, i = 1, . . . , N. (5)
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3.1.2. Transmission Constraints

Transmission constraints refer to the physical limitations of the electricity transmission
system, such as capacity limitations and transmission line ratings, that affect the transfer
of electricity from one location to another. Transmission constraints can arise due to
several factors, including technical limitations of the transmission system, physical distance
between generating units and load centers, and transmission losses. They can limit the
amount of electricity that can be transmitted from one location to another and can result in
congestion in the transmission system.

To better understand how to model transmission constraints, the concept of conven-
tional flow is helpful. Any quantity offered, once accepted in a given zone, generates a flow
toward the other Italian zones. This flow is an estimate based on the percentage of zonal
energy consumption.

Example 1. Suppose there are three zones, namely A, B, and C, characterized by the following
consumption percentage: 10%, 50%, and 40%, respectively. This information allows us to deduce
the conventional flow among the zones, as shown in Figure 1.

50%

B

10%

A

40%

C
0.9

0.1

0.4

0.6

Figure 1. Example of a network with three zones: each percentage is the zonal energy consumption;
the decimals on the arrows are the coefficients of conventional flow.

Accepting 100 [MWh] in zone A, 10 [MWh] will be actually used by A, whereas the remaining
90 [MWh] will be sent towards B and C. In particular, B will receive 90 [MWh] (and use 50 [MWh]),
and C will receive 40 [MWh]. This way, when a quantity of energy enters the grid through a
particular zone, it creates a flow in the entire network.

Another situation is presented. If 60 [MWh] are accepted in zone A and 40 [MWh] in zone B,
the energy flow will be the following:

• A uses 10 [MWh], the remaining 50 [MWh] go to B
• B receives 50 [MWh] from A, for a total of 90 [MWh]; 50 [MWh] are used and the remaining

40 [MWh] are moved to C
• C uses the 40 [MWh] coming from B.

To solve the problem automatically, it is better to consider one constraint at a time, splitting
the graph into the two macro zones involved.

• Edge AB (Figure 2):
A moves 90% of the production towards B;
B and C move 10% of the production towards A

0.9 · 60 [MWh]−0.1 · (40 + 0) [MWh] = 50 [MWh]

actually, moving from A to B.
• Edge BC (Figure 3):

A and B move 40% of the production towards C;
C moves 60% of the production towards B

0.4 · (60 + 40) [MWh]−0.6 · 0 [MWh] = 40 [MWh]

actually moving from B to C.
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50%

B

40 MWh
10%

A

60 MWh

40%

C
0.9

0.1

0.4

0.6

Figure 2. Net flow of energy from A to B. The colors of the oriented edges represents the outward
(red) and inward (green) coefficients of conventional flow from the point of view of the white macro
zone (composed by A).

50%

B

40 MWh
10%

A

60 MWh

40%

C
0.9

0.1

0.4

0.6

Figure 3. Net flow of energy from B to C. The colors of the oriented edges represents the outward
(red) and inward (green) coefficients of conventional flow from the point of view of the white macro
zone (composed by A and B).

The first step in generalizing this procedure is to define the adjacency matrix that
characterizes the topology of the Italian energy zones. Figure 4 shows the graph of the
Italian energy network, and Table 1 is the corresponding adjacency matrix.

1 NORD

2 CNOR

3 CSUD

4 SUD

5

ROSS6

SICI

7

SARD

Figure 4. Graph of the Italian energy market.



Energies 2023, 16, 5950 7 of 16

Table 1. Adjacency matrix of the graph.

NORD CNOR CSUD SUD ROSS SICI SARD

NORD 0 1 0 0 0 0 0
CNOR 1 0 1 0 0 0 0
CSUD 0 1 0 1 0 0 1
SUD 0 0 1 0 1 0 0

ROSS 0 0 0 1 0 1 0
SICI 0 0 0 0 1 0 0

SARD 0 0 1 0 0 0 0

Next, the percentage of monthly consumption for each zone is computed using data
from the previous year provided by Terna at the download center: https://www.terna.it/
it/sistema-elettrico/transparency-report/download-center (accessed on 17 April 2023).
Then, the conventional flow coefficients are estimated separately for peak and off-peak
periods. This algorithm generalizes the procedure described in the example:

• Every zone i is visited only once;
• For every neighboring zone j, consider the two macro zones I and J resulting from

cutting the graph between i and j;
• The coefficient of conventional flow from i to j, denoted by ϕij, correspond the con-

sumption percentage of the macro zone J; vice versa, the conventional flow from j to i,
i.e., ϕji, is the consumption percentage of the macro zone I;

• When a quantity is accepted in a zone, it is important to ensure that it does not
cause congestion on the paths that connect the zone to other parts of the network. In
particular, when a quantity is accepted in zone k, it has an impact on the arch (i, j):
the magnitude of the impact is given by ϕij times the accepted quantity; whereas
the sign of the contribution is positive if k ∈ I (thus the flow takes place from i to j),
negative if k ∈ J;

• In other words, let ϕk
ij denote the signed conventional flow coefficient, where the sign

is determined by k belonging to I or J.

The result is a matrix containing all the signed conventional flow coefficients. For each
oriented edge (i, j), there are two constraints:

(off-peak)
N

∑
k=1

nk

∑
h=1

ϕk
ijx

k
h ≤ τij (6)

(peak)
N

∑
k=1

nk

∑
h=1

ϕ̃k
ijx

k
h +

N

∑
k=1

ñk

∑
h=1

ϕ̃k
ij x̃

k
h ≤ τ̃ij, (7)

where τij and τ̃ij are the maximum limit values for off-peak and peak time zone from i to j.
This information is provided by Terna directly to the participants. The corresponding rows
of the matrix A are

constraint (i, j) off-peak:

(ϕ1
ij, . . . , ϕ1

ij︸ ︷︷ ︸
n1

, . . . . . . , ϕN
ij , . . . , ϕN

ij︸ ︷︷ ︸
nN

, 0, . . . , 0︸ ︷︷ ︸
ñ1

, . . . . . . , 0, . . . , 0︸ ︷︷ ︸
ñN

)

constraint (i, j) peak:

(ϕ̃1
ij, . . . , ϕ̃1

ij︸ ︷︷ ︸
n1

, . . . . . . , ϕ̃N
ij , . . . , ϕ̃N

ij︸ ︷︷ ︸
nN

ϕ̃1
ij, . . . , ϕ̃1

ij︸ ︷︷ ︸
ñ1

, . . . . . . , ϕ̃N
ij , . . . , ϕ̃N

ij︸ ︷︷ ︸
ñN

),

while the corresponding entries of the vector b contain the values τi,j and τ̃i,j, respectively.
Finally, the number of transmission constraints can be computed. Every oriented edge

(i, j) corresponds to two constraints (for peak and off-peak market type). Therefore, the

https://www.terna.it/it/sistema-elettrico/transparency-report/download-center
https://www.terna.it/it/sistema-elettrico/transparency-report/download-center
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number of transmission constraints is twice the number of oriented edges in the graph of
the Italian energy market, namely 2M. With the number of constraints, it is possible to
write down the dimensions of the objects at hand:

A ∈ R2M×D,

x, p ∈ RD,

b ∈ R2M.

3.2. Objective Function

Now that all the constraints have been implemented, the objective function needs
to be defined: the aim is to maximize the total revenue that results from the offered
price multiplied by the corresponding accepted quantity over the accepted quantity of
energy. The quantities offered on the peak market are multiplied by a factor β, which is the
proportion of peak hours with respect to the whole period under consideration. According
to the guidelines provided by Terna, peak hours are 8:00-19:59, Monday-Friday. This results
in the following maximization problem

max
x

[
N

∑
i=1

ni

∑
j=1

pi
jx

i
j + β

N

∑
i=1

ñi

∑
j=1

p̃i
j x̃

i
j

]
,

that can be rewritten in the usual form of a scalar product by multiplying the last d̃
components of p by β. This reads as

max
x

(Bp)tx,

where

B =

(
Id 0
0 βId̃

)
∈ RD×D.

4. Simulation

The implementation of the model consists in properly defining the variables, as
extensively described in the previous section. The programming language R and the
Rsymphony library were used, the latter including the function Rsymphony_solve_LP, which
allowed for the computation of the optimal variable, i.e., the accepted quantities.

The arguments of the solver Rsymphony_solve_LP are: the vector of objective coeffi-
cients p; the matrix of the constraint coefficients A; the character vector with the directions
of the constraints, that is “≤”; the vector b on the right-hand side of the constraints; the list
containing the bounds of objective variables, i.e., the vector 0 for the lower bounds and q
for the upper bounds; a character vector giving the types of objective variables, which can
be continuous, integer, or binary; a logical giving the direction of the optimization.

This solver, however, cannot solve problems where the auction is of the all-or-nothing
type: the type “continuous” (resp. “integer”) is chosen, and the decision variables can take
any continuous (resp. integer) value between 0 and the offered quantity; on the other hand,
if the type “binary” is chosen, the decision variable can only be either 0 or 1.

Consequently, the problem needs to be transformed to ensure that the solver is compat-
ible with the all-or-nothing auction type. The idea is to convert each component xi

j ∈ {0, q̃i
j}

(resp. x̃i
j ∈ {0, q̃i

j}) into a binary variable yi
j ∈ {0, 1} (resp. ỹi

j ∈ {0, 1}) by dividing by the

corresponding offered quantity qi
j (resp. q̃i

j).
The new decision variable becomes

y = (y1
1, . . . , y1

n1
, y2

1, . . . , y2
n2

, . . . . . . , yN
1 , . . . , yN

nN
, ỹ1

1, . . . , ỹ1
ñ1

, ỹ2
1, . . . , ỹ2

ñ2
, . . . . . . , ỹN

1 , . . . , ỹN
ñN

),



Energies 2023, 16, 5950 9 of 16

where

yi
j :=

xi
j

qi
j
, j = 1, . . . , ni, i = 1, . . . , N,

ỹi
j :=

x̃i
j

q̃i
j
, j = 1, . . . , ñi, i = 1, . . . , N.

The objective function accordingly becomes:

max
x

[
N

∑
i=1

ni

∑
j=1

pi
jx

i
j + β

N

∑
i=1

ñi

∑
j=1

p̃i
j x̃

i
j

]

max
x

[
N

∑
i=1

ni

∑
j=1

pi
jq

i
j

xi
j

qi
j
+ β

N

∑
i=1

ñi

∑
j=1

p̃i
j q̃

i
j

x̃i
j

q̃i
j

]

max
y

[
N

∑
i=1

ni

∑
j=1

(pi
jq

i
j)y

i
j + β

N

∑
i=1

ñi

∑
j=1

( p̃i
j q̃

i
j)ỹ

i
j

]
. (8)

The resulting vector of objective coefficients is given by the component-wise multipli-
cation of p and q, namely

p̂ = (p1
1q1

1, . . . , p1
n1

q1
n1

, . . . , pN
1 qN

1 , . . . , pN
nN

qN
nN

, p̃1
1q̃1

1, . . . , p̃1
ñ1

q̃1
ñ1

, . . . , p̃N
1 q̃N

1 , . . . , p̃N
ñN

q̃N
ñN

).

The constraint Equations (6) and (7) also change into

(off-peak)
N

∑
k=1

nk

∑
h=1

(ϕk
ijq

k
h)y

k
h ≤ τij (9)

(peak)
N

∑
k=1

nk

∑
h=1

(ϕ̃k
ijq

k
h)y

k
h +

N

∑
k=1

ñk

∑
h=1

(ϕ̃k
ij q̃

k
h)ỹ

k
h ≤ τ̃ij, (10)

and the corresponding rows of the new matrix Â are obtained by component-wise multi-
plying the rows of A by q. The vector b remains unchanged.

Summing up, the initial problem has been translated into an equivalent problem where
the decision variable is binary:

find a vector y
that maximizes (Bp̂)ty
subject to Ây ≤ b
and y ∈ ZD

2 .

(11)

Once y has been found, x is recovered by the component-wise multiplication of y
and q.

The model was evaluated for each month of 2019 to test its performance over an entire
year. The bidding data are accessible on the Terna website https://www.terna.it/it/sistema-
elettrico/mercato-elettrico/ccc (accessed on 22 April 2023). The consumption data of 2018
used to estimate the conventional flow coefficients are also available on Terna’s download
center https://www.terna.it/it/sistema-elettrico/transparency-report/download-center
(accessed on 22 April 2023).

The simulation results are presented in Figures 5 and 6. The Mean Absolute Percentage
Error (MAPE) has been computed, which is shown in Tables 2 and 3. Extremely high error
values (such as in the SUD zone in March) have been excluded, as some other market
dynamics unrelated to the model have occurred. Overall the model is able to predict with
pretty good precision the quantity allocated in each zone for both the off-peak and peak
market. The MAPE below 10% on average confirms this fact.

https://www.terna.it/it/sistema-elettrico/mercato-elettrico/ccc
https://www.terna.it/it/sistema-elettrico/mercato-elettrico/ccc
https://www.terna.it/it/sistema-elettrico/transparency-report/download-center
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Figure 5. Predicted versus real accepted quantities for the off-peak market.
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Figure 6. Predicted versus real accepted quantities for the peak market.

Table 2. MAPE (%) of the prediction of accepted quantities for 2019 (Off-peak market). Green shades
correspond to low error, red shades correspond to high error.

CNOR CSUD NORD ROSS SARD SICI SUD Mean
January 9.68 0.34 9.18 53.75 5.43 15.68

February 10.18 13.68 0.11 1.81 4.80 6.12
March 3.03 8.54 4.51 0.87 1.76 3.74
April 20.52 6.23 56.54 7.81 18.22
May 1.72 0.24 21.68 4.68 4.05
June 1.48 0.94 0.61
July 3.85 1.12 20.27 4.21

August 0.42 0.00 14.29 1.11 3.95
September 0.00 0.23 0.00 0.00 22.73 8.01 5.16

October 2.55 3.10 5.21 0.00 2.54 2.68
November 3.17 9.15 1.92 20.19 46.89 3.89 17.54
December 0.00 4.29 1.76 5.13 0.00 1.06 2.04

Mean 4.97 3.75 2.52 10.70 14.38 6.51 4.68 7.00

All the constraints have been satisfied. In addition, it is possible to obtain the satu-
ration level of each transit constraint by computing the quantities on the left-hand side
of (9) and (10): the condition being met with equality implies that saturation is reached.
Figure 7 shows the saturation level of the transit constraints for the off-peak and peak
market during the bid of December 2019.
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Table 3. MAPE (%) of the prediction of accepted quantities for 2019 (Peak market). Green shades
correspond to low error, red shades correspond to high error.

CNOR CSUD NORD ROSS SARD SICI SUD Mean
January 0.53 0.53

February 0.00 0.10 0.00 0.003
March 1.04 0.89 0.97
April 0.00 0.00 0.00 0.00
May 12.64 33.33 0.79 0.00 11.69
June 0.65 0.00 4.11 1.59
July 0.00 0.00 2.73 0.00 0.68

August 6.31 81.97 7.69 5.95 25.48
September 0.10 0.00 1.88 0.66

October
November 1.49 3.27 2.38
December 2.23 58.47 7.61 22.77

Mean 2.27 17.8 3.1 1.98 6.07

NORD > CNOR
12%

CNOR > CSUD
0%

CSUD > SUD
0%

CSUD > SARD
0%

SUD > ROSS
0%

ROSS > SICI
100%

CNOR > NORD
0%

CSUD > CNOR
17%

SUD > CSUD
64%

SARD > CSUD
11%

ROSS > SUD
0%

SICI > ROSS
0%

(a) Off-peak market.

NORD > CNOR
0%

CNOR > CSUD
0%

CSUD > SUD
0%

CSUD > SARD
0%

SUD > ROSS
0%

ROSS > SICI
81%

CNOR > NORD
16%

CSUD > CNOR
100%

SUD > CSUD
100%

SARD > CSUD
20%

ROSS > SUD
1%

SICI > ROSS
0%

(b) Peak market.
Figure 7. Saturation of the transit directions for December.

Finally, the algorithm identifies the assigned quantities for each zone by selecting the
submitted bids starting from the highest-priced offers. For each zone, the last accepted bid
determines the marginal price of the zone, representing the allocation price for all accepted
bids. Figures 8 and 9 compare the predicted and the real marginal prices. Except for some
outliers, due to unknown market dynamics unrelated to the model, the predictions are
really close to the real values.
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Figure 8. Predicted versus real marginal prices for the off-peak market.
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Figure 9. Predicted versus real accepted prices for the peak market.

5. Conclusions

The allocation of hedging instruments, such as FTRs, plays a critical role in managing
the financial risk associated with transmission congestion. By using these instruments,
market participants can mitigate their exposure to fluctuations in the price of transmission
capacity, which can have a significant impact on their profitability.

This paper presented an LP model that simulates the allocation process of FTRs, taking
into account the transit limitations of the electric network as well as the all-or-nothing type
of bidding procedure.

Numerical simulations showed good results, with an overall MAPE of approximately
7%, indicating that the model was able to accurately predict the allocation of transmission
rights across the network. Additionally, the model was found to be particularly useful for
simulating the bidding and allocation procedure, providing participants with an indication
of whether their bids were likely to be accepted or not.

A limitation of the proposed model lies in the estimation of coefficients for conven-
tional flow, which is based on the monthly consumption of the previous year; this can
potentially result in a loss of accuracy.

Overall, the model represents a significant contribution to the field of energy economics
and has the potential to improve the efficiency and effectiveness of the transmission rights
allocation process.
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