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ABSTRACT
Automatically crafting test scenarios for REST APIs helps deliver
more reliable and trustworthy web-oriented systems. However, cur-
rent black-box testing approaches rely heavily on the information
available in the API’s formal documentation, i.e., the Open API
Specification (OAS for short). While useful, the OAS mostly covers
syntactic aspects of the API (e.g., producer-consumer relations be-
tween operations, input value properties, and additional constraints
in natural language), and it lacks a deeper understanding of the
API business logic. Missing semantics include implicit ordering
(logic dependency) between operations and implicit input-value
constraints. These limitations hinder the ability of black-box testing
tools to generate truly effective test cases automatically.

This paper introduces DeepREST, a novel black-box approach
for automatically testing REST APIs. It leverages deep reinforcement
learning to uncover implicit API constraints, that is, constraints
hidden from API documentation. Curiosity-driven learning guides
an agent in the exploration of the API and learns an effective or-
der to test its operations. This helps identify which operations to
test first to take the API in a testable state and avoid failing API
interactions later. At the same time, experience gained on successful
API interactions is leveraged to drive accurate input data gener-
ation (i.e., what parameters to use and how to pick their values).
Additionally, DeepREST alternates exploration with exploitation by
mutating successful API interactions to improve test coverage and
collect further experience.

Our empirical validation suggests that the proposed approach is
very effective in achieving high test coverage and fault detection
and superior to a state-of-the-art baseline.
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1 INTRODUCTION
With the exponential growth of web applications and the increas-
ing complexity of software systems, the demand for efficient and
reliable testing methodologies has become paramount. Among the
various forms of testing, the black-box testing of REpresentational
State Transfer (REST) APIs has garnered significant attention due
to their widespread adoption in modern web architectures.

In literature, several black-box RESTAPI testing approaches have
been proposed [1], mostly relying on the information available in
the OpenAPI Specification (OAS), that is the API formal documenta-
tion of the system under test. However, it has been observed that
this information often falls short of addressing the intricate chal-
lenges associated with REST API testing. Specifically, two primary
challenges arise in black-box REST API testing: (i) the selection of
an effective ordering of API operations to test; and (ii) the genera-
tion or retrieval of valid input values for such operations.

In contrast to web or mobile application testing, where the next
test interaction can often be deduced from the application’s context
(e.g., available links or widgets in the graphical user interface),
REST APIs expose no such explicit context. Indeed, API operations
can be, in principle, called at any time, and the OAS usually does
not encode any information about the prioritization of operation
invocations. This may lead to failures in crafting test cases, not just
due to incorrect generation of operation input values but due to
calling an operation that is not (yet) ready to be called, given the
current API state.

As a simple example, consider the case of an e-commerce ser-
vice. When the shopping cart is empty, the checkout operation
is supposed to fail independently of the input values provided to
the operation simply because the cart is not ready for checkout.
This suggests that an operation adding items to the cart must be
called first to make the cart available for checkout. Some state-
of-the-art black-box testing tools [2–4] alleviate the problem of
operation ordering by considering producer-consumer relations
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between API operations. This yields an operation ordering purely
based on explicit data dependencies derivable from the OAS (that
is, an operation is tested before another when the latter requires as
input a resource provided as output by the former). Even if effective
in simple cases, such an approach overlooks implicit operation de-
pendencies caused by logic constraints rather than data constraints,
as in the case of the checkout example above. Conversely, spurious
constraints could be incorrectly inferred from the OAS, driving test-
ing tools towards inappropriate ordering of operation sequences.
Indeed, an OAS does not fully encode the API business logic, result-
ing in API constraints that cannot be statically inferred from it.

In addition to the correct operation ordering, another crucial
goal when testing REST APIs is adopting valid input values to call
operations. This task is particularly hard due to the extensive value
exploration required within a vast input space. Valid input values
can encompass various combinations of data, which may need to
satisfy inter-parameter dependencies and value conditions. Some
input constraints are documented in the OAS and exploited by
testing tools [2, 3, 5–7] to craft correct HTTP requests. However,
similarly to the operations dependency case, some implicit input
constraints may not be syntactically retrieved from the OAS, de-
creasing the chances of crafting successful test cases. For instance,
an operation adding products to the cart may fail if a discounted
product is added in a quantity less than the minimum. Such con-
straint is known to the API developer but unlikely to be found in
the OAS and, consequently, hidden from black-box testing tools.
Moreover, smartly picked input values might bring a REST API to
a new state that is interesting to test because it could expose new
and more complex logic defects.

With the aim of automatically generating effective test cases
for REST APIs, we propose DeepREST, a novel approach based on
deep reinforcement learning to learn API constraints during testing,
potentially even those not documented in the OAS (hence hidden
from black-box tools). DeepREST trains an intelligent agent to au-
tonomously learn and optimize a strategy to test a REST API in
a black-box fashion. Deep reinforcement learning is leveraged to
guide an agent in the exploration of several API states, which is
positively rewarded when discovering an effective order in which
to test API operations. At the same time, DeepREST also learns
the most effective strategies to generate input values among the
available strategies. Typical strategies are random generation, dic-
tionary lookup, and reusing examples from the OAS. Such selection
is based on the experience gained during previous successful inter-
actions. Finally, DeepREST also performs exploitation, by mutating
successful interactions and improve test coverage, fault detection,
and collect even further experience.

The contribution of this paper can be summarized as follows:

• The first approach leveraging deep reinforcement learning to
automatically learn an effective testing order for operations
in a REST API;

• A novel reinforcement learning-based approach to select the
most effective input value generation strategy for operation
input parameters;

• Empirical results demonstrating that the proposed approach
is effective (coverage and faults detection) and efficient (num-
ber of requests) in testing REST APIs. Indeed, DeepREST

openapi: "3.0.0"
info:
version: 1.0.0
title: "Simple eComm"
license:
name: MIT

servers:
- url: http://simple.ecommerce.io/v1

paths:
/addProductToCart:
post:
summary: "Add product(s) to the cart"
operationId: addProductToCart
parameters:
- name: productId
in: query
required: true
schema:
type: integer
format: int64

- name: quantity
in: query
schema:
type: integer
default: 1
minimum: 1
maximum: 100

responses:
'200':
description: "Product(s) added"

/products/search:
get:
summary: "Search products by name"
operationId: productSearch
parameters:
- name: keyword
in: query
required: true
schema:
type: string

responses:
'200':
schema:
type: array
items:
properties:
productId:
type: integer
format: int64

name:
type: string

price:
type: number
format: float

/checkout:
post:
summary: "Finalize purchase"
operationId: checkout
responses:
'200':
description: "Purchase completed"

Figure 1: OpenAPI specification excerpt for Simple eComm.

achieves superior performance than state-of-the-art testing
tools a set of case study APIs;

• An open-source tool implementing the approach, that can
be found in the replication package [8] and on GitHub [9].

2 BACKGROUND
This section covers the background notions needed to understand
our approach. It includes an introduction to REST APIs and Ope-
nAPI specifications, automated REST API testing guided by data
dependencies, and reinforcement learning.

2.1 REST APIs and OpenAPI Specifications
The REST (REpresentational State Transfer) architectural style [10]
is nowadays the most common paradigm adopted in web API de-
velopment. A RESTful API (or REST API) is a web API that adheres
to such a paradigm, allowing web clients to access and manipu-
late resources and invoke remote routines by leveraging stateless
operations over the HTTP protocol.

REST APIs provide a uniform interface to Create, Read, Update,
and Delete (CRUD) resources, where an HTTP URI identifies a re-
source while CRUD operations are typically mapped to the HTTP
methods POST , GET , PUT (or PATCH) and DELETE , respectively. Ad-
ditionally, REST APIs can expose functionalities such as resource
search, invocation of remote routines, and authentication mecha-
nisms. Upon receiving and processing an HTTP request that ex-
ercises a specific API operation, the REST API returns an HTTP
response with the outcome of the request, called status code (e.g.,
2XX for a success; 4XX for a client-side error; or 5XX for a server-side
error), and, possibly, a payload.

As an example, consider Simple eComm, a REST API managing
a simple e-commerce service. A possible HTTP URI pointing to
the search products functionality could be /products/search . In
this case, the HTTP operation GET␣/products/search is used to
search products by name, listing all products matching the search
keyword provided as an HTTP input parameter. Conversely, the
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HTTP operation POST␣/addProductToCart could be used to add
a product to the shopping cart.

REST APIs are usually documented by using the OpenAPI1 stan-
dard. According to such standard, an API is described by a struc-
tured file (either YAML or JSON), calledOpenAPI Specification (OAS),
that indicates how to reach the API using a URI, which authen-
tication schema is adopted, and the details of the available API
operations: the input parameters (and their schema) to be used in
requests and the schema of responses.

Figure 1 contains an excerpt of the OAS for Simple eComm. After
an initial header that specifies versions, licenses, and the base URL
of the REST API, an OpenAPI specification contains the list of
available URL paths. In the example, we have, among others, the
two paths /products/search and /addProductToCart .

A REST API operation is a pair of path and HTTP method, usu-
ally identified by an operation identifier. For instance, the method
GET in /products/search refers to the operation identified as
productSearch , where the search string is given as query parame-
ter keyword . Similarly, the method POST in /addProductToCart

refers to the operation named addProductToCart , where the prod-
uct to add and quantity of the added product are given as query
parameters productId and quantity , respectively.

Request input and output are associated with a schema that
specifies their type and, optionally, a set of constraints on values
(e.g., a minimum or a maximum value for numeric parameters
as in the case of quantity). Types can be atomic (e.g., integers
and strings) or structured (i.e., compound objects). For instance,
the parameter keyword of /products/search is of type string ,
while the response to the corresponding GET operation is expected
to be an array of product objects, whose schema is also provided in
the specification.

2.2 Data Dependency-Based REST API Testing
Testing strategies of black-box approaches are typically based only
on the information contained in OpenAPI specifications. So, to
select an effective ordering of operations to test, state-of-the-art
tools [2–4] purely base their decisions on data dependencies among
the documented operations.

For instance, RESTler [2] infers data dependencies (in the form of
producer-consumer relations) between the operations documented
in the OAS. Then, by leveraging a search-based algorithm, it ex-
tensively generates sequences of HTTP requests conforming to
the inferred dependencies. Instead, RestTestGen [3] computes the
Operation Dependency Graph (ODG), a graph encoding data depen-
dencies (again, producer-consumer relations) among operations
available in the OAS. Finally, Morest [4] exploits the Property Graph,
which captures OAS-induced relations between API operations, to
prioritize operation testing order.

Referring to the Simple eComm example of Figure 1, the operation
addProductToCart depends on the operation productSearch ,
which provides a list of valid products, since the output of the latter
can be used as input for the former. Indeed, to test the operation
addProductToCart , a valid productId value is needed that is un-
likely to be guessed. Hence, the operation productSearch should
be tested earlier in order to fetch a valid value for productId .

1https://www.openapis.org/

Data dependencies are statically inferred from the OAS bymatch-
ing parameter names and schemas, giving higher priority to opera-
tions with satisfied data dependencies.

2.3 Reinforcement Learning
Reinforcement learning is a paradigm of machine learning in which
an agent learns to make decisions by interacting with an environ-
ment. After taking action, an agent receives feedback in the form
of rewards or penalties depending on the effect of its actions and
adjusts its strategy over time to maximize cumulative rewards. The
learning process involves discovering an optimal policy that guides
decision-making.

Multi-Armed Bandit Problem. The multi-armed bandit prob-
lem is a decision-making scenario where an agent is confronted
with a problem, where either exploration or exploitation should
be aimed at the same time. This problem is named after its origin,
where a set of slot machines is available to a player with a limited
playing budget. Each slot machine has an unknown probability
distribution and amount of winning, so the player has to spend
money to explore the machines to find the best to play with but, at
the same time, money should be invested to exploit best machines
to gain profit. The challenge lies in the exploration vs. exploitation
trade-off: the agent must strike a balance between trying different
actions to uncover their reward potentials and exploiting the cur-
rent best-known action for immediate gains. This dilemma reflects
the tension between gaining more information and making optimal
decisions based on existing knowledge.

A class of solutions to the multi-armed bandit problem, known
as probability matching strategies, is based on the idea that the
probability of choosing a solution should be equal to the probability
for that solution to be optimal, according to the collected experience.

Deep Reinforcement Learning. Deep reinforcement learning
combines reinforcement learning with deep neural networks, using
the latter to represent the agent’s policy or value function. The
learning process revolves around the agent interacting with an en-
vironment, where it observes a state 𝑠𝑡 , takes an action 𝑎𝑡 , receives
a reward 𝑟𝑡 , and transitions to a new state 𝑠𝑡+1. The agent’s goal is
to learn a policy that maximizes the cumulative reward over time.

The Proximal Policy Optimization (PPO) algorithm [11] is a tech-
nique used in deep reinforcement learning to train an agent’s
decision-making abilities. PPO aims to improve an agent’s pol-
icy through trial and error, balancing the policy update towards
better performance while keeping it similar to the previous policy.
This balance helps the agent learn effectively while maintaining
stability.

3 MOTIVATING EXAMPLE
Let us consider the OAS of Simple eComm reported in Figure 1. In
the excerpt, three operations are defined: productSearch , which
searches for products by name; addProductToCart , which adds
a product to the shopping cart; and checkout , which finalizes the
purchase of the current shopping cart. Even if apparently simple, by
using Simple eComm we can highlight three non-trivial challenges
posed by REST APIs, that are only partially addressed by state-of-
the-art testing approaches.

1385



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Davide Corradini, Zeno Montolli, Michele Pasqua, and Mariano Ceccato

Challenge 1: Correct ordering of operations to test. To successfully
test the checkout operation, we need a non-empty shopping cart,
and this requires: (i) searching for existing products; (ii) adding
them to the shopping cart; and (iii) performing the checkout.

State-of-the-art testing approaches based on data dependencies
infer the ordering on which operations are tested by exploiting
producer-consumer relations. The (explicit) data dependency be-
tween productSearch , which returns a productId as output, and
addProductToCart , which requires a productId as input, would
suggest testing addProductToCart after productSearch , using
the productId returned by the latter. However, such approaches
would overlook the business logic constraint that only valid and
non-empty carts can be finalized. This results from an implicit de-
pendency between addProductToCart and checkout , where the
former operation takes the state where it can be purchased, and the
latter operation finalizes the purchase. This dependency cannot be
inferred just from the OAS of Simple eComm in Figure 1, but it could
be learned by testing the API. We advocate for the need to over-
come the limitations of current approaches and enhance automated
testing so that implicit dependencies are learned on successfully
tested scenarios, yielding an effective ordering of operations to test.

Challenge 2: Appropriate input data selection. The second limita-
tion is in how state-of-the-art approaches decide input data. Typical
strategies are either random generation according to the constraints
in the API specification, sourcing values from it (e.g., default, enums,
and example values), or reusing values observed on previous in-
teractions (from HTTP responses). However, the strategy to be
used is typically chosen randomly among those available, regard-
less of the role of the input parameter. For instance, the value of
productId parameter in the addProductToCart operation may
be wisely chosen by picking one of those values that have been
observed in previous responses (e.g., to productSearch), rather
than with random generation. Conversely, it is more effective to
use a random query string to test productSearch , rather than pre-
viously observed item values. We advocate that the decision about
the strategy to generate input data should exploit the experience on
past successful interactions.

Challenge 3: Balance between exploration and exploitation. Lastly,
a notable challenge is how to balance exploration of the REST API
to test new operations and exploitation of already tested operations
for increasing coverage by testing them with diverse inputs. In fact,
thorough and in-depth testing of individual operations could yield
two distinct benefits: (i) the acquisition of additional valid data
from API responses and (ii) higher coverage of API source code.

In the context of the Simple eComm example, intensifying the
testing on searchProduct , by trying different search keywords,
would increase the chances of formulating valid queries and re-
trieving more and more shopping products. Additionally, having
multiple valid productId values would facilitate the testing of the
subsequent operation addProductToCart and, consequently, of
the operation checkout .

4 APPROACH
In this section we present DeepREST, our approach conceived to ad-
dress the challenges identified in the previous section. An overview
of the architecture of DeepREST is illustrated in Figure 2, depicting

DeepREST

repeat

REST API

Test Interaction
Handler

Curiosity-driven

State Explorer

Experience-driven

Input Generator

Diversity-driven

Test Intensifier

2XX: positive reward
4XX, 5XX: negative reward

2XX: positive reward
4XX, 5XX: nil reward

2XX:
operation,
params

operation

1

operation,
params 2

operation,
new params3

DRL agent

ip1 ip2 ip3 ip4

RL agents

pv1 pv2 pv3

pv′2

Mutators

HTTP request HTTP response

Figure 2: Approach overview.

an iterative process that applies three main components to craft
REST API test cases, ending up in actual HTTP interactions. Such
an iterative process is repeated until all API operations have been
extensively tested or the allocated testing budget expires.

The first component, the Curiosity-Driven State Explorer, is a deep
reinforcement learning agent determining the most relevant next
API operation to test based on the current state of the API. Employ-
ing a curiosity-driven strategy, this agent is positively rewarded
when it reaches new API states, thereby promoting exploration. Its
objective is to cover new states of the API beyond those reach-
able purely following data dependencies, discovering those that are
reachable when implicit dependencies are exploited. Further details
about this component are described in Subsection 4.1.

The second component, the Experience-Driven Input Generator, is
responsible for supplying valid input data to operations. Internally,
this component adopts a group of reinforcement learning agents,
each dedicated to a distinct input parameter. Treating the parame-
ter value selection as a multi-armed bandit problem, these agents
leverage experience to make informed decisions. Experience is also
exploited to decide whether to include non-mandatory parameters
in requests and to determine arrays’ size. Further details about this
component are provided in Subsection 4.2.

The first two components collectively assemble an HTTP request
for the API under test. Testing an API is learned by providing a
positive reinforcement to correct interactions (HTTP responses
with a status code 2XX) and a negative reinforcement to wrong
interactions (HTTP responses with a status code 4XX or 5XX).

Upon successfully reaching a new API state and testing a new
operation, a test intensification phase is initiated. The third compo-
nent, theMutation-Based Test Intensifier, performs deeper testing of
the newly reached state, with the twofold objective of collecting ad-
ditional test data from API responses and increasing test coverage.
Intensification consists of applying mutation operators to a success-
ful HTTP request to generate many new requests, each with small
changes in parameter values, promoting input diversity. Further
details about this component are described in Subsection 4.3.

4.1 Curiosity-Driven State Exploration
To comprehensively inspect the behavior of the API under test, it
is crucial to invoke API operations in a clever order. As pointed

1386



DeepREST: Automated Test Case Generation for REST APIs Exploiting Deep Reinforcement Learning ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

out in Section 3, if the order in which operations are executed is
based on data dependencies only, we might overlook potential im-
plicit dependencies and, thus, fail to test some operations. Moreover,
spurious dependencies could be inferred from the OAS, causing a
testing approach to waste its testing budget on hopeless attempts.
This limitation could result in a partial exploration of the API’s
state space, collecting few meaningful test data and causing low
test coverage. On the flip side, it is not advisable to test all possi-
ble sequences of operations since the sheer volume of potential
sequences is prohibitively vast. In addition, a substantial portion
of these sequences lacks practical significance or coherence with
the API business logic, making their testing unnecessary. Hence, a
selective approach is crucial for efficient and effective testing.

Leveraging curiosity-driven deep reinforcement learning, we
push toward exploring the API while learning an effective order of
operations, without resorting to other techniques (such as static
analysis of the specification to infer data dependencies) that might
introduce bias into the learning process. We formulate the problem
as an instance of reinforcement learning, with proper state, actions,
state transition, and reward as follows.

State. In an ideal scenario, the DRL state should precisely reflect
the internal state of the API under test. However, since we treat the
API as a black box, its precise internal state is unknown. We then
resort to an approximation of the API internal state, referred to as
state observation, derived from the information we can retrieve from
previous HTTP interactions with the API. For instance, a successful
exercise of the addProductToCart operation inherently suggests
that the shopping cart contains items. With this consideration,
we represent the DRL state as a list of 𝑛 integers, where 𝑛 is the
number of API operations. The value of the element at position 𝑖

in the list represents the number of successes (HTTP interactions
that returned a 2XX status code) for the 𝑖-th operation in the OAS
that occurred so far during testing.

As an example, consider the three operations of Simple eComm:
addProductToCart , productSearch , and checkout . Then, the
list [ 0 1 0 ] represents a state observation where the operation
productSearch has been successfully tested (1 success), while the
other two operations might have been attempted with no success
(0 successes). In fact, successful operations are supposed to alter
the (internal) state of an API, potentially enabling other operations
to be called, while failed operations should have no side effects.

Considering that in our model state observation is multi-discrete,
i.e., it is an array with discrete values, finite-state reinforcement
learning techniques, such as Q-Learning [12] can not be applied,
and deep reinforcement learning is needed.

Thanks to the generalizability of the approximation function in
its neural network, a DRL agent can link similar states. On new
states, it can take those actions that it learned on observed similar
states [13]. Thus, even if the search space is very large, generaliz-
ability makes our approach not purely based on exploration and
our agent can learn by generalizing its experience.

Actions. The agent actions are represented by the set of available
API operations. In our example, the three actions are testing either
addProductToCart , productSearch , or checkout .

State Transitions. The API transitions to a different (internal)
state depending on the outcome of an operation’s execution. If an
operation execution resulted in success (HTTP status code 2XX) the

API is assumed to have reached a new state, potentially “enabling”
operations that were infeasible to test in the previous state. In this
case, we update the state observation by incrementing the success
counter for the operation successfully tested. Conversely, in the
event of failed interactions (HTTP status codes 4XX and 5XX), we
assume that the API state did not change. In this case, also the state
observation does not change.

Reward. To stimulate curiosity, a DRL agent usually receives a
large positive rewardwhenever its action takes the environment to a
new state never reached so far [14, 15]. In our context, new (internal)
API states are approximated with new state observations, which are
reachedwhen the DRL agent is able to successfully test an operation.
Here, we distinguish two cases: the operation is successfully tested
for the first time (i.e., in the previous state observation its counter
was 0); and the operation has been already successfully tested
before (i.e., in the previous state observation its counter was greater
than 0). In the first scenario, the agent receives a large positive
reward (+1000), while in the second scenario, the agent receives a
negative reward (−100). With this strategy, we stimulate curiosity
and, at the same time, we do not overly discourage the agent from
repeating certain operations (it can re-test the same operation up
to 10 times before its overall reward becomes negative), which may
be a prerequisite for successfully testing other operations.

Finally, if the API rejects the chosen operation (with a 4XX or 5XX
status code), a slightly negative reward (−1) is assigned to the agent.
The penalty is intentionally mild, recognizing that rejection can
stem from various reasons. Indeed, the agent may have selected the
correct operation, but value generation provided the wrong input
data (the latter causing the failure). In such a case, the agent should
not be discouraged from attempting again to test the operation
with different input data. Recall that input generation is in charge
of a different learning agent (that will be presented in Section 4.2),
having a different reward strategy.

DRL Algorithm. To solve the aforementioned learning prob-
lem, we opted to employ the Proximal Policy Optimization algo-
rithm (PPO) [11] since it is one of the most recent and advanced
deep reinforcement learning algorithms [16] supporting vector state
space with discrete values. In particular, we employed the PPO im-
plementation coming with Stable Baselines 3 [17]. We customized
the episode length to be equal to ep_length = 20 · num_operations,
thus correlating it with the size API being tested. APIs exposing
several operations will be granted more attempts in a single episode
than smaller APIs. In a similar fashion, the maximum value for coun-
ters in the DRL state is set to 20, and in the case that an operation is
successfully tested more than 20 times in an episode, the episode is
truncated before its natural end, as the DRL agent could have stuck
in choosing simple operations to test, rather than exploring others.

4.2 Experience-Driven Input Generation
Providing appropriate input data in API requests is crucial in auto-
mated black-box testing of REST APIs. Such input data comprises a
collection of operation parameters that can take the form of simple
values (such as strings, numbers, and booleans), arrays, or com-
pound objects. In the process of generating input data, three chal-
lenges must be addressed: (i) deciding which parameters to include
in the request among the optional ones; (ii) selecting the length
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of arrays; and, most notably, (iii) deciding the values to assign to
primitive-type parameters (recursively on compound objects).

To address these challenges, we developed a novel approach
based on cumulative experience inspired by the multi-armed bandit
problem. A distinct agent is deployed for each parameter, responsi-
ble for making clever decisions about how that parameter should
be used in requests, grounded in their accumulated experience.
Agents’ experience is initially empty, thus leading to initial purely
random decisions. When successful input data is generated, agents
receive a positive reward (+1) associated with the decisions they
made which led to a successful interaction, accumulating valuable
experience on how to succeed. Decisions are made following a
probability-matching strategy, where the likelihood of making a
specific decision corresponds to the observed statistical distribution
estimated at that time, as follows. The probability of choosing 𝑑 is
equal to the ratio of the accumulated rewards for 𝑑 (i.e., 𝑅𝑑 ) on the
total rewards

∑
𝑖 𝑅𝑖 accumulated so far, that is: P(𝑑) = 𝑅𝑑/∑𝑖 𝑅𝑖 .

For example, consider an agent deciding whether to include a
parameter in a new request. Suppose that, based on the agent’s
accumulated experience, the parameter has been employed in 8 out
of the 10 previously successful interactions (i.e., it has collected
8 reward points). The agent will incorporate that parameter in
the new request with a probability of P = 0.8. To prevent over-
fitting towards a single solution, however, agents might also make
random decisions (with low probability, e.g., 0.1), still allowing the
exploration of not yet tried configurations.

A notable aspect of our approach is that the experience garnered
on a parameter in one operation is leveraged for making decisions
on parameters with the same (or similar) name in other operations.
This approach significantly reduces the learning time when testing
new operations, promoting efficiency and knowledge reuse.

We now describe how we specifically address the three chal-
lenges mentioned at the beginning of the subsection.

Parameter Presence. For each optional parameter in an opera-
tion, the agent decides whether to include or exclude the parameter
in the request. As already discussed, the probability of a parameter
being included matches the statistical distribution estimated so far.

Array Length. Deciding the length of an array is inherently a
hard problem, as arrays can theoretically have any size. We catego-
rize array length into three classes to overcome the issue, yielding
a bounded approach. In particular, Class A denotes empty arrays
(the length is 0), Class B denotes one-element arrays, and Class C
denotes arrays having at least 2 elements. Agents are rewarded pos-
itively (+1) if their selected size class leads to a successful request.
When crafting new requests, agents will select the most suitable
size class from the statistical distribution estimated so far. In case
the Class C is selected, the actual size of the array is randomly
chosen to be equal to or greater than 2 and compatible with the
length constraints reported in the OAS.

Input Values. Our approach relies on a catalog of input gen-
eration strategies, or sources of values, that are wisely selected at
testing time to retrieve the most appropriate value for parameters
at a given point in testing time.

Input values could be taken from various sources, such as random
generators, examples in the OAS, and dictionaries containing test
data collected from previous HTTP interactions. However, the same
source might not be equally effective for all the parameters. For

instance, when dealing with resource identifiers, dictionaries are
likely to be the optimal sources of valid values observed in the past
rather than random values that are unlikely to be valid identifiers.
Our approach accumulates and subsequently leverages knowledge
about the most successful sources for each parameter.

When testing an operation, we keep track of the source that
supplied the value for each parameter. Upon successful execution
of an operation (status code 2XX), reinforcement learning agents
obtain a positive reward (+1), promoting the reuse of the same
source in the future. It is important to note that the same source
is unlikely to provide the same, identical value for future requests
(think of, for instance, the random generation source). However,
sources employ the same strategy to select a value, which ensures
further exploration of the API.

The value sources now available in DeepREST are the following.
Random Parameter value is randomly generated according to the

constraints in the OAS.
Default Parameter value is the default value in the OAS.
Enum Parameter value is randomly taken from one of the valid

enum values from the OAS.
Examples Parameter value is assigned with one of the example

values from the OAS.
ResponseDictionary Parameter value is taken from a dictionary

of API response values observed for this parameter in previous
interactions. These values, coming directly from the API, are likely
valid and, therefore, likely accepted in new requests.

LastResponseDictionary Same as the previous, but the last ob-
served value is assigned to the parameter. This increases the like-
lihood of the value being valid. In the case of parameters acting
as resource identifiers, it will help the generation of a chain of
operations targeting the same resource.

RequestDictionary Parameter value is taken from a dictionary
of values already used for this field, whose API requests obtained a
successful status code. These values are likely valid since the API
has accepted them in previous interactions.

LastRequestDictionary Same as the previous, but the last ob-
served value is assigned to the parameter.

LargeLanguageModelDictionaryA large languagemodel is queried
to supply values for parameters based on their names, the context
of the endpoint, and the parameter description if provided in the
OAS (further details in the next subsection).

Except for LargeLanguageModelDictionary, which is a contribu-
tion of the paper and detailed below, the previous value sources are
inspired by literature [2, 3] (we adopted the implementation coming
with the RestTestGen Framework [18]). For further customization,
this catalog can be easily extended. The novel contribution of our
approach is how to learn themost effective strategy from the catalog
at each testing step rather than the catalog itself.

Large LanguageModel Dictionary.A newmethod for generat-
ing realistic parameter values in our implementation of DeepREST
utilizes the inherent knowledge of large language models. We as-
sume that a large language model can suggest realistic values for
a parameter based on both its name (for instance, for a parameter
named title , suggestions could include "The Odyssey" or "The
Iliad") and the context of the specific API operation to which the pa-
rameter belongs (for example, within the operation POST␣/person ,
plausible values for a parameter named title could be, instead,
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"Mrs." or "Mr."). Furthermore, the natural language descriptions as-
sociated with the parameter and its API operation, sometimes found
in the OAS, can further guide the language model in generating
realistic values.

To implement this approach, before actually starting with the
testing session, we ask an LLM to suggest plausible input values for
all parameters in the OAS. This involves providing the LLM with
the HTTP method and path of the API operation, the description of
the API operation (if available in the OAS), the parameter name, its
type, and its description from the OAS (if available). The language
model then responds with a set of realistic values which are stored
in a dictionary for subsequent use while generating tests. Practi-
cally, we deployed a local instance of GPT4All [19] with the model
wizardlm-13b-v1.2.Q4_0.gguf, described on the GPT4All website
as the “best overall larger model.” For each parameter in the OAS
of an API, the LLM is asked to provide at least 20 relevant values.

4.3 Mutation-Based Test Intensification
During test case generation, which is guided by curiosity and experi-
ence, the moment a new operation is successfully tested for the first
time, we shift from exploration to exploitation (or intensification).

This phase involves multiple replays of the successful HTTP
request after it has been modified by applying a catalog of mutation
operators. Some of them are nominal mutators, which alter the
initial request while still satisfying all the constraints in the OAS
(thus generating further potentially valid requests), while others
are error mutators, which alter the request in a way that violates
some constraints from the OAS (thus generating potentially invalid
requests). We believe that an invalid request, resembling a valid
one, holds the potential to traverse unexplored branches in the
API source code, thereby contributing to increased test coverage
and hopefully leading to more effective test cases. To build the
catalog, we started with mutation operators from literature: some
of them keeping HTTP requests valid [20]; while others turning
HTTP requests invalid [3] (according to the OAS). We then added
additional mutation operators such that each parameter of each
operation can be changed once to keep the overall request valid
and once to turn it invalid. Currently, 10 mutation operators are
available in DeepREST (4 nominal mutators and 6 error mutators),
described in the following.

AddParameter An optional parameter is added to the original
request. [nominal]

RemoveParameter An optional parameter is removed from the
original request. [nominal]

RefillValue The value of a parameter is updated with a new
value that satisfies the constraints in the OAS. [nominal]

NumberBoundaries In the case of a numeric parameter, its value
is changed to be close to its boundaries. [nominal]

AddInvalidParameterAn optional parameterwith an invalid value
is added to the original request. [error]

NumberOutOfBoundaries In the case of a numeric parameter, its
value is changed to out of its boundaries. [error]

ChangeHttpMethod The HTTP method of the original request is
changed. [error]

MissingRequired A mandatory parameter is removed from the
original request. [error]

WrongType A parameter value is replaced with a new one of a
different type. [error]

ConstraintsViolation A parameter value is changed so that it
violates the constraints from the OAS. [error]

4.4 Oracles
DeepREST utilizes three standard oracles provided by the RestTest-
Gen Framework [18]. In particular, it employs two types of oracles
for nominal testing: a Status Code Oracle that identifies a bug in the
API under test when it returns a 5XX status code; and a Schema Val-
idation Oracle that raises an issue when the API response schema
is not valid according to the schema outlined in the OpenAPI speci-
fication. It also employs an oracle for error testing (i.e., when error
mutation operators are applied to requests) based on the response
status code. This oracle will report a failure in case the API pro-
cesses a malformed requests without raising an error (i.e., the API
replies with a 2XX status code to a request not adhering to the OAS).

5 EVALUATION
In this section, we conduct a thorough empirical evaluation of
DeepREST. Our primary focus is assessing the test coverage achieved
by our approach and its fault detection capability. Test coverage,
intended as both code coverage and operations successfully tested,
is directly correlated with Challenges 1 and 2 presented in Section 3.
Indeed, an optimal testing order of operations (Challenge 1) is
likely to result in testing more operations successfully. Similarly,
an appropriate and diverse input value selection (Challenge 2) is
likely to result in testing more parts of the API implementation,
increasing code coverage. Alongside successfully testing operations,
to individuate faults a balance between exploration and exploitation
(Challenge 3 of Section 3) is needed, testing again operations with
different input values potentially inducing server-side errors. Since
HTTP interactions are time-consuming, testing efficiency, in terms
of the number of requests, is also investigated. To validate the
aforementioned aspects, we engage in a comparative analysis with
the current state-of-the-art testing tools for REST APIs.

5.1 Research Questions
To guide our empirical evaluation, we formulated the following
two research questions.

RQ1: What is the effectiveness of DeepREST in generating test
cases for REST APIs? How does it compare with state-of-the-
art approaches?

RQ2: What is the effeciency of DeepREST in generating test
cases for REST APIs? How does it compare with state-of-the-
art approaches?

To answer RQ1, we execute DeepREST and five state-of-the-art
REST API testing tools on a benchmark set of API case studies. For
each tool, targeting each API in the benchmark, we measure code
coverage, count successfully tested operations (2XX), and server-
side failures (5XX).

To answer RQ2 , for each experiment of the previous research
question, we monitor code coverage and success/failure count over
time to measure their progressive increase. The efficiency of a tool
is deemed higher if it achieves high code coverage or success/failure
count earlier in the testing process.
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Table 1: Benchmark APIs.

API Short Name # Ops LoC (JaCoCo) LoC (IntelliJ) Source
REST Countries rest-countr 22 543 1,121 [7]
User Management user-mgmt 22 632 1,284 [7]
Market market 13 2,206 5,543 [7]
Project Tracking System proj-track 59 1,298 3,613 [7]
Features Service feat-serv 18 457 956 [7]
NCS ncs 6 275 500 [7]
SCS scs 11 295 586 [7]
Genome-Nexus genome-nex 23 4,831 15,541 [7]
Person Controller person-ctrl 12 179 522 [7]
Blog blog 52 1,188 3,725 [21]
LanguageTool lang-tool 2 45,487 83,708 [7]

5.2 Experiment Setup
Baseline Testing Tools. Our evaluation consists of a compar-
ison of DeepREST with state-of-the-art REST API testing tools.
We selected a total of five other tools. They are RestTestGen [3],
Morest [4] and Restler [2] as representative of data dependencies-
based approaches, ARAT-RL [7] as the only existing tool based on
reinforcement learning (although using the non-deep algorithm
Q-Learning), and Schemathesis [22] as a recently proposed tool
whose performance seems competitive [7]. According to recent
surveys [7, 20], ARAT-RL and RestTestGen appear to be the best-
performing black-box tools.

API Case Studies. To establish a benchmark for our evaluation,
we selected 11 API case studies. We included all the 10 APIs sourced
from a recent study [7]. To enhance the realism of our evaluation, we
supplemented this set with an additional API fromGitHub (i.e., Blog)
as representative of more complex APIs. In fact, it contains implicit
operation dependencies that cannot be syntactically deduced from
the OAS (we found such implicit dependencies by manually reverse
engineering the API business logic).

This benchmark’s size and complexity align with the literature
on REST API testing. Moreover, we believe it is representative
since the included APIs present the following characteristics: they
have diverse sizes (number of operations and parameters); they
come from diverse application domains; and they have diverse
business logic complexities (to be extensively tested, they require
API operation sequences of diverse lengths).

Table 1 reports the list of API case studies, accompanied by the
number of operations defined in their respective OAS, the number
of lines of code as reported by JaCoCo (which analyzes the bytecode
in the compiled .class files) and number of source lines of code
from the Statistic2 plug-in for IntelliJ IDEA. We launched the plug-
in on the “main” source code of each API, thus excluding the code in
the test folder which is conventionally used to store test cases. The
reported numbers refer to the source code lines, excluding comment
lines and blank lines.

Metrics. We measured the following metrics throughout all
testing sessions conducted with all tools and configurations.

Code Coverage We collected method, branch, and line coverage
to measure the extent of API code executed by the test cases.

Operation Coverage This black-box coverage metric [23, 24] is
meant to count the number of successfully tested API operations
by tools with respect to the total number of operations defined in
the API documentation.
2https://plugins.jetbrains.com/plugin/4509-statistic
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Figure 3: Effectiveness results (aggregate).
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Figure 4: Efficiency results (aggregate).

Fault Detection As a measure of fault detection capacity, we
counted the number of server-side failures (status code 5XX) with
unique error messages identified by tools. An error message is con-
sidered unique when it is sufficiently different from other messages,
as previously defined by Kim et al. [7].

AreaUnder CurveAs an efficiencymetric, we captured the progress
of code coverage, operation coverage, and fault detection while
testing. This is measured as the area under the curve in a graph
depicting test coverage and fault detection trends.

Experimental Procedure. Experiments have been run using
Docker containers, with a separate container for each testing tool
and for each case study. Each container is assigned a maximum
of 8 cores and 16 GB of RAM. At the end of each experiment run,
containers were stopped and rebooted with a fresh file system to
avoid any side effects, either in tools or API case studies. Testing
tools were executed with the same budget of API calls for each API
in the benchmark. This ensures that all the tools have the same
opportunity to explore and test the APIs, regardless of how long an
API can non-deterministically take to respond. The budget has been
computed for each API independently by empirically checking the
amount of interactions that each API can serve in approximately
one hour of testing. To control the impact of non-deterministic
features of testing tools, all experiments have been repeated 10
times, reporting the average results. JaCoCo [25] was deployed to
collect source code coverage, while Restats [24] was utilized for
computing the operation coverage from HTTP logs. Metrics were
recorded every 5 seconds.

5.3 Experiment Results
The results of our evaluation are reported in Figures 3, 4, 5 and
6. To test for statistical significance of observed differences, we
apply the Wilcoxon signed rank test to compare the metrics values
achieved by DeepREST with those by each tool in the comparison,
computing the corresponding 𝑝-values. We assume a significance
level of 95% (𝛼 = 0.05), that is, we reject the null hypothesis when
𝑝-value < 0.05. Values of statistically significant differences are in
black in the figures, while non-significant differences are in red.

RQ1 (Effectiveness). The experimental results illustrating the ef-
fectiveness of DeepREST are presented in Figure 3 and Figure 5,
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Figure 5: Effectiveness results (per API).

alongside comparable results from the tools in the comparison for
reference. Figure 3 shows the overall results aggregated by tool,
with different bar colors for different tools (DeepREST is the left-
most bar in orange). On the left-hand side of the figure, we report
the average branch, line and method coverage among all 11 APIs
for each tool. On the right-hand side, we report the average count
of successfully tested operations (2XX) and faults (5XX).

As we can see from the figure, DeepREST achieves the highest
values for all the metrics among all the considered testing tools,
and all the differences are statistically significant according to the
Wilcoxon signed rank test (with the only exception of the faults
for Restler). The most remarkable difference is for branch coverage
that spans from 17% for RestTestGen to 77% for Restler.

Figure 5 represents the collected metrics results split by case
study. For space reasons, we report the results for two metrics
only (results for the other metrics are provided in the replication
package [8]). The first bar graph represents branch coverage, while
the second bar graph the successful operations count. This figure
confirms the previously observed trend, with DeepREST outper-
forming all the other tools in almost all the case study APIs. The
very few exceptions include the case of Feature Service API, for
which ARAT-RL and RestTestGen achieve an higher score.

These results suggest that our approach achieved the highest
effectiveness because it tested API states that other approaches
could not reach. This is probably due to the fact that DeepREST
learned how to assemble more effective sequences of operation calls
that could not be assembled just by relying on (producer-consumer)
dependencies documented in the API specification.

An interesting case to comment on is Project Tracking System,
where DeepREST largely overcame other tools (16% to 62% higher
coverage). The Operation Dependency Graph produced by RestTest-
Gen for this API contains 62 operations and over 6000 data de-
pendencies. On the one hand, this overwhelming large set of data
dependencies probably contains many spurious dependencies, trick-
ing testing tools into building unsuccessful sequences. On the other
hand, there are so many dependencies that attempting all the re-
sulting operation orders is quite inefficient. The advantage of deep
reinforcement learning in this API is that whenever the correct
order to test 𝑁 operations is found, it is learned and reused to try

and test a sequence of 𝑁 + 1 operations without wasting the testing
budget.

Specifically, in the Project Tracking System API, only after cre-
ating new credentials an employee can be created. Then, a
project must be created. Only after successfully taking the API to
this state the POST␣/assignment operation can be tested, result-
ing in a mandatory sequence of four operations. As a matter of fact,
DeepREST gradually learned this operation ordering, progressively
building longer and longer sequences, thus testing more operations
on this API.

These results allow us to formulate the following answer to the
first research question.

Answer to RQ1: DeepREST is the most effective black-box
testing tool for REST APIs, demonstrating higher effective-
ness than state-of-the-art with respect to branch, line and
method coverage, as well as successfully tested operations
and revealed unique faults.

RQ2 (Efficiency). The experimental results about the efficiency of
DeepREST are presented in Figure 4 and Figure 6. Figure 4 shows
the average results aggregated by tool, with different bar colors
for different tools (DeepREST is the left-most bar in orange). On
the left-hand side of the figure, we report the average Area Under
Curve (AUC) for branch, line, and method coverage among all 11
APIs for each tool. On the right-hand side, we report the AUC for
the successfully tested operations (2XX) and the faults (5XX) count.

As we can see from the figure, DeepREST is more efficient in
achieving high values for all the metrics than all the other testing
tools, with the only exception of ARAT-RL for the successful oper-
ations count. Moreover, almost all the differences are statistically
significant according to the Wilcoxon signed rank test (with the
only exception of unique faults by RestTestGen and ARAT-RL).
The most remarkable difference is for the AUC of the successfully
tested operations count that spans from 4% of RestTestGen to 44%
of Restler, and line coverage that spans between 4% (ARAT-RL) to
36% (Morest).

Figure 6 shows the results for the AUC of the same metrics,
split by case study. For space reasons, we report the results for
two metrics only (results for the other metrics are provided in
the replication package [8]). The first bar graph represents branch
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coverage, while the second bar graph the successful operations
count. DeepREST appear consistently superior state-of-the-art tools
in most of the cases, with few exceptions (already observed for
effectiveness); they are ARAT-RL and RestTestGen on the branch
coverage of Feature Service.

Based on these results, we can formulate the following answer
to the second research question.

Answer to RQ2: DeepREST demonstrates higher efficiency
than state-of-the-art testing tools concerning branch, line and
method coverage. Regarding successfully tested operations
and revealed unique faults, DeepREST is superior to most
state-of-the-art tools except ARAT-RL.

5.4 Threats to Validity
Threats to internal validity, impacting empirical results, are due
to the metrics adopted to answer the research questions and the
configuration of the tools in the comparison. To mitigate these
threats, we adopted standard metrics from structural testing (code
coverage) and specific metrics for REST API testing (operation cov-
erage [23] and fault detection[7]). Furthermore, the latest versions
of the considered testing tools have been used in the comparison,
with tools configured as indicated in the corresponding papers. We
addressed potential threats due to randomness issues by running
each tool 10 times and computing the average results. Moreover,
we applied a statistical test (i.e., Wilcoxon signed rank test) that is
non-parametric, thus it does not assume experimental data to be
normally distributed.

Threats to external validity, impacting the generalization of our
findings, are due to the case studies selected for the tools com-
parison and their limited number. We mitigated these threats by
considering the dataset of REST APIs adopted in previous stud-
ies [7], in addition to one new API.

6 RELATEDWORK
Among automated REST API testing tools, only EvoMaster [26]
adopts a white-box approach. Specifically, test case generation
is guided by evolutionary algorithms, whose fitness function is
defined in terms of API code coverage and HTTP interactions status
code. EvoMaster also provides a black-box version of the tool that
only resorts to the API documentation to guide generation.

Literature about black-box REST API testing is broader, com-
prising various tools implementing different testing strategies. We
already mentioned approaches, such as RESTler [2] and RestTest-
Gen [3], that use data dependencies to prioritize operations testing.
RESTler generates sequences of HTTP interactions by exploiting
producer-consumer dependencies contained in the OAS, targeting
internal server failures. Instead, RestTestGen exploits the Operation
Dependency Graph, embedding data dependencies between opera-
tions, to craft meaningful test cases in nominal and error scenarios.
As already pointed out, such approaches might be biased by spu-
rious data dependencies or miss implicit operation dependencies
that are instead exploited by DeepREST.

From a general viewpoint, QuickREST [27] performs property-
based testing of REST APIs, generating test cases with the aim

of verifying whether an API complies with some properties doc-
umented in its OAS. Similarly, Schemathesis [22] detects faults
by checking response compliance in OpenAPI or GraphQL APIs
via property-based testing. Morest [4] exploits a Property Graph,
dynamically updated during testing, to model the behavior of the
API under test. Knowledge from the graph is used to craft mean-
ingful test sequences. RESTest [28] is a tool that provides inter-
parameter dependencies testing, producing nominal and faulty test
cases. RestCT [29] leverages combinatorial testing to generate test
cases for REST APIs based on the OAS. Dredd [30] is a tool test-
ing REST APIs by comparing actual responses with expected ones,
checking their status code, header, and body. Tcases [31] is a model-
based tool, leveraging the OAS to systematically build an input
space model. Subsequently, it generates test cases covering valid
input dimensions and checking response status codes for validation.

REST API fuzzers [32–36] are black-box tools that generate new
test cases starting from previously recorded HTTP traffic: they fuzz
and replay new HTTP requests in order to find faults. Some of
them [33–35] also exploit OASs.

Reinforcement learning has been recently adopted in software
testing, focusing primarily on web and mobile applications. In par-
ticular, Zheng et al. [14] and Pan et al. [15] propose automatic
testing approaches based on curiosity-driven reinforcement learn-
ing for web clients and Android apps, respectively. Vuong and
Takada [37] and Koroglu et al. [38] also apply reinforcement learn-
ing to automated testing of Android apps, the latter adopting an
exploration method based on Q-Learning. Adamo et al. [39] present
a reinforcement learning-based technique specifically designed for
Android GUI testing, while Koroglu and Sen [40] present a reinforce-
ment learning-based method for generating functional tests from UI
test scenarios for Android apps. Mariani et al. [41] proposed Auto-
BlackTest, an automatic black-box testing approach for interactive
applications. Deep reinforcement learning has been used by Romd-
hana et al. to perform black-box functional testing [42]; security
testing [43] of Android apps, and focus testing of C code [44].

The closest work is ARAT-RL [7], which exploits reinforcement
learning to test REST APIs. Utilizing Q-Learning, ARAT-RL deter-
mines the priority of operations to test initially by considering
the frequency of parameters in the API specification (that can be
seen as a sort of data dependencies-based initialization). It subse-
quently refines this prioritization based on the HTTP interactions
with the API. Nevertheless, such refinement is limited by the learn-
ing strategy adopted by ARAT-RL: agents always receive a high
penalty when successfully tested operations are considered again.
This promotes exploration of not yet tested operations only, dis-
couraging agents from crafting complex sequences of operations.
Indeed, to spot implicit dependencies, considering already success-
fully tested operations is crucial since they may trigger operations
that otherwise are unlikely to be exercised.

In DeepREST, instead, deep reinforcement learning starts with
an empty experience, avoiding any possible bias from data depen-
dencies. Moreover, DeepREST explicitly models (an approximation
of) the internal state of the REST API under test, and agents are
encouraged to test operations multiple times in different API states.
This may yield corner case preconditions triggering hard-to-test
operations, corresponding to implicit dependencies that can be
spotted by crafting complex sequences of operation invocations
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Figure 6: Efficiency results (per API).

only. This is possible due to the DeepREST API state representation
encoding the history of past successes, which is used as a guide
for operation sequencing. This complex state representation can
not be modeled by Q-Learning and requires a deep reinforcement
learning approach.

7 CONCLUSION
Black-box REST API testing tools ground their test case generation
strategies on the information contained in the OAS of the API under
test. This poses limitations on those APIs that contain implicit
operation dependencies and value conditions. Such constraints
cannot be retrieved from the OAS, making testing tools blind with
respect to potentially crucial parts of the API business logic.

In this paper, we showed how such hidden API constraints can
be learned from API interactions attempted at testing time, even in
a black-box setting. We indeed proposed the first REST API testing
approach based on deep reinforcement learning, having the twofold
objective of computing an effective ordering of API operations to
test, encompassing (explicit and implicit) operation dependencies,
and selecting accurate input data for operation parameters. Opera-
tions ordering inference is guided by exploration of the API under
test, while input data generation leverages experience gained on
successful API interactions. Finally, DeepREST intensifies testing
by mutating successful API interactions in order to achieve higher
test coverage and collaterally increasing experience.

Empirical evidence showed that the proposed approach results in
boosting the performance of REST API testing. Indeed, DeepREST
is shown to overcome state-of-the-art approaches, both in terms of
effectiveness and efficiency.

In future work, we aim to enhance experience-driven input gen-
eration by enabling the learning of inter-parameter dependencies.
Additionally, we seek to explore the influence of input generation
techniques on the overall effectiveness of the generated test cases.
In particular, we plan to assess the individual contributions of the
adopted sources of input values, including the LLM-generated dic-
tionary.

DATA AVAILABILITY
All the material needed to replicate our experiments is available on
Zenodo [8]. The latest version of DeepREST can be found in the

RestTestGen GitHub repository [9], where it is implemented as a
custom testing strategy.

ACKNOWLEDGEMENTS
This research was partially supported by the European Union’s
Horizon Europe research and innovation programme, under grant
101070238; by European Union under NextGenerationEU with the
SMARTITUDE research project, which has been funded by MUR
under the PRIN 2022 program (Code: 202233YFCJ); by the Italian
Ministry of University and Research, under the PNRR programme
for the Interconnected Nord-Est Innovation Ecosystem (iNEST); by
the Italian Ministry of University and Research, under agreement
40-G-14702-3 for the PON programme for Research and Innovation
(Action IV.6). This publication reflects the views only of the authors,
and the sponsoring agencies cannot be held responsible for such
views and any use which may be made of the information contained
therein.

REFERENCES
[1] A. Golmohammadi, M. Zhang, and A. Arcuri, “Testing restful apis: A survey,”

ACM Trans. Softw. Eng. Methodol., vol. 33, no. 1, nov 2023.
[2] V. Atlidakis, P. Godefroid, and M. Polishchuk, “RESTler: Stateful REST API

fuzzing,” in Proceedings of the 41st International Conference on Software Engi-
neering, ser. ICSE ’19. Piscataway, NJ, USA: IEEE Press, 2019, pp. 748–758.

[3] D. Corradini, A. Zampieri, M. Pasqua, E. Viglianisi, M. Dallago, and M. Ceccato,
“Automated black-box testing of nominal and error scenarios in RESTful APIs,”
Software Testing, Verification and Reliability, Jan. 2022.

[4] Y. Liu, Y. Li, G. Deng, Y. Liu, R. Wan, R. Wu, D. Ji, S. Xu, and M. Bao, “Morest:
Model-based restful api testing with execution feedback,” in Proceedings of the
44th International Conference on Software Engineering. New York, NY, USA:
ACM, 2022, pp. 1406–1417.

[5] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Checking security properties
of cloud service REST APIs,” in 13th IEEE International Conference on Software
Testing, Validation and Verification, ICST 2020, Porto, Portugal, October 24-28, 2020.
IEEE, 2020, pp. 387–397.

[6] A. Martin-Lopez, S. Segura, C. Muller, and A. Ruiz-Cortes, “Specification and au-
tomated analysis of inter-parameter dependencies in web APIs,” IEEE Transactions
on Services Computing, pp. 1–1, 2021.

[7] M. Kim, S. Sinha, and A. Orso, “Adaptive REST API testing with reinforcement
learning,” in IEEE/ACM International Conference on Automated Software Engineer-
ing, 2023.

[8] D. Corradini, Z. Montolli, M. Pasqua, and M. Ceccato. (2024) Replication
package for the paper “DeepREST: Automated test case generation for
REST APIs exploiting deep reinforcement learning”. [Online]. Available:
https://zenodo.org/records/11525389

[9] SeUniVr. (2024) RestTestGen. [Online]. Available: https://github.com/SeUniVr/
RestTestGen

1393



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Davide Corradini, Zeno Montolli, Michele Pasqua, and Mariano Ceccato

[10] R. T. Fielding, Architectural styles and the design of network-based software archi-
tectures. University of California, Irvine Doctoral dissertation, 2000, vol. 7.

[11] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” CoRR, vol. abs/1707.06347, 2017.

[12] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3,
pp. 279–292, may 1992.

[13] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[14] Y. Zheng, Y. Liu, X. Xie, Y. Liu, L. Ma, J. Hao, and Y. Liu, “Automatic web testing us-
ing curiosity-driven reinforcement learning,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), 2021, pp. 423–435.

[15] M. Pan, A. Huang, G. Wang, T. Zhang, and X. Li, “Reinforcement learning based
curiosity-driven testing of android applications,” in Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis. New York,
NY, USA: ACM, 2020, pp. 153–164.

[16] OpenAI, “Proximal policy optimization,” 2023, https://openai.com/research/
openai-baselines-ppo.

[17] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann, “Stable-
baselines3: Reliable reinforcement learning implementations,” Journal of Machine
Learning Research, vol. 22, no. 268, pp. 1–8, 2021.

[18] D. Corradini, A. Zampieri, M. Pasqua, and M. Ceccato, “Resttestgen: An exten-
sible framework for automated black-box testing of restful apis,” in 2022 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
2022, pp. 504–508.

[19] nomic-ai. (2024) GPT4All. [Online]. Available: https://gpt4all.io
[20] M. Kim, D. Corradini, S. Sinha, A. Orso, M. Pasqua, R. Tzoref-Brill, andM. Ceccato,

“Enhancing REST API testing with NLP techniques,” in Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and Analysis, 2023,
pp. 1232–1243.

[21] osopromadze. (2024) Blog REST API. [Online]. Available: https://github.com/
osopromadze/Spring-Boot-Blog-REST-API

[22] Z. Hatfield-Dodds and D. Dygalo, “Deriving semantics-aware fuzzers from web
api schemas,” in Proceedings of the ACM/IEEE 44th International Conference on
Software Engineering: Companion Proceedings. New York, NY, USA: ACM, 2022,
pp. 345–346.

[23] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “Test coverage criteria for REST-
ful web APIs,” in Proceedings of the 10th ACM SIGSOFT International Workshop on
Automating TEST Case Design, Selection, and Evaluation, ser. A-TEST 2019. New
York, NY, USA: Association for Computing Machinery, 2019, pp. 15–21.

[24] D. Corradini, A. Zampieri, M. Pasqua, and M. Ceccato, “Restats: A test cover-
age tool for RESTful APIs,” in 2021 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2021, pp. 594–598.

[25] Jacoco. (2023) JaCoCo Java Code Coverage Library. [Online]. Available:
https://github.com/jacoco/jacoco

[26] A. Arcuri, “RESTful API automated test case generation with Evomaster,” ACM
Transactions on Software Engineering and Methodology (TOSEM), vol. 28, no. 1,
p. 3, 2019.

[27] S. Karlsson, A. Causevic, and D. Sundmark, “QuickREST: Property-based test
generation of OpenAPI-described RESTful APIs,” in 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST), 2020, pp. 131–
141.

[28] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “RESTest: Black-box constraint-
based testing of RESTful web APIs,” in Service-Oriented Computing - 18th Inter-
national Conference, ICSOC 2020, Dubai, United Arab Emirates, December 14-17,
2020, Proceedings, ser. Lecture Notes in Computer Science, E. Kafeza, B. Benatal-
lah, F. Martinelli, H. Hacid, A. Bouguettaya, and H. Motahari, Eds., vol. 12571.
Springer, 2020, pp. 459–475.

[29] H. Wu, L. Xu, X. Niu, and C. Nie, “Combinatorial testing of restful apis,” in
Proceedings of the 44th International Conference on Software Engineering. New
York, NY, USA: ACM, 2022, pp. 426–437.

[30] apiaryio. (2023) Dredd. [Online]. Available: https://github.com/apiaryio/dredd
[31] Cornutum. (2023) Tcases. [Online]. Available: https://github.com/Cornutum/

tcases
[32] KissPeter. (2022) API Fuzzer. [Online]. Available: https://github.com/KissPeter/

APIFuzzer
[33] Yelp. (2022) Fuzz-Lightyear. [Online]. Available: https://github.com/Yelp/fuzz-

lightyear
[34] namuan. (2022) Fuzzy-Swagger. [Online]. Available: https://github.com/namuan/

fuzzy-swagger
[35] Lothiraldan. (2022) Swagger-Fuzzer. [Online]. Available: https://github.com/

Lothiraldan/swagger-fuzzer
[36] Teebytes. (2022) TnT-Fuzzer. [Online]. Available: https://github.com/Teebytes/

TnT-Fuzzer
[37] T. A. T. Vuong and S. Takada, “A reinforcement learning based approach to

automated testing of android applications,” in Proceedings of the 9th ACM SIGSOFT
InternationalWorkshop on Automating TEST Case Design, Selection, and Evaluation.
New York, NY, USA: ACM, 2018, pp. 31–37.

[38] Y. Koroglu, A. Sen, O. Muslu, Y. Mete, C. Ulker, T. Tanriverdi, and Y. Donmez,
“QBE: Qlearning-based exploration of android applications,” in 2018 IEEE 11th
International Conference on Software Testing, Verification and Validation (ICST),
2018, pp. 105–115.

[39] D. Adamo, M. K. Khan, S. Koppula, and R. Bryce, “Reinforcement learning for
android gui testing,” in Proceedings of the 9th ACM SIGSOFT International Work-
shop on Automating TEST Case Design, Selection, and Evaluation. New York, NY,
USA: ACM, 2018, pp. 2–8.

[40] Y. Koroglu and A. Sen, “Functional test generation from ui test scenarios using
reinforcement learning for android applications,” Software Testing, Verification
and Reliability, vol. 31, no. 3, p. e1752, 2021.

[41] L. Mariani, M. Pezze, O. Riganelli, and M. Santoro, “AutoBlackTest: Automatic
black-box testing of interactive applications,” in 2012 IEEE Fifth International
Conference on Software Testing, Verification and Validation, 2012, pp. 81–90.

[42] A. Romdhana, A. Merlo, M. Ceccato, and P. Tonella, “Deep reinforcement learning
for black-box testing of android apps,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 31, no. 4, pp. 1–29, 2022.

[43] ——, “Assessing the security of inter-app communications in android through
reinforcement learning,” Computers & Security, vol. 131, p. 103311, 2023.

[44] A. Romdhana, M. Ceccato, A. Merlo, and P. Tonella, “Ifrit: Focused testing through
deep reinforcement learning,” in 2022 IEEE Conference on Software Testing, Verifi-
cation and Validation (ICST). IEEE, 2022, pp. 24–34.

1394


