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Abstract: Mesenchymal stem cells extracted from adipose tissue are particularly promising given
the ease of harvest by standard liposuction and reduced donor site morbidity. This study proposes
a novel enzymatic method for isolating stem cells using Vibrio alginolyticus collagenase, obtaining
a high-quality product in a reduced time. Initially, the enzyme concentration and incubation time
were studied by comparing cellular yield, proliferation, and clonogenic capacities. The optimized
protocol was phenotypically characterized, and its ability to differentiate in the mesodermal lineages
was evaluated. Subsequently, that protocol was compared with two Clostridium histolyticum-based
collagenases, and other tests for cellular integrity were performed to evaluate the enzyme’s effect on
expanded cells. The best results showed that using a concentration of 3.6 mg/mL Vibrio alginolyticus
collagenase allows extracting stem cells from adipose tissue after 20 min of enzymatic reaction
like those obtained with Clostridium histolyticum-based collagenases after 45 min. Moreover, the
extracted cells with Vibrio alginolyticus collagenase presented the phenotypic characteristics of stem
cells that remain after culture conditions. Finally, it was seen that Vibrio alginolyticus collagenase does
not reduce the vitality of expanded cells as Clostridium histolyticum-based collagenase does. These
findings suggest that Vibrio alginolyticus collagenase has great potential in regenerative medicine,
given its degradation selectivity by protecting vital structures for tissue restructuration.

Keywords: collagenase; Vibrio alginolyticus; regenerative medicine; adipose tissue; disaggregation

1. Introduction

Regenerative cell therapy, which passes on the therapeutic accomplishment of stem
cells to recover diseased or damaged tissue, has obtained increasing consideration from
scientists and clinicians [1,2]. Mesenchymal Stem Cells (MSCs) are multipotent fibroblast-
like cells capable of self-renewal and differentiate under adequate stimuli into different
cell lineages such as adipocytes, chondrocytes, or osteoblasts that can be harvested from
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diverse adult tissues [3–6]. MSCs are responsible for maintaining the functionality of the
body by substituting cells that are no longer able to accomplish their role in an organ or
tissue [7]. It has been found that MSCs not only present the capacity to differentiate into
a variety of cell types but also possess the ability to secrete high quantities of cytokines
and growth factors (fibroblast growth factor, keratinocyte growth factor, IL-6, and IL-7,
among others), increasing the MSCs’ effect in the reparative processes [8]. MSCs carry
considerable engagement for tissue regeneration due to their essential capability to supply a
renewable contribution of progenitor cells that can build several cell varieties, whole tissue
structures, and organs [9,10]. The primary sources used to isolate MSCs are some adult
and fetal tissues such as amniotic fluid, peripheral blood, bone marrow, adipose tissue,
and so forth [11]. Among these, adipose tissue stands out the most as it is an abundant
and available supply of MSCs and is considered as discarded tissue after procedures of
reconstructive and plastic surgery [12]. For this reason, autologous adipose-derived stem
cells (ASCs) have developed into highly interesting targets for use in regenerative cell
therapy, given their high availability and capability to differentiate into different cellular
lineages [13–18]. The clinical use of ASCs is increasing rapidly because of their encouraging
results across a wide range of clinical applications [19–21].

Optimizing the isolation of ASCs is important not only to improve the efficiency of
the extraction but also for the correct identification of the physiological level of extracted
ASCs, which determines their possible clinical applications [22]. Different ASC isolation
methodologies have been studied to optimize the extraction process, separating the highest
feasible amount of living ASCs from the lowest achievable quantity of adipose tissue in the
shortest workable time. Some of these methods are focused on mechanical isolation using
shear force, centrifugal force, or turbulence force [23–32], and some others use enzymatic
digestion [33,34]. In this last regard, bacterial collagenase is the most conventional prote-
olytic enzyme used for the disaggregation of tissues [35]. The most popular commercially
available bacterial collagenase is a lyophilized extract of the anaerobic culture of Clostridium
histolyticum. Among the best-known uses of C. histolyticum collagenase in the medical field
are wound debridement [36,37], treatment of Dupuytren’s disease [38–41], and treatment
of collagen plaque in the tunica albuginea of Peyronie’s disease [42,43]. However, C. his-
tolyticum collagenases present low collagen selectivity, degrading other membrane proteins
such as fibronectin and decorin, which are fundamental components of the extracellular ma-
trix [44]. The low selectivity of C. histolyticum collagenases is probably due to the variability
in their proteolytic composition [45]. In this regard, the study on collagenases derived
from diverse bacteria strains has gained attention. Those of the genus Vibrio are one of the
most encouraging bacteria, a non-pathogenic strain well known as protease producers and
worthy of more attention and investigation as a wellspring of enzymes [46,47]. The first
reported collagenolytic enzyme was the collagenase from Vibrio alginolyticus, a chemovar
iophagus bacteria which was first named Achromobacter collagenase or achromase but recently
known as Vibrio collagenase. The Vibrio alginolyticus-based collagenase is a highly purified
single-band protein (molecular weight 81,875 Da) that does not contain non-specific pro-
teases or other microbial impurities. V. alginolyticus-based collagenase is an extracellular
metalloproteinase with a specific activity towards collagen substrates [44,46,48]; its amino
acid sequence does not bear significant similarity to other collagenases [49]. Due to its low
metabolic activity against fibronectin and decorin, the primary utility of Vibrio collagenases
depends on their capability to perform the careful eradication of necrotic tissue [44,50] with
only minor damage to the periwound healthy tissues [51,52]. V. collagenase has been estab-
lished to be valuable and adequate as a debriding instrument and is being recommended
for pharmaceutical use [53]. The value and accordance of collagenase have been a recurring
theme in the literature between batches and manufacturers [54]. Moreover, at the present
day, the use of enzymes implies high costs and might impact safety and efficacy [55,56].

The translation of research-based methods into a process for the large-scale preparation
of clinical-grade ASCs according to the Good Manufacturing Practice rules is crucial and
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firmly based on the safety, purity, and efficacy of the cells. The procedure demands rigorous
quality control validation at all pivotal points during the fabrication process [57].

This study aimed to evaluate a novel Vibrio collagenase enzyme for the isolation of
adipose-derived stem cells, comparing cellular yield, cellular viability, and number of living
cells per ml of lipoaspirate with the standard Clostridium collagenase used in research.

2. Materials and Methods
2.1. Adipose Tissue Collection

The adipose samples were collected from 30 patients after obtaining informed consent
for a liposuction procedure. Sample collection followed the ethical guidelines established
by the review committee for human studies. To obtain the adipose sample, the patient
was injected with Klein tumescence solution (2% lidocaine solution: 0.08% w/v; adrenaline
1 mg/mL solution: 0.1% v/v in 0.9% saline) 10 min before liposuction. Around 30 mL
of lipoaspirate was collected from each donor’s abdominal area with a cannula of 11 G,
2 holes, and a 20 mL VAC-Lock syringe. The fat was transported in an adiabatic container
to the laboratory and processed within 24 h from harvest.

2.2. Production and Purification of Vibrio alginolyticus Collagenase

To obtain the Vibrio alginolyticus-based collagenase, the methodology reported by Di
Pasquale et al. (2019) [44] was followed. Briefly, the V. alginolyticus strain was cultured at
30 ◦C and 150 rpm in a medium of peptone of animal origin and salts dissolved in purified
water until the optical density at 60 nm (OD600) reached a value of 0.6.

Next, the inoculum was transferred into a fermenter to collect the collagenase secreted
in the culture medium. Collagenase activity was determined spectrophotometrically using
the modified Wunsch–Heidrich method [58]. Once the enzymatic activity reached more
than 25,000 nkat/L, the fermentation was terminated and the temperature was lowered
to 8 ◦C at 60 rpm for approximately 20 min. The fermented culture medium was clarified
and concentrated by ultrafiltration. Then, the concentrated solution was dialyzed against
10 mM CaCl2, 25 mM TRIS–HCl, and pH 7.1 buffer. The solution from the previous step
underwent a first purification by weak anion-exchange chromatography using a column
prefilled with DE-52 resin (DEAE: diethylaminoethyl cellulose, Whatman, Maidstone, UK).

Collagenase activity was recovered within 3 to 5 bed-column volumes eluted with
700 mM NaCl, 10 mM CaCl2, 300 mM TRIS–HCl, and pH 7.1 buffer. The raw enzyme then
underwent strong anion-exchange chromatography using a column pre-filled with Source
15Q resin (GE Healthcare, Chicago, IL, USA). The collagenase was eluted from the column
with 10 mM CaCl2, 250 mM Tris–HCl, and pH 7.1 buffer. All chromatography runs were
monitored using a UV–vis detector (GE Healthcare) at 280 nm.

Pooled fractions exhibiting collagenolytic activity underwent ultrafiltration using the
Cogent system (Millipore, Burlington, MA, USA) equipped with 10 kDa cut-off modified
PES membranes (Millipore) against 10 mM CaCl2, 25 mM TRIS–HCl, and pH 7.1 buffer.
Routinely, a purified V. alginolyticus collagenase preparation from an 8-L solution exhibits
700 nKat/mL enzymatic activity.

2.3. Adipose Tissue Enzymatic Digestion

The study was divided into two main parts. The first part consisted of the optimization
of the adipose digestion using a novel Vibrio alginolyticus-derived collagenase. For this
purpose, the standard enzymatic digestion method consisting of 1 mg/mL of enzyme
and 45 min of incubation time was selected as the control. Additionally, to optimize the
V. alginolyticus collagenase process, the concentration of the enzyme and the incubation
time were modified. The evaluated enzyme concentrations are displayed in Table 1 with
the different evaluated incubation times for each concentration.
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Table 1. Name code of the evaluated enzyme concentration of V. alginolyticus-based collagenase with
the evaluated incubation time for each concentration.

Name Code Enzyme Concentration (mg/mL) Incubation Time (min)

1x 0.9 45
2x 1.8 45, 30, 20
4x 3.6 30, 20

The lipoaspirate sample was divided into portions of 5 mL each for every evaluated
combination of parameters. Every part was added into 5 mL of 1X Phosphate-Buffered
Saline (PBS) with the evaluated concentration of V. alginolyticus collagenase and 2% Bovine
Serum Albumin (BSA) and placed in agitation at 37 ◦C to evaluate different incubation times.
Once the time passed, the digestion process was stopped with a complete growth medium
(DMEM supplemented with 10% Fetal Bovine Serum, 1% of 1:1 penicillin/streptomycin
and 0.6% Amphotericin B) and centrifuged for 5 min at 3000 rpm.

The obtained pellet of each portion was resuspended in 1 mL of complete growth me-
dia and filtered with a 70 µm cell strainer to be seeded in a T25 flask. The extracted cells were
evaluated in terms of cellular yield and clonogenic and proliferation capacity, and the optimized
parameters were further characterized with flow cytometry and differentiation potential.

The second part of the study consisted of the confrontation of the previously optimized
method with two commercial Clostridium histolyticum-based collagenases: a Clostridium
histolyticum blend and the standard enzyme used in the laboratory, Collagenase Type I
(GIBCO life technology, USA). Both commercial collagenases were prepared in a concentra-
tion of 1 mg/mL in 1X Hank’s Balanced Salt Solution (HBSS) with 2% BSA. The adipose
tissue was divided into portions of 5 mL and was enzymatically digested in 5 mL of each
commercial collagenase solution at 37 ◦C for 45 min in agitation. The enzymatic action
was blocked with a complete growth medium, and the following steps were executed as
previously described. The extracted cells with the optimized method and the commercial
enzymes were compared in terms of cellular yield, clonogenic and proliferation capacity,
and cellular viability on expanded cells.

Intra- and inter-donor comparative analyses were performed. Figure 1 summarizes
the followed methodology.
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Figure 1. Experimental plan for the novel collagenase optimization method and comparison with
commercial enzymes.

2.4. Cellular Yield

The extracted cells were counted in order to calculate the cellular yield, determined as
the number of extracted free cells divided by the processed volume of fat. The number of
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living cells was calculated using the Trypan Blue exclusion assay in a CytoSMART counter
(Automated Image-Based Cell Counter, version 1.5.0.16380, CytoSMART Technologies B.V.,
Eindhoven, The Netherlands).

2.5. Clonogenic Capacity

To evaluate the clonogenic capacity of the extracted cells, they were plated in triplicate
in a 12-well plate at a concentration of 1000 cells/mL. The cells were incubated in a
humidified atmosphere with 5% CO2 at 37 ◦C for 14 days, changing the medium every 48 h.
The cells were stained with Toluidine Blue (Sigma-Aldrich, Milan, Italy) on the last study
day to count the colonies. The colony former unit (CFU-F) was calculated as a percentage
of the number of colonies divided by the number of seeded cells.

2.6. Proliferation Capacity

The extracted cells were seeded on a 25 cm2 T-flask with a complete culture medium
and incubated in a humidified atmosphere at 37 ◦C with 5% CO2. The first medium change
was performed after 72 h from the enzymatic digestion with subsequent changes every
48 h. The proliferation capacity was determined considering the required days to reach
80% confluence.

2.7. Immunophenotyping

Collected cells with the optimized enzymatic digestion immediately after Passage 0,
along with subsequent subculture cells (Passage 4), were characterized by flow cytometry.
The digested adipose tissue was centrifuged at 3000 rpm for 6 min. The cell pellet was
incubated with 1 mL of erythrocyte lysis buffer 1X (Macs Miltenyi Biotec, Milan, Italy)
for 10 min and filtered through a 70 µm cell strainer. Subsequently, cells were washed
with 1 mL in PBS (1X) and incubated (1 × 105 for each tube) with conjugated antibodies
on ice for 30 min. After incubation, the pellets were centrifuged (5000 rpm, 7 min) and
resuspended in 100 µL of PBS (1X).

The antibodies used were: CD45 FITC conjugate (1:20 dilution), CD34 PE conjugate
(1:5 dilution), CD90 PE conjugate (1:20 dilution), CD73 BV421 conjugate (1:5 dilution), CD34
APC conjugate (1:20 dilution), CD146 APC conjugate (1:5 dilution), CD105 PE conjugate
(1:5 dilution), and SEEA3 FITC conjugate (1:5). For cell viability, propidium iodide was
used. All antibodies were purchased from BD Biosciences (Becton Dickinson Italy S.P.A.,
Milano, Italy). Immunophenotyping was performed through a chant II FACS (BD, Becton
Dickinson, Milano, Italy).

2.8. Differentiation Assay

To evaluate the differentiation potential of the extracted cells with the optimized
parameters, cells from passage 4 (P4) were used for both the treated and control groups.
Stained cells were compared with differentiated cells extracted with Collagenase Type
I, performed in triplicate. For adipogenic and osteogenic differentiation, 5000 cells were
seeded in a 12-well plate in triplicate and incubated at 37 ◦C with 5% CO2. After 24 h of
cell incubation, the complete culture medium was replaced with adipogenic and osteogenic
mediums, respectively (StemPro osteogenesis differentiation Kit–GIBCO Life Technology,
Monza, Italy). To determine adipogenic differentiation capability, cells were fixed after
14 days of study with Baker’s fixative (Bio-Optica, Milan, Italy) for 10 min at 4 ◦C as
recommended by the manufacturer, washed for 10 min with tap water, and stained with Oil-
Red-O ready-to-use solution (Bio-Optica, Milan, Italy) for 15 min and Mayer’s Hematoxylin
(Bio-Optica, Milan, Italy) for 5 min. Finally, the cells were washed with tap water for 5 min
and mounted with Mount Quick aqueous solution (Bio-Optica, Milan, Italy).

After 14 days of incubation, the osteogenic differentiation capacity was evaluated by
staining the cells with Alzarin Red solution (Merck KGaA, Darmstadt, Germany) for 3 min
post-fixation with 4% formaldehyde (Bio-Optica, Milan, Italy) in 0.05 M PBS for 30 min at
4 ◦C. The Alzarin Red was washed with distilled water and followed by immersion of the
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samples in Mayer’s Hematoxylin for 30 s. Finally, the glass coverslips were dehydrated in
an ethanol gradient concluding with two passages in xylene to be mounted with Entellan
(Merck KGaA, Darmstadt, Germany).

The differentiation in chondrogenic lineage was evaluated by resuspending 1 × 106 cells
in 5 µL of complete culture medium in triplicate and incubating for 2 h in a 12-well plate.
After the time had passed, chondrogenic medium (StemPro chondrogenic differentiation
Kit, GIBCO Life Technology, Monza, Italy) was added and changed every 3 days. After
21 days of study, the cells were fixed with 4% formaldehyde in PBS 0.05 M for 30 min at
4 ◦C. The fixative was washed with distilled water and the cells were stained with Alcian
Blue solution (Merck KGaA, Darmstadt, Germany) for 40 min in slow agitation and later
with Nuclear Fast Red (Bioptica, Milan, Italy) for 20 min. The samples were dehydrated
and mounted with Entellan.

The same 4th passage cells with complete culture media were used as controls, and
they were seeded and stained following the same procedure for every lineage. Once
the samples were completely dried, the cells were imaged in light microscopy using an
Olympus BX-51 microscope (Olympus, Tokyo, Japan) equipped with a digital camera
(DKY-F58 CCD JVC, Yokohama, Japan) and connected to a PC endowed with Image-Pro
Plus 7.0 software. The mounted samples were gently cleaned with ethanol and then placed
on the microscope slide holder. A total of 5 images for each slide were acquired using a 20×
objective for the quantification of lipid droplets, 10× objective for osteogenic quantification,
and 4× for chondrogenic quantification. For each quantification, Photoshop software
(Adobe Photoshop CS6 v13.0 extended) was used to isolate the specific differentiation
staining color (red for lipid droplets and calcium deposits, blue for the cartilage-like
matrix). Successively, a custom-designed ImageJ plugin (U.S. National Institutes of Health),
in the blind condition was used to make a binary image and quantify the differentiation-
specific color previously isolated. For adipogenic differentiation, the number of lipid
droplets (referred to as a red spot on the cell cytoplasm) was quantified. For chondrogenic
differentiation, the area of the chondrogenic aggregates (marked by Alcian blue staining)
was considered. For osteogenic differentiation, the calcium deposit area (marked from the
Alzarin Red staining) was quantified. After semi-quantification with ImageJ, the data were
transferred into a PRISM file for statistical analysis and graph creation.

2.9. Cellular Viability Test

To evaluate the potential cytotoxicity activity of the V. alginolyticus collagenase in the
optimized protocol, two viability tests were performed to compare it with Collagenase Type
I and the C. histolyticum blend. The first viability test was the Trypan Blue exclusion test.
Expanded cells (P4) were detached and divided into three portions, one for each evaluated
collagenase. The viability of each part was measured with Trypan Blue solution in a CytoS-
MART counter (Automated Image-Based Cell Counter, version 1.5.0.16380, CytoSMART
Technologies B.V., Eindhoven, Netherlands) and named viability pre-treatment. The cells
were then placed in contact with the evaluated collagenases at the optimized concentration
for V. alginolyticus collagenase and 1 mg/mL for Collagenase Type I and the C. histolyticum
blend and incubated at 37 ◦C for 20 min in agitation. At the end of the incubation time, the
viability post-treatment was measured with Trypan Blue, as previously mentioned. The
test was performed in triplicate.

The second viability test was the methyl-thiazolyl-tetrazolium (MTT) colorimetric
assay for metabolic activity. P4 cells were detached and divided into four portions, one
with no treatment as the control. The remaining three were treated with the the evaluated
enzymes at the optimized concentration for V. alginolyticus collagenase and 1 mg/mL for
Collagenase Type I and the C. histolyticum blend. All four portions were incubated at 37 ◦C
for 20 min in agitation. After the time had passed, 1 × 104 cells were seeded in sextuplicate
for each evaluated enzyme with 100 µL of complete growth medium in a 96-well plate.
The cells were incubated for 24 h at 37 ◦C and 5% CO2. The medium was removed
after the incubation time and the cells were washed with 1X PBS. The cells were treated
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with 100 µL of MTT (3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide) at a
concentration of 5 mg/mL (Sigma, Italy) and incubated for 4 h in the dark. Subsequently,
the formed formazan crystals were dissolved in 100 µL of dimethyl sulfoxide (DMSO) for
10 min. The optical density was measured in a microplate reader (HTX Microplate Reader
BioTek Instruments, Winooski, VT, USA) at a wavelength of 530 nm. The cell viability
was calculated using Equation (1) as a percentage of the absorbance of the treated cells in
relation to the absorbance of control cells. All measurements were performed in triplicate
for each treatment and the control cells.

%cellsviability =

(
ATreatment
AControl

)
∗ 100 (1)

Finally, the expanded cells treated with the evaluated enzymes were morphologically
analyzed through a Transmission Electron Microscope (TEM) to evaluate cell integrity.
The expanded cell pellets obtained after enzymatic treatments were fixed for 1 h in 2%
glutaraldehyde in 0.1 M phosphate buffer solution (PBS) and, after washing, postfixed for
1 h in 1% OsO4 diluted in 0.2 M K3Fe (CN)6. After rinsing in 0.1 M PBS, the samples were
dehydrated in graded concentrations of acetone and embedded in a mixture of Epon and
Araldite (Electron Microscopic Sciences, Fort Washington, PA, USA). Ultrathin sections
were cut at 70 nm thickness on an Ultracut E ultramicrotome (Reichert-Jung, Heidelberg,
Germany), placed on Cu/Rh grids, and contrasted with lead citrate. Samples were ob-
served with a Philips Morgagni 268 D electron microscope (Fei Company, Eindhoven, The
Netherlands) equipped with a Megaview II camera for the acquisition of digital images.

2.10. Statistical Analyses

Statistical analyses were performed using GraphPad Prism 7.03 for Windows (Graph-
Pad Software, La Jolla, CA, USA). The data are reported as means ± standard errors
obtained after analyzing four consecutive patients. One-way analysis of variance (ANOVA)
and the multiple comparisons test (Tukey test) were employed. A confidence interval of
95% was used to compare the evaluated experimental groups and a p-value < 0.05 indicated
that the differences were statistically significant.

3. Results
3.1. Optimization of the Collagenase Fidia Adipose Tissue Digestion Process
3.1.1. Cellular Yield, Clonogenic Potential, and Proliferation Capacity

The extracted cells obtained after enzymatic digestion with V. alginolyticus collagenase
in different concentrations and with different incubation times were analyzed for cellular
yield, viability, proliferation capacity, and clonogenic potential. Figure 2A shows that the
number of nucleated cells per mL of fat for all of the evaluated protocols was higher with
the 4×/20 min treatment compared to the other protocols. Considering the enzymatic
reaction at 1 mg/mL with an incubation time of 45 min as the “standard method” (cell yield
100%), the cellular yield of the 4×/20 min method resulted in a result of 235.49 ± 35.85%.
However, there are no significant differences among the treatments. Figure 2B shows the
relative proportion of CFU-F (colony-forming unit-fibroblast) evaluated 7 and 14 days after
the seeding. The graph shows that the 2×/45 min protocol presents the highest among the
treatments for extracting colony-forming units from adipose tissue. However, it can be seen
from Figure 2C that cells extracted with the 4×/20 min protocol present a faster population
doubling time, which means that these cells required fewer days to reach confluence in
comparison with the other methods.
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incubation times. The results are shown as means ± standard errors, indicating the significant
statistical differences (*: p-value < 0.05, **: p ≤ 0.01, ***: p ≤ 0.001).

Figure 3A shows the percentage of cellular viability obtained with the studied methods.
As seen, there is no significant difference among the treatments in terms of cell viability,
and for all the protocols, it was found to be over 96%. Additionally, Figure 3B presents the
proliferation capacity of the different evaluated protocols. From the graph, the elevated
proliferative function of the extracted cells is notorious after the 2×/20 min methodology
compared to the other procedures.
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Figure 3. (A) Viability and (B) proliferation capacity of extracted cells after enzymatic digestion with
V. alginolyticus collagenase in varying concentrations and with different incubation times. The results
are shown as means ± standard errors, indicating the significant statistical differences (**: p ≤ 0.01,
****: p ≤ 0.0001).

Considering the obtained results, the selected optimized protocol was with a concen-
tration of 4x and an incubation time of 20 min. The protocol was preferred given that its
biological behavior is comparable with the other protocols, but it requires less time to digest
adipose tissue.

3.1.2. Immunophenotyping of Optimized Fidia Collagenase Method

The cells extracted with the optimized protocol were characterized to identify the
cellular composition of the suspension after the extraction (passage 0; P0) and after cul-
turing them until passage 4 (P4). Figure 4 shows the FACS results at P0 for the different
analyzed antibodies. It can be seen by the large cloud of data located on the negative
side of the Propidium Iodide (PI) marker that most of the evaluated cells (approximately
99.8%) were alive, indicating that the results for the different antigens accurately represent
the cellular population on the sample. Firstly, out of the cells evaluated for CD45, 6.4%
were positive, representing a population of leucocytes. The remaining cells were nega-
tive for this marker which, alongside the positive expression of CD90, CD73, CD34, and
CD105, characterize mesenchymal stem cells and cells of hematopoietic origin. In the same
CD45-negative population, the positive expression of CD146 represents pericytes on the
cellular suspension.

Additionally, the presence of another subpopulation, multilineage-differentiating
stress-enduring cells (MUSE), was characterized by the simultaneous expression of CD105
and SEEA3.

On the other hand, Figure 5 shows the cellular characterization of the extracted cells
with the optimized protocol after being cultured until passage four. As seen with the P0
analysis, most of the evaluated cells were alive during the study. It can be seen that the
cell expressed the typical markers for mesenchymal stem cells with a reduced presence of
other subpopulations, as seen with the almost non-existent positive result for CD45 and
CD34, markers for leucocytes and hematopoietic stem cells, respectively. Moreover, the
cells maintain their multipotency, as proven by the simultaneous positive responses for the
CD105 and SEEA3 markers.
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3.1.3. Analysis of Multipotency

The extracted cells show a differentiative capacity in the three evaluated cellular
lineages after being seeded in the differentiative culture medium in the evaluated time.
Figure 6A shows representative images of the differentiation process compared with the
differentiated cells extracted with Collagenase Type I and the control (cells cultured in a
complete growth medium). The semi-quantification analysis of lipid droplets presented
in Figure 7B showed comparable adipogenic differentiation between V. alginolyticus col-
lagenase (215.3 ± 17.5, n = 3) and Collagenase Type I (227.1 ± 29.7, n = 3), while the
negative control resulted in 3.867 ± 1.348, n = 3. Otherwise, V. alginolyticus collage-
nase resulted in a statistically significant higher differentiation potential for chondro-
genic (313.114 µm2 ± 79.755 µm2, n = 3) and osteogenic (185.119 µm2 ± 8.431 µm2, n = 3)
lineages when compared to Collagenase Type I (124.643 µm2 ± 8.240 µm2, n = 375.572
µm2 ± 13.652 µm2, n = 3) and negative controls (0 ± 0, n = 3, 31.73 ± 18.67, n = 3),
as seen in Figures 7C and 7D, respectively. The results showed that the extracted cells
with the optimized treatment present the capacity to proliferate in adipocytes, osteocytes,
and chondrocytes.
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Figure 6. (A) Optical microscopy images of extracted cells with the V. alginolyticus optimized protocol
compared with extracted cells with Col. Type I after being induced with differentiation medium
(adipocytes present lipid droplets identified with black arrows, chondrocytes in blue, and osteocytes
in red) in comparison with uninduced cells (CTRL-). Statistical graphs of semi-quantitative analysis
of (B) lipid droplet number for adipogenic differentiation, (C) the cartilage-like matrix area for
chondrogenic differentiation, and (D) calcium deposit areas for osteogenic differentiation. The results
are shown as means ± standard errors, indicating the significant statistical differences (* p ≤ 0.05,
*** p ≤ 0.001, **** p ≤ 0.0001).

3.2. Comparison of the Optimized Protocol with Commercial Collagenases
3.2.1. Cellular Yield, Clonogenic Potential, and Proliferation Capacity

Figure 7A shows the number of cells obtained after the three enzymatic treatments in
the study. As seen in the graphic, an average of 1.49 × 103 ± 2.27 × 102 cells is obtained
with V. alginolyticus collagenase at 4x/20 min, while in the case of the two control treat-
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ments, the average cell numbers were 9.64 × 102 ± 3 × 102 and 9.51 × 102 ± 1.75 × 102 for
Collagenase Type I and the C. histolyticum blend, respectively. Considering Collagenase
type I as the “gold standard”, and therefore with a cellular yield of 100% in terms of the
number of extracted cells per mL of processed adipose tissue, the cellular yield percent-
age of the V. alginolyticus collagenase at 4×/20 min was 154.96 ± 23.59, proving it to be
more efficient, whereas for the C. histolyticum blend, the cellular yield percentage was of
98.70 ± 18.12. However, there was no statistical significance among the data. Figure 7B
reports the number of Fibroblast-like Colony Forming Units (CFU-F) for the evaluated
enzymatic treatments counted 7 and 14 days after enzymatic digestion. The average CFU-F
obtained with the V. alginolyticus collagenase at 4×/20 min were 18.42 ± 1.40 and 30 ± 2.74
after 7 and 14 days, respectively. In the case of both control collagenases, the average
numbers of CFU-F after 7 days were 21.25 ± 2.66 and 25.75 ± 3.40 for Collagenase Type
I and the C. histolyticum blend, respectively. Even though the number of CFU-F for the
V. alginolyticus collagenase after 7 days is lower than the other two treatments, there is
no statistical significance among the data. Notwithstanding, after 14 days, the number of
CFU-F for the C. histolyticum blend (45.25 ± 3.20) is statistically higher than the one reported
for the V. alginolyticus collagenase, but there was no difference with the average number for
Collagenase Type I (36.50 ± 3.52). The graph also shows the clonogenic efficiency (CFE) at
7 and 14 days. The V. alginolyticus collagenase at 4×/20 min reports a CFE lower than the
C. histolyticum blend at 7 days and the CFE was even lower after 14 days.

Figure 7C shows the cell growth curve of the evaluated enzymatic treatments. To
assess the proliferative capacity of each product, after the enzymatic digestion, 2 × 105 cells
were seeded for every treatment, and the time and number of cells were evaluated once
the plates reached confluence. The proliferative capacity is comparable between the three
methods with no statistical differences.

Figure 8 shows the cellular viability and proliferation capacity of the products extracted
with the three enzymatic methods. It can be seen from the figure that there is no significant
difference among the treatments. In terms of cell viability, all the evaluated methods
present a viability percentage over 95%, while the proliferative capacity is over 5 days
to confluence.

3.2.2. Cellular Integrity Assay

To evaluate whether the studied collagenases preserve the integrity of the cell mem-
brane, expanded ASCs were subjected to treatment with the three enzymes being assessed
(V. alginolyticus collagenase 4×/20 min, Collagenase Type I, and a C. histolyticum blend) for
20 min.

Cellular viability was measured with the Trypan Blue mortality test before (pre) and
after (post) treatment with the collagenases. Figure 9A shows the mean percentage value of
viability, where it is noticeable that there is no difference between pre- and post-treatment
for V. alginolyticus collagenase 4×/20 min and Collagenase Type I, but a decrease in viability
for cells treated with the C. histolyticum blend is appreciable (pre-viability 97.81 ± 0.92%,
post-viability 82.03 ± 1.69%).

Figure 9B shows the viability percentage of cells treated with the evaluated enzymes
after 24 h of treatment. This was assessed with the MTT test and compared with control cells
(cells not subjected to enzyme exposure). The cells treated with V. alginolyticus collagenase
4×/20 min and Collagenase Type I present viability of 94.88 ± 17.88% and 86.46 ± 6.06%,
respectively. The C. histolyticum blend, on the other hand, shows a viability percentage of
46.16 ± 2.59%, which is nearly half of that for V. alginolyticus collagenase.
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Figure 7. (A) Cellular yield, (B) clonogenic potential, and (C) cellular growth of extracted cells after
enzymatic digestion with the optimized V. alginolyticus collagenase compared with Collagenase
Type I and the C. histolyticum blend. The results are shown as means ± standard errors, indicating
the significant statistical differences (*: p-value < 0.05).
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Figure 8. (A) Viability and (B) proliferation capacity of extracted cells after enzymatic digestion with
the optimized V. alginolyticus collagenase compared with Collagenase Type I and the C. histolyticum
blend. There are no statistical differences among the data.
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Figure 9. Viability percentage of expanded cells placed in contact with the optimized V. alginolyticus
collagenase compared with Collagenase Type I and the C. histolyticum blend for 20 min evaluated
with the (A) trypan blue exclusion test and (B) MTT test. The results are shown as means ± standard
errors, indicating the significant statistical differences (***: p ≤ 0.001, ****: p ≤ 0.0001).

Finally, the cells were morphologically evaluated through transmission electron mi-
croscopy. Figure 10 shows some TEM-selected images of P4 cells treated with the evaluated
collagenases. The cells treated with the V. alginolyticus collagenase present a regular pro-
file with characteristics of cellular activation and polarization; in fact, many cytoplasmic
membrane extroversions are noted. The same aspects can be seen in the cells treated with
Collagenase Type I. Both treatments allow the release of extracellular vesicles following
the formation of sessile and pedunculated bubbles on the cytoplasmic membrane. On the
other hand, the cells treated with the C. histolyticum blend collagenase show irregularities in
shape and size, with most of the cells characterized by diffuse cytoplasmatic vacuolization
and autophagosomes, which indicate cellular degenerative processes.

Finally, the control cells present a rounded morphology consistent with the literature.
The cytoplasm is well conserved with smooth endoplasmic reticulum activation, and the
plasmalemma shows short microvillar protrusions.
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Figure 10. Representative images of TEM analysis of P4 cells treated with the optimized V. alginolyticus
collagenase compared with Collagenase Type I and the C. histolyticum blend for 20 min. Cells placed
in agitation for 20 min acted as the control group.

4. Discussion

Non-specific proteolytic enzymes are extensively used in clinical practice. There are
many diseases caused by uncontrolled collagen accumulation, such as fibrous skin and
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scars, or due to the production of necrotic connective tissues such as in chronic ulcers
or burns. In these cases, the use of specific proteolytic enzymes represents an excellent
therapeutic strategy [59–61]. Furthermore, the clinical use of collagenase in relation to
adipose tissue has been used indirectly for cellulite, whose treatment targets adipose tissue,
dermis, and fibrous septae with varying degrees of success and duration of response [62,63].

Bacterial collagenases are a usual proteolytic family of enzymes responsible for the
disintegration of tissue. Among these, the most recognized in medical practice is the
lyophilized extract of Clostridium histolyticum [64]. However, collagenases extracted from
C. histolyticum possess reduced protein selectivity, degrading not only collagen but other
essential proteins as well [44], possibly influencing product regenerative capacity. Although
C. histolyticum collagenase has been used for over four decades in the laboratory, it is not
suited for clinical practice given its long-lasting and non-standardized procedure [29,65].
The traditional method for isolation and culture of primary ASCs from adipose tissue relies
on enzymatic digestion with collagenase, followed by multiple steps of centrifugation [66].
It is remarkable that there is no standardized protocol to isolate ASCs for clinical application.
Notwithstanding, in Europe, these protocols have to fall within the legislative directives set
by the European Medicines Agency (EMA), particularly the enzymatic digestion of a tissue
to release cells as this is considered to be substantial manipulation [65]. If the enzymatic
digestion causes the isolation of functionally intact tissue units or there is scientific evidence
that the original structural and functional characteristics are maintained, the procedure is
not considered substantial manipulation.

Collagenases extracted from Vibrio alginolyticus are primarily unexplored and under-
studied. Nevertheless, their uses are different and of extreme effectiveness in the wound
fields [44,50,52]. Recently, its use has also been expanded to Dupuytren’s disease, after
the withdrawal of Clostridium hystolyticum collagenase from the European Union for com-
mercial reasons [67,68]. Animal model studies have demonstrated that collagenase from
Vibrio alginolyticus does not cause skin necrosis, and no skin tears or wound dehiscences
were observed, demonstrating the safety of this novel collagenase. This macroscopic data
was confirmed by microscopic analysis, where no hematomas were found around the
fibrotic area with the absence of leukocyte infiltrates and macrophages, confirming the
selectivity for collagens I and III and reducing the risk of vascular lesions or skin ulcera-
tions [41]. This manuscript aimed to clarify the effects of a novel collagenase blend from
the V. alginolyticus strain and compare it with standard collagenases with regard to cell
isolation, cellular yield, cell viability, and number of extracted living cells from human
adipose tissue.

The novel V. alginolyticus collagenase was evaluated at different concentrations and
with different periods of incubation. It was found that all evaluated protocols presented
no statistical differences with respect to the number of extracted cells, cellular viability,
and cellular growth. However, regarding cellular growth, the mean necessary days to
confluence were lower for the concentration of 3.6 mg/mL, with incubation times of 30 and
20 min, than the rest of the protocols, which indicates a faster replication capacity that might
influence cellular behavior in vivo. Even though both protocols presented similar results for
all the evaluated parameters, the one with the faster enzymatic reaction is preferable. The
optimized method based on a concentration of 3.6 mg/mL of V. alginolyticus collagenase
and 20 min of incubation was used for further characterization. The FACS data showed
that the extracted cells presented with stem cell characteristics, preserving the distinctive
phenotype. Additionally, these cells are able to differentiate in three mesodermal cellular
lineages (adipocytes, chondrocytes, osteocytes) and are comparable with the extracted cells
after the Collagenase Type I enzymatic reaction. The higher chondrogenic and osteogenic
potential shown by the Vibrio collagenase in the multipotency analysis could be due to the
higher integrity of extracellular and membrane proteins and cellular receptors, essential for
signaling and differentiation processes.

Additionally, the optimized protocol was compared with the standard enzyme for
laboratory procedures and a commercial C. histolyticum-based collagenase. It was found
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that, in terms of cellular yield, clonogenic potential, and proliferation capacity, there are no
differences between the optimized V. alginolyticus collagenase and the standard ones. Even
though there were no statistical differences among the data, the results showed that the
mean value for the optimized protocol cellular yield was higher than those reported for
both C. histolyticum-based collagenases, probably due to the fact that the V. alginolyticus
collagenase presented selectivity for collagen. Furthermore, it was demonstrated with the
cellular growth curve that the extracted cells with the V. alginolyticus collagenase reach
confluence faster than the other two evaluated enzymes.

Finally, it was seen that the evaluated enzymes in direct contact with stem cells provoke
different reactions affecting cellular vitality. It was found that cells in contact with the
C. histolyticum blend enzyme presented a considerable vitality reduction after 45 min of
treatment; meanwhile, cells in contact with the optimized method presented the highest
vitality among the treatments.

These findings show that while the V. alginolyticus collagenase has a comparable
enzymatic function to the C. histolyticum-based collagenases, it does not affect additional
structures that might be of vital importance in tissue regeneration applications. The
enzymatic characteristics of the V. alginolyticus collagenase are gentle on extracellular
matrix structures as they are selective in their degradation capacity [46]. Providing a
gentle enzymatic therapy for the remotion of damaged tissue in skin defect treatment may
improve the efficacy of novel approaches for tissue regeneration [69].

5. Conclusions

Using the novel Vibrio alginolyticus-based collagenase at a concentration of 3.6 mg/mL
and 20 min of incubation time at 37 ◦C, the highest enzymatic efficiency with the shortest in-
cubation time was found in comparison with the other evaluated parameters. Additionally,
the selected method showed comparable efficiency with two commercial collagenases, Col-
lagenase Type I (GIBCO life technology) and a C. histolyticum blend, but without affecting
cellular integrity when used on expanded cells.

The cells extracted with the Vibrio alginolyticus collagenase at a 3.6 mg/mL concentra-
tion presented the phenotypic characteristics of stem cells and can differentiate into three
mesenchymal lineages, showing the potential applications of this enzyme in different areas
of regenerative medicine.
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