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Background: The concept of the latent geometry of a network that can be
represented as a graph has emerged from the classrooms of mathematicians and
theoretical physicists to become an indispensable tool for determining the structural
and dynamic properties of the network in many application areas, including contact
networks, social networks, and especially biological networks. It is precisely latent
geometry thatwediscuss in this article to showhow the geometry of themetric space
of the graph representing the network can influence its dynamics.

Methods: We considered the transcriptome network of the Chronic Myeloid
Laeukemia K562 cells. We modelled the gene network as a system of springs using
a generalizationof theHooke’s law ton-dimension (n≥ 1).Weembedded the network,
described by the matrix of spring’s stiffnesses, in Euclidean, hyperbolic, and spherical
metric spaces to determine which one of these metric spaces best approximates the
network’s latent geometry. We found that the gene network has hyperbolic latent
geometry, and, based on this result, we proceeded to cluster the nodes according to
their radial coordinate, that in this geometry represents the node popularity.

Results: Clustering according to radial coordinate in a hyperbolic metric space
when the input to network embedding procedure is thematrix of the stiffnesses of
the spring representing the edges, allowed to identify the most popular genes that
are also centres of effective spreading and passage of information through the
entire network and can therefore be considered the drivers of its dynamics.

Conclusion: The correct identification of the latent geometry of the network leads
to experimentally confirmed clusters of genes drivers of the dynamics, and,
because of this, it is a trustable mean to unveil important information on the
dynamics of the network. Not considering the latent metric space of the network,
or the assumption of a Euclidean space when this metric structure is not proven to
be relevant to the network, especially for complex networks with hierarchical or
modularised structure can lead to unreliable network analysis results.
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1 Introduction

With the emergence of systems biology around the year 2000, the
representation of a system of interacting biological entities, such as
proteins, molecules, functional complexes, etc., in the form of a network
or graph has become preponderant and an unreliable prerequisite of
any mathematical model regarding both the static and dynamic
properties of the network. This representation of the components of
a system as network nodes and their interactions as arcs between the
nodes proved to be easy to understand as it is intuitive and also an
excellent tool for organising data. However, the immediacy of
understanding such a representation comes at the price of its low
informational power, its susceptibility to misinterpretation and its use
that often takes place under tacit or even unconscious assumptions.
Particularly in the graph representation of a network, it is natural to
think of the concept of distance between nodes as the number of arcs
separating the nodes, or, if the weights of the arcs are known, as the
weighted sum of the number of arcs separating the nodes. In doing so, it
is implicitly assumed that the distance between two nodes is a Euclidean
distance, or, in other words, that the metric space in which the network
resides is flat Euclid space. This implicit assumption on a measure as
important as the distance between nodes, used in multiple contexts as a
measure of the intensity of an interaction between nodes, if not of the
propensity of the interaction itself, may not only be reductive or
approximate, but may even be incorrect. An erroneous assumption
about the metric space that represents the geometry of the network
carries serious risks, one of which is that of not being able to grasp the
organizational principles of the typology and consequently the
dynamics of the network. Indeed, the distribution of widely used
centrality metrics like as degree and clustering coefficient reflect the
features of the metric space, which defines the network’s geometry. For
example, heterogeneous degree distributions and significant clustering
emerge naturally as reflections of the underlying hyperbolic geometry’s
negative curvature and hyperbolic metric characteristic (Krioukov et al.,
2010). On the opposite, if a network has some metric structure and a
heterogeneous degree distribution, the network has an effective
hyperbolic geometry below (Krioukov et al., 2010).

It is often said to indicate themetric space of a network that the graph
representing the network is “embedded” in ametric space, which is called
the latent geometry of the network. The adjective “latent” is justified by
the fact that the graph representation of a network does not make visible
the characteristics of the metric space in which the coordinates of the
nodes are actually defined. The verb “to embed”, on the other hand,
although commonly used, we condemn somewhat misleadingly, since
the network, if endowed with a metric structure, is in fact not embedded
in a metric space as if it were a distinct entity that fits into it, but is itself a
portion of it, more precisely a discrete version of the continuous metric
space that represents it. The use of the verb “to embed” stems from the
procedures dedicated to understanding what the latent geometry of the
network might be and based on tests in which the network is considered
to have metrics of a different nature and then the distortion that the new
metric has with respect to the original metric defined by the network’s
similarity matrix (i.e., weighted adjacency matrix) is assessed.

The latent geometry of a network is an important area of study in
network science. We refer the reader to Boguñá et al. (2021); Jhun
(2022) or an overview of the studies and fields of application of the study
of the latent geometry of a network. In Jhun (2022), it is reported that
latent geometry has been used to travel networks efficiently (Kleinberg,

2000; Boguñá et al., 2010) detect missing links (Liben-Nowell and
Kleinberg, 2007; Clauset et al., 2008), map the brain (Allard and
Serrano, 2020), and analyse proximity network (Papadopoulos and
Flores, 2019). Interestingly, it has been shown that the map of
contagions of various pandemics develops through paths defined on
the latent geometry of the network of contacts and movements of
individuals (Taylor et al., 2015). Systems biology has also benefited from
the results of latent network geometry analysis, in particular the study of
genetic networks and protein-protein interaction networks as reported
in (Alanis-Lobato et al., 2018; Härtner et al., 2018; Pio et al., 2019;
Klimovskaia et al., 2020; Sun et al., 2021; Lecca and Re, 2022; Lecca,
2023; Seyboldt et al., 2022).

While we can say that the relationship between latent geometry and
static topological properties of the network, such as those measured by
the centrality indices, is well established, the relationship between latent
geometry and network dynamical properties is little investigated. A
recent attempt in this direction was made by Rand et al. (2021). In this
paper, Rand et al. study embryonic development. From egg to adult,
embryonic development results in the reproducible and organised
manifestation of complexity. In this process, the activity of gene
networks culminates in the sequential differentiation of distinct cell
types that construct this complexity, which has been likened by Conrad
Waddington metaphor (Fard et al., 2016; Squier, 2017; Sánchez-
Romero and Casadesús, 2021) to a flow through a landscape with
valleys representing alternative destinies. Geometric approaches enable
the formal description of such landscapes and codify the types of
behaviours produced by differential equation systems.

With this study of ours, we wish to make a contribution in this still
very unexplored field of the relations between latent geometry and the
evolution of a network, particularly a biological network. We propose a
method to infer the equations governing the dynamics of a network of
genes previously identified by the authors (Lombardi et al., 2022) as
involved in the development and progression of Chronic Myeloid
Leukaemia (CML). The method consists of two steps: i) the
determination of the latent geometry of the network through
embedding of the network in three models of metric space
(Euclidean, hyperbolic, and spherical), and ii) the determination of
the dynamic equations describing this metric space. If the result of the
step i) is the hyperbolic metric, the parameter of the dynamics of the
interactions in the network conceived as a subspace of a hyperbolic space
will depend on the hyperbolic distance between the interacting partners.
Similarly, if the result of step i) is a spherical metric, the dynamics of the
network will be parametrized by distance of the interacting nodes in the
spherical space, and finally, if the result of step i) is an Euclidean metric,
the network will be a dynamical systems whose parameters will depend
on Euclidean distance between the interacting nodes.

In this study, we conceive of a network as a system of springs, in
which the nodes constitute the masses and the arcs the springs that
connect these masses/nodes. The spring constant represents the
transmission efficiency of the interaction between the nodes. The
interaction between a node A and a node B is seen as a change in
the state of A causing a change in B. In accordance with the spring
model, the interaction between nodes is seen as a propagation of the
alteration of A’s state through the spring to B, which absorbs the
alteration of A in turn changing its state. The vibrational states of the
networks nodes are governed by a generalization of the Hook law.
According to this law, the spring constant is calculated by dividing the
force required to stretch or compress a spring by the lengthening or
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shortening of the spring. It is statedmathematically as k = −F/Δx, where
Δx is the displacement of themass, F is the force applied over x, and k is
the spring constant (also known as spring stiffness). The propagation
velocity of the elastic wave in a spring stressed by a force is directly
proportional to the square root of the spring’s elastic constant. A stiffer
spring has a greater spring stiffness, and vice versa. As a consequence, a
high spring stiffness is interpreted as high efficiency and thus greater
ease in the transmission of interaction between nodes. The elastic
constant metaphor, in network metric space, corresponds to a measure
of similarity between nodes, such that nodes connected by harder
springs are closer nodes in terms of similarity. In the model of network
we present here, the elastic constants of the springs are obtained from a
generalization of the Hook’s law for a system with N masses and E
springs (N corresponding to the number of nodes and E corresponding
to the number of edges), where the mass of the node is given by its total
degree and the change in the position of the node is given by the index
of vibrational centrality proposed by Estrada and Hatano (2010). The
matrix of elastic constants is used in network embedding procedures in
three types of space, Euclidean, hyperbolic, and spherical. The metric
space for which the embedding of the network shows a minimum
distortion of the values of this matrix is considered as the best
approximation for the metric space of the network. The distances of
the nodes in this metric space constitute the parameters of the network
dynamics, which we describe here in terms of mass action law.

The article is organised as follows: in Section 2 we introduce the
three types of isotropic spaces considered in this study and the
embedding techniques we used to identify which of the metric

spaces considered best represents the network’s latent geometry. In
Section 3 we describe the data and the gene network of the case
study. In Section 4, we describe the mathematical modelling of the
gene network as a system of springs, and finally in Section 5 we
report the results obtained. This is followed by some concluding
remarks and a recapitulation of the study performed (Section 6). In
Figure 1 we illustrate the main steps of the analysis presented in this
study.

2 Network geometry and methods of
embedding

A graph embedding consists in the determination of the
coordinates of the graph node in a given metric space in such a
way that the graph similarity matrix is reproduced with as little error
as possible. The embedding of a graph thus consists of the problem
of finding the coordinates of the nodes in a given metric space from
the similarity matrix of the graph, which is a measure of the
distances between nodes. In the final analysis, embedding
consists of finding coordinates of points given their distance.
Isotropic spaces can only be classified as Euclidean (flat), elliptic
(having positive curved), or hyperbolic (having negative curvature).
In the following sections, we will recall some basic definitions, such
as that of inner product and distance for these three types of spaces,
and briefly mention the mathematical techniques of graph
embedding, of which there are many variants in literature. We

FIGURE 1
In this study, we obtained the gene network of interest by querying the Pathway Commons database with the list of genes of interest. We
represented the network as a system of springs whose masses are the expression level of the genes as measured in our experiments in (Lombardi et al.,
2022). We calculated the weighted adjacency matrix of the network as that matrix whose entries are given by the spring constant calculated at
equilibrium. Finally, we used this matrix to embed the graph into three spaces (flat, positively curved and negatively curved)space) in order to
determine which of them best represented the network’s latent geometry. Finding the hyperbolic space fits best the latent geometry of the network, we
proceeded to cluster the nodes according to their radial coordinate, that representative of the node popularity (Papadopoulos et al., 2012).
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also recall how the latent geometry is related to the structure and
organizational principles of the network (e.g., presence of
communities, hierarchical organization, etc.).

2.1 Euclidean space

The Euclidean geometry is based on the following five
postulates: (i) Any two points can be joined by a straight line
segment. (ii) Any portion of a straight line can be stretched
forever. (iii) Any straight line segment can be used as the radius
of a circle, with one endpoint serving as the centre. (iv) All right
angles are congruent. (v) When two lines are drawn so that they
intersect a third in a fashion that results in a side where the total of
the inner angles is less than two right angles, the two lines will always
cross each other if they are extended far enough.

More formally, an Euclidean space, is a real vector space (i.e., a
vector space whose field of scalars is R) E equipped with a positive
definite symmetric bilinear form φ: E × E → R. The real number φ
(x, y) is called the inner product between the vectors x = (x1, x2, . . . ,
xn) and y = (y1, y2, . . . , yn), that is defined as

φ x, y( ) � x1, x2, . . . , xn( ) · y1, y2, . . . , yn( )
� x1y1 + x2y2 +/ + xnyn. (1)

Usually the inner product of two vectors x, y is dented with the
angular bracket 〈x, y〉. In the Euclidean space Rn the distance
between the points whose coordinates are given by the vectors x and
y is

d x, y( ) � �����
〈x, y〉

√
�

������������
φ y − x, y − x( )√

�
�������������������������
y1 − x1( ) y2 − x2( )/ yn − xn( )√

≡ � ‖y − x‖. (2)

To embed a graph into an Euclidean space, we used the classical
(metric) multidimensional scaling algorithm that, given as an input
the pairwise dissimilarities matrix {dij}, reconstructs a map that
preserves distances. The algorithm implements the following steps.

1. Find a random arrangement of points, for example, by taking a
sample from a normal distribution.

2. Determine the distances between the points.
3. Find the best monotonic transformation for the proximity to get

the best scaled data.
4. Find a new arrangement of points to reduce the stress between

the optimally scaled data and the distances. The stress of the
embedding in Euclidean space is defined by the following residual
sum of squares

Stress x1, x2, . . . , xn( ) �
��������������������������∑
i≠j�1,...,n

d
input( )

ij − d
embedding( )

ij( )2
√

(3)

where, in the case of Euclidean embedding, d(embedding)
ij � ‖xi − xj‖.

5. Compare the stress to a certain standard. If the stress is too low,
stop the algorithm; otherwise, go back to step 2.

We implemented the embedding in R (R Core Team, 2021),
using the function cmdscale (Gower, 2015) of the library stats.

Theoretical foundations and details about multidimensional scaling
techniques can be found in many text books and review paper [see,
for example, (Borg and Groenen, 2005; Cox and Cox, 2008; Zhang
and Takane, 2010)].

2.2 Hyperbolic geometry and the Poincaré
model

Hyperbolic geometry accepts the first four axioms of Euclidean
geometry but rejects the fifth, namely, that there exists a line and a
point not on the line with at least two parallels to the given line
crossing through the provided point. This is equivalent to
performing geometry on a surface with a constant negative
curvature. This geometry differs greatly from the more
conventional Euclidean geometry, and are hard to visualise. The
main reason is that by the Hilbert’s theorem (Hilbert, 1933) the
hyperbolic plane cannot be isometrically embedded into Euclidean
3D-space (isometric means preserving the length of every curve).
We must flatten the curvature to display the hyperbolic plane. In
doing this, many of the straight lines in hyperbolic space end up
being curved as a result. The French mathematician Henri Poincaré
is responsible for one of the widely accepted theories for flattening
the hyperbolic plane and the n-dimensional ball model (Poincaré
disk in 2D) (Anderson, 2005).

The Poincaré n-dimensional ball Bn
R (Bn

R � {x | ‖x‖2 < 1}) is a
model for n-dimensional hyperbolic geometry in which lines are
represented by circle diameters or by arcs of a circle with ends
perpendicular to the boundary of the ball. (Figure 2). If n = 2 the
Poincaré model is a unit open disc. We briefly summarize here the
method in Conn (2010) to calculate the distances in the unit disc
model Consider the fractional linear transformation S that sends
∞↦i and ±1↦ ± 1. S sends the real axis to the boundary of the unit
disc and, since fractional linear transformations preserve the
orientation of circles, it sends the upper half-plane to the disc’s
interior. The H2-distance between two points a, b in the unit disc is
the H1-distance between their preimages S−1(a), S−1(b) in the upper
half-plane (Conn, 2010), and in this way the unit disc inherits a
metric from the metric of the upper half-plane.

Let D1 denote the interior of the unit disc and suppose

γ: 0, 1[ ] → D1

is a piecewise continuously differentiable curve. If Hk(γ) (k = 1, 2)
denotes the length of the curve γ, then

H2 γ( ) � H1 S−1◦γ( ). (4)
Writing S−1 ≡ T, we have

H1 T◦γ( ) � ∫
T◦γ

1
Im z( )|dz| � ∫1

0

1
Im T◦γ( ) t( )( ) T◦γ( )′ t( )∣∣∣∣ ∣∣∣∣dt

� ∫1

0

1
Im T γ t( )( )( ) T′ γ t( )( )∣∣∣∣ ∣∣∣∣ γ′ t( )∣∣∣∣ ∣∣∣∣dt

� ∫
γ

1
Im T z( )( ) T′ z( )∣∣∣∣ ∣∣∣∣∣∣∣∣dz∣∣∣∣. (5)

Since T has the form

T z( ) � iz − 1
−z + i

. (6)
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we have that

Im T z( )( ) � Im
iz − 1( ) −�z − i( )
| − z + i|2( ) � 1 − |z|2

| − z + i|2, (7)

and

T′ z( )∣∣∣∣ ∣∣∣∣ � 2

| − z + i|2, (8)

we obtain

H2 γ( ) � ∫
γ

2

1 − |z|2|dz| (9)

that is general formula calculating distances in the Poincaré disc.
2/(1 − |z|2)dz is the element of arc length. Consequently, the
distance between two points a, b ∈ C on Poincaré disc is

d a, b( ) � H2 a, b( ) � log
|1 − �ab| + |b − a|
|1 − �ab| − |b − a|. (10)

Any diameter of the unit disc is a geodesic, so if z is a point in the
unit disc, then the Euclidean segment from 0 to z is also a hyperbolic
segment from 0 to z. We have hence that

H2 0, z( ) � ∫|z|

0

2
1 − t2

dt � 2 tanh−1 |z|( ) � log
1 + |z|
1 − |z|( ). (11)

Complex networks connect different nodes. This diversity
indicates that there is at least some element taxonomy, meaning
that all nodes can be classified in some way. This classificationmeans
that nodes can be separated into large groups that are made up of
smaller subgroups that are made up of even smaller sub-subgroups,
and so on. The relationships between such groups and subgroups
can be approximated by treelike structures, which illustrate hidden
hierarchies in networks. Krioukov et al. demonstrated that the
metric structures of trees and hyperbolic spaces are equivalent
(Krioukov et al., 2010; Kurkofka et al., 2021; Lecca, 2023; Lecca
and Re, 2022). It is not necessary for the node classification
hierarchy to be exactly a tree, but rather approximately a tree.
When a network can be approximated by a tree, its latent geometry
is negatively curved (Gromov, 2007).

To perform the embedding into a hyperbolic space (Poincaré
model), we used the function hydraPlus of the R library hydra
(HYperbolic Distance Recovery and Approximation) (Keller-Ressel,

2019), that uses a strain-minimizing hyperbolic embedding based on
reduced matrix eigendecomposition (Keller-Ressel and Nargang,
2020). The stress of embedding in hyperbolic space is then given by
formula (3), where d(embedding) is given by the output of hydra.

2.3 Spherical geometry and embedding

Spherical geometry is the geometry of a hypersphere’s surface.
The hypersphere can be easily immersed in euclidean space; for
example, the embedding of a three-dimensional sphere of radius r is
well known relation x2 + y2 + z2 = r2, with x = (r sin u sin v,r cos u
sin v,r cos v)T. A simple extension of this is the embedding of a (n −
1)-dimensional sphere in n-dimensional space:

∑n
i�1

x2
i � r2. (12)

There is a constant sectional curvature of 1/r2 throughout this
curved surface. The length of the shortest curve that lies in the
space and connects the two points is the geodesic distance between
two points in a curved space. The geodesic on the hypersphere is a
perfect circle for a spherical space. The distance is equal to the width
of the arc that connects the two locations on the great circle.

If two points in the hypersphere’s centre form an angle with θij,
then the distance between them is

dij � rθij. (13)
A point can be represented by a position vector xi of length rwith the
coordinate origin at the origin of the hypersphere. We can also write

dij � r cosh
〈xi, xj〉

r2
(14)

since the inner product is 〈xi, xj〉 = r2 cos θij.
To perform the embedding of the graph in a hypersphere, we

used the method proposed by Wilson et al. (2014a), and the Matlab
code that this authors made available in Wilson et al. (2014b). We
summary briefly the core of embedding method in this way.

Given a dissimilarity matrix D, we want to determine the set of
points on a hypersphere that give the same distance matrix. Because
the curvature of the space is unknown, we must also determine the

FIGURE 2
(A). Geodesics in Poincaré disk. (B). Reflections in Poincaré disk geometry. 0, x, x + h and v are points on the diameter. 0 is the reflection of x, and v is
the reflection of x + hwith respect to the hyperbolic segment l. (C). The distance between two generic points P1 and P2 can be found first transforming P1
tp 0 and P2 to x.
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radius of the hypersphere. We have n items of interest, thus we
would ordinarily look for a n − 1 dimensional Euclidean space. A
coordinate system with the origin at the centre of the hypersphere is
considered. A matrix X of point positions vectors is constructed in
such a way that

XXT � Z � zij{ } � r2 cos
dij

r
(15)

Z is a n × n matrix that is positive semi-definite and has rank n − 1
since the embedding space has dimension n − 1, X is made up of n
points that are located in a space of dimension n − 1, and so does the
embedding space. This means that the Z’s eigenvalues are positive,
with only one being zero. This observation can be used to calculate
the radius of curvature. Then, in order to find r, Wilson et al. (2014a)
proposed to create Z(r) and identify the smallest eigenvalue λ1, to
calculate then the optima radius of curvature as

r* � argmin
r

|λ1 Z r( )[ ]|. (16)

The stress of embedding in hyperbolic space is then given by
formula (3), where d(embedding) is given by the elements of the
matrix Z.

2.4 How latent geometry influences network
dynamics

By the term “dynamic” of a system, we mean the time and space
evolution of the system as described by differential and/or
algebraic equations whose variables are quantitative features of
the system’s actors, and whose mathematical form model the
topological system’s organization. The equations of the
dynamics are parameterized by the dynamical properties of the
system itself (such as frequency of oscillation, if the system is
oscillatory, elastic constant, if the system is assimilated to a spring
system, specific rate of reaction, etc.) There are interesting studies
showing how the geometry of complex networks affects the
dynamics. To cite a relevant contribution to the field, we
mention the work of Millán et al. (2018) which shows that the
latent geometry of a network has a significant impact on the
synchronization dynamics. Unlike Millán et al. work, which is
more focused on the dynamic properties of the system
(i.e., parameters and synchronization laws), here we focus on
the influence that latent geometry can have on network
organization. And since from the network organization, the
dynamics of the network is derived, we can expect latent
geometry to influence the dynamics. In particular, the geometry
of the network determines the presence or absence of functional
modules containing highly cooperative nodes. The identification of
these possible functional clusters can be done correctly only if the
metric space of the network is identified. In fact, this space defines
the distance between nodes, the measure on which clustering
algorithms are based. A clustering in Euclidean space may lead
to a different result from clustering in hyperbolic space, the
distance computed in this space being different from the
distance computed in Euclidean space. The correct dynamics is
one whose parameters and functional modules are established by
the latent geometry for at the network under consideration.

In this study, we conceived a network as a spring system.
Through the identification of the most appropriate latent
geometry of the network under consideration, i.e., that geometry
that most closely reproduces the values of the spring constants of the
edges thought of as springs, we were able to identify cluster of gene
drivers for the network dynamics. The role of drivers of these genes
was validated through functional analysis of them. In the next
sections, the data from which we built the network, as well as the
model and analysis of the network itself are reported.

3 Data and gene network

We use here the data of gene expression relevant to the
landscape of Chronic Myeloid Leukemia K562 cells. We refer the
reader to a recent publication by the authors (Lombardi et al.,
2022)], where we describe the experimental activity implemented for
data measurement and algorithmic procedures for selecting
differentially expressed genes. For the reader’s convenience we
summarise it briefly below.

On an Agilent whole human genome oligo microarray
(#G4851A, Agilent Technologies, Palo Alto, CA), the RNAs from
the samples were hybridised. This microarray consists of
60,000 distinct human transcripts represented by 60-mer DNA
probes created using SurePrint technology. The manufacturer’s
recommended protocol was followed when one-color gene
expression was carried out. In a nutshell, samples were used to
extract the total RNA fraction using the Trizol Reagent (Invitrogen).
Agilent Technologies’Agilent 2100 Bioanalyzer was used to evaluate
the quality of the RNA samples. RNAs with low integrity (RNA
integrity number less than 7) were not included in the microarray
analysis. Using the Low Imput Quick-Amp Labelling Kit, one colour
(Agilent Technologies) in the presence of cyanine 3-CTP, labelled
cRNA was produced from 100 ng of total RNA. In a revolving oven,
hybridizations were carried out for 17 h at 65°C. Agilent’s scanner
produced images with a 3 μm resolution, and Agilent Technologies’
Feature Extraction 10.7.3.1 software was utilised to extract the
microarray raw data. The GeneSpring GX 11 programme
(Agilent Technologies) was then used to analyse the microarray
results. Data transformation was used to normalise all of the data’s
negative raw values to 1.0 using the 75th percentile. Only the probes
expressed in at least one sample (marked as Marginal or Present)
were retained using a filter on low gene expression.

The data used in this work come from the aforementioned
examination of the CML cell transcriptome (K562) using
microarray hybridization under various settings. The cells were
transfected with full-length PTPRG and compared to three
controls: cells transfected with the empty vector, cells
transfected with a PTPRG inactive mutant with a mutation in
the catalytic domain (D1028A), and cells treated with Imatinib,
which targets the oncogene BCR/ABL1. The complete dataset is
publicly available at the GitLab repository. https://gitlab.inf.unibz.
it/Paola.Lecca/chronic-myeloid-leukemia-genes.

Here, from the entire dataset available at this link, we only
considered the gene expression levels of the untreated group (empty
vector and inactive mutant domain D1028A) and those of the
treatment group expressing full-length PTPRG. We then selected
the genes, that, according to the analysis in Lombardi et al. (2022),
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result to be differentially expressed between the two groups. To
construct the gene network, we queried PathwaysCommons
(PathwayCommons.All.hgnc repository) (Cerami et al., 2010a;
Cerami et al., 2010b) by providing as input for the search the list
of gene names we considered in this study. The obtained gene
network is a representation of molecular associations specified
through nodes (genes) and edges (molecular interactions or
statistical relationships). Among the various format,
PathwaysCommons gives as output result of the query the gene
networks also in SIF (Simple Interaction format), which is a table
providing details on gene-gene interactions. This format offers
various levels of detail such as: interaction type, reference data
source, Pubmed id, reference pathways, and mediators id. Our
analyses focused on the most granular level of information,
namely, the interactions between pairs of genes, listed in the SIF
table as“Participant A” and “Participant B” (we refer the reader to
the public repository of our data to view the data format). The types
of interactions included in the network are as follows: interacts-with,
in-complex-with, catalysis-precedes, controls-state-change-of,
controls-transport-of, controls-transport-of-chemical, controls-
expression-of, controls-phosphorylation-of, controls-production-
of, chemical-affects, consumption-controlled-by.

As a final result of querying to common pathways and selecting
differentially expressed genes on the two groups (treated and
untreated), we obtained a network that is a non-planar multi-
edge graph with 2,080 nodes and 3,745 edges, that we simplify to
a non-multi-edge graph with 2,080 nodes and 3,464 edges.

3.1 Graph embedding in presence of noise of
input data: Some remarks

The presence of noise on the data in the adjacencymatrix used as
input to the graph embedding procedures could be a vexing problem
if embedding stresses in different metric spaces are to be compared
to identify which metric space is best representative of the latent
geometry of the network. Noise, for example, may not allow weak
edges to be distinguished from the absence of nodes and may affect
the reliability of the measurement of even the most robust arcs
(i.e., those with the greatest weight). Data analysis frequently faces
the challenge of distinguishing between real weak edges and noise-
induced low-weight edges. To solve this issue, noise is typically
either eliminated or studied in the absence of data.

In the specific case of our study, the experimental data from
which we start to construct the weighted adjacency matrix of the
graph are very accurate. Our dataset was validated comparing the
outcome of the cDNAmicroarray with the analysis of a specific set of
genes chosen for being informative and for being predicted up and
downregulated. Validation was performed in triplicate with
quantitative PCR on a new, independent, preparation of cDNA
derived from the same cell lines, thus ensuring that the results
present in our dataset represent a true variation in mRNA levels.
Notably the analysis permitted to predict a shift to erythroid
differentiation of the cells that was confirmed also at protein
level. All supporting data are reported on the publication
(Lombardi et al., 2022).

Interesting and noteworthy works elucidating the role and the
influence of noise in graph embedding has been done recently by

Maddalena et al. (2022) and Okuno and Shimodaira (2019). The
treatment of the presence of noise is in fact so complex that it
deserves the implementation of a focused study and consequently
the writing of a separate article. It is out of the scope of this study,
give the high quality of the data we used here, but it is our intention
to explore this issue further in a forthcoming study.

To the best of our knowledge at present, we find of particular
interest the study of Blevins et al. (2021). Instead, by analysing
the structure of noisy, weak edges that have been artificially
added to model networks, the authors explored how noise and
data coexist in this work. They discovered that there are
qualitative classifications of noise structure that arise, and that
these noisy edges can be used to categorise the model networks.
The authors state that the structure of low-weight, noisy edges
varies depending on the topology of the model network to which
they are added. Interestingly, Blevins et al. showed that noise is a
complex, topology-dependent, and even valuable phenomenon in
characterising higher-order network interactions rather than a
monolithic annoyance.

4 Mathematical model of the gene
network

To estimate the weights of the network arcs, we conceptualise
the network as a system of masses (representing the nodes) and
springs (representing the edges), as in Figure 3. Estrada and Hatano
(2010) has brought a remarkable contribution to spring-like
network models. In a complex network, Estrada and Hatano
suggested a new metric for measuring node vulnerability. The
metric is based on an analogy where the network’s nodes are
represented by masses and its edges by springs. They defined the
measure as the node displacement, or the amplitude of vibration of
each node, under variation caused by the thermal bath in which the
network is intended to be immersed, and that represents the
environment from which stimuli may possibly come. The Estrada
index for the vibrational centrality of the node i is defined as the
node displacement (Δx)ii

Δx( )ii �
����
T

k
L+
ii

√
, (17)

where T is the temperature of the external bath, and k is the spring
stiffness. Estrada and Hatano assumed that the network edges are
identified with springs with a common spring stiffness k.

Instead in the network spring model of Lecca and Re (2020),
the authors postulated that weights of the arcs are given by the
stiffness of the springs representing the arcs, so each arc may
have a different stiffness/weight. The harder the spring, the more
efficiently the signal is transmitted from node to node; the softer
the spring, the less quickly the signal is transmitted from node to
node. According to this metaphor, edges characterised by high
values of the stiffness of the hypothetical spring joining them are
nodes that interact more effectively than nodes whose spring
stiffness joining them is lower. The stiffness of the spring is thus
interpreted as the efficiency of the interaction. Next, we briefly
summarize the computational method developed by Lecca and
Re (2020), and used in this study, to calculate the stiffnesses of
the springs.
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The elastic force applied to the nodes by the springs according to
the generalised Hooke’s law for a system of N springs is

Felastic � −KΔx, (18)
where K is the matrix providing the stiffnesses of all of the springs,
and the elements of Δx are the vibrational centralities of the nodes.
We obtain the force on the nodes by multiplying Felastic by the
transpose of the graph weighted incidence matrix C⊤, where, in
general, the weights are given by the node masses, i.e.,

C � AM (19)
where A is the unweighted incidence matrix. We should remark that
weighting the incidence matrix with node mass values means taking
into consideration the nodes’ inertia to the propagation of the elastic
force through the springs incident to them (Lecca and Re, 2020). In
this study, the nodes’ masses are given by the nodes’ total degree.

The force on node is then defined by

Fnodes � −C⊤KΔx (20)
At the equilibrium Fnodes = 0, i.e.,

C⊤KΔx � 0, (21)
where K is obtained as the nullspace (or kernel) of C⊤, in formula:

K � Ker C⊤( ). (22)
Indeed, all vectors K that have the properties that C⊤K = 0 and K are
not zero make up the null space of any matrix C⊤.

Once K is obtained, we construct the dissimilarity matrix of the
graph, which is then used as input for the embedding algorithms, as
follows

dij � 1
1 + kij

(23)

where kij are the elements of the matrixK. Thus, nodes connected by
a spring with a high value of the elastic constant have a lower
dissimilarity value than nodes connected by a spring with a low value
of the elastic constant. This reflects the situation where the
propagation speed of the interaction along a spring with high
stiffness is higher than along a spring with low stiffness.

Of particular interest is in case the system is not in equilibrium.
In fact, K is independent on Δx only when the system is at
equilibrium, i.e., when Fnodes = 0 and Eq. 21. In non-equilibrium
conditions, we have instead that Fnodes = C⊤KΔx ≠ 0. Suppose that
we know the forces Fnodes acting on nodes. For example, this could
be the case in which perturbation experiments are implemented to
measure and analyse the responsiveness of the network nodes to
stimuli and/or stresses, or, assimilating forces on nodes to white
noise distributed over all nodes, noise always present in biological
systems at the micro-scale given their inherent stochastic dynamics).
To calculate the matrix K, in this case, the requirements are that the
matrices C⊤ and Δx are invertible, so that

K � C⊤( )−1Fnodes Δx( )−1. (24)
Note, Δx is invertible if and only if all the entries on its main
diagonal are non-zero, which means that little to much all nodes
have a significantly non-zero response to stress.

5 Results

We embedded the gene network in the three metric spaces
considered by considering different dimension values. We
started with dimension 3, since the network is not planar. As
shown in Figure 4, the embedding that produces the least
amount of stress on the dissimilarity matrix - obtained as in
Section 4 - is the hyperbolic embedding. The network is then

FIGURE 3
A spring system, also known as a spring network, is a model of physics used in engineering and physics that is represented as a graph with a mass at
each vertex and a spring with a specific stiffness and length along each edge. Extending the Hooke’s law to higher dimensions (see the Section ?), it is
possible to calculate the spring stiffnesses that in this model represent the edge weights.
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characterized by a power-law degree, and by a hierarchical
structure reflected also in the presence of clusters in the
radial coordinates of the points, that is known to represent
the node popularity (Papadopoulos et al., 2012; Yang and
Rideout, 2020; Kovács and Palla, 2021). By nodes having high

popularity, we mean nodes that are related to the majority of the
other nodes in the graph [see also (Lecca et al., 2023) for a short
review of the Papadopoulos et al. definition of node popularity].
These nodes can aid in the efficient spreading of information
throughout the network.

FIGURE 4
Embedding stress vs. metric space dimensions. The embedding with the least stress is the hyperbolic one, revealing a putative hyperbolic latent
geometry of the gene network.

FIGURE 5
The optimal number of clusters of the set of radial coordinates of the points (node) on the Poincaré disk, according to the Elbow method, is 12.
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We found that the set of radial coordinates, whose values range
in [0.7036133, 0.7709305], is characterized by 12 clusters as
determined by the Elbow method (Umargono et al., 2020) (see
Figure 5). The range of radial coordinate values is. In Figure 6A we
report the cluster ID and the size of the 12 clusters of the radial
coordinates as obtained by a single run of the k-means algorithm.
We found that the gene with the smallest popularity (i.e., with the
smallest radial coordinate) is ZRANB1. This gene allows for K63-
linked polyubiquitin modification-dependent protein binding and
thiol-dependent deubiquitinase activity. Involved in a variety of
functions, including the positive control of the Wnt signalling
pathway, protein deubiquitination, and cell morphogenesis
regulation (NIH, 2023). However, according to the date in The
Human Atlas of Proteins is a low immune cell specificity gene
(Pontén et al., 2008; Uhlen et al., 2017; Uhlén et al., 2022a; Uhlén
et al., 2022b). To assess the stability and the quality of the clustering,
we repeated the k-means 1,000 times and graphed the distributions
of the within- and between-sum of squares (see Figure 6B) that show
that the first is two order of magnitude smaller then the second. The
skewness of the distributions and the disproportion between within-

and between-cluster sum of squares indicate the stability and
accuracy of the clustering, respectively.

Nodes with similar radial co-ordinate have similar popularity, so
clustering according to the radial co-ordinate identifies communities
of nodes with similar popularity. However, the radial co-ordinate, in
addition to representing the popularity of a node, i.e., its degree of
connectivity with other nodes in the network, identifies the distance
from the origin in the Poincaré ball. In a network with hyperbolic
latent geometry, in its representation in the Poincaré ball, the mean
degree of a node is a negative exponential function of the node’s
radial coordinate (Krioukov et al., 2010). Thus, the average degree of
a node decreases exponentially with increasing distance of the node
from the origin of the Poicaré ball, or, in other terms, the higher the
radial co-ordinate of a node, the lower its degree on average. The
area inside the unit ball represents the infinite hyperbolic plane, and,
consequently, nodes with radial co-ordinate equal 1 are points at
infinity. Clustering according to the radial co-ordinate thus
identifies bands of points (nodes) that are concentric on the
Poincaré disc and that have a decreasing degree of connectivity
as one moves away from the origin. This is why we say that

FIGURE 6
(A). Centroids of the radial coordinate clusters versus cluster identifier in a single run of k-means algorithm. The number of genes belonging to each
cluster is shown in red. The gene belonging to the cluster number four is ZRANB1, a gene characterized by low immune cell specificity, and belong to NK-
cells immune cell expression cluster (Uhlén et al., 2022b). (B). We performed 1,000 runs of the k-means for the clustering of the radial co-ordinate of the
nodes of the network in hyperbolic space and drew the distributions of the within- and between-clusters sum of squares. The within-cluster sum of
squares quantifies the internal cohesion inside each cluster. The between-cluster sumof squares quantifies the external separation between clusters. The
figure shows that for the k-means clustering of the radial coordinates the between-clusters sum of squares is two orders of magnitude greater than the
within-cluster sum of squares, revealing the accuracy and then reliability of the clustering results.
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clustering according to radial co-ordinates allows clusters of strongly
interconnected nodes to be identified (if any). The cluster of nodes
closest to the origin identifies not only nodes with high connectivity,
but also nodes that are close to each other (this second characteristic
also applies to clusters far from the origin). The coexistence of two
characteristics such as high degree and small distance between nodes
is typical of a cluster of nodes with efficient interactivity and greater
inertia to perturbations induced by external stimuli, such as
variation of expression level, interactions with drugs, etc. The
short inter-node distance reflects the high efficiency of
communications, the high connectivity may be responsible of the
node robustness.

Nodes that are thus highly interconnected and close in network
metric space are potential drivers of network dynamics. This
conjecture is demonstrated in the case where the distribution of
the stiffness of the arcs in the cluster to which these nodes belong is
similar to the distribution of the stiffness of the arcs in the overall
network. Stiffness is in fact a dynamic property of the system. The
cluster of nodes and arcs with dynamic properties that are reflected
in the dynamic properties of the entire network can thus be
considered a cluster of driver nodes, a characteristic that

designates it as a prime candidate for further wet experiments. In
the case of our study, experiments and data from the literature
support the hypotheses formulated by the computational analysis, as
we shall see below. Indeed, the results we report below are intended
to demonstrate these statements.

Figure 7, shows the barplot of the percentage of edges
connecting nodes belonging to the same cluster of radial
coordinates. Of the 2,162,160 total edges of the graph
1,512 belong to cluster 5, 2,877 to cluster 9, and 19,701 to cluster
12. The remaining 2,138,069 arcs connect nodes belonging to
different clusters. In order to understand whether and, if so, how
clustering according to radial co-ordinate is reflected in the
distribution of spring stiffness, we produced the graph in
Figure 8, showing the density plots of the spring stiffness of the
interactions between node within the three clusters (5, 9 and 12)
compared with the density plot of all spring stiffness of the network.
To make the results easier to read and understand, we rescaled the
spring stiffness values obtained by formula (22) within a range
between 0 and 1 and applied formula (23) to the values obtained in
this range.

Of interest we find as shown in this Figure 8 the two peaks of the
density plot in red colour corresponding to the stiffness of the
interactions between the nodes belonging to cluster number 12. Of
the three clusters of radial node distance, number 12 is the one that
best reflects the density plot of total spring stiffness. The interactions
between nodes belonging to cluster 12 are markedly clustered as is
the distribution of stiffnesses across all the arcs of the graph. We
interpret this result as the fact that cluster 12 contains nodes that
share similar popularity values and are involved in driver
interactions of the network dynamics, since the distribution of
spring stiffnesses of the arcs of these nodes reproduce the
distribution of spring stiffnesses of the entire network.

Cluster 12 contains 199 genes, which a functional analysis
implemented with the enrichGO function of R library
clusterProfiler for the Gene Ontology (GO) Enrichment
Analysis (Yu, 2012; Yu et al., 2012) finds to have the molecular
functions shown in barplot of Figure 9 and the ontologies of the
cellular compartments as in Figure 10. The list of the gene names of

FIGURE 7
Barplot showing the percentage of edges joining nodes
belonging to the same cluster according to the radial co-ordinate
value. Only clusters 5, 9 and 12 contain nodes that are connected by
an edge and belong to the cluster. The remaining edges connect
nodes belonging to different clusters.

FIGURE 8
Density plot of the distribution of spring stiffness in the tree clusters (5, 9, and 12) and in whole dataset. The trend of the red curve for Cluster 12 is the
one that most accurately reproduces the global density plot of the stiffness of the arches of the entire network. The nodes in Cluster 12 recapitulate the
overall dynamics of the network through their interactions and can therefore be regarded as putative drivers of the dynamics.
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Cluster 12, as well as the summary of enrichGO and of gost
function of the R library gprofiler2 (Raudvere et al., 2019;
Kolberg et al., 2020; Raudvere et al., 2023) are available in the
Supplementary Material. To give a more complete view of the results
of the gene set enrichment analysis of Cluster 12, we show in Figure
11 theManhattan-plots of the gene set enrichment analysis, of which
we also give an interactive version in the Supplementary Material.

Of interest is a result shown in Figure 9, namely, the presence in
Cluster 12 of genes co-involved in the molecular processes of
“SMAD binding”. Smad proteins, are central mediators of the
signal transduction of TGF-β family members were identified in
the dataset analysed. A Cross-talk between TGF-β/Smad pathway
andWnt/β-catenin pathway in pathological scar formation has been
described suggesting a complicated interaction between the two
signal pathways in pathological scar formation (both synergy and
antagonism) (Sun et al., 2015). More recently TGF-β/SMAD,
Hippo/YAP/TAZ, and Wnt/β-catenin signalling pathways, major
inducers of transcriptional reprogramming, were shown to converge

at several levels and were all required for a proliferative-to-invasive
phenotype switch in melanoma development (Lüönd et al., 2021).
We already described in a previous study the involvement of Wnt/β-
catenin signalling pathway in the tumour suppressor effect driven by
PTPRG in CML (Tomasello et al., 2020) and the current data
reporting the involvement of SMAD pathway is in line with a
complex cellular reprogramming induced by PTPRG expression
whose key role in the haematopoietic differentiation program was
already described (Sorio et al., 1997). This complex reprogramming
is supported by the large number pathways involved in DNA
binding/transcription reported on Cluster 12 GSEA. In particular,
in our previous study (Lombardi et al., 2022), we validated the
SMAD1 gene. Specifically, qRT-PCR was used to assess gene mRNA
levels, and the relative fold changes were calculated between
K562 expressing PTPRG and the untreated control group
(control and D1028A). The endogenous control was GAPDH.
We found that the fold change of SMAD1 is markedly greater in
the case of the control [see Figure 3 of Lombardi et al. (2022)].

FIGURE 9
GO Enrichment Analysis of the gene set of Cluster 12. The barplot shows the enrichment GO categories of molecular functions after false discovery
rate control. See also the verbose tabular outbut in Cluster_12_GSEA_results_EnrichGO_MF.xlsx provided in Supplementary Material.

FIGURE 10
GO Enrichment Analysis of the gene set of Cluster 12 (obtained with the R function enrichGO). The barplot shows the enrichment GO categories of
cellular compartment after false discovery rate control. See also the verbose tabular outbut in Cluster_12_GSEA_results_EnrichGO_CC.xlsx provided in
Supplementary Material.

Frontiers in Cell and Developmental Biology frontiersin.org12

Lecca et al. 10.3389/fcell.2023.1235116

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1235116


5.1 Comparison with spectral clustering

We compared the results of the clustering by radial
coordinate in hyperbolic space with the spectral clustering
method. This method is widely used to identify communities
of nodes in a network by examining the edges that connect them,
i.e., taking as an input the weighted adjacency matrix of the

graph. It is a well-established method with theoretical
foundations in graph theory (we refer the reader to JingMao
and YanXia (2015); von Luxburg (2007) for a review and a
tutorial on this popular spectral clustering methods). Processing
directly the weighted adjacency matrix of the graph, that is the
same input as our embedding procedure, we consider spectral
clustering to be the most appropriate method to deal with,
compared to clustering methods based on graph centrality
measures, or on statistical correlation measures between
nodes, who do not into account directly distance measures
between nodes. Before applying spectral clustering, we
estimated the optimal number of clusters with eigengap
heuristics [appropriate procedure for estimating the number
of clusters for spectral clustering methods (von Luxburg, 2007)],
obtaining that the optimal number of clusters is 2 (see Figure
12). Cluster 1 contains 1,731 nodes and cluster 2 contains
349 nodes. Using the R script Spectral_clustering.R to
implement spectral clustering - available in GitLab repository,
we found that the within cluster sum of squares by cluster is
1.1079409 and 0.2348562, whereas the between sum of squares is
0.6502382. As a consequence, we conclude that the results of the
spectral clustering are not reliable. This result highlights how
taking into account the latent geometry of the network and with
it the clustering according to the spatial co-ordinate of the
nodes/points of the network resulted in a much better quality
of clustering, compared to a clustering which, as in our

FIGURE 11
In this figure, the enrichment results of the gene set of Cluster 12 are visualized with a Manhattan-like-plot using the function gostplot (Raudvere
et al., 2023). The x-axis depicts functional terms that are colour-coded and categorised according to data sources and positioned in the fixed “source_
order.” The order is set up so that terms that are close together in the source hierarchy are also close together in the Manhattan plot. The modified
p-values are displayed on the y-axis in negative log10 scale. Every circle represents one phrase and is proportional to the term size, i.e., larger terms
have larger circles. The Supplementary Material includes an interactive version of this plot (Manhattan_plot_GSEA_Gost.html). Hovering over the
circle in the interactive plot will display the appropriate information. If the −log10 (p-values) exceed 16, they are capped at 16. This adjusts the y-axis scale
to keep Manhattan plots from different queries similar, and it is also intuitive because statistically, p-values less than that can all be summarized as highly
significant.

FIGURE 12
Eigengap heuristic: the optimal number of clusters, k, that
maximises the eigengap (difference between consecutive eigenvalues
of the Laplacianmatrix of the graph). The optimal number of clusters is
that k such that λk+1 is reasonably large but all other eigenvalues,
λ1, . . . , λk, are very small. The closer the eigenvectors of the ideal case
are, and hence the better spectral clustering performs, the wider this
eigengap is.
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approach, processes the weighted adjacency matrix, but does not
consider the latent geometry of the network expressed by the
position of the points in the optimal embedding space and the
distance defined by the metric in this space.

That various clustering methods are not appropriate for
graphs with geometry has also been pointed out by
Avrachenkov et al. (2021) that states that while it has been
demonstrated that spectral clustering is consistent in some
geometric graphs, a cut-based technique (such as spectral
clustering) can also be significantly hindered by the geometric
structure. It is possible to divide space into regions in such a way
that there is relatively little interaction between nodes in two
different regions. Therefore, the Fiedler vector of a geometric
graph may only be linked to a geometric arrangement and
contain no information regarding the labelling of the latent
community. Furthermore, because the regions of space can
include a balanced number of nodes, the widely used
regularisation strategy (Zhang and Rohe, 2018), which seeks
to penalise small size communities in order to bring back the
vector associated with the community structure in the second
position, would not function in geometric graphs.

6 Conclusion

In this study, we modelled the transcriptome network of the of
Chronic Myeloid Laeukemia K562 cells overexpressing the tumour
suppressor gene PTPRG, as a physical system of springs and then
deduced the spring constant from topological properties of the
nodes, such as total degree. To represent the network, we
considered the dissimilarity matrix consisting of the values of the
spring’s elastic constant, which in our model quantifies the efficiency
of information transmission between nodes. Through network
embedding procedures that processed the dissimilarity matrix to
derive the coordinates of the nodes in a metric os pact we
determined the optimal latent geometry of the network is
hyperbolic. This important information made it possible to
proceed with the classification of nodes according to radial co-
ordinates (which is the geometric equivalent of the ‘physical’
concept of node popularity) and to identify a set of candidate
driver genes for network dynamics.

This methodology aimed at analysing a network without
ignoring the existence of its metric space with a geometry other
than the Euclidean one usually imposed or taken for granted,
shows how latent geometry can determine a classification of
nodes according to their relevance in the network’s evolutionary
processes, ultimately its dynamics. In the particular case study
presented here we obtained that the network has hyperbolic
latent geometry, and based on this we proceeded to utilise the
concept that in this type of geometry the radial coordinate is a
fundamental variable for clustering nodes. Geometries other
than hyperbolic are characterised by other spatial variables
that can be considered discriminating for the purpose of
identifying driver nodes of the dynamics. What is presented
in the paper, besides being a concrete result on a specific case

study, is also a proposal for a method of analysing a network in
order to reveal information about the dynamics of the network
itself.
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