Automated Reasoning

Maria Paola Bonacina Alberto Martelli
Dipartimento di Informatica Dipartimento di Informatica
Universita degli Studi di Verona Universita degli Studi di Torino



A central problem in automated reasoning is to deter-
mine whether a conjecture ¢, that represents a property to
be verified, is a logical consequence of a set .S of assump-
tions, which express properties of the object of study (e.g.,
a system, a circuit, a program, a data type, a communica-
tion protocol, a mathematical structure).

A conjoint problem is that of knowledge representation,
or finding suitable formalisms for S and ¢ to represent as-
pects of the real world, such as action, space, time, men-
tal events and commonsense reasoning. While classical
logic has been the principal formalism in automated rea-
soning, and many proof techniques have been studied and
implemented, non-classical logics, such as modal, tempo-
ral, description or nonmonotonic logics, have been widely
investigated to represent knowledge.

1 Automated reasoning in classical logic

Given the above central problem, one can try to answer af-
firmatively, by finding a proof of ¢ from S. This problem
and the methods to approach it are called theorem prov-
ing. Theorem proving comprises both deductive theorem
proving, which is concerned precisely with the entailment
problem as stated above (in symbols: S = ¢), and induc-
tive theorem proving, where the problem is to determine
whether S entails all ground instances of ¢ (in symbols:
S = o, for all ground substitutions o).

In (fully) automated theorem proving, the machine alone
is expected to find a proof. In inferactive theorem proving,
a proof is born out of the interaction between human and
machine. Since it is too difficult to find a proof ignoring
the conjecture, the vast majority of theorem-proving meth-
ods work refutationally, that is, they prove that ¢ follows
logically from S, by showing that S U {—p} generates a
contradiction, or is inconsistent.

Otherwise, given assumptions S and conjecture ¢, one
can try to answer negatively, disproving ¢, by finding a
counter-example, or counter-model, that is, a model of
S U {—}. This branch of automated reasoning is called

automated model building.

In classical first-order logic, deductive theorem proving
is semi-decidable, while inductive theorem proving and
model building are not even semi-decidable. 1t is signif-
icant that while books in theorem proving date from the
early seventies [22, 48, 16, 27, 77, 44, 70], the first book
on model building appeared only recently [21]. Most ap-
proaches to automated model building belong to one of the
following three classes, or combine their principles:

1. Enumeration methods generate interpretations and
test whether they are models of the given set of for-
mule;

2. Saturation methods extract models from the finite set
of formule generated by a failed refutation attempt;
and

3. Simultaneous methods search simultaneously for a
refutation or a model of the given set of formule.

In higher-order logics, that allow universal and existen-
tial statements, not only on individuals, but also on func-
tions and predicates, even deductive theorem proving is no
longer semi-decidable. Clearly, fully automated theorem
proving focuses on deductive theorem proving, while in-
duction, model generation and reasoning in higher-order
logics resort to a larger extent to interactive theorem prov-
ing. Since the most important feature of higher-order logic
for computer science are higher-order functions, that are
a staple of functional programming languages, an inter-
mediate solution is to develop a first-order system, with
a functional programming language, used simultaneously
as programming language and as logical language [20, 43].

1.1 Fully automated theorem proving

Semi-decidability means that no algorithm is guaranteed to
halt, and return a proof, whenever SU{—¢} is inconsistent,
or a model, whenever S U{—¢} is consistent. The best one
can have is a semi-decision procedure, that is guaranteed



to halt and return a proof, if S U {—} is inconsistent. If
it halts without a proof, we can conclude that S U {—p}
is consistent, and try to extract a model from its output.
However, if S U {—p} is consistent, the procedure is not
guaranteed to halt.

Intuitively, proofs of inconsistency of a given problem
S U {—p} are finite, if they exist, but there is an infinite
search space of logical consequences where to look for a
contradiction. A machine can explore only a finite part
of this infinite space, and the challenge is to find a proof
using as little resources as possible. A fundamental insight
was the recognition that the ability to detect and discard
redundant formule is as crucial as the ability to generate
consequences of given formule. In addition to standard
expansion inference rules of the form

A ... A,
B, ... B

D

which add inferred formule Bs,...,B,, to the set of
known theorems, that already includes the premises
Ay, ..., A,, contemporary inference systems feature con-
traction rules, that delete or simplify already-inferred the-
orems. The “double-ruled inference rule” form

A . A
B, ... B,

2

means that the formula (A;) above the rule are replaced by
those below (B5;). It is a deletion rule if the consequences
are a proper subset of the premises; otherwise, it is a sim-
plification rule.

An expansion rule is sound if what is generated is
logical consequence of the premises ({A4;... A,} E
{B1...By}). Classical examples are resolution and
paramodulation. A contraction rule is sound if what is
removed is logical consequence of what is left or added
({B:1...Bn} E {A1... A,}). Classical examples are
subsumption and equational simplification from Knuth-
Bendix completion. An inference system is sound if all its
rules are, and it is refutationally complete, if it allows us to
derive a contradiction, whenever the initial set of formulae
is inconsistent. The challenge is dealing with contraction
without endangering completeness [36, 7, 8, 18]: a key
ingredient is to order the data (terms, literals, clauses, for-
mula, proofs) according to well-founded orderings. Infer-
ence systems of this nature were applied successfully also
to inductive theorem proving as in inductionless induction
or proof by the lack of inconsistency [37, 40, 18].

1.2 Decision procedures and SAT solvers

Decidable instances of reasoning problems do exist. For
these problems, the search space is finite and decision pro-
cedures are known. Decidability may stem from imposing
restrictions on

1. the logic,

2. the form of admissible formulae for S or ¢, or
3. the theory presented by the assumptions in S.

An example of Case 1 is the guarded fragment of first-
order logic, which propositional modal logic can be re-
duced to. The most prominent instance is propositional
logic, whose decidable satisfiability problem is known as
SAT. Many problems in computer science can be encoded
in propositional logic, reduced to SAT and submitted to
SAT solvers. As automated reasoning is concerned primar-
ily with complete SAT solvers, the dominating paradigm
is the DPLL procedure [25, 24, 79], implemented, among
others, in [78, 52].

As an example of Case 2, the Bernays-Schonfinkel class
admits only sentences in the form

1, X0 VYL, Y Pl o Ty Y1y - Y

where P is quantifier-free. Decidable classes based on syn-
tactic restrictions are surveyed in [21].

Case 3 includes Presburger arithmetic or theories of data
structures, such as lists or arrays. For the latter, the typical
approach is to build a “little engine of proof” for each the-
ory [66], by building the theory’s axioms into a congruence
closure algorithm to handle ground equalities [67, 54, 9].
Little engines are combined to handle combinations of the-
ories [53, 68, 31]. However, also generic theorem-proving
methods proved competitive on these problems [5].

Decidable does not mean pratical, and the decidable rea-
soning problems are typically NP-complete. Since auto-
mated reasoning problems range from decidable, but NP-
complete, to semi-decidable, or not even semi-decidable,
automated reasoning relies pretty much universally on the
artificial intelligence paradigm of search.

1.3 Automated reasoning as a search problem

Automated reasoning methods are strategies, composed
of an inference system and a search plan. The inference
system is a non-deterministic set of inference rules, that
defines a search space containing all possible inferences.
Describing formally the search space of a reasoning prob-
lem is not obvious, and can be approached through differ-
ent formalisms that capture different levels of abstraction
[62, 19]. The search plan guides the search and determines
the unique derivation

Sob Sib .. Sk Sk ...

that the strategy computes from a given input So = S U
{—¢}. Itis the addition of the search plan that turns a non-
deterministic inference system into a deterministic proof
procedure.

The search plan decides, at each step, which inference
rule to apply to which data. If it selects an expansion rule,
the set of formulz is expanded:

S

§SCS’



If it selects a contraction rule, the set of formula is con-
tracted:

% S¢S
where <,,,; is the multiset extension of a well-founded
ordering on clauses. Strategies that employ well-founded
orderings to restrict expansion and define contraction are
called ordering-based. Ordering-based strategies with a
contraction-first search plan, that gives higher priority to
contraction inferences, are termed contraction-based.

These strategies work primarily by forward reasoning,
because they do not distinguish between clauses coming
from S and clauses coming from —. Semantic strategies,
strategies with set of support and target-oriented strategies
were devised to limit this effect.

At the other extreme of the spectrum, subgoal-reduction
strategies work by reducing goals to subgoals. This class
includes methods based on model elimination, linear reso-
lution, matings and connections, all eventually understood
in the context of clausal normalform tableaux.

The picture is completed by instance-based strategies,
that date back to Gilmore’s multiplication method. These
strategies generate ground instances of the clauses in the
set to be refuted, and detect inconsistencies at the propo-
sitional level by using a SAT solver. A survey of strate-
gies, according to this classification, with the relevant ref-
erences, was given in [17].

Interactive reasoning systems with higher-order features
also employ search, but only indirectly, or at the meta-
level, because the search is made of both automated and
human-driven steps [23, 33, 60, 4, 13, 15]. An interactive
session generates a proof plan, that is, a sequence of ac-
tions to reach a proof. Actions may be chosen by the user
or the search plan of the interactive prover. In turn, an ac-
tion can be the application of an inference rule of the inter-
active prover, the introduction of a lemma by the user, the
invocation of an automated first-order prover [12] or a de-
cision procedure [59], to dispatch a first-order conjecture
or a decidable subproblem, respectively.

S’ <mul S

1.4 Applications

Its intrinsic difficulty notwithstanding, automated reason-
ing is important in several ways. Its direct applications,
such as hardware/software verification and program gen-
eration, are of the highest relevance to computing and so-
ciety. Theorem provers [73, 50, 42, 46, 74, 55, 63, 64, 71]
were applied successfully to the verification of crypto-
graphic protocols, message-passing systems and software
specifications [72, 65]. Furthermore, automated reason-
ing contributes techniques to other fields of artificial in-
telligence, such as planning, learning and natural lan-
guage understanding, symbolic computation, such as con-
straint problem solving and computer algebra, compu-
tational logic, such as declarative programming and de-
ductive databases, and mathematics, as witnessed by the

existence of databases of computer-checked mathematics
[51]. Theorem provers are capable of proving non-trivial
mathematical theorems in theories such as Boolean alge-
bras, rings, groups, quasigroups and many-valued logic
[3, 2, 41, 49, 75]. Last, the study of mechanical forms
of logical reasoning is part of the fundamental quest about
what computing machines can do.

2 Automated reasoning in non-classical logic

Many aspects of Al problems can be modeled with logi-
cal formalisms, and in particular, with so called nonclassi-
cal logics, such as modal or temporal logics. Automated
deduction techniques have been developed for those log-
ics, for instance by proposing tableau proof methods [34].
Another approach is to translate formulas of nonclassical
logic into formulas of classical logic, so as to give users of
nonclassical logics access to the sophisticated state-of-the-
art tools that are available in the area of first-order theorem
proving [57].

An important research problem in Al is the logical for-
malization of commonsense reasoning. The observation
that traditional logics, even nonclassical ones, are not suit-
able to express revisable inferences, led to the definition of
nonmonotonic logics. Various approaches have been used
to do nonmonotonic reasoning, based on fixpoint tech-
niques or semantic preference. [58] contains a survey of
tableau based proof methods for nonmonotonic logics.

As we cannot give here the details of all techniques for
automated reasoning in those logics, we will describe only
some specific approaches that have been used with success.

2.1 Extensions of Logic Programming

Logic programming was proposed with the goal of com-
bining the use of logic as a representation language with
efficient deduction techniques, based on a backward infer-
ence process (goal-directed) which allows to consider a set
of formulas as a program. Prolog is the most widely used
logic programming language. While originally logic pro-
gramming was conceived as a subset of classical logic, it
was soon extended with some nonclassical features, in par-
ticular negation as failure. To prove a negated goal not p,
Prolog tries to prove p; if p cannot be proved, then the
goal not p succeeds, and vice versa. This simple feature
of Prolog has been widely used to achieve nonmonotonic
behavior. In fact, by adding new formulas, a goal p which
previously was not derivable might become true, and, as a
consequence, not p might become false.

The semantics of negation as failure has been deeply
studied, and the relations with nonmonotonic logics have
been pointed out. The most widely accepted semantics is
the answer set semantics [30]. According to this seman-
tics, a logic program may have several alternative models,
called answer sets, each corresponding to a possible view
of the world.



Logic programming has been made more expressive by
extending it with the so called classical negation, that is
monotonic negation of classical logic, and disjunction in
the head of the rules. Recently, a new approach to logic
programming, called answer set programming (ASP), has
emerged. Syntactically ASP programs look like Prolog
programs, but the computational mechanisms used in ASP
are different: they are based on the ideas that have led to
the creation of fast satisfiability solvers for propositional
logic. ASP has emerged from interaction between two
lines of research, the semantics of negation in logic pro-
gramming and application of satisfiability solvers to search
problems. Several efficient answer set solvers have been
developed, among which we can mention Smodels [69]
and DLV [45], the latter providing an extension for dealing
with preferences.

Often, automated reasoning paradigms in Al mimic hu-
man reasoning, providing a formalisation of the human ba-
sic inferences. Abductive reasoning is one such paradigm,
and it can be seen as a formalisation of abductive reason-
ing and hypotheses making. Hypotheses make up for lack
of information, and they can be put forward to support the
explanation of some observation.

Abductive logic programming is an extension of logic
programming in which the knowledge base may contain
special atoms that can be assumed to be true, even if they
are not defined, or cannot be proven. These atoms are
called abducibles. Starting from a goal G, an abductive
derivation tries to verify GG, by using deductive inference
steps as in logic programming, but also by possibly assum-
ing that some abducibles are true. In order to have this
process converging to a meaningful explanation, an abduc-
tive theory normally comes together with a set of integrity
constraints IC, and, in this case, hypotheses are required
to be consistent with IC' [39, 28, 38].

It is worth mentioning that the goal directed approach
of logic programming has been used also to formulate the
proof theory of many non-classical logics. For instance
[29] presents a uniform Prolog-like formulation for many
intuitionistic and modal logics.

2.2 Model checking

Model checking is an automatic technique for formally
verifying finite state concurrent systems, which has been
successfully applied in computer science to verify proper-
ties of distributed software systems. The process of model
checking consists of the following steps. First the software
system to be verified must be translated into a suitable for-
malism, where the actions of the systems are represented
in terms of states and transitions, thus obtaining the model.
Then the properties to be verified will be specified as a
formula ¢ in some logical formalism. Usually properties
have to do with the evolution of the behavior of the sys-
tem over time, and are expressed by means of femporal
logic. The last step consists in the verification that ¢ holds

in the model. The verification techniques depend on the
kind of temporal logic which is used, i.e. branching-time
or linear-time.

Many model checking tools have been developed,
among which we can mention NuSMV [56] and SPIN [35].

Although model checking has been mainly used for ver-
ification of distributed systems, there have been proposals
to use this technique also for the verification of Al sys-
tems, such as multi-agent systems. These proposals deal
with the problem of expressing properties regarding not
only temporal evolution, as usual in model checking, but
also mental attitudes of agents, such as knowledge, beliefs,
desires, intentions (BDI). This requires to combine tempo-
ral logic with modal (epistemic) logics which have been
used to model mental attitudes.

The goal of [11] is to extend model checking to make it
applicable to multi-agent systems, where agents have BDI
attitudes. This is achieved by using a new logic which is
the composition of two logics, one formalizing temporal
evolution and the other formalizing BDI attitudes. The
model checking algorithm keeps the two aspects separated:
when considering the temporal evolution of an agent, BDI
atoms are considered as atomic proposition.

A different framework for verifying temporal and epis-
temic properties of multi-agent systems by means of model
checking techniques is presented by Penczek and Lomus-
cio [61]. Here multi-agent systems are formulated in the
logic language CTLK, which adds to the temporal logic
CTL an epistemic operator to model knowledge, using in-
terpreted systems as underlying semantics.

2.3 Applications

2.3.1 Reasoning about actions

The most famous approach to reasoning about actions is
situation calculus, proposed by John McCarthy. Situations
are logical terms which describe the state of the world
whenever an action is executed. A situation defines the
truth value of a set of fluents, predicates that vary from
one situation to the next. Actions are described by spec-
ifying their preconditions and effects by means of first-
order logic formulas. For instance, the formula p(s) —
q(result(a, s)) means that, if p holds in situation s, then ¢
will hold after executing action a.

An alternative logical representation of actions is by
means of modal logic, where each modality represents an
action [26]. For instance, the formula O(p — [a]q) has
the same meaning as the previous one (g means that ¢
is true in each state). Since the semantics of modal logic
is based on the so called possible worlds, it is rather nat-
ural to adopt it for reasoning about actions, by associating
possible worlds with states, and transitions between worlds
with actions.

An important problem which arises in reasoning about
actions is the so called frame problem, i.e. the problem
of specifying in an efficient way what are the fluents that



do not change from one situation to the next one when an
action is executed. Usually this problem is formulated in
a nonmonotonic way, by saying that we assume that each
fluent persists if it is consistent to assume it. The frame
problem has been formally represented by means of non-
monotonic formalisms, or in classical logic by means of a
“completion” construction due to Reiter.

Among other formalisms we can mention the event cal-
culus, an extension of logic programming with explicit
time points, and fluent calculus.

Formal techniques for reasoning about actions have been
mainly applied in the area of planning, where the term cog-
nitive robotics was coined. In this context, the robot pro-
gramming language GOLOG [47] has been defined, based
on the situation calculus. GOLOG allows to write pro-
grams by means of statements of imperative programming
languages (similar to those provided by dynamic logic).
GOLOG programs are nondeterministic, and plans can be
obtained by searching for suitable program executions sat-
isfying a given goal. The language has been extended to
deal with concurrency and sensing.

A different approach, based on modal logic, is presented
in [10] where programs consist of sets of Prolog-like rules
and can be executed by means of a goal-directed proof pro-
cedure.

2.3.2 Multi-agent systems

Many of the techniques described in this chapter have been
applied to reasoning in multi- agent systems. We have al-
ready mentioned extensions to model checking to deal with
agents’ mental attitudes.

The issue of developing semantics for agent communi-
cation languages has been examined by many authors, in
particular by considering the problem of giving a verifiable
semantics, i.e. a semantics grounded on the computational
models. Given a formal semantics, it is possible to define
what it means for an agent to be respecting the semantics of
the communicative action when sending a message. Veri-
fication techniques, such as model checking can be used
to check it. For instance, in [76] agents are written in
MABLE, an imperative programming language, and have
a mental state. MABLE systems may be augmented by the
addition of formal claims about the system, expressed us-
ing a quantified, linear time temporal BDI logic. Properties
of MABLE programs can be verified by means of the SPIN
model checker, by translating BDI formulas into the form
used by SPIN.

The problem of verifying agents’ compliance with a pro-
tocol at runtime is addressed in [1]. Protocols are specified
in a logic-based formalism based on Social Integrity Con-
straints, which constrain the agents’ observable behavior.
The paper present a system that, during the evolution of a
society of agents, verifies the compliance of the agents’ be-
havior to the protocol, by checking fulfillment or violation
of expectations.

Another approach for the specification and verification
of interaction protocols is proposed in [32] using a combi-
nation of dynamic and temporal logic. Protocols are ex-
pressed as regular expressions, (communicative) actions
are specified by means of action and precondition laws,
and temporal properties can be expressed by means of the
until operator. Several kinds of verification problems can
be addressed in that framework, including the verification
of protocol properties and the verification that and agent is
compliant with a protocol.

2.3.3 Automated reasoning on the web

Automated reasoning is becoming an essential issue in
many web systems and applications, especially in emerg-
ing Semantic Web applications. The aim of the Semantic
Web initiative is to advance the state of the web through
the use of semantics. Various formalisms have already
emerged, like RDF or OWL, an ontology language stem-
ming from description logics. So far, reasoning on the
Semantic Web is mostly reasoning about knowledge ex-
pressed in a particular ontology.

The next step will be the logic of proof layers, and
logic programming based rule systems appear to lie in the
mainstream of such activities. Combinations of logic pro-
gramming and description logics have been studied, and
nonmonotonic extensions have been proposed, in particu-
lar regarding the use of Answer Set Programming. These
research issues are investigated in REWERSE, “Reason-
ing on the Web with Rules and Semantics”, a research
Network of Excellence of the 6th Framework Programme
(http://rewerse.net/).

Web services are rapidly emerging as the key paradigm
for the interaction and coordination of distributed business
processes. The ability to automatic reason about web ser-
vices, for instance to verify some properties or to compose
them, is an essential step toward the real usage of web
services. Web services have many analogies with agents,
and thus many of the techniques previously mentioned are
also being used to reason about web services. In partic-
ular, regarding web service composition, we can mention
[14] and the ASTRO project [6] which has developed tech-
niques and tools for web service composition, in partic-
ular by making use of sophisticated planning techniques,
which can deal with nondeterminism, partial observability
and extended goals.

REFERENCES

[1] Marco Alberti, Davide Daolio, Paolo Torroni, Marco Ga-
vanelli, Evelina Lamma, and Paola Mello. Specification and
verification of agent interaction protocols in a logic-based
system. In SAC, pages 7278, 2004.

[2] S. Anantharaman and M. P. Bonacina. An application of
automated equational reasoning to many-valued logic. In
CTRS-90, volume 516 of LNCS, pages 156-161. Springer,
1990.



(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

(16]

(7]

(18]

[19]

(20]

S. Anantharaman and J. Hsiang. Automated proofs of the
Moufang identities in alternative rings. J. Automat. Reason.,
6(1):76-109, 1990.

P. B. Andrews, M. Bishop, S. Issar, D. Nesmith, F. Pfen-
ning, and H. Xi. TPS: a theorem proving system for classi-
cal type theory. J. Automat. Reason., 16(3):321-353, 1996.

Alessandro Armando, Maria Paola Bonacina, Silvio Ranise,
and Stephan Schulz. On a rewriting approach to satisfiabil-
ity procedures: extension, combination of theories and an
experimental appraisal. In FroCoS-5, volume 3717 of LNAI,
pages 65-80. Springer, 2005.

ASTRO. http://sra.itc.it/projects/astro/.

Leo Bachmair and Nachum Dershowitz. Equational in-
ference, canonical proofs, and proof orderings. J. ACM,
41(2):236-276, 1994.

Leo Bachmair and Harald Ganzinger. Rewrite-based equa-
tional theorem proving with selection and simplification. J.
Logic and Comput., 4(3):217-247, 1994.

Leo Bachmair, Ashish Tiwari, and Laurent Vigneron. Ab-
stract congruence closure. J. Automat. Reason., 31(2):129-
168, 2003.

Matteo Baldoni, Laura Giordano, Alberto Martelli, and Vi-
viana Patti. Programming rational agents in a modal action
logic. Annals of Mathematics and Artificial Intelligence,
41(2-4):207-257, 2004.

Massimo Benerecetti, Fausto Giunchiglia, and Luciano Ser-
afini. Model checking multiagent systems. J. Log. Comput.,
8(3):401-423, 1998.

C. Benzmiiller, L. Cheikhrouhou, D. Fehrer, A. Fiedler,
Huang, M. Kerber, M. Kohlhase, K. Konrad, and E. Melis.
OMEGA: towards a mathematical assistant. In CADE-14,
volume 1249 of LNAI, pages 252-255. Springer, 1997.

C. Benzmiiller and M. Kohlhase. LEO - A higher-order
theorem prover. In CADE-15, volume 1421 of LNAI, pages
139-143. Springer, 1998.

Daniela Berardi, Giuseppe De Giacomo, Maurizio Lenz-
erini, Massimo Mecella, and Diego Calvanese. Synthesis
of underspecified composite -services based on automated
reasoning. In /ICSOC, pages 105-114, 2004.

Y. Bertot and P. Castéran. Interactive Theorem Proving and
Program Development — Coq’Art: The Calculus of Induc-
tive Constructions. Springer, 2004.

W. Bibel. Automated Theorem Proving. Friedr. Vieweg &
Sohn, 2nd edition, 1987.

Maria Paola Bonacina. A taxonomy of theorem-proving
strategies. In Artificial Intelligence Today — Recent Trends
and Developments, volume 1600, pages 43—84. Springer,
1999.

Maria Paola Bonacina and Jieh Hsiang. Towards a founda-
tion of completion procedures as semidecision procedures.
Theor. Comput. Sci., 146:199-242, 1995.

Maria Paola Bonacina and Jieh Hsiang. On the modelling
of search in theorem proving — towards a theory of strategy
analysis. Inf. Comput., 147:171-208, 1998.

R. S. Boyer and J S. Moore. A Computational Logic Hand-
book. Academic Press, 1988.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Ricardo Caferra, Alexander Leitsch, and Nicholas Peltier.
Automated Model Building. Kluwer, 2004.

C. L. Chang and R. C. T. Lee. Symbolic Logic and Mechan-
ical Theorem Proving. Academic Press, 1973.

R. L. Constable. Implementing Mathematics with the Nuprl
Proof Development System. Prentice Hall, 1986.

Martin Davis, G. Logemann, and D. W. Loveland. A ma-
chine program for theorem proving. C. ACM, 5:394-397,
1962.

Martin Davis and Hilary Putnam. A computing procedure
for quantification theory. J. ACM, 7:201-215, 1960.

Giuseppe De Giacomo and Maurizio Lenzerini. PDL-based
framework for reasoning about actions. In Marco Gori and
Giovanni Soda, editors, AI*IA, volume 992 of Lecture Notes
in Computer Science, pages 103—114. Springer, 1995.

M. Fitting. First-order Logic and Automated Theorem Prov-
ing. Springer, 1990.

Tzee Ho Fung and Robert A. Kowalski. The IFF proof pro-
cedure for abductive logic programming. J. Log. Program.,
33(2):151-165, 1997.

Dov M. Gabbay and Nicola Olivetti. Goal-Directed Proof
Theory. Kluwer Academic Publishers, 2000.

Michael Gelfond and Vladimir Lifschitz. Classical negation
in logic programs and disjunctive databases. New Genera-
tion Comput., 9(3/4):365-386, 1991.

Silvio Ghilardi, Enrica Nicolini, and Daniele Zucchelli. A
comprehensive framework for combined decision proce-
dures. In FroCoS-5, volume 3717 of LNAI, pages 1-30.
Springer, 2005.

Laura Giordano, Alberto Martelli, and Camilla Schwind.
Specifying and verifying interaction protocols in a temporal
action logic. Journal of Applied Logic, 2006. to appear.

M. Gordon and T. F. Melham. Introduction to HOL - A The-
orem Proving Environment for Higher Order Logic. Cam-
bridge Univ. Press, 1993.

Rajeev Goré. Tableau methods for modal and temporal log-
ics. In M D’ Agostino, D Gabbay, R Haehnle, and J Posegga,
editors, Handbook of Tableau Methods, pages 297-396.
Kluwer Academic Publishers, 1999.

Gerard J. Holzmann. The SPIN Model Checker. Addison-
Wesley, 2003.

Jieh Hsiang and Michagl Rusinowitch. Proving refutational
completeness of theorem proving strategies: the transfinite
semantic tree method. J. ACM, 38(3):559-587, 1991.

G. Huet and J. M. Hullot. Proofs by induction in equational
theories with constructors. J. Comput. Syst. Sci., 25:239—
266, 1982.

A. C. Kakas and P. Mancarella. On the relation between
truth maintenance and abduction. In Proceedings of the 2nd
Pacific Rim International Conference on Artificial Intelli-
gence, 1990.

A. C. Kakas, A. Michael, and C. Mourlas. ACLP: Abduc-
tive Constraint Logic Programming. Journal of Logic Pro-
gramming, 44(1-3):129-177, July 2000.



[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

[51]
[52]

[53]

[54]

[55]

[56]

[57]

[58]

D. Kapur and D. R. Musser. Proof by consistency. Artif.
Intell., 31:125-157, 1987.

D. Kapur and H. Zhang. A case study of the completion
procedure: proving ring commutativity problems. In Com-
putational Logic — Essays in Honor of Alan Robinson, pages
360-394. The MIT Press, 1991.

Deepak Kapur and Hantao Zhang. An overview of Rewrite
Rule Laboratory (RRL). Computers and Mathematics with
Applications, 29(2):91-114, 1995.

M. Kaufmann, P. Manolios, and J S. Moore. Computer
Aided Reasoning : ACL2 Case Studies. Kluwer, 2000.

A. Leitsch. The Resolution Calculus. Springer, 1997.

Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas
Eiter, Georg Gottlob, Simona Perri, and Francesco Scar-
cello. The DLV system for knowledge representation and
reasoning. ACM Transactions on Computational Logic, to
appear, 2002.

Reinhold Letz, Johann M. Schumann, S. Bayerl, and Wolf-
gang Bibel. SETHEO: a high performance theorem prover.
J. Automat. Reason., 8(2):183-212, 1992.

H.J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R.B.
Scherl. GOLOG: A logic programming language for dy-
namic domains. Journal of Logic Programming, 19(20):1-
679, 1994.

D. W. Loveland. Automated Theorem Proving: A Logical
Basis. North-Holland, 1978.

W. W. McCune. Solution of the Robbins problem. J. Au-
tomat. Reason., 19(3):263-276, 1997.

William W. McCune. Otter 3.0 reference manual and guide.
Technical Report 94/6, MCS Division, Argonne National
Laboratory, 1994.

Mizar. http://mizar.uwb.edu.pl/, 2006.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao,
Lintao Zhang, and Sharad Malik. Chaff: Engineering an ef-
ficient SAT solver. In David Blaauw and Luciano Lavagno,
editors, DAC-39, 2001.

Greg Nelson and Derek C. Oppen. Simplification by coop-
erating decision procedures. ACM TOPLAS, 1(2):245-257,
1979.

Greg Nelson and Derek C. Oppen. Fast decision proce-
dures based on congruence closure. J. ACM, 27(2):356—
364, 1980.

Robert Niewenhuis, José Miguel Rivero, and Miguel Angel
Vallejo. The Barcelona prover. J. Automat. Reason., 18(2),
1997.

NuSMV. http://nusmv.irst.itc.it/.

Hans Jiirgen Ohlbach, Andreas Nonnengart, Maarten de Ri-
jke, and Dov M. Gabbay. Encoding two-valued nonclassical
logics in classical logic. In John Alan Robinson and An-
drei Voronkov, editors, Handbook of Automated Reasoning,
pages 1403-1486. Elsevier and MIT Press, 2001.

Nicola Olivetti. Tableaux for nonmonotonic logics. In
M D’Agostino, D Gabbay, R Haehnle, and J Posegga,
editors, Handbook of Tableau Methods, pages 469-528.
Kluwer Academic Publishers, 1999.

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]
[72]

(73]

[74]

[75]

[76]

(77]

(78]

[79]

S. Owre, J. Rushby, N. Shankar, and D. Stringer-Calvert.
PVS: an experience report. In Applied Formal Methods
— FM-Trends 98, volume 1641 of LNCS, pages 338-345.
Springer, 1998.

L. C. Paulson. Isabelle: A Generic Theorem Prover, volume
828 of LNCS. Springer, 1994.

Wojciech Penczek and Alessio Lomuscio. Verifying epis-
temic properties of multi-agent systems via bounded model
checking. Fundam. Inform., 55(2):167-185, 2003.

D. A. Plaisted and Y. Zhu. The Efficiency of Theorem Prov-
ing Strategies. Vieweg & Sohns, 1997.

Alexander Riazanov and Andrei Voronkov. The design and
implementation of VAMPIRE. J. Al Commun., 15(2/3):91—
110, 2002.

Stephan Schulz. E — a brainiac theorem prover. J. AI Com-
mun., 15(2-3):111-126, 2002.

Johann M. Schumann. Automated Theorem Proving in Soft-
ware Engineering. Springer, 2001.

Natarajan Shankar.
vited talk, 3rd FLoC, and course notes,
http://www.csl.sri.com/users/shankar/LEP.html.

Little engines of proof, 2002. In-
Fall 2003,

Robert E. Shostak. An algorithm for reasoning about equal-
ity. C. ACM, 21(7):583-585, 1978.

Robert E. Shostak. Deciding combinations of theories. J.
ACM, 31(1):1-12, 1984.

Patrik Simons, Ilkka Niemeld, and Timo Soininen. Extend-
ing and implementing the stable model semantics. Artif.
Intell., 138(1-2):181-234, 2002.

R. Socher-Ambrosius and P. Johann. Deduction systems.
Springer, 1997.

SPASS. http://spass.mpi-sb.mpg.de/, 2006.

M. E. Stickel, R. Waldinger, M. Lowry, T. Pressburger, and
1. Underwood. Deductive composition of astronomical soft-
ware from subroutine libraries. In CADE-12, volume 814
of LNAI, pages 341-355. Springer, 1994.

Mark E. Stickel. A Prolog technology theorem prover: new
exposition and implementation in Prolog. Theor. Comput.
Sci., 104:109-128, 1992.

Tanel Tammet. Gandalf. J. Automat. Reason., 18(2):199—
204, 1997.

Laurent Vigneron. Automated deduction techniques for
studying rough algebras. Fundamen. Inform., 33:85-103,
1998.

Michael Wooldridge, Michael Fisher, Marc-Philippe Huget,
and Simon Parsons. Model checking multi-agent systems
with mable. In AAMAS, pages 952-959. ACM, 2002.

L. Wos, R. Overbeek, E. Lusk, and J. Boyle. Automated
Reasoning: Introduction and Applications. McGraw-Hill,
2nd edition, 1992.

Hantao Zhang. SATO: an efficient propositional prover. In
CADE-14, volume 1249 of LNAI, pages 272-275. Springer,
1997.

Lintao Zhang and Sharad Malik. The quest for efficient
boolean satisfiability solvers. In CADE-18, volume 2392 of
LNAI, pages 295-313. Springer, 2002.



