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Abstract: The green model microalga Chlamydomonas reinhardtii recently emerged as a sustainable
production chassis for the efficient biosynthesis of recombinant proteins and high-value metabolites.
Its capacity for scalable, rapid and light-driven growth in minimal salt solutions, its simplicity for
genetic manipulation and its “Generally Recognized As Safe” (GRAS) status are key features for
its application in industrial biotechnology. Although nuclear transformation has typically resulted
in limited transgene expression levels, recent developments now allow the design of powerful and
innovative bioproduction concepts. In this review, we summarize the main obstacles to genetic
engineering in C. reinhardtii and describe all essential aspects in sequence adaption and vector design
to enable sufficient transgene expression from the nuclear genome. Several biotechnological examples
of successful engineering serve as blueprints for the future establishment of C. reinhardtii as a green
cell factory.

Keywords: genetic engineering; green microalgae; sustainable bioproduction concepts; recombinant
expression; nuclear transformation; Chlamydomonas reinhardtii

1. Introduction

Green microalgae offer several key features for application in industrial biotechnology,
such as efficient and scalable biomass accumulation, simple and cheap cultivation in
minimal salt solutions on non-arable land as well as rapid growth rates [1], fueled by
efficient photosynthetic light harvesting [2]. Depending on the respective culture conditions,
microalgae harbor great metabolic flexibility and are an exceptional source of valuable
compounds, such as proteins, lipids, carbohydrates or pigments. Many green microalgae
species are “Generally Recognized As Safe” (GRAS) and selected candidate strains are
currently used for bioproduction, such as Haematococcos lacustris and Dunaliella salina
for pigments or Chlorella vulgaris and Scenedesmus obliquus for lipid biosynthesis. These
examples accelerate the development of a sustainable bioeconomy based on microalgae
biomass as a renewable and powerful resource.

However, recent developments in genetic engineering and synthetic biology have
enabled the design of new and promising production concepts, yielding increased product
titers and improved carbon use efficiency. The recombinant biosynthesis of non-native
products can be established to create additional layers of value to maximize the utilization of
microalgal biomass. Furthermore, it offers possibilities for auxotrophy engineering, which
strategically increases the biocontainment of industrial aspects, such as the phosphonate
dehydrogenase ptxD [3] or acetate dependency [4].

Efficient tools for both nuclear and chloroplast-based transformations have been
widely established for several microalgae species [5], with the most developed toolkit
available for Chlamydomonas reinhardtii. It is an attractive model organism for investigations
of photosynthesis, phototaxis and cilia biogenesis and has recently emerged as a promis-
ing host for the design of novel bioproduction concepts and the investigation of present
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microalgal gene regulation. Nuclear transformation of C. reinhardtii is technically easy to
facilitate, inexpensive and allows targeting of the protein of interest to any cellular compart-
ment. Through efficient genetic domestication [6–8], specialized C. reinhardtii strains have
been designed with an increased capacity for transgene expression. Powerful expression
elements including promoters, terminators and their corresponding 5′ and 3′-untranslated
regions (UTRs) have been identified for the establishment of strong constitutive or inducible
heterologous expression [9]. A breakthrough technology is the synthetic redesign of tar-
get gene sequences, which plays essential roles in achieving maximal heterologous gene
expression in C. reinhardtii. Versatile and standardized vector systems [9] simplify the ex-
change of genetic parts across the research community and help to assemble even complex
expression cassettes. Several selection markers and reporters have been characterized to
assist in high-throughput screening for the identification of transformants exhibiting gene
expression at relevant levels. Combinations of suitable selection markers allow multiple
iterations of transgene integrations (gene stacking) to maximize expression and reconstitute
complex metabolic pathways.

These current developments allow the efficient use of eukaryotic microalgae as at-
tractive hosts for biotechnology and pave the way for the design of microalgae as green
cell factories. This review aims to summarize recent state-of-the-art strategies for the ap-
plication of nuclear genetic engineering in C. reinhardtii and provides guidance for the
design of efficient bioproduction concepts. Figure 1 shows the roadmap of Chlamydomonas
transformation, indicating the main steps to optimize and elements to choose.
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Figure 1. Roadmap overview of the state of the art of Chlamydomonas nuclear transformation and
optimization of heterologous genes. Each point, with constraints and solutions, will be discussed in
the following chapters. In detail: CDS optimization (chapter 1), promoters (chapter 2), target peptides
(chapter 3), fluorescent proteins (chapter 4), terminators (chapter 5), MoClo (chapter 6), optimized
strains (chapter 7), pre-screening (based on fluorescence measurements) and production quantification
(specific to each product depending on individual properties; typically via chromatography or
proteomics methods).

2. Strain Domestication for Efficient Nuclear Transformation

Chlamydomonas reinhardtii was initially isolated from potato field soil in Massachusetts
(US) in 1945. Over the past eight decades, intensive laboratory use has resulted in compre-
hensive strain domestication and established a variety of mutant cell lines with desirable
traits for cultivation, physiological analysis and gene function characterization. This work
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includes, e.g., the establishment of auxotrophic selection markers, the partial depletion
of cell wall layers and random mutagenesis for functional gene knockout. All three en-
dogenous genomes are fully sequenced [10,11] and progress in genetic and metabolic
characterization has allowed C. reinhardtii to emerge as a powerful model organism and a
promising tool for biotechnological applications. The nuclear genome consists of 17 haploid
chromosomes with comparatively high GC content (~68%) [10,12], and the respective refer-
ence sequence information was recently updated [12]. The stable nuclear transformation of
C. reinhardtii was reported to be successful using several methods [10,12], including glass
bead agitation [13,14], particle bombardment [15], electroporation [16] and agrobacterium-
mediated gene transfer [17]. Electroporation typically results in the highest transformation
efficiency; however, PEG-mediated glass bead agitation is technically less challenging and
more frequently used for cell-wall-reduced strains. The integration of foreign DNA into
the nuclear genome occurs at comparably high frequencies and via non-homologous end
joining (NHEJ) at random positions. However, large differences in expression strength
exist among regenerated individuals from a transformant population, as the integration
loci underlie extended eukaryotic gene regulation. Homologous recombination is very
rare in C. reinhardtii but was recently employed for Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR)-based genome editing. It can be triggered by the presence
of double-strand breaks in the respective DNA region [18] and is further supported by
cell synchronization [19] and the application of heat shock [20,21]. The unique nuclear
genome’s properties only allow limited expression levels, especially for complex transgenes,
coding for large fusion proteins or functional enzymes, which calls for essential sequence
optimization to achieve efficient transgene silencing machinery, which involves chromatin
condensation as a consequence of histone modifications [6,22,23]. Strategically selected
UV generated mutations resulted in the design of C. reinhardtii strains UVM4/11, which
have been successfully identified to allow high-level transgene expression and carry a
reduced gene silencing mechanism [6] due to the loss of a sir2-type histone deacetylase
(SRTA) [24]. Similar results were observed for the functional knockout of a cytosine-specific
DNA methyltransferase (met1) [25], highlighting the impact of engineering epigenetic gene
regulation mechanisms for improved gene expression capacities in C. reinhardtii. Industrial
cultivation at scale calls for robust strains containing an intact cell wall for increased resis-
tance against mechanical shear stress. A cell-wall-containing strain with a high transgene
expression capacity has successfully been isolated and characterized as an alternative
to established production strains [7,24]. In addition, the biocontainment of engineered
transformants can be increased by the establishment of synthetic auxotrophies, such as
the ability to metabolize inorganic phosphite via overexpression of the NAD+-dependent
phosphonate dehydrogenase ptxD from Stutzerimonas stutzeri. These strategies were re-
cently applied in strain UPN22 via the overexpression of ptxD, nitrate reductase (nit1) and
nitrate assimilation regulatory protein (nit2), assisting in the cultivation and engineering of
C. reinhardtii at an industrial level [8].

3. Promoters and Terminators

Chlamydomonas reinhardtii exhibits unique transcription initiation machinery solely
relying on endogenous promoter sequences. Several studies have investigated the appli-
cation of well-characterized exogenous alternatives, e.g., derived from plant viruses, but
failed to establish stable transcription at a high level [17,26–30]. However, the recombinant
application of endogenous promoters has successfully been established and is routinely
applied for nuclear transgene expression. The ribulose bisphosphate carboxylase small
subunit 2 (RBCS2) is the highest expressed gene under vegetative conditions [31] and its up-
stream region was identified to induce the strong constitutive transcription rates when used
as a promoter for transgene expression [32]. Fusions with respective sequence elements
from C. reinhardtii heat shock protein 70 (HSP70A) promoter further increased transcription
and reduced epigenetic gene silencing [33,34]. Currently, the resulting chimeric promoter
HSP70/RBCS2 (pAR) is widely applied in nuclear genetic engineering concepts [35–44].
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Recently, rational promoter engineering was performed via strategic sequence modifica-
tions of the C. reinhardtii βTUB2 promoter, which resulted in the new, synthetic pAßSAP(i)
promoter [45], which is currently the strongest promoter available for C. reinhardtii and
allows product yields four-fold higher compared to other expression elements [45].

Sequence characterization from the photosystem I reaction center subunit II (PSAD)
gene [46] identified the corresponding upstream region to induce strong constitutive nuclear
transgene expression in C. reinhardtii and the corresponding N-terminal chloroplast target-
ing peptide (CTP) to enable post-translational protein import into the chloroplast. In addi-
tion, a synergy between the PSAD 5′UTR and its respective CTP has been identified, which
depicts a distinct interaction of the applied promoter, 5′UTR and CDS, which influences
transgene expression intensity [45]. Moreover, the mRNA folding energy in the translation
initiation vicinity significantly affects gene expression [47] for correct ribosome assembly.

Inducible transcription allows the development of advanced synthetic biology strate-
gies, enables controlled gene expression regulation, and can be essential when gene prod-
ucts cause toxicity. The most applied inducible promoters in C. reinhardtii include iron-
dependent FEA1 [48], nitrogen-dependent NIT1 [49], alcohol-inducible PalcA [50], salt-
inducible GPDH3 [51] and Cu-dependent CYC6 [52]. In addition, the application of a
thiamin-dependent riboswitch [53] was successfully established, which further expanded
the genetic toolbox of C. reinhardtii for tunable expression. Despite these developments,
limited gene expression mediated by poor transcription rates remains the major bottleneck
in establishing engineered gene expression from the nuclear genome in C. reinhardtii and
calls for the improved design of strong constitutive alternatives.

Terminators play a still underestimated role in gene expression regulation as they stabi-
lize mRNA products by inducing polyadenylation and participate in the re-initiation of tran-
scription. Their effect has recently been studied in two systematic investigations [45,54,55].
Two of them underlined the capacity of the endogenous C. reinhardtii ferredoxin 1 (FDX1)
sequence for the efficient termination of transcription for high transgene expression [45,55],
but no strategic sequence optimization has been demonstrated yet.

4. Optimization of Transgene Sequences

The nuclear genome of C. reinhardtii possesses several unique properties, which call for
the customization and adaption of heterologous DNA to function within the endogenous
expression machinery. The C. reinhardtii coding sequences contain a comparably strong
codon bias and high GC content of 68% [10,56]. Codon optimization of transgenes to match
the present tRNA pool is a common strategy in genetic engineering in any host and assists
in efficient protein translation in C. reinhardtii [47,57].

Furthermore, endogenous coding sequences are regularly interspaced by introns
(~6.4 introns per gene [10]) and the average intron length in pre-mRNA transcripts out-
competes the average exon length (336 bp compared to 224 bp) [10]. Although introns do
not contribute to protein translation, they are known to be important elements in gene
expression as they enable alternative splicing [58] and have been shown to regulate gene
expression [59–61] by containing transcriptional enhancers [62] or additional transcription
factor binding sites [63], by altering the transcription start site (TSS) [64,65] or by enhancing
mRNA stability and export [66,67]. In addition, it was observed that the presence of introns
in coding sequences induces an effect called “intron-mediated enhancement” (IME), which
stimulates the expression of the originating transgene in feedback regulation and further
complicates eukaryotic gene expression regulation. The effect of the synthetic integration
of several endogenous and exogenous introns has been systematically characterized in
C. reinhardtii [41,67–69] and the first intron from RBCS2 (RBCS2 intron 1) is commonly
used for the synthetic adaption of heterologous DNA [36,37,42–44,70]. It is likely that a
reduced exon length, spliceosome processing and sequence specific regulation assist in
the successful expression of fully optimized transgenes, and this is an essential step for
successful transcription continuation in C. reinhardtii.
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The recently developed online web tool Intronserter (https://bibiserv.cebitec.uni-
bielefeld.de/intronserter (accessed on 14 July 2023)) allows the convenient redesign of any
target sequence [71] and will help to establish C. reinhardtii as a green cell factory.

5. Selection Markers and Reporters for Gene Expression

Nuclear transformation typically employs the co-integration of a selectable marker
along with the desired gene of interest. It confers the ability to grow in the presence
of selective agents to successfully transform cells for isolation from the initially applied
biomass. Two major strategies for positive selection are well established for C. reinhardtii,
either to restore vegetative growth by complementing an existing auxotrophy, or via the
expression of proteins that inactivate selective antibiotics or herbicides (Table 1). The most
common auxotrophic markers involve mutations in the endogenous argininosuccinate
lyase (ARG7) [72], N-acetyl ornithine aminotransferase (ARG9) [73] or nitrate reductase
(NIT1) [14], prohibiting the biosynthesis of arginine or nitrite, respectively. Recently, the C.
reinhardtii spermidine synthase (SPD1) was confirmed to be essential for the polyamine
biosynthesis pathway in C. reinhardtii and was successfully established as a powerful
new auxotrophic marker with versatile biotechnological applicability [21]. Auxotrophic
mutant cell lines require the appropriate supplementation of essential metabolites via a
culture medium for survival, and prototrophy can be restored by complementation with the
functional CDS of the intact gene. However, differences in expression strength in selected
transformants can induce variable supply of the respective metabolites, which may result
in inefficient growth and complicates comparisons of complemented and supplemented
cultures.

The majority of genetic engineering attempts rely on the use of selection markers
that confer resistance against functional antibiotics or herbicides via detoxification. The
most commonly used genes are the aminoglycoside 3′-phosphotransferases aphVIII from
Streptomyces rimosus [74,75] and aphVII from Streptomyces hygroscopicus [76], the bleomycin-
resistance protein (shble) from Streptoalloteichus hindustanus [77,78] or aminoglycoside (3′′)
(9) adenylyltransferase (aadA) from Escherichia coli [79,80]. However, several other selection
systems have successfully been established (e.g., the NADP-requiring oxidoreductase TetX
or nourseothricin N-acetyltransferase (NAT)), and several combinations can be applied for
iterative transformations (Table 1).

Table 1. Selectable markers. List of several commonly used selection markers for selection after
nuclear transformation of C. reinhardtii. Table is organized by type of selection marker: Auto
(autotrophy), AB (antibiotics) and Herb (herbicide).

Type Gene Screening Mechanism References

Auto ARG7 Growth in arginine-free medium [72]
Auto NIT1 Growth in ammonium-free medium [14]
Auto SPD1 Growth in spermidine-free medium [21]

AB aphVII Resistance to hygromycin B [76]

AB aphVIII Resistance to paromomycin, neomycin
and kanamycin [74,75]

AB Shble Resistance to bleomycin and sapromycin [77,78]

AB aadA Resistance to spectinomycin and
streptomycin [79,80]

AB NptII Resistance to paromomycin, neomycin
and kanamycin [81]

AB TetX Resistance to tetracycline [82]
AB NAT Resistance to nourseothricin [83]
AB CRY-1 Resistance to cryptopleurine and emetine [84]
AB BSR Resistance to blasticidin S [85]

Herb GAT Resistance to glyphosate [86]
Herb PDS (R268T) Resistance to norflurazon [86]
Herb protox rs-3 Resistance to oxyfluorfen [86]

https://bibiserv.cebitec.uni-bielefeld.de/intronserter
https://bibiserv.cebitec.uni-bielefeld.de/intronserter
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During nuclear transformation, transgenes are randomly integrated via non-homologous
end joining into introduced chromosomal double-strand breaks. Differences in eukaryotic
gene regulation at the respective integration site greatly influence the expression strength
via “position effects” and lead to high variability in target protein accumulation within the
individuals of a transformant population. For expression quantification, target proteins
are typically fused to suitable fluorescent reporters. Several engineered variants of the
Aequorea victoria green fluorescent protein (GFP) [87] exist, which possess absorption and
emission characteristics that do not overlap with native chlorophyll or carotenoid signals
in C. reinhardtii [88–90]. Additionally, several alternative, red fluorescent proteins derived
from coral anemones were designed to complement the fluorescent reporter toolkit, e.g.,
mCherry [91] or mRuby [92,93]. The rapid and non-invasive screening of a multitude of pu-
tative transformants directly on the initial transformation plate allows the identification of
cell lines with the highest expression [94] and sufficient product yields for biotechnological
use. The absorption and emission spectra of the most commonly used fluorescent reporters
are shown in Figure 2. Recently, a systematic study investigated further alternatives to
these established fluorescence proteins (FP) and proposed specific combinations that enable
the detection of up to five independent FP signals from cyan to far-red in living microalgae
at the agar plate level and also in protein electrophoresis gels [95].
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chlorophylls in C. reinhardtii. The respective coding sequences for these fluorophores are included in
the current MoClo toolkit [9] as well as part of the pOptimized vector system [92]. The respective
information was derived from FPbase (www.FPbase.org).

For secreted proteins, fusions with luciferases have been well established, which
emit bioluminescence upon the oxidation of a corresponding substrate (e.g., luciferin
or coelenterazine). They offer higher sensitivity and signal intensity compared to other
reporter systems; however, their detection typically cannot be applied in vivo. The most
popular luciferase is the gLuc from the marine organism Gaussia principeps [92,96]. Recently,

www.FPbase.org
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a new luciferase-based system called NanoLuc was developed by engineering both enzymes
and substrates to improve the luminescence intensity ~150-fold compared to established
luciferases [97].

6. Vector System

The ease of nuclear transformations allows high screening throughput for efficient iden-
tification of successful target protein accumulation. Over the past few decades, numerous
genetic building blocks coding for functional expression elements have been characterized
(e.g., promoters, reporters, selection markers and coding sequences) and made available
in public databases for the strategic customization of expression constructs (e.g., Chlamy-
domonas Resource Center, Addgene). Innovative vector systems are required to facilitate
the desired construct modifications and the rapid assembly of complex constructs. The
first comprehensive attempt to standardize the available C. reinhardtii toolkit was the devel-
opment of the pOptimized vector system [92]. Each expression element position can be
exchanged via unique type IIR restriction enzyme sites, which allows the direct exchange of
each genetic part using classical cloning methods. The pOptimized system was effectively
applied for terpene bioproduction and several versatile modifications exist [36,37,43,44,70].

More recently, an alternative system based on the MoClo syntax was designed, which
employs standardized sequence overhangs and the Golden Gate assembly technology [9].
MoClo toolkits are well established in Escherichia coli [98,99], Saccharomyces cerevisiae [100],
mammalian systems [101], cyanobacteria [102] and plants [103], and they allow the rapid
de novo assembly of any designed construct in a “one-pot” reaction. A recently developed
Chlamydomonas MoClo toolkit (CrMoClo) provides 119 genetic parts for basic construct
designs [9] and it is being further expanded by several projects [42,45,85,104,105]. The
available level 0 parts can be strategically combined using type IIS restriction enzymes for
the fully customized design of level 1 transcription units (module) and further into a level
2 multigene expression vector (device). It allows the de novo design of complex expres-
sion from scratch and greatly assists in synthetic biology approaches using C. reinhardtii
(Figure 3).

Life 2023, 13, x FOR PEER REVIEW 8 of 15 
 

 

effectively applied for terpene bioproduction and several versatile modifications exist 
[36,37,43,44,70]. 

More recently, an alternative system based on the MoClo syntax was designed, which 
employs standardized sequence overhangs and the Golden Gate assembly technology [9]. 
MoClo toolkits are well established in Escherichia coli [98,99], Saccharomyces cerevisiae [100], 
mammalian systems [101], cyanobacteria [102] and plants [103], and they allow the rapid 
de novo assembly of any designed construct in a “one-pot” reaction. A recently developed 
Chlamydomonas MoClo toolkit (CrMoClo) provides 119 genetic parts for basic construct 
designs [9] and it is being further expanded by several projects [42,45,85,104,105]. The 
available level 0 parts can be strategically combined using type IIS restriction enzymes for 
the fully customized design of level 1 transcription units (module) and further into a level 
2 multigene expression vector (device). It allows the de novo design of complex expression 
from scratch and greatly assists in synthetic biology approaches using C. reinhardtii (Fig-
ure 3). 

 
Figure 3. MoClo toolkit workflow. Basic and standardized parts cloned into level 0 plasmids serve 
as libraries for all available genetic parts for C. reinhardtii nuclear engineering. They serve as availa-
ble resources for potential combination in functional transcriptional units (TU) for genetic engineer-
ing. For this, the respective plasmids will be digested and suitable DNA parts ligated using type IIS 
restriction enzymes and ligases in a “one-pot” reaction. The respective fusion sites are specific to 
each position in a designed ORF (indicated by colors) and allow correct orientation during TU as-
sembly in an acceptor vector. Several TUs can be combined into a level 2 multigene expression vec-
tor (device), which allows the de novo design of complex expression vectors from scratch and the 
co-expression of several GOIs along with a selection marker. 

7. Biotechnological Application 
Several studies have successfully demonstrated the use of optimized transgenes for 

the efficient nuclear engineering of C. reinhardtii and achieved the industrially relevant 
bioproduction of valuable products, including terpenoids, polyamines, recombinant pro-
teins and pigments. Terpenoids are structurally complex molecules with a broad range of 
biotechnological applications, e.g., as biopharmaceuticals, cosmetics and natural flavoring 
molecules [106–110]. The first examples of engineered light-driven terpenoid production 
from C. reinhardtii achieved 0.5 mg/L (0.92 ± 0.24 µg/g CDW) of the scent molecule patch-
oulol [43], 11 mg/L (10.3 ± 0.7 mg/g CDW) of the biodiesel precursor (E)-α-bisabolene and 
50 mg/L (80 mg/g CDW) of the biopharmaceutical precursor 13R(+) manoyl oxide [44]. 
Engineering achievements indicate the powerful carbon flux and fundamental plasticity 

Figure 3. MoClo toolkit workflow. Basic and standardized parts cloned into level 0 plasmids serve as
libraries for all available genetic parts for C. reinhardtii nuclear engineering. They serve as available
resources for potential combination in functional transcriptional units (TU) for genetic engineering.
For this, the respective plasmids will be digested and suitable DNA parts ligated using type IIS
restriction enzymes and ligases in a “one-pot” reaction. The respective fusion sites are specific to each
position in a designed ORF (indicated by colors) and allow correct orientation during TU assembly in
an acceptor vector. Several TUs can be combined into a level 2 multigene expression vector (device),
which allows the de novo design of complex expression vectors from scratch and the co-expression of
several GOIs along with a selection marker.
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7. Biotechnological Application

Several studies have successfully demonstrated the use of optimized transgenes
for the efficient nuclear engineering of C. reinhardtii and achieved the industrially rele-
vant bioproduction of valuable products, including terpenoids, polyamines, recombinant
proteins and pigments. Terpenoids are structurally complex molecules with a broad
range of biotechnological applications, e.g., as biopharmaceuticals, cosmetics and nat-
ural flavoring molecules [106–110]. The first examples of engineered light-driven ter-
penoid production from C. reinhardtii achieved 0.5 mg/L (0.92 ± 0.24 µg/g CDW) of the
scent molecule patchoulol [43], 11 mg/L (10.3 ± 0.7 mg/g CDW) of the biodiesel precur-
sor (E)-α-bisabolene and 50 mg/L (80 mg/g CDW) of the biopharmaceutical precursor
13R(+) manoyl oxide [44]. Engineering achievements indicate the powerful carbon flux
and fundamental plasticity of the plastid-located 2-C-methyl-d-erythritol 4-phosphate/1-
deoxy-d-xylulose 5-phosphate (MEP) pathway in C. reinhardtii [111]. It is an exceptional
source of sustainable metabolites [36,111] and provides abundant precursor isopentenyl py-
rophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) for engineered isoprenoid
biosynthesis [43–45,106–108,112,113]. Recently, sophisticated metabolic engineering has
been conducted to eliminate present bottlenecks from the MEP pathway via the overex-
pression of strategically engineered fusion proteins for increased flux towards terpenoid
products [42]. Phototrophic cultivation in high-cell-density media [21] yielded 656 mg/L
(200 mg/g CDW) of the fine chemical and perfume ingredient sclareol [42]. In addition,
engineered perturbations of the downstream carotenoid pathway through ketocarotenoid
biosynthesis increased the flux from the MEP pathway and enhanced the production of the
natural rubber component isoprene to 362 mg/L [114].

The modern chemical industry calls for new, resource-efficient and sustainable value
chains for the production of key base chemicals as valuable resources [115]. Polyamines,
such as putrescine and cadaverine, serve as versatile building blocks for the synthesis of
polyamides, linear polymers with excellent durability and strength properties for textiles
(e.g., nylon) and industrial as well as household utensils. Bio-based production of these
base chemicals has effectively been shown using engineered C. reinhardtii [115,116]. This
work included the systematic screening and overexpression of functional amino acid
decarboxylases in combination with the application of high-cell-density cultivation. Under
phototrophic conditions, production of up to 0.24 g cadaverine/L was achieved, with
maximal productivity of 0.1 g/L/d [115]. Similar amounts (0.2 g/L) were quantified
of the diamine putrescine after the overexpression of an ornithine decarboxylase from
Atropa belladonna and the genome-editing-based inactivation of putrescine degradation via
amine oxidation (amine oxidase 2, AMX2) in C. reinhardtii [116]. Interestingly, optimized
transgenes expressed to a high level from a single transformation event and iterative
transformations had only a minor effect on product accumulation, which indicates high
metabolic turnover rates in microalgae. Both examples demonstrate the potential of the CO2-
based bioproduction of polyamine base chemicals and promote the sustainable utilization
of C. reinhardtii engineering concepts for modern bio-industry.

The secretion of valuable proteins into the culture supernatant is an attractive strategy
to create another layer of value besides the utilization of microalgal biomass. Engineered
fusion proteins were successfully designed to enable the efficient secretion and purification
of human epidermal growth factor (hEGF) from C. reinhardtii culture media [40]. Secreted
hEGF reached concentrations of 100 µg/L after 48 h and exhibited full biological activity
compared to commercial standards. Recently, the SARS-CoV-2 spike protein was shown
to accumulate up to 11.2 µg/L in C. reinhardtii culture supernatants [117]. Engineering
of the C-terminus of secreted proteins effectively assisted in transport through the secre-
tory pathway [40,118] and resulted in increased reporter protein accumulation of up to
15 mg/L [118]. Recombinant protein secretion suffers from target protein complexity (e.g.,
glycosylation and disulfide bond formation) and further research is necessary to increase
the yields from nuclear engineering attempts.
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C. reinhardtii has developed a powerful carotenoid pathway to cope with fluctuating
and high light intensities. It harbors an evolutionary silenced ß-carotene ketolase (BKT),
which was successfully expressed upon transgene optimization and reintegration into the
nuclear genome [37]. It induced a noticeable color change from green to red and allowed
the accumulation of up to 4.3 mg/L/day of ketocarotenoids, which are typically absent
in C. reinhardtii. These pigment alterations did not affect growth under vegetative condi-
tions [37]. In contrast, engineering of astaxanthin accumulation reduced photoinhibition
and increased biomass productivity under very high light intensities [119], likely due to
the reduced cellular chlorophyll content, increased ROS scavenging capacity and antioxi-
dant activity. The biotechnological production of astaxanthin was recently complemented
by a systematic metabolic engineering approach to overcome rate-limiting steps in the
carotenoid biosynthesis pathway in C. reinhardtii. The combined overexpression of BKT,
ß-carotene hydroxylase and phytoene synthase enabled the accumulation of 23.5 mg/L,
with maximal productivity of 1.09 mg astaxanthin/L/h [36], which was assisted by the ap-
plication of high light intensity under phototrophic conditions. Astaxanthin production in
engineered C. reinhardtii is favorable due to its increased extractability and bioaccessibility
as a result of the lack of rigid cell walls, and it might compete with native production in
Haematococcus lacustris when the yields are sufficient [37].

These examples demonstrate the present capacity of nuclear engineering and the great
biotechnological potential of C. reinhardtii as a powerful green cell factory.

8. Conclusions

Recent progress within the scientific community has improved the capacity to express
transgenes from the nuclear genome of C. reinhardtii, depicting this green microalga as
a promising chassis for biotechnology. Combined efforts for transgene optimization and
state-of-the-art nuclear engineering strategies have been summarized and the given exam-
ples demonstrate the efficient use of C. reinhardtii for the synthesis of valuable bio-products
at levels comparable to those of established hosts and serve as blueprints for future applica-
tions. However, further research is necessary to fully elucidate the present microalgal gene
expression regulation, to further increase production titers in engineered cell lines and to
allow industrially relevant cultivation at scale for efficient use as a green cell factory.
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