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Abstract In this work, we consider the general family of the so called ADER
PNPM schemes for the numerical solution of hyperbolic partial differential
equations with arbitrary high order of accuracy in space and time.

The family of one-step PNPM schemes was introduced in [39] and repre-
sents a unified framework for classical high order Finite Volume (FV) schemes
(N = 0), the usual Discontinuous Galerkin (DG) methods (N = M), as well
as a new class of intermediate hybrid schemes for which a reconstruction oper-
ator of degree M is applied over piecewise polynomial data of degree N with
M > N . In all cases with M ≥ N > 0 the PNPM schemes are linear in the
sense of Godunov [61], thus when considering phenomena characterized by
discontinuities, spurious oscillations may appear and even destroy the simu-
lation. Therefore, in this paper we present a new simple, robust and accurate
a posteriori subcell finite volume limiting strategy that is valid for the entire
class of PNPM schemes. The subcell FV limiter is activated only where it is
needed, i.e. in the neighborhood of shocks or other discontinuities, and is able
to maintain the resolution of the underlying high order PNPM schemes, due
to the use of a rather fine subgrid of 2N + 1 subcells per space dimension.

The paper contains a wide set of test cases for different hyperbolic PDE
systems, solved on adaptive Cartesian meshes (AMR) that show the capabili-
ties of the proposed method both on smooth and discontinuous problems, as
well as the broad range of its applicability. The tests range from compressible
gasdynamics over classical MHD to relativistic magnetohydrodynamics.
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1 Introduction

In this work we want to improve the family of high order accurate ADER
PNPM schemes first introduced in [39,36] for the solution of hyperbolic par-
tial differential equations. In this family of schemes the discrete solution is
represented in space through high order piecewise polynomials of degree N
at each timestep; the data are then evolved in time through a space-time re-
construction procedure of order M . The reconstruction procedure is divided
into two steps: concerning the spatial reconstruction, we employ a classical
WENO reconstruction in the case of pure finite volume schemes (N = 0), a
reconstruction procedure based on L2 projection that is linear in the sense
of Godunov for N > 0 and M > N , and in the case or pure DG schemes
(N = M) the reconstruction reduces to the identity operator; concerning the
reconstruction in time, we employ a novel variant of the ADER approach of
Toro and Titarev, see [105,109,106,110,26], based on an element-local space-
time Galerkin predictor, see [39]. In practice, we can see the Finite Volume
(FV) schemes of order M as a particular case of PNPM methods when N = 0,
and also the Discontinous Galerkin (DG) methods are included in this family
when choosing N = M .

Furthermore, this family contains another important class of hybrid or re-
constructed DG schemes when taking N > 0,M > N , which are the main
object of study of this paper. Indeed, they offer many advantages, in par-
ticular their good compromise between cost and resolution. In fact, data are
represented with polynomials of order N , so more accurately with respect to
FV methods, but without the expensive cost of a full DG representation of
approximation degree M ; also the CFL stability constraint that limits the
timestep size of any explicit scheme, only depends on N and not on M , allow-
ing for larger timesteps once the desired order of accuracy has been fixed, see
[39]. Last but not least, for N > 0 the PNPM schemes require a much smaller
reconstruction stencil than comparable finite volume schemes of degree M .
The nominal order of accuracy of the scheme is given by M + 1 so it can be
at least in principle arbitrary high.

The family of reconstructed DG schemes, which is similar to the PNPM
framework, was forwarded independently by Luo et al. in a series of papers, see
e.g. [84,85,65,113,115,112] and references therein. At this point we also high-
light that the use of reconstruction and filtering operators as a post-processor
for improving the accuracy of DG schemes goes back to work of Ryan et al.,
see [96,69,95,74,87]. Other related work on reconstruction-based DG schemes
can be found in [79,28,114,17].



A posteriori subcell FV limiter for PNPM schemes 3

Moreover, the ADER PNPM family provides a useful framework for code
developers because it allows to include in a unique code both types of standard
discretization methods for hyperbolic PDE (FV and DG schemes), together
with the new class of intermediate hybrid schemes for M > N > 0. It is then
possible to let it up to the user to decide whether for a particular application
the use of a robust finite volume approach (N = 0), a very accurate DG
scheme (N = M), or a less expensive but still very accurate intermediate
PNPM method with M > N > 0, is the most appropriate.

The main drawback so far of the intermediate PNPM schemes with M >
N > 0, as presented in [39], is that they are linear in the sense of Godunov [61],
hence not well suited for dealing with discontinuous problems. For this reason,
here we propose a new simple, robust and accurate limiting strategy that is able
to stabilize the entire class of PNPM schemes in such a way that they can be
employed for the numerical solution of hyperbolic equations with discontinuous
solutions, which may arise even when starting with smooth initial conditions.
Moreover, the new limiter does not substantially deteriorate the benefits of
PNPM schemes in terms of computational cost and accuracy of the original
unlimited schemes. To the best knowledge of the authors, this is the first time
that an a posteriori subcell finite volume limiter is proposed for general PNPM
schemes with M > N > 0. So far, only the cases N = 0 and M = N were
covered in [39] and [50], respectively.

Our limiter is based on the MOOD approach [29,34,35], which has already
been successfully applied in the framework of ADER finite volume schemes [82,
22,21] and Discontinous Galerkin finite element schemes, see [50,120,45,25,
72]. Specifically, the numerical solution is checked a posteriori for nonphysical
values and spurious oscillations, and if it does not satisfy all admissibility
detection criteria, given by both physical and numerical requirements, in a
certain cell, that cell is marked as troubled. Then, instead of applying a limiter
to the already computed solution, the solution is locally recomputed with a
more robust scheme in the troubled cells, relying either on a second order
TVD scheme, as proposed for pure DG schemes in [45,19,102], or on a higher
order ADER-WENO finite volume method as employed in [50,120,23,92,94].
Moreover, this second computation is performed on a finer subgrid generated
within each troubled cell; the subcell approach is employed in order to maintain
the high resolution of the initial PNPM scheme even when passing to a less
accurate (but more robust) FV scheme. For the given reasons our limiter is
called a posteriori subcell finite volume limiter.

Finally, for a complete review of ADER PNPM schemes we refer to the
recent paper [25], where a complete introduction traces the historical develop-
ments of these methods up to its latest evolutions.

The rest of the paper is organized as follows. After an introduction of
the class of physical phenomena that can be discretized with the proposed
numerical method and the structure of our data representation, we present the
family of ADER PNPM schemes in Section 2. In particular, we describe the
reconstruction procedure in space, see Section 2.3, and in time see Section 2.4;
these procedures provide a high order reconstructed polynomial of degree M
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in space and time that will be used in the final one-step update formula given
in Section 2.5. Then, Section 2.6 is dedicated to our a posteriori subcell FV
limiter, which in addition can be combined with mesh adaptation techniques
as described in Section 2.7.

Next, in Section 3 we present a large set of numerical results that shows the
order of convergence of our scheme for smooth solutions and their capability
of dealing with discontinuities, i.e. their robustness and resolution. We also
compare the hybrid reconstructed schemes with pure DG schemes in order to
show the resulting gain in terms of computational cost. Finally, we close the
paper with some remarks and an outlook to future works in Section 4.

2 Numerical method

In this Section we carefully describe the a posteriori subcell finite volume
limiter for general PNPM schemes, showing its simplicity, accuracy, robustness
and versatility thanks to the following key ingredients:

– the use of the unified PNPM framework for finite volume (FV), discontinous
Galerkin (DG) and hybrid reconstructed DG schemes allows the user to
decide freely which combination of N and M is the better choice for a
particular application;

– the ADER space-time predictor-corrector formalism allows the implemen-
tation of a truly arbitrary high order accurate fully discrete one-step scheme
that needs only one MPI communication per time step within a parallel
HPC implementation, see Section 2.4;

– the a posteriori subcell finite volume limiter avoids spurious oscillations of
high order PNPM schemes without affecting the resolution of the underly-
ing method, see Section 2.6;

– the adaptive mesh refinement (AMR) technique allows to use a fine grid
only where necessary, resorting to cheaper coarse grids in smooth regions
of the solution, see Section 2.7.

2.1 Governing PDE system

We consider a very general formulation of the governing equations in order
to model a wide class of physical phenomena, namely all those which are
described by hyperbolic systems of conservation laws that can be cast into the
following form,

∂tQ +∇ · F(Q) = 0, x ∈ Ω(t) ⊂ Rd, Q ∈ ΩQ ⊂ Rm, (1)

where x = (x, y, z) is the spatial position vector, d is the number of space
dimensions, t represents the time, Q = (q1, q2, . . . , qm)T is the vector of con-
served variables defined in the space of the admissible states ΩQ ⊂ Rm and
F(Q) = ( f(Q),g(Q),h(Q) ) = f i(Q) (i = 1, 2, 3) is the non-linear flux tensor.
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This kind of system (1) is said to be hyperbolic if for all directions n 6= 0 the
matrix

An = ∂F/∂Q · n

has m real eigenvalues and a full set of m linearly independent eigenvectors.
Examples of hyperbolic equations are the Euler equations of gasdynamics, the
Shallow Water equations [27,104] and many multiphase models [4,37,59] used
in fluid mechanics, the magnetohydrodynamics system (MHD) for plasma flow
[9,6], the unified first order hyperbolic formulation of continuum mechanics by
Godunov, Peshkov and Romenski (GPR) [63,90,62,46,47,41] as well as the
special and general relativistic formulations of MHD, see e.g. [5,118,10,3,32,
53], or for the Einstein field equations (CCZ4) [1,2,40,42]. We will test the
method proposed in this paper on some of those systems in order to verify its
applicability in different physical domains.

2.2 Domain discretization and high order data representation (order N)

On grid level ` = 0 the computational domain Ω is discretized with a uniform
Cartesian grid, called main grid or the level zero grid, composed of NE =
Nx × Ny × Nz conforming elements (quadrilaterals if d = 2, or hexahedra if
d = 3) denoted by Ωi = Ωijk, i = (i, j, k) with |i| = 1, . . . , NE , i = 1, . . . , Nx,
j = 1, . . . , Ny, k = 1, . . . , Nz, with volume |Ωijk| =

∫
Ωijk

dx and such that

Ωi = Ωijk=[xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
]× [zk− 1

2
, zk+ 1

2
],

with ∆xi=xi+ 1
2
− xi− 1

2
, ∆yj=yj+ 1

2
− yj− 1

2
, ∆zk=zk+ 1

2
− zk− 1

2
.

(2)

For each element we define a reference frame of coordinates ξ = (ξ, η, ζ) linked
to the Cartesian coordinates x = (x, y, z) of Ωijk by

x=xi− 1
2

+ ξ∆x, y=yj− 1
2

+ η∆y, z=zk− 1
2

+ ζ∆z, ξ, η, ζ ∈ [0, 1]. (3)

Then, we represent the conserved variables Q of (1) in each cell Ωi by a
d−dimensional tensor product of piecewise polynomials of degree N

uh(x, tn) = uh(ξ(x)) =

N−1∑
`=0

ϕ`(ξ) û`,i := ϕ`(ξ) û`,i,

x ∈ Ωi, N = (N + 1)d,

(4)

where ϕ`(ξ) are nodal spatial basis functions given by the tensor product of a
set of Lagrange interpolation polynomials of maximum degree N such that

ϕ`(ξ
m
GL) = ϕ`1(ξmGL)ϕ`2(ηmGL)ϕ`3(ζmGL) = δ`m, (5)

where ξmGL are the set of (N + 1)d Gauss-Legendre (GL) quadrature points
obtained by the tensor product of the GL quadrature points ξmGL, η

m
GL, ζ

m
GL in

the unit interval [0, 1], see [103].
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The discontinuous finite element data representation in (4) leads naturally
to i) a Discontinuous Galerkin (DG) scheme if N > 0 and N = M , where
the desired order of accuracy M already coincides with the degree N of the
polynomial approximating the data (M = N), so that high order of accuracy in
space can be obtained without the use of any spatial reconstruction operator,
and to ii) a Finite Volume (FV) scheme in the case N = 0. This indeed
means that for N = 0 we have ϕ`(ξ) = 1 with ` = 0, and (4) reduces to the
classical piecewise constant data representation that is typical of finite volume
schemes, where the only degree of freedom per element is the usual cell average
û0. In this case the order of accuracy M in space will be obtained through
the reconstruction procedure described in next Section 2.3. However, iii) also
a family of hybrid reconstructed Discontinuous Galerkin methods is included
in this representation, where a Hermite-type reconstruction of degree M > N
is performed on cell data represented by polynomials of degree N , see the next
Section 2.3.

Thus, within the general PNPM formalism one can simultaneously deal
with arbitrary high order FV and DG schemes and reconstructed hybrid meth-
ods inside a unified framework, with only very few differences between the
different schemes (substantially the reconstruction procedure and the type of
limiter).

2.3 High order spatial reconstruction (order M)

In the framework of PNPM schemes, M indicates the highest polynomial ap-
proximation degree used for the representation of the discrete solution within
the method. Hence, in this Section we describe the reconstruction procedure
that is needed to obtain approximation degree M in space from an underlying
data representation uh(x, tn) of lower or equal degree N ≤M , i.e. the proce-
dure that generates a spatially high order accurate reconstruction polynomial
wh(x, tn) of degree M

wh(x, tn)=

M−1∑
`=0

ψ`(x, t
n) ŵ`,i := ψ`(x, t

n) ŵ`,i, x ∈ Ωi, M=(M + 1)d, (6)

where we formally employ the same nodal basis functions for the reconstruction
and for the data representation, see (4). However, note that when M 6= N of
course ψl(x, t

n) does not coincide with ϕl(x, t
n), since the polynomial degree

and the positions of the GL points are not the same.
For the sake of a uniform notation, when M = N , we trivially impose that

the reconstruction polynomial is given by the DG polynomial, i.e. wh(x, tn) =
uh(x, tn), which automatically implies that in the case N = M the reconstruc-
tion operator is simply the identity.

In the other cases, we employ a polynomial reconstruction procedure im-
plemented in a dimension by dimension fashion in order to compute the coef-
ficients ŵ`,i in (6). To better follow the following reasoning we refer the reader
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(a) Data P1P2 (b) Data x-rec, part 1/2 (c) x-rec, part 1/2

(d) Data x-rec, part 2/2 (e) x-rec, part 2/2 (f) x-rec cell Ωij

Fig. 1: Reconstruction P1P2 in cell Ωij along the x-direction in d = 2 di-
mensions. Since we are employing nodal basis functions, we can represent the
available information at each stage of our PNPM scheme in each cell by a
symbol located at a certain GL point inside the cell. In a P1P2 scheme uh is
represented by a PN = P1 polynomial, so we have (N + 1)2 = 4 information
in each cell (a, the green circles). By selecting the N + 1 = 2 information
along the same horizontal section in Ωij and in its two immediate neighbors
Ωi−1,j , Ωi+1,j (b), we have enough information (3(N + 1) = 6 > 3 = M + 1)
in order to reconstruct a PM = P2 polynomial in x-direction (c); then we have
to repeat the same procedure for each N + 1 = 2 horizontal section of cell Ωij
(d-e). In this way we obtain our reconstructing polynomial in the x-direction,
represented by (M + 1)(N + 1) = 6 information (f, the blue crosses).

also to the Figures 1, 2, and 3. Focusing on the reconstruction procedure along
the x-direction, given an element Ωi = Ωijk, we write the reconstruction poly-
nomial in x-direction wx

h in terms of one dimensional basis functions as

wx
h(x, tn) =

M∑
`1=0

N∑
r2=0

N∑
r3=0

ψ`1 (ξ)ϕr2 (η)ϕr3 (ζ) ŵx
`1,r2,r3,i

:= ψ`1 (ξ)ϕr2 (η)ϕr3 (ζ) ŵx
`1,r2,r3,i. (7)

Then, we integrate on a set Sx of neighbors of Ωi in x-direction, obtaining
an algebraic system for the polynomial coefficients ŵ`1,r2,r3,i (one for each
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(a) Data after x-rec (b) Data after x-rec in Sy (c) Data y-rec, part 1/3

(d) y-rec, part 1/3 (e) Data y-rec, part 2/3 (f) y-rec, part 1/3

(g) Data y-rec, part 3/3 (h) y-rec, part 1/3 (i) Reconstruction in Ωij

Fig. 2: Reconstruction P1P2 in cell Ωij along the y-direction in d = 2 dimen-
sions. After having performed the reconstruction along the x direction, in each
cell we have (M + 1)(N + 1) = 6 information (a, the blue crosses). Now, by
selecting (N + 1) = 2 information along the same vertical section in Ωij and
in its two immediate neighbors Ωi,j−1, Ωi,j+1 (c), we have enough information
(3(N + 1) = 6 > 3 = M + 1) in order to reconstruct a PM = P2 polynomial in
y-direction (d); then we have to repeat the same procedure for each M+1 = 3
vertical section of cell Ωij (e-h). In this way we obtain our final PM = P2

reconstructing polynomial for the cell Ωij (i, the red crosses).
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(a) Data P2P4 (b) Data x-rec, part 1/3 (c) x-rec, part 1/3

(d) x-rec cell Ωij (e) Data y-rec, part 2/5 (f) y-rec, part 2/5

(g) Data y-rec, part 4/5 (h) y-rec, part 4/5 (i) Reconstruction in Ωij

Fig. 3: Reconstruction P2P4 in cell Ωij in d = 2 dimensions. The available data
(a, green circles) are provided by the PN = P2 polynomial uh. By selecting
(N + 1) = 3 information along the same horizontal section in Ωij and in
its two immediate neighbors Ωi−1,j , Ωi+1,j (b), we have enough information
(3(N+1) = 9 > 5 = M+1) in order to reconstruct a PM = P4 polynomial in x-
direction (c); then the same procedure has to be repeated for each N + 1 = 3
horizontal section of cell Ωij obtaining (d), and finally for each cell of the
domain. At this point in each cell we have (M + 1)(N + 1) = 15 information
(d, the blue crosses) and by selecting (N + 1) = 3 information along the
same vertical section in Ωij and in its two immediate neighbors Ωi,j−1, Ωi,j+1

(e), we have enough information to reconstruct a PM = P4 polynomial in y-
direction (f); then we have to repeat the same procedure for each M + 1 = 5
vertical section of cell Ωij (g-h). In this way we obtain our final PM = P5

reconstructing polynomial for the cell Ωij (i, the red crosses).
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horizontal section of Ωi)

1

∆xm

∫ x
m+1

2

x
m− 1

2

ψ`1ϕr2ϕr3ŵ
x
`1,r2,r3,idx =

1

∆xm

∫ x
m+1

2

x
m− 1

2

ϕr1ϕr2ϕr3 ûr1,r2,r3,m dx,

∀Ωm ∈ Sx, ∀`1 ∈ [1,M + 1], ∀r1, r2, r3 ∈ [1, N + 1],
(8)

where Sx contains the neighbors along the x axis, i.e Ωm = Ωmjk such that
m ∈ {i− 1, i, i+ 1}. Note that we are using a stencil made always of only 3
elements in each direction, thus a very compact one. Indeed, a stencil composed
of 3 elements is enough for any PNPM scheme with M ≤ 3N + 2, because
any PN cell contains N + 1 degrees of freedom, thus 3 cells provide 3N + 3
degrees of freedom, which are sufficient for a polynomial reconstruction of
degree up to 3N + 2. Moreover, when the provided information are more than
the minimum required, the system (9) results to be overdetermined; so, to
solve it, we employ a constrained least-squares technique (CLSQ) [44], i.e. we
impose that the reconstructed polynomial satisfies

1

∆xi

∫ x
i+1

2

x
i− 1

2

ψ`1ϕr2ϕr3ŵ
x
`1,r2,r3,idx =

1

∆xi

∫ x
i+1

2

x
i− 1

2

ϕr1ϕr2ϕr3 ûr1,r2,r3,i dx,

∀`1 ∈ [1, N + 1], ∀r1, r2, r3 ∈ [1, N + 1],

(9)

exactly. In other words, all moments of the reconstructed solution wh and the
original solution uh up to degree N must coincide exactly within cell Ωi and
match on the remaining stencil elements in the least-square sense.

To complete the reconstruction polynomial, we now repeat the above pro-
cedure in the y-direction, so we write the reconstruction polynomial in terms
of one-dimensional basis functions as

wy
h(x, y, tn) = ψ`1 (ξ)ψ`2 (η)ϕr3 (ζ) ŵy

`1,`2,r3,i
, (10)

and we solve the algebraic system

1

∆yn

∫ y
n+1

2

y
n− 1

2

ψ`1ψ`2ϕr3ŵ
y
`1,`2,r3,i

dy=
1

∆yn

∫ y
n+1

2

y
n− 1

2

ψ`1ϕr2ϕr3ŵ
x
`1,r2,r3,n dy,

∀Ωn∈Sy, ∀`1, `2 ∈ [1,M + 1], ∀r2, r3 ∈ [1, N + 1],
(11)

with Sy being the set of the neighbors along the y axis, i.e Ωn = Ωink such
that n ∈ {j − 1, j, j + 1}. Again, for overdetermined systems we impose that
the reconstruction exactly satisfies

1

∆yj

∫ y
j+1

2

y
j− 1

2

ψ`1ψ`2ϕr3ŵ
y
`1,`2,r3,i

dy=
1

∆yj

∫ y
j+1

2

y
j− 1

2

ψ`1ϕr2ϕr3ŵ
x
`1,r2,r3,n dy,

∀`1 ∈ [1,M + 1], ∀`2 ∈ [1, N + 1], ∀r2, r3 ∈ [1, N + 1].

(12)
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And then the same procedure can be repeated along the z axis by looking for
the unknown coefficients ŵ`1,`2,`3,i of

wh(x, y, z, tn) = ψ`1 (ξ)ψ`2 (η)ψ`3 (ζ) ŵ`1,`2,`3,i, (13)

and solving the algebraic system

1

∆zp

∫ z
p+1

2

z
p− 1

2

ψ`1ψ`2ψ`3ŵ`1,`2,`3,i dy =
1

∆zp

∫ z
p+1

2

z
p− 1

2

ψ`1ψ`2ϕr3ŵ
y
`1`2,r3,p

dy,

∀Ωp∈Sz, ∀`1, `2, `3 ∈ [1,M + 1], ∀r3 ∈ [1, N + 1],

(14)

Sz being the set of the neighbors along the z axis, i.e Ωp = Ωijp such that
p ∈ [k − 1, k, k + 1]. For overdetermined systems, the constraint reads

1

∆zk

∫ z
k+1

2

z
k− 1

2

ψ`1ψ`2ψ`3ŵ`1,`2,`3,i dy =
1

∆zk

∫ z
k+1

2

z
k− 1

2

ψ`1ψ`2ϕr3ŵ
y
`1`2,r3,i

dy,

∀`1, `2,∈ [1,M + 1], ∀`3 ∈ [1, N + 1], ∀r3 ∈ [1, N + 1].

(15)

Finally, the coefficients ŵ`1,`2,`3,i represent the ŵ`,i of (6) that give us the
desired polynomial representation of order M in space.

We would like to emphasize that the reconstructed PNPM schemes with
N > 0 are very compact because for the reconstruction they need a much
smaller stencils than classical finite volume schemes and that for regular Carte-
sian meshes, the coefficients of the above constraint least squares systems de-
pend only on the choice of the basis functions, hence the integrals can be
precomputed once and for all on the reference element before starting the
simulation.

Furthermore, in the specific case N = 0, i.e. when the PNPM reduces to
a FV scheme, the above polynomial reconstruction procedure must be made
nonlinear; this can be easily done, for example, by adopting the WENO strat-
egy specifically described in the context of PNPM type schemes (thus with
the same notation adopted here) on Cartesian meshes in [49,25]. We recall
that the nonlinearity introduced through ENO/WENO type procedures es-
sentially avoids the spurious oscillations typical of high order linear schemes
modeling discontinuous processes see [61], and was already introduced in the
80s and subsequently largely developed [67,66,99,70,8,121,101]. Due to the
already exhaustive literature available on FV schemes, here, for what concerns
the strategies that guarantee robustness on discontinuities, we focus on PNPM
schemes only with N > 0: indeed, it is for those schemes that we propose in
this work a new strategy, i.e. the new a posteriori subcell FV limiter described
in Section 2.6.

2.4 High order in time via a local space-time Galerkin predictor

We recall that high order of accuracy in space is provided by the piecewise
polynomial data representation wh of (6), obtained in the previous Section 2.3.
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Now, in order to achieve also high order of accuracy in time, relying on
the ADER predictor-corrector approach, we need to compute the so-called
space-time Galerkin predictor, i.e. a space-time polynomial qh of degree M
in (d + 1)-dimensions (d for the space plus 1 for the time) which takes the
following form

qh(x, t) = qh(ξ(x), τ(t)) =

Q−1∑
`=0

θ`(ξ, τ)q̂` = θ`(ξ, τ)q̂`,

x ∈ Ωi, t ∈ [tn, tn+1], Q = (M + 1)d+1,

(16)

where again θ`(ξ, τ) is given by the tensor product of Lagrange interpolation
polynomials ϕ` (ξ(x))ϕ`τ (τ), with ξ(x) given by (3) and the mapping for the
time coordinate given by t = tn+τ∆t, τ ∈ [0, 1]. This high order polynomial in
space and time will serve as a predictor solution, only valid insideΩi×[tn, tn+1],
to be used for evaluating the numerical fluxes and the sources when integrating
the PDE in the final corrector step of the ADER scheme, see Section 2.5.

In order to determine the unknown coefficients q̂` of (16) we search qh
such that it satisfies a weak form of the governing PDE (1) integrated in space
and time locally inside each Ωi (with Ω◦i = Ωi\∂Ωi being the interior of Ωi)∫ tn+1

tn

∫
Ω◦

i

θk ∂tqh dx dt+

∫ tn+1

tn

∫
Ω◦

i

θk∇ · F(qh) dx dt = 0, (17)

where the first term is integrated in time by parts exploiting the causality
principle (upwinding in time)∫

Ω◦
i

θk(x, tn+1)qh(x, tn+1) dx−
∫
Ω◦

i

θk(x, tn)wh(x, tn) dx−

∫ tn+1

tn

∫
Ω◦

i

∂tθk(x, t)qh(x, t) dx dt+

∫ tn+1

tn

∫
Ω◦

i

θk(x, t)∇ · F(qh(x, t)) dx dt = 0,

(18)
and wh(x, tn) is the known initial condition at time tn.

Now, the system (18), which contains only volume integrals to be calculated
inside Ωi and no surface integrals, can be solved via a simple discrete Picard
iteration for each element Ωi, and there is no need of any communication
with neighbor elements. Indeed, the so-called predictor step consists in a local
solution of the governing PDE (1) in the small, see [66], inside each space-
time element Ωi × [tn, tn+1]. It is called local because it is obtained by only
considering cell Ωi with initial data wh, the governing equations (1) and the
geometry, without taking into account any interaction between Ωi and its
neighbors. We also want to emphasize that this procedure is exactly the same
whatever N and M are.

We recall that this procedure has been introduced for the first time in [39]
for unstructured meshes, it has been extended for example to moving meshes
in [18] and to degenerate space time elements in [57]; finally, its convergence
has been formally proved in [25].



A posteriori subcell FV limiter for PNPM schemes 13

2.5 High order fully-discrete one-step ADER PNPM scheme

Last, the update formula of our ADER PNPM scheme is recovered starting
from the weak formulation of the governing equations (1) (where the test
functions ϕk coincide with the basis functions ϕ` of (5))∫ tn+1

tn

∫
Ωi

ϕk (∂tQ +∇ · F(Q)) = 0; (19)

we then substitute Q with (4) at time t = tn (the known initial condition) and
at t = tn+1 (to represent the unknown evolved conserved variables), and with
the high order predictor qh previously computed for t ∈ [tn, tn+1], obtaining(∫

Ωi

ϕkϕl dx

)(
ûn+1
` − ûn`

)
+

∫ tn+1

tn

∫
∂Ωi

ϕkF
(
q−h ,q

+
h

)
· n dS dt −∫ tn+1

tn

∫
Ωi

∇ϕk · F(qh) dx dt = 0.

(20)

The use of qh allows to compute the integrals appearing in (20) with high
order of accuracy in both space and time.

The boundary fluxes F ·n are obtained by a Riemann solver, thus providing
the coupling between neighbors, which was neglected in the predictor step. In
particular, in this work we will employ three types of standard fluxes, namely
the Rusanov flux and the HLL flux, whose description can be found in [108],
and the HLLEM flux for which we refer to [51,38]. For the sake of completness,
we report here the expression of the Rusanov flux that reads as follows

F(q−h ,q
+
h ) · n =

1

2

(
F(q+

h ) + F(q−h )
)
· n− 1

2
smax

(
q+
h − q−h

)
, (21)

where smax is the maximum eigenvalue of the system matrices A(q+
h ) and

A(q−h ) being A(Q) = ∂F
∂Q . We remark also that due to the discontinuous

character of qh at the interfaces ∂Ωi, F·n is computed through a numerical flux
function evaluated over the boundary-extrapolated data q−h and q+

h (i.e the
predictors qh of two neighbors elements evaluated at the common interface).

Finally, we stress again that the update procedure in (20) is the same
whatever N and M are, and allows the contemporary evolution of all the
(N + 1)d degrees of freedom of uh.

2.5.1 CFL stability constraint

A very important feature of PNPM schemes is linked to the CFL stability
constraint. Since this family of scheme is explicit, the time step ∆t has to
be computed according to a (global) Courant-Friedrichs-Levy (CFL) stability
condition given by

∆tPNPM < CFLPNPM
hmin

d

1

|λmax|
<

CFL

(2N + 1)

hmin

d

1

|λmax|
(22)



14 Elena Gaburro, Michael Dumbser

where hmin is the minimum characteristic mesh-size, |λmax| is the spectral
radius of the system matrix A and the maximum admissible CFLPNPM number
is given in Table 1. In the above formula we wanted also to recall the classical
CFL condition of Runge-Kutta DG schemes (the one written on the right,
with CFL < 1) which is just a bit less restrictive than the one needed for
ADER PNPM schemes, but easier to remember and helpful in justifying the
stability of our subcell limiter, see formula (29).

Table 1: Maximum admissible CFL number for PNPM schemes from second
to fifth-order of accuracy

CFLPNPM N=0 N=1 N=2 N=3 N=4 N=5 N=6

M=0 1.0
M=1 1.0 0.33
M=2 1.0 0.33 0.17
M=3 1.0 0.33 0.17 0.1
M=4 1.0 0.33 0.17 0.1 0.069
M=5 1.0 0.33 0.17 0.1 0.069 0.045
M=6 1.0 0.33 0.17 0.1 0.069 0.045 0.038

Furthermore, we would like to emphasize that it is the degree N of the data
representation that governs the stability of the method and not the polynomial
degree M of the reconstruction operator. Hence, the reconstructed hybrid
methods with N > 0 and M > N allow for larger time steps than the pure DG
methods (N = M) of the same order always maintaining a superior resolution
with respect to FV schemes (N = 0), fact that further justifies the interest in
their development.

2.6 A posteriori subcell finite volume limiter

Up to now, the presented PNPM scheme is high order accurate in space and
time and, formally, the differences between the FV case (N = 0) the pure
DG case (N = M) and the hybrid reconstructed case (N > 0,M > N) are
basically only due to the procedure for achieving high order of accuracy in
space, which is obtained through a WENO reconstruction in the FV case,
a linear reconstruction in the hybrid case and is automatic by construction
for DG, see Section 2.3. But this is actually a major difference, because the
WENO operator provides a non-linear stabilization of the FV scheme, while
the PNPM schemes with N > 0 presented so far are unlimited and, as such,
they are affected by the so-called Gibbs phenomenon, i.e. oscillations are likely
to appear in presence of shock waves or other discontinuities. These oscillations
can be explained by the Godunov theorem [61], because in this case the scheme
is linear in the sense of Godunov.
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As a consequence, a limiting technique is required. Our strategy is described
in detail below and it will be applied whenever N > 0.

First, we need to consider the numerical solution computed so far un+1
h

only as a candidate solution: we denote it with un+1,∗
h (x, tn+1).

Then, following [50,120,119,54,25,72], each element Ωi is divided into
Nω = (2N + 1)d equal non-overlapping subgrid cells ωi,α whose volume is
denoted by |ωi,α|; for any cell we define the corresponding subcell average of
the PNPM solution at time tn

vni,α(x, tn) =
1

|ωi,α|

∫
ωi,α

unh(x, tn) dx = P(unh), ∀α ∈ [1, Nω], (23)

and the candidate subcell averages at time tn+1

vn+1,∗
i,α (x, tn+1) =

1

|ωi,α|

∫
ωi,α

un+1,∗
h (x, tn+1) dx = P(un+1,∗

h ), ∀α ∈ [1, Nω],

(24)
where P(uh) is the L2 projection operator into the space of piecewise constant
cell averages.

Now, we have to mark the troubled cells, i.e. we have to identify those cells
where the solution found through the PNPM scheme cannot be accepted be-
cause it may lead to spurious oscillations. Thus, the candidate solution vn+1,∗

h

is checked against a set of detection criteria. Here we follow the criteria de-
scribed in [19], however also other specific physical bounds or more elaborate
choices as those of invariant domain preserving methods [64] could be consid-
ered.

First, we require that the computed solution is physically acceptable, i.e.
that it belongs to the phase space of the conservation law being solved. For
instance, if the compressible Euler equations for gas dynamics are considered,
density and pressure should be positive and in practice we require that they
are greater than a prescribed tolerance ε = 10−12. Then, the solution should
verify a relaxed discrete maximum principle (DMP)

min
m∈V(Ωi)

(
min

β∈[1,Nω ]
(vnm,β )

)
− δ ≤ vn+1,∗

i,α ≤ max
m∈V(Ωi)

(
max

β∈[1,Nω]
(vnm,β )

)
+δ, ∀α∈ [1, Nω],

(25)
where V(Ωi) is the set containing all the neighbors of Ωi sharing a common
node with Ωi, and δ is a parameter which, according to [19,50,120], reads

δ=max

(
δ0, ε ·

[
max

m∈V(Ωi)

(
max

β∈[1,Nω]
(vnm,β )

)
− min
m∈V(Ωi)

(
min

β∈[1,Nω]
(vnm,β )

)])
, (26)

with δ0 = 10−5 and ε = 10−4. If a cell does not fulfill the detection criteria
in all its subcells, then it is marked as troubled. It is possible that some false
positive activations of the limiter occur; however these local effects do not
reduce the overall quality of the simulation thanks to the highly accurate
limiter procedure adopted on troubled cells.
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Then only on these troubled cells we apply either a second-order accurate
MUSCL-Hancock TVD finite volume scheme with minmod slope limiter [108]
(in particular in presence of strong shock waves or low density atmospheres),
or a more accurate ADER-WENO FV scheme [50,49] that better captures
local extrema. In this way we can re-compute the solution in order to evolve
the cell averages vni,α in time and obtain vn+1

i,α .
Note that, due to the fact of applying a high order scheme and to do so

on a subgrid instead that on the main grid, the subcell average representation
given by vn+1

i,α maintains the high resolution of the underling PNPM scheme.

Indeed now, we can recover from these cell averages a polynomial un+1
h of

degree N ; this is done by applying a reconstruction operator R such that∫
ωni,α

un+1
h (x, tn+1) dx =

∫
ωni,α

vn+1
i,α (x, tn) dx := R(vn+1

i,α (x, tn)), ∀α∈ [1, Nω], (27)

which is conservative on the main cell Ωi thanks to the additional linear con-
straint ∫

Ωi

un+1
h (x, tn+1) dx =

∫
Ωi

vn+1
h (x, tn+1) dx. (28)

Moreover, the projection operator P in (23) and the reconstruction operator
R in (27) satisfy the property P · R = I, with I being the identity operator.

However, we have to remark that the reconstruction operator (27)-(28)
might still lead to an oscillatory solution, since it is based on a linear unlimited
least squares technique. If this is the case, the cell Ωi will be marked again
automatically as troubled during the next timestep tn+2, therefore the same
finite volume subcell limiter will be used again in that cell and in particular
the subcell averages from which to start as initial data at time tn+1 will be
the vn+1

i,α kept in memory from the previous limited step.
Furthermore, if a cellΩi is acceptable but has at least one troubled neighbor

in V(Ωi), then we cannot accept its candidate solution un+1,∗
h (x, tn+1) as it is

because the scheme would be nonconservative, since the numerical flux F ·n at
the common interface would have been computed in two different ways in Ωi

and its neighbor and by using a qh that may already be non acceptable. Thus,
the final PNPM solution in these cells, neighbors of troubled ones, is rearranged
as follows: we keep the already computed values of the volume integral and of
the surface integrals interacting with non-troubled cells, while the numerical
flux across the troubled faces is substituted with the one computed through
the limiter procedure.

Finally, note that for the subcell FV scheme we have a different CFL sta-
bility condition

∆tFV < CFLFV
hmin

dNω

1

|λmax|
, (29)

with CFLFV < 1 and hmin the minimum cell size referred to Ωi. Condition (29)
guides us in choosing the number of employed subcells Nω. In particular, our
choice Nω = (2N + 1)d respects the stability condition (29) maintaining the
original timestep size fixed for the current timestep (see (22)) but also taking
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into account the maximum possible number of subgrid elements allowed by
that timestep size.

We would like to stress again that our interest for PNPM schemes is moti-
vated by the high resolution that they are able to provide and the reduced cost
offered by the possibility of representing data with lower order polynomials of
degree N and to achieve, however, an order of accuracy M , with M > N ,
using a very compact stencil and a simple reconstruction procedure.

The presented a posteriori subcell FV limiter is applied only where it is
needed by detecting spurious oscillations a posteriori and it is based on strong
stability preserving FV schemes developed precisely for dealing with discon-
tinuous solutions. Since FV schemes are less accurate than PNPM schemes
with N > 0, the limiter is applied on a finer subgrid than the original main
grid in order to avoid a loss of useful information.

2.7 Adaptive Cartesian mesh refinement

The last ingredient that further increases the resolution of the proposed ap-
proach is the possibility of activating an Adaptive Mesh Refinement (AMR)
technique based on a cell-by-cell refinement approach; indeed, the combined
action of our subcell limiter and of AMR allows a sharp detection of all discon-
tinuities. For details we refer to [15,14,73,49,43,120,54,53,24,116,93] and we
recall here just the main features. Our algorithm basically consists in, starting
from the main grid (2), introducing successive refinement levels, in regions of
particular interest according to a prescribed refinement criterion. In particular,
we have to fix the following parameters:

– the maximum level of refinement `max, typically chosen equal to 2 or 3 in
our tests;

– the refinement factor r, governing the number of subcells that are generated
according to

∆x` = r∆x`+1, ∆y` = r∆y`+1, ∆z` = r∆z`+1, (30)

where ∆x` is the size of the cell at refinement level number ` along the
x-direction, and similarly for the other directions;

– the refinement criterion that we base on oscillations of second derivatives,
see [81]. In practice, we have to compute

χi =

√ ∑
k,l(∂

2Φ/∂xk∂xl)2∑
k,l[(|∂Φ/∂xk|i+1 + |∂Φ/∂xk|i)/∆xl + ε|(∂2/∂xk∂xl)||Φ|]2

, (31)

where the summation
∑
k,l is taken over the number of space dimension of

the problem in order to include the cross term derivatives, the parameter
ε = 0.01 acts as a filter preventing refinement in regions of small ripples,
and the function Φ = Φ(Q), that could be any suitable indicator function
of the conserved variables Q, in our test is chosen to be simply Φ(Q) = ρ.
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Next, a cell Ωi is marked for refinement if χi > χref , while it is marked for
re-coarsening if χi < χrec. In our tests we have chosen χref in the range
[0.2, 0.25] and χrec in [0.05, 0.15].

Finally, the numerical solution at the subcell level during a refinement
step is obtained by a standard L2 projection, while a reconstruction operator
is employed to recover the solution on the main grid starting from the subcell
level. Moreover, in order to simplify the reconstruction procedure, the grid is
treated as locally uniform for each cell independent of its grid level `, because
the neighbors cells at a coarser level `− 1 can be virtually refined in order to
allow for the reconstruction procedure on locally uniform meshes detailed in
section 2.3. We also note that our AMR algorithm is endowed with a time-
accurate local time stepping (LTS) feature, see [49] for details.

3 Numerical results

In this Section we present a large set of numerical test cases in order to show the
accuracy, robustness and efficiency of the presented PNPM family of schemes
equipped with the a posteriori subcell finite volume limiter.

In order to cover a wide variety of physical phenomena we have applied
our schemes to three sets of equations of relevance in fluid-dynamical applica-
tions, namely the Euler equations of compressible hydrodynamics (HD), the
magnetohydrodynamics equations (MHD), and the special relativistic magne-
tohydrodynamics equations (RMHD).

In particular, for any set of equations we have selected both a smooth
test case, to show the order of convergence of our schemes (up to order six),
and some problems containing strong discontinuities going from logically one-
dimensional Riemann problems to classical challenging two-dimensional bench-
marks, such as the Sedov explosion problem, the Double Mach Reflection prob-
lem, the MHD rotor problem, the RMHD blast wave, as well as the MHD &
RMHD Orszag-Tang vortex problems. The presence of discontinuities allows
to prove the robustness and resolution of our a posteriori subcell limiting
strategy.

Moreover, the results obtained with the intermediate PNPM schemes (i.e.
N 6= 0 and M > N) are compared with the pure DG approach (i.e. N = M) in
order to show their gain in terms of computational efficiency, while maintain-
ing a similar resolution. We also compare numerical results on AMR meshes
against results obtained on fine uniform Cartesian meshes, demonstrating both
the robustness of our schemes on adaptive meshes and the obtained savings in
computational time.

3.1 Euler equations of gasdynamics

The first set of hyperbolic equations that we consider is given by the homoge-
neous Euler equations of compressible gasdynamics that can be cast in form (1)
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by choosing

Q =


ρ
ρu
ρv
ρw
ρE

, F =


ρu ρv

ρu2 + p ρuv
ρuv ρv2 + p
ρuw ρvw

u(ρE + p) v(ρE + p)

 . (32)

The vector of conserved variables Q involves the fluid density ρ, the momen-
tum density vector ρv = (ρu, ρv) and the total energy density ρE. The fluid
pressure p is related to the conserved quantities Q using the equation of state
for an ideal gas

p = (γ − 1)

(
ρE − 1

2
ρv2

)
, (33)

where γ is the ratio of specific heats so that the speed of sound takes the form

c =
√

γp
ρ .

3.1.1 Isentropic vortex

First of all, in order to verify the order of convergence of the proposed PNPM
schemes, we consider a smooth isentropic vortex flow according to [68]. The
computational domain is given by the square Ω = [0, 10]× [0, 10] with periodic
boundary conditions set everywhere. For the initial conditions we consider a
homogeneous background field Q0 = (ρ, u, v, p) = (1, 1, 1, 1) traveling with a
constant velocity vc = (1, 1) and we superimpose on this field some perturba-
tions for density and pressure of the following form

δρ = (1 + δT )
1

γ−1 − 1, δp = (1 + δT )
γ
γ−1 − 1, (34)

with the temperature fluctuation

δT = − (γ − 1)ε2

8γπ2
e1−r

2

and the vortex strength ε = 5. The velocity field is also affected by the following
perturbations (

δu
δv

)
=

ε

2π
e

1−r2
2

(
−(y − 5)

(x− 5)

)
. (35)

The initial condition is thus given by Q = Q0 + δQ. The exact solution Qe at
the final time tf can be simply computed as the time-shifted initial condition,
i.e. Qe(x, tf ) = Q(x− vctf , 0).

In Table 2, we report the convergence rates from second up to sixth order of
accuracy for the smooth vortex test problem run on a sequence of successively
refined meshes up to the final time tf = 1.0. The optimal order of accuracy
is achieved for the hybrid schemes PNPM with M > N and for the pure DG
schemes with N = M .
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Table 2: Numerical convergence table for general PNPM schemes for the isentropic vortex problem. The error norms refer to
the variable ρ at time tf = 1.0 in L2 norm.

h T L2 O(L2) T L2 O(L2) T L2 O(L2) T L2 O(L2) T L2 O(L2) T L2 O(L2)

O2 P0P1 P1P1

5.0E-02 60 1.0E-02 146 1.2E-04
4.0E-02 91 7.4E-03 1.4 291 7.9E-05 1.6
3.3E-02 159 5.7E-03 1.4 450 5.4E-05 2.0
2.5E-02 367 3.8E-03 1.4 1132 3.1E-05 2.0

O3 P0P2 P1P2 P2P2

6.7e-02 53 3.7e-04 180 4.2e-06 349 1.7e-05
5.0e-02 120 1.6e-04 2.9 415 1.8e-06 3.0 819 7.9e-06 2.6
4.0e-02 245 8.2e-05 2.9 791 9.0e-07 3.0 1615 4.3e-06 2.6
3.3e-02 417 4.7e-05 2.9 1377 5.2e-07 3.0 2734 2.6e-06 2.7

O4 P0P3 P1P3 P2P3 P3P3

1.3e-01 2.9 4.0e-03 6.5 2.2e-04 15 2.2e-05 23 6.0e-06
8.3e-02 8.9 6.0e-04 4.6 22 3.8e-05 4.3 50 3.9e-06 4.2 79 9.1e-07 4.6
6.3e-02 20 1.5e-04 4.8 51 1.1e-05 4.1 115 1.1e-06 4.4 183 2.7e-07 4.2
5.0e-02 38 4.9e-05 5.0 101 4.6e-06 4.0 235 4.1e-07 4.4 380 1.1e-07 4.1

O5 P0P4 P1P4 P2P4 P3P4 P4P4

8.3e-02 22 4.2e-04 47 1.7e-06 96 2.9e-06 181 4.8e-08 242 1.1e-07
7.7e-02 28 2.7e-04 4.6 57 1.1e-06 5.3 131 2.0e-06 4.8 229 3.3e-08 4.8 314 8.0e-08 4.2
7.1e-02 34 2.0e-04 4.7 70 7.4e-07 5.3 146 1.5e-06 4.6 294 2.3e-08 4.6 372 5.8e-08 4.3
6.7e-02 41 1.4e-04 4.7 91 5.1e-07 5.3 181 1.1e-06 4.1 346 1.7e-08 4.1 461 4.3e-08 4.2

O6 P0P5 P1P5 P2P5 P3P5 P4P5 P5P5

2.0e-01 7 1.1e-02 8 2.4e-04 15 1.3e-05 26 1.3e-05 43 7.2e-07 57 6.7e-07
1.7e-01 11 4.4e-03 5.1 12 7.1e-05 6.6 24 5.0e-06 5.6 44 4.1e-06 6.5 69 2.6e-07 5.6 98 1.8e-07 7.3
1.4e-01 16 1.8e-03 5.7 19 2.4e-05 7.0 38 2.1e-06 5.5 68 1.4e-06 7.0 110 1.1e-07 5.8 153 5.2e-08 8.0
1.3e-01 23 8.3e-04 5.6 29 9.2e-06 7.2 55 1.0e-06 5.5 97 5.4e-07 7.2 157 4.5e-08 5.9 219 1.9e-08 7.5
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3.1.2 The Sod shock tube problem

The Sod shock tube problem in 2D can be seen as a multidimensional extension
of the classical Sod test case in 1D [108], which allows to verify the robustness
and the resolution capacity of the employed numerical method on a rarefaction
wave, a contact discontinuity and a shock at the same time, indeed the three
waves are originated by the discontinuous initial condition.

Here, we consider as computational domain a square of dimension [−1, 1]×
[−1, 1] covered with a uniform mesh of 50×10 control volumes, and the initial
condition is composed of two different states, separated by a discontinuity at
xd = 0 {

ρL = 1, vL = 0, pL = 1, x ≤ xd
ρR = 0.125, vR = 0, pR = 0.1, x > xd.

(36)

The final time is chosen to be tf = 0.4, so that the shock wave does not cross
the external boundary of the domain, where wall boundary conditions are
set. The algorithm for the calculation of the exact solution of this Riemann
problem is given in [107].

We have run this problem with two fourth order methods, namely the P2P3

and the P3P3 schemes, and two sixth order methods, namely the P3P5 and
the P5P5 schemes, equipped with the a posteriori subcell TVD FV limiter
and employing the Rusanov flux both in the main PNPM scheme and at the
limiter stage. The agreement of our numerical results with the exact solution
is perfect and the hybrid schemes (i.e. M < N) are faster than the pure DG
schemes (N=M), see Figure 4.

Moreover, in Figure 5, one can see that the limiter activates exactly where
the shock discontinuity is located also when the adaptive mesh refinement
technique is employed.

3.1.3 The Lax shock tube problem

The Lax shock tube problem, introduced for the first time in [78], is another
classical benchmark for high order methods for the solution of the Euler equa-
tions. The computational domain is the square [−1, 1]× [−1, 1] and the initial
condition is composed of two different states, separated by a discontinuity
located at xd = 0{

ρL = 0.445, vL = 0.698, pL = 3.528, x ≤ xd
ρR = 0.5, vR = 0, pR = 0.571, x > xd.

(37)

In this case, we have covered our computational domain with a very coarse
mesh of 20× 10 elements activating the AMR procedure with `max = 2 levels
of refinement and r = 3. In Figure 6, we present the results obtained with two
sixth order methods, namely the P3P5 and the P5P5 schemes, used together
with the HLLEM [51,38] numerical flux. Both the numerical results perfectly
agree with the reference solution and the hybrid scheme is 2.5 times faster
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Fig. 4: Sod shock tube problem at tf = 0.4. Left: we compare our numer-
ical results obtained with two fourth order methods, namely the P2P3 and
the P3P3 with the exact solution. Note that the two schemes show a similar
resolution but the P2P3 is twice faster than the P3P3,Right: we compare our
numerical results obtained with two sixth order methods, namely the P3P5

and the P5P5 with the exact solution. Note again that the two schemes show
a similar resolution but the P3P5 is 2.33 times faster than the P5P5.

Fig. 5: Sod shock tube problem at tf = 0.4 solved with our P3P5 sixth order
scheme. We show in red the cells on which the limiter is activated and in
blue the unlimited cells. The left panel is obtained with an initial grid of
50 × 10 elements and `max = 2 levels of refinement with r = 3 in a total
computational time of 1248s. The right image is obtained by using a fine
uniform grid of 450× 90 elements corresponding to the finest AMR grid level
in a total computational time of 3670s. In both the cases the limiter perfectly
activates only where the shock wave is located.
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than the pure DG scheme. Also the limiter activates exactly only at the shock
location and, due to the subcell resolution, it does not affect the quality of the
profile which is sharply captured even on a very coarse mesh.

3.1.4 The Shu-Osher shock tube problem

The Shu-Osher problem was first introduced in [100] and it allows to check the
capability of our new scheme to deal simultaneously with physical oscillations
and shock waves appearing at the same time during the simulation. It consists
of a one-dimensional Mach 3 shock front interacting with a sinusoidal den-
sity disturbance that generates a combination of discontinuities and smooth
structures, whose entropy fluctuations are amplified when passing through the
shock.

We discretize our computational domain Ω = [−5, 5]× [0, 1] with an AMR
grid with 64 × 4 elements on the coarsest level and a maximum refinement
level `max = 2 with r = 3. The initial conditions are given by{

ρ = 3.8571, u = 2.6294, v = 0, p = 10.333, x < 4,

ρ = 1.0 + 0.2 sin(5x), u = 0, v = 0, p = 1, x ≥ 4,
(38)

and the simulations run up to the final time tf = 1.8. For this test case,
we employ the HLL Riemann solver, and the TVD a posteriori subcell finite
volume limiter.

We then compare the results obtained with two pure DG schemes P3P3 and
P5P5, and the hybrid schemes P2P3 and P3P5 which have, respectively, the
same order of accuracy. As shown in Figure 7, the methods are accurate, and
robust thanks to the employed limiter strategy, and the intermediate schemes
PNPM with M > N are computational more efficient than pure DG schemes.

Fig. 6: Lax shock tube problem at tf = 0.14, obtained with our sixth order
schemes, namely the P3P5 and P5P5 schemes. Left: we draw the density profile
on the z axis and we colour in red the cells on which the limiter is activated
and in blue the unlimited cells. Right: we compare our numerical results with
the exact solution.
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Fig. 7: Shu-Osher shock tube problem at tf = 1.8 solved with our fourth order
scheme, namely the P2P3 and P3P3 schemes (first column), and our sixth order
schemes, namely the P3P5 and P5P5 schemes (second column). In the first two
rows we plot the value of the density on the z axis and we depict in red the cell
where the limiter is activated. In the third row our results are compared with
a reference solution obtained with a WENO FV scheme on a very fine mesh.
Moreover the computational time required by the PNPM schemes with N < M
(respectively 394s and 2007s) are significantly shorter than those required by
the pure DG schemes (N = M) (respectively 880s and 5050s); nevertheless all
the results show an excellent agreement with the reference solution.
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Fig. 8: Sedov test problem. Comparison of numerical density obtained with
a selection of our high order methods (left, middle) and density contours ob-
tained with the hybrid P2P3 third order scheme on an AMR grid.

Table 3: Sedov problem. We report the total CPU time in seconds and the
values of the density peak (that should be equal to 6) obtained with a selection
of methods going from order 4 to 8. The results are ordered with respect to
the density peak value. One can notice that the hybrid schemes (as the P2P3

and the P3P5) have accurate results at a lower computational cost.

Method Order Total CPU time Density peak
P1P4 5 24 4.01
P1P5 6 37 4.02
P2P3 4 76 4.48
P3P5 6 361 4.94
P5P5 6 1458 5.08
P1P4 + AMR 5 847 5.20
P7P7 8 4428 5.25
P2P3 + AMR 4 1168 5.53
P3P3 + AMR 4 2454 5.61

3.1.5 Sedov problem

This test problem is widespread in literature [71,83,57] and it describes the
evolution of a blast wave that is generated at the origin O = (x, y) = (0, 0) of
the computational domain Ω(0) = [0, 1.2] × [0, 1.2]. An exact solution based
on self-similarity arguments is available from [97] and the fluid is assumed to
be an ideal gas with γ = 1.4, which is initially at rest and assigned with a
uniform density ρ0 = 1. The initial pressure is p0 = 10−6 everywhere except
in the cell Vor containing the origin O where it is given by

por = (γ − 1)ρ0
Etot

|Vor|

being Etot = 0.244816 the the total energy concentrated at x = 0 and |Vor|
the total volume of Vor.
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Fig. 9: Limited cells (red) and unlimited ones (blue) for the Se-
dov problem solved with a selection of high order methods, i.e.
P1P5, P3P5, P5P5, P1P4, P2P3, P7P7. A part some spurious oscillations of the
PNPM schemes with N = 1, the limiter activates exactly at the shock location.

We solve this numerical test with a selection of high order methods going
from fourth to eighth order of accuracy on a mesh of 50 × 50 elements with
and without AMR. When the adaptive mesh refinement is activated, we take
`max = 2 and r = 3. For all these test cases we employ the Rusanov flux,
CFL = 0.9, and the WENO a posteriori subcell finite volume limiter.

We show the results on the activation of the limiter in Figure 9, and the
obtained density profiles in Figure 8. Finally, we compare the performances
of a selection of methods in Table 3, in particular we highlight the needed
computational times versus their capability of capturing the high density peak.
We can remark that the hybrid schemes (as the P2P3 and the P3P5) have
accurate and robust results at a lower computational cost; also the combination
with adaptive mesh refinement helps in increasing the accuracy keeping the
computational cost low.

3.1.6 Double Mach Reflection

The double Mach reflection problem was first studied by Woodward and
Colella in [117] from which we take the setup also for our test.

We consider a computational domainΩ = [0, 4]×[0, 1] covered with a coarse
mesh of 72 × 24 elements where we activate the adaptive mesh refinement
with `max = 2 and r = 3, and we compare the behavior of two fifth order
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Fig. 10: Double Mach Reflection density contours obtained with two fifth order
schemes, namely the P2P4 and the P4P4 schemes. We plot 30 equally spaced
contour lines from 1.5 to 22.9705 as suggested in [98].

schemes, namely the hybrid P2P4 scheme and the P4P4 pure DG scheme. For
all the simulations, we employ the Rusanov flux and the second order TVD a
posteriori subcell finite volume limiter.

At the beginning of the computation a shock wave moving at Mach number
10 is positioned at (x, y) = (1/6, 0) with an angle of 60◦ with respect to the
x-axis and the initial pre-shock conditions (on the left of the shock) are given
by a constant density equal to 1.4 and a constant pressure p = 1. At the
bottom boundary we employ reflective boundary conditions for x > 1/6 where
we suppose the presence of a wall, and the exact post-shock conditions for
0 ≤ x ≤ 1/6 to mimic an angled wedge. At the top boundary, the flow variables
are set to describe the exact motion of the Mach 10 shock. Finally at the left
and right boundaries we set inflow and outflow boundaries.

The obtained numerical results are shown in Figure 10 for the entire do-
main; we also plot a zoom in Figure 11 where, one can notice the roll up of
the Mach stem due to Kelvin-Helmholtz instabilities.
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Fig. 11: Double Mach Reflection. Left: density contours with 30 equally spaced
contour lines from 1.5 to 22.9705. Right: limited cells (red) and unlimited cells
(blue).

3.2 Ideal MHD equations

Next, we consider the equations of ideal classical magnetohydrodynamics (MHD)
which, with respect to the previous set of equations, take also into account the
evolution of the magnetic field B. The vector of the conserved variables Q and
the flux tensor F of the general form (1) are given by

Q =


ρ
ρv
ρE
B
ψ

, F(Q) =


ρv

ρv ⊗ v + ptI− 1
4πB⊗B

v(ρE + pt)− 1
4πB(v ·B)

v ⊗B−B⊗ v + ψI
c2hB

. (39)

Here, B = (Bx, By, Bz) represents the magnetic field and pt = p+ 1
8πB

2 is the
total pressure. The hydrodynamic pressure is given by the equation of state
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used to close the system, thus

p = (γ − 1)

(
ρE − 1

2
v2 − B2

8π

)
. (40)

System (39) requires an additional constraint on the divergence of the magnetic
field to be satisfied, that is

∇ ·B = 0. (41)

Here, (39) includes one additional scalar PDE for the evolution of the variable
ψ, which is needed to transport divergence errors outside the computational
domain with an artificial divergence cleaning speed ch, see [88,31]. A simi-
lar approach is adopted in [54,20,16]. A more recent and more sophisticated
methodology to fulfill this condition exactly at the discrete level also in the
context of high order ADER WENO finite volume schemes on unstructured
simplex meshes can be found in [7].

3.2.1 MHD vortex
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Table 4: Numerical convergence table for general PNPM schemes for the MHD vortex. The error norms refer to the variable ρ
at time tf = 1.0 in the L2 norm.

h T L2 O(L2) T L2 O(L2) T L2 O(L2) T L2 O(L2) T L2 O(L2) T L2 O(L2)

O2 P0P1 P1P1

2.0e-02 37 4.7e-05 69 2.6e-06
1.6e-02 54 3.7e-05 1.4 132 1.8e-06 1.9
1.2e-02 153 2.4e-05 1.4 392 1.0e-06 1.9
1.0e-02 249 1.7e-05 1.6 574 6.7e-07 2.1

O3 P0P2 P1P2 P2P2

1.2e-01 0.6 1.5e-06 1.4 9.4e-07 2.7 4.2e-06
8.3e-02 1.8 4.1e-07 3.3 4.3 2.5e-07 3.2 8.7 1.5e-06 2.4
6.2e-02 3.7 1.6e-07 3.1 10 1.1e-07 2.8 20 7.9e-07 2.4
5.0e-02 6.9 8.6e-08 3.0 19 5.4e-08 3.3 31 4.6e-07 2.4

O4 P0P3 P1P3 P2P3 P3P3

2.5e-01 0.3 1.1e-05 0.5 1.0e-05 0.9 6.3e-07 2.2 4.0e-07
1.6e-01 1.5 1.2e-06 5.5 1.3 1.9e-06 4.1 2.6 1.2e-07 4.0 3.7 8.9e-08 3.7
1.2e-01 4.4 2.9e-07 5.0 2.8 6.1e-07 3.9 5.8 3.4e-08 4.5 11 2.6e-08 4.2
1.0e-01 4.7 1.5e-07 2.9 5.2 2.5e-07 3.9 11 1.3e-08 4.2 15 1.0e-08 4.0

O5 P0P4 P1P4 P2P4 P3P4 P4P4

4.0e-01 0.2 2.4e-05 0.3 1.1e-06 0.5 4.6e-06 0.8 1.6e-07 0.9 1.9e-07
3.3e-01 0.3 8.5e-06 5.8 0.4 5.5e-07 3.8 0.7 2.0e-06 4.6 1.2 5.1e-08 6.4 1.5 8.7e-08 4.4
2.8e-01 0.4 3.7e-06 5.4 0.7 2.8e-07 4.4 1.1 9.5e-07 4.9 1.9 1.8e-08 6.5 2.3 4.3e-08 4.4
2.5e-01 0.6 1.9e-06 4.7 1.0 1.4e-07 5.2 1.6 4.9e-07 4.9 2.9 8.6e-09 5.8 3.4 2.4e-08 4.4

O6 P0P5 P1P5 P2P5 P3P5 P4P5 P5P5

7.1e-01 0.1 5.3e-04 0.1 4.2e-05 0.2 3.6e-06 0.3 4.9e-06 0.4 3.6e-07 0.6 2.1e-07
5.5e-01 0.3 1.3e-04 5.5 0.2 1.2e-05 4.9 0.3 1.1e-06 4.7 0.5 1.2e-06 5.5 0.8 7.6e-08 6.2 1.2 5.8e-08 5.1
4.5e-01 0.3 4.1e-05 5.7 0.4 3.9e-06 5.6 0.5 4.0e-07 5.0 0.9 3.8e-07 5.9 1.4 2.6e-08 5.3 2.0 1.7e-08 6.0
3.8e-01 0.5 1.5e-05 6.0 0.5 1.4e-06 6.0 0.9 1.6e-07 5.5 2 1.3e-07 6.0 2.1 1.0e-08 5.2 2.7 6.7e-09 5.7
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First, for the numerical convergence studies, we solve the vortex test prob-
lem proposed by Balsara in [6]. The computational domain is given by the box
Ω = [0, 10] × [0, 10] with wall boundary conditions imposed everywhere. The
initial condition can be written in terms of the vector of primitive variables
V = (ρ, u, v, w, p,Bx, By, Bz, Ψ)T as

V(x, 0) = (1, δu, δv, 0, 1 + δp, δBx, δBy, 0, 0)T , (42)

with δv = (δu, δv, 0)T , δB = (δBx, δBy, 0)T and

δv =
κ

2π
eq(1−r

2)ez × r

δB =
µ

2π
eq(1−r

2)ez × r,

δp =
1

64qπ3

(
µ2(1− 2qr2)− 4κ2π

)
e2q(1−r

2),

(43)

where ez = (0, 0, 1), r = (x− 5, y − 5, 0) and r = ‖r‖ =
√

(x− 5)2 + (y − 5)2.
The divergence cleaning speed is chosen as ch = 2. The other parameters are
q = 1

2 , κ = 1 and µ =
√

4π, according to [6].
In Table 4, we report the convergence rates from second up to sixth order

of accuracy for the MHD vortex test problem run on a sequence of successively
refined meshes up to the final time tf = 1.0. The optimal order of accuracy
is achieved both in space and time both for the hybrid schemes PNPM with
M > N and for the pure DG schemes with N = M .

3.2.2 MHD rotor problem

The MHD rotor problem is a classical benchmark for MHD that was first
proposed by Balsara and Spicer in [9]. It consists of a rapidly rotating fluid
of high density embedded in a fluid at rest with low density. Both fluids are
subject to an initially constant magnetic field.

The rotor produces torsional Alfvén waves that are launched into the outer
fluid at rest, resulting in a decrease of angular momentum of the spinning rotor.
We consider as computational domain the square Ω = [−0.5, 0.5]× [−0.5, 0.5]
and as initial condition we take the density inside a circle of radius r ≤ 0.1
equal to ρ = 10, while the density of the ambient fluid at rest is set to ρ = 1.
The rotor has an angular velocity of ω = 10. The pressure is p = 1 and
the magnetic field vector is set to B = (2.5, 0, 0)T in the entire domain. As
proposed by Balsara and Spicer we apply a linear taper to the velocity and
to the density in the range from 0.1 ≤ r ≤ 0.105 so that density and velocity
match those of the ambient fluid at rest at a radius of r = 0.105. The speed
for the hyperbolic divergence cleaning is set to ch = 8 and γ = 1.4 is used.
Wall boundary conditions are applied everywhere.

We run this problem on a coarse mesh made of 45×45 elements activating
the AMR procedure with `max = 2 levels of refinement and r = 3, and for
comparison we also employ a finer uniform mesh of 405 × 405 elements cor-
responding to the finest AMR grid level. In particular, we have employed the
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P2P4 fifth order scheme and the P4P5 sixth order scheme with the Rusanov
numerical flux and our a posteriori subcell WENO FV limiter. In all the cases,
we can observe a good agreement between the obtained numerical results and
those available in the literature, see Figures 12-13.

3.3 MHD Orszag-Tang vortex

We consider now the the vortex system of Orszag and Tang [89,30,91] for
the ideal MHD equations. We choose as computational domain the square
Ω = [0, 2π] × [0, 2π] with periodic boundary conditions set everywhere; we
cover it with a uniform grid of 128× 128 elements.

Fig. 12: MHD Rotor problem at the final time tf = 0.25 solved with our
P2P4 fifth order scheme. In the left column we plot the pressure contours, in

the central column the magnetic density profile M =
(B2
x+B

2
y+B

2
z)

(8π) and in the

right column we depict in red the troubled cells and in blue unlimited cells.
The results on the first row are obtained with a coarse mesh of 45 × 45 cells
and `max = 2 levels of refinement with r = 3. The results on the second row
are obtained by using a fine uniform grid of 405× 405 elements corresponding
to the finest AMR grid level. The computation on the finer grids takes twice
the time of the computation on a coarse mesh with AMR (i.e 7890s instead of
3779s).
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The initial condition written in terms of primitive variables are the follow-
ing

(ρ, u, v, w, p,Bx, By, Bz) =(
γ2,− sin(y), sin(x), 0, γ,−

√
4π sin(y),

√
4π sin(2x), 0

) (44)

with γ = 5/3. The divergence cleaning speed is set to ch = 2 and the final
time of the simulation is taken to be tf = 3 as in [39].

We solve this test by employing three different fifth order schemes, namely
the hybrid P2P4 and P3P4 schemes and the pure DG P4P4 scheme, with the
Rusanov numerical flux and equipped with our a posteriori subcell TVD fi-
nite volume limiter. The obtained numerical results and the cells on which
the limiter is activated are presented in Figure 14. One can notice that the
three methods produce similar results with a good qualitative agreement com-
pared to the solutions provided in [39,7,120]; moreover, the hybrid schemes
are computationally more efficient than the pure DG scheme.

Fig. 13: MHD Rotor problem at the final time tf = 0.25 solved with our P4P5
sixth order scheme. In the left column we plot the pressure contours, in the

central column the magnetic density profile M =
(B2
x+B

2
y+B

2
z)

(8π) and in the right

column we depict in red the troubled cells and in blue unlimited cells in blue.
The results on the first row are obtained with a coarse mesh of 45 × 45 cells
and `max = 2 levels of refinement with r = 3. The results on the second row
are obtained by using a fine uniform grid of 405× 405 elements corresponding
to the finest AMR grid level. The computation on the finer grids takes twice
the time of the computation on a coarse mesh with AMR.
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Fig. 14: MHD Orszag-Tang at the final time of tf = 3.0. We compare the
results obtained with three fifth order schemes, namely the P2P4, P3P4, P4P4

schemes. In the first column we depict the density contours, in the second
column we depict the pressure contours and in the third column we depict the
troubled cells in red and the unlimited cells in blue. One can notice that the
three methods lead to similar results but with respect to P4P4 the P2P4 is 3.39
times faster and the P3P4 is 1.60 time faster.

3.4 Special relativistic MHD equations

The system of equations of special relativistic magnetohydrodynamics (RMHD)
is supposed to provide a sufficiently accurate description of the dynamics of
those astrophysical plasma that move close to the speed of light and which
are subject to electromagnetic forces that dominate over the gravitational
forces. For example this is the case of high energy astrophysical phenomena
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like extragalactic jets [13], gamma-ray bursts [77] or magnetospheres of neu-
tron stars [86].

For a more detailed description of this model and a review of the numerical
methods used in its approximation we refer to [119] and the reference therein.
Here we briefly recall only the main terms appearing in the equations, which
indeed can be written under the general hyperbolic form (1) by choosing

Q =


D
Sj
U
Bj

, f i =


viD
W i
j

Si

εjikEk

, (45)

where we have employed the classical tensor index notation based on the Ein-
stein summation convention, which implies summation over two equal indices.

The conserved variables (D,Sj , U,B
j) are related to the rest-mass density

ρ, to the thermal pressure p, to the fluid velocity vi and to the magnetic field
Bi by

D = ρW,

Si = ρhW 2vi + εijkEjBk,

U = ρhW 2 − p+
1

2
(E2 +B2),

(46)

where εijk is the spatial Levi–Civita tensor and δij is the Kronecker symbol.
As usual in ideal MHD, the electric field is given by E = −v×B. The spatial
tensor W i

j in (45), representing the momentum flux density, is

Wij ≡ ρhW 2vivj − EiEj −BiBj +

[
p+

1

2
(E2 +B2)

]
δij ,

(47)

where δij is the Kronecker delta.

The above equations include the divergence free condition ~∇· ~B = 0 for the
magnetic field, which, although is guaranteed by the Maxwell equations at a
continuous level, is not automatically satisfied from a numerical point of view.
Different strategies can be adopted in order to solve this problem (see [111] for
a review). Here, as for the MHD case of Section 3.2, we have adopted the so
called divergence-cleaning approach presented in [88,31], which considers an
augmented system with an additional equation for a scalar field Φ, in order to
propagate away the deviations from ~∇ · ~B = 0

∂tΦ+ ∂iB
i = −κΦ , (48)

while the fluxes for the evolution of the magnetic field are also modified, namely
f i(Bj)→ εjikEk + Φδij .
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3.4.1 Alfvén wave

As for the previous set of equations we first of all check the convergence of our
new numerical scheme. In the case of RMHD we can consider the propagation
of a circularly polarized Alfven wave, for which an analytic solution can be
computed, see [75,32].

As initial condition we impose the following profile for the magnetic field
and the velocity field

Bx = B0

By = ηB0 cos[k(x− vAt)]
Bz = ηB0 sin[k(x− vAt)]
vx = 0

vy = −vABy/B0

vz = −vABz/B0.

(49)

where B0 is the uniform magnetic field along x, ρ = p = B0 = η = 1, k is the
wave number, while vA is the Alfven speed at which the wave propagates

v2A =
B2

0

ρh+B2
0 (1 + η2)

1

2

1 +

√
1−

(
2ηB2

0

ρh+B2
0 (1 + η2)

)2
−1

and γ = 5/3.
For the computational domain, we consider the 2D square Ω = [0, 2π] ×

[0, 2π] with periodic boundary conditions set everywhere, and we run our sim-
ulation up to the final time tf = L/vA = 2π/vA corresponding to one period.

In Table 5, we report the L2 norm of the errors between our numerical
results and the analytical solution for the variable ρ. The convergence rates
from second up to sixth order of accuracy are confirmed both for the hybrid
schemes PNPM with M > N and for the pure DG schemes with N = M .
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Table 5: Numerical convergence table for general PNPM schemes for the relativistic Alfvén wave. The error norms refer to the
variable ρ at time tf = 2π/vA in L2 norm.

h T L2 O(L2) T L2 O(L2) T L2 O(L2) T L2 O(L2) T L2 O(L2) T L2 O(L2)

O2 P0P1 P1P1

2.0e-01 3 1.9e-01 9 1.2e-03
1.2e-01 13 9.0e-02 1.6 38 4.8e-04 2.0
1.0e-01 31 6.2e-02 1.7 84 3.1e-04 2.0
8.3e-02 49 4.5e-02 1.7 135 2.1e-04 2.0

O3 P0P2 P1P2 P2P2

5.0e-01 0.7 4.4e-02 2.0 6.0e-04 3.8 9.6e-04
3.3e-01 2.4 1.3e-02 2.9 6.4 1.8e-04 2.9 12 2.9e-04 2.8
2.5e-01 5.3 5.6e-03 2.9 15 7.5e-05 3.0 27 1.2e-04 2.9
2.0e-01 9.3 2.8e-03 3.0 26 3.9e-05 2.9 52 6.6e-05 2.9

O4 P0P3 P1P3 P2P3 P3P3

5.0e-01 1.7 1.8e-03 4 2.1e-04 8 1.1e-05 12 5.2e-06
3.3e-01 5.5 1.9e-04 5.4 13 4.3e-05 3.9 27 1.6e-06 4.8 41 7.6e-07 4.7
2.5e-01 13 4.3e-05 5.3 31 1.3e-05 4.0 65 4.3e-07 4.6 113 2.5e-07 3.8
2.0e-01 27 1.3e-05 5.1 76 5.6e-06 3.9 127 1.5e-07 4.6 205 1.1e-07 3.4

O5 P0P4 P1P4 P2P4 P3P4 P4P4

5.0e-01 3 8.8e-04 8 5.9e-06 16 8.1e-06 23 1.6e-07 33 2.6e-07
4.0e-01 7 2.9e-04 4.9 16 1.9e-06 4.9 33 2.7e-06 4.8 49 5.9e-08 4.4 70 8.8e-08 4.8
3.3e-01 10 1.1e-04 4.9 25 7.9e-07 4.9 69 1.1e-06 4.9 97 2.2e-08 5.4 132 3.7e-08 4.7
2.8e-01 17 5.4e-05 4.9 42 3.6e-07 5.0 90 5.2e-07 4.8 129 9.7e-09 5.2 203 1.7e-08 5.0

O6 P0P5 P1P5 P2P5 P3P5 P4P5 P5P5

1.2e+00 0.8 1.8e-02 1.0 1.5e-04 1.8 2.5e-05 3.0 1.3e-05 4.6 1.0e-06 7.6 2.6e-07
1.0e+00 1.0 3.1e-03 8.0 2.0 3.9e-05 6.1 3.6 5.8e-06 6.5 5.8 3.5e-06 5.9 9 2.2e-07 6.7 11 6.3e-08 6.3
8.3e-01 2.3 7.9e-04 7.4 3.8 1.2e-05 6.2 6.5 1.8e-06 6.2 10 1.2e-06 6.0 21 6.9e-08 6.3 19 2.1e-08 6.0
7.1e-01 3.4 2.6e-04 7.1 6.6 5.0e-06 6.0 12 6.9e-07 6.3 16 4.4e-07 6.3 30 2.6e-08 6.2 34 8.7e-09 5.7
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Table 6: Initial conditions for the one–dimensional Riemann problems.

Problem ρ (vx vy vz) p tf γ

RP1
x ≤ 0 1 0.9 0 0 1

0.4 5
3x > 0 1 0 0 0 10

RP2
x ≤ 0 1 -0.6 0 0 10

0.4 4
3x > 0 10 0.5 0 0 20

3.4.2 Riemann problems

Now, in order to check the robustness and accuracy of our a posteriori subcell
FV limiter for the general class of the PNPM schemes, we solve two classical
Riemann problems of RHD (i.e. RMHD with B = 0) for which also an exact
solution is available.

We consider the computational domain Ω = [−0.5, 0.5]×[0, 1] and as initial
condition we impose the discontinuous values given in Table 6. We solve these
two test cases with a fifth order P3P5 scheme and the HLLEM numerical flux,
over a mesh of 20× 10 elements with `max = 2 levels of refinement and r = 3.

The obtained numerical results, see Figure 15, show once again that our
limiter procedure preserves the resolution of the underlying PNPM scheme
even on a coarse mesh.

3.4.3 Cylindrical blast wave

We now take into account a truly two dimensional test in RMHD, i.e. the
cylindrical expansion of a blast wave in a plasma with an initially uniform

Fig. 15: RHD equations and Riemann problems RP1 (left) and RP2 (right),
see Table 6 for the initial conditions. In the Figure, we compare our numerical
results for the density ρ (squares) with the exact solution (continuous line).
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Fig. 16: RMHD blast wave at time tf = 4.0. We show the results obtained
with two sixth order schemes, namely the P3P5 and P5P5 schemes. In the
left column we plot the density contours and in the right column we depict
the troubled cells in red and the unlimited cells in blue. The resolution and
the number of limited cells are quite similar with the two approaches but the
hybrid P3P5 scheme is 2.79 times faster than the pure DG P5P5 scheme.

magnetic field. This is a severe test proposed in [76], and subsequently also
solved in [80,32,48,119].

For the initial condition we set the rest-mass density and the pressure equal
to ρ = 0.01 and p = 1 within a cylinder of radius r = 1.0, and ρ = 10−4 and
p = 5 × 10−4 outside. Like in [76] and in [32], the inner and outer values
are joined through a smooth ramp function between r = 0.8 and r = 1, to
avoid a sharp discontinuity in the initial conditions. The plasma is initially
at rest and subject to a constant magnetic field along the x-direction, i.e.
Bx = 0.1, By = 0, Bz = 0.

We have solved this problem on the computational domain Ω = [−6, 6]×
[−6, 6], with a uniform mesh of 160×160 elements. We have used the Rusanov
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numerical flux and two sixth order schemes, namely the P3P5 and the P5P5

schemes, equipped with the robust a posteriori subcell second-order TVD FV
limiter. The obtained numerical results, which agree with those available in
the literature, are reported in Figure 16.

3.4.4 RMHD Orszag-Tang vortex

Finally, we have chosen the relativistic version of the well known Orszag-
Tang vortex problem, proposed by [89], and adapted to the relativistic case
in [48,119]. The computational domain is Ω = [0, 2π]× [0, 2π] and the initial

Fig. 17: RMHD Orszag Tang at time tf = 5. We present the density contours
(left column) and the limited cells (in red in the right column) obtained with
two sixth order schemes, namely the P3P5 and the P5P5 schemes, on an adap-
tive mesh with 45 × 45 control volume on the coarsest level, `max = 2 and
r = 3.
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conditions are given by

(ρ, u, v, w, p,Bx, By, Bz) =(
1,− 3

4
√

2
sin (y) ,

3

4
√

2
sin (x) , 0, 1,− sin (y) , sin (2x) , 0

)
,

(50)

with γ = 4/3.

To solve this system we employ the sixth order hybrid scheme P3P5 over a
level zero mesh of 45×45 elements, activating the AMR feature with `max = 2
levels of refinement and r = 3. The obtained numerical results are reported
in Figure 17: once again we can notice that the two schemes have a similar
resolution but the hybrid scheme is 2.62 times faster than a pure DG scheme,
of the same order. Furthermore, we can observe that the proposed a posteriori
subcell limiter procedure is robust and maintains the high resolution of the
underlying PNPM scheme even on coarse meshes.

4 Conclusion

In this paper we have proposed a new simple, robust, accurate and compu-
tationally efficient limiting strategy for the general family of ADER PNPM
schemes, allowing, for the first time in literature, the use of hybrid recon-
structed methods (N > 0,M > N) in the modeling of discontinuous phenom-
ena. The key ideas behind our limiter are: i) its local activation only where the
linear schemes introduces oscillations through an a posteriori detector, ii) its
robustness due to the use of strong stability preserving TVD or WENO FV
schemes as limiter, iii) its resolution due to the use of the limiter on 2N + 1
subcells. Thus, we have been able to apply this new approach to many different
systems of hyperbolic conservation laws, providing highly accurate numerical
results in all cases. Moreover, we had the possibility to compare the perfor-
mance of the class of intermediate PNPM schemes with M > N > 0 with pure
DG schemes (M = N). We have observed that in most cases the intermediate
PNPM schemes offer a similar resolution compared to pure DG methods, but
at a reduced computational cost.

Future work will consider the extension of PNPM scheme with N > 0,
M > N to unstructured moving meshes [18,60], in particular for regenerating
Voronoi tessellations [57,56], and to the three-dimensional case. Finally, due
to their low memory consumption and their gain in computational efficiency
compared to DG schemes, they will be also considered for astrophysical appli-
cations [58,42,40] and the unified first order hyperbolic model of continuum
mechanics proposed in [90,46,47,25], where a large number of conserved vari-
ables has to be discretized. Due to their accuracy and compact stencil in the
future we also plan to use PNPM schemes with a posteriori subcell finite vol-
ume limiter in the context of hyperbolic reformulations of nonlinear dispersive
systems and wave propagation problems, see e.g. [33,55,52,11,12].
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44. Dumbser, M., Käser, M.: Arbitrary high order non-oscillatory finite volume schemes on
unstructured meshes for linear hyperbolic systems. Journal of Computational Physics
221, 693–723 (2007)

45. Dumbser, M., Loubère, R.: A simple robust and accurate a posteriori sub-cell finite
volume limiter for the discontinuous Galerkin method on unstructured meshes. Journal
of Computational Physics 319, 163–199 (2016)

46. Dumbser, M., Peshkov, I., Romenski, E., Zanotti, O.: High order ADER schemes for
a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-
conducting fluids and elastic solids. Journal of Computational Physics 314, 824–862
(2016)

47. Dumbser, M., Peshkov, I., Romenski, E., Zanotti, O.: High order ADER schemes for a
unified first order hyperbolic formulation of Newtonian continuum mechanics coupled
with electro-dynamics. Journal of Computational Physics 348, 298–342 (2017)

48. Dumbser, M., Zanotti, O.: Very high order PNPM schemes on unstructured meshes
for the resistive relativistic MHD equations. Journal of Computational Physics 228,
6991–7006 (2009)

49. Dumbser, M., Zanotti, O., Hidalgo, A., Balsara, D.: ADER-WENO Finite Volume
Schemes with Space-Time Adaptive Mesh Refinement. Journal of Computational
Physics 248, 257–286 (2013)

50. Dumbser, M., Zanotti, O., Loubère, R., Diot, S.: A posteriori subcell limiting of the
discontinuous Galerkin finite element method for hyperbolic conservation laws. Journal
of Computational Physics 278, 47–75 (2014)

51. Einfeldt, B., Munz, C.D., Roe, P.L., Sjögreen, B.: On godunov-type methods near low
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