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Abstract. We consider the edge-triangle model, a two-parameter family of expo-
nential random graphs in which dependence between edges is introduced through
triangles. In the so-called replica symmetric regime, the limiting free energy ex-
ists together with a complete characterization of the phase diagram of the model.
We borrow tools from statistical mechanics to obtain limit theorems for the edge
density. First, we investigate the asymptotic distribution of this quantity, as the
graph size tends to infinity, in the various phases. Then, we study the fluctuations
of the edge density around its average value off the critical curve and formulate
conjectures about the behavior at criticality based on the analysis of a mean-
field approximation of the model. Some of our results can be extended with no
substantial changes to more general classes of exponential random graphs.
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1. Introduction

In the present work, we focus on the derivation of some asymptotic properties
for the family of exponential random graphs. These are one of the most widely
studied and promising network models (see [26] for history), whose popularity lies
in the fact that they capture a wide variety of common network tendencies, such
as connectivity and reciprocity, by representing a complex global structure through
a set of tractable local features. They are defined through probabilistic ensembles
with one or more adjustable parameters, and can be seen as a generalization of the
classical Erdös-Rényi random graph [12], obtained by adding a dependence between
the random edges. Specifically, this is realized by considering a tilted probability
measure that is proportional to the densities of certain given finite subgraphs, in
analogy to the use of potential energy to provide dependence between particles in a
grand canonical ensemble of statistical physics. By adjusting the specific values of
these subgraph densities through the tuning of external parameters, one can analyze
the influence of various local features on the global structure of the network.

Exponential random graphs have become first popular and widely studied in the
statistical physics and network communities (see [24] and the surveys [13, 14]),
while in the past few years, they have found space in the rigorous literature, with
important contributions such as the results in [9, 25, 1, 8, 7].

The derivation of the free energy is a turning point for the knowledge of the model
and the core of some of the aforementioned results. Indeed, it is strictly related to
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the cumulant generating function of the thermodynamic observables entering in
the potential energy and also a key point for obtaining large deviation results. Its
analytical expression, together with its phase diagram, is fully known in a specific
region of parameters called replica symmetric regime, where it can be characterized
as the solution of a one-dimensional maximization problem. Moreover, the analysis
of the latter optimization problem allows to detect a subregion in this regime where
the analyticity of the free energy breaks down, thus revealing a phase transition
[9, 25, 1]. As far as the asymptotics of an exponential random graph is concerned,
it has been proved that, in the replica symmetric regime, almost all realizations are
close to an Erdös-Rényi random graph, or perhaps a finite mixture of Erdös-Rényi
random graphs (phase transition) [9].

Our analysis will be focused on the edge-triangle model (also known as Strauss
model), a two-parameter family of exponential random graphs in which dependence
between the random edges is defined through triangles, and both edge and triangle
densities are tuned by means of real parameters [27]. Under the replica symmetric
regime, the phase diagram for such a model is known to contain a first order tran-
sition curve ending in a second order critical point (the model undergoes a phase
transition qualitatively similar to the gas/liquid transition in materials).

As a first result, we determine the asymptotic distribution of the edge density,
as the graph size n tends to infinity, in the entire replica symmetric regime. In
particular, we obtain a strong law of large numbers when the parameters are chosen
outside the critical curve (see Theorem 3.2), and we prove that the edge density
concentrates with high probability in a neighborhood of the maximizers of the free
energy whenever working on the critical curve (see Theorem 3.3).

We then look at the fluctuations of the edge density around its average for all the
parameter values outside the critical curve and off the critical point. In particular,
by exploiting properties of uniform convergence—derivable from the Yang-Lee the-
orem [28]—we can guarantee convergence of the moment generating function of the
fluctuations and prove the central limit theorem given in Theorem 3.6.

All these statements are then extended, under a proper definition of the region
of criticality, to the general family of exponential random graphs whose potential
energy is a function of diverse subgraph densities, including the edge density (see
Subsection 3.1 and theorems therein).

We conclude our work with the investigation of a simplified model that can be
seen as the mean-field approximation of the edge-triangle model (similar ideas can
also be found in [23]). We show that the corresponding limiting free energy coincides
with that of the edge-triangle model, as it was also argued in [20]. Applying the
same techniques we have adopted in the analysis of the edge-triangle model, we
then derive analogous convergence results for the edge density of the mean-field
model. In addition, relying on its one-dimensional representation, we are able to
characterize the fluctuations of the edge density on the critical curve (under proper
conditioning) and at the critical point, providing in this last case a non-standard
central limit theorem with scaling exponent 3/2.
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These results suggest that the edge-triangle model may display an analogous
(standard versus non-standard) behavior as the parameters vary in the phase space.
In particular, supported also by the heuristics based on large deviation estimates
sketched at the end of Section 7, we formulate Conjecture 3.8, about fluctuations at
the critical point, and Conjectures 3.4 and 3.9, about the behavior on the critical
curve.

The analysis of the mean-field approximation is then complemented with a study
of the speed of convergence of the average edge density toward its limiting value.
Specifically, we show that the speed of convergence is of order n−1 in a subregion of
parameters that excludes the critical curve and of order n−1/2 at the critical point
(see Proposition 8.6).

The sections are organized as follows. In Section 2, first, we introduce the expo-
nential random graph family and recall some main results concerning the limiting
free energy. Then, we focus on the edge-triangle model; we give the definition
and describe its phase diagram. In Section 3, we state our main results on the
edge-triangle model, together with their extensions to general exponential random
graphs. Sections 4–7 are devoted to the proofs. In Section 4, we prove properties
of uniform convergence for the free energy and its derivatives; they are crucial for
carrying out the proofs of Theorems 3.2 and 3.6. In Section 5, we provide the proof
of the law of large numbers given in Theorem 3.2, which is based on exponential
convergence for the sequence of the edge densities. In Section 6, we derive the cen-
tral limit theorem stated in Theorem 3.6 by studying the limiting behavior of the
cumulant generating function. In Section 7, we obtain, by means of large deviation
techniques, the concentration result, valid on the critical curve, presented in Theo-
rem 3.3. Section 8 is entirely devoted to the mean-field model: we define the model,
state and prove the analogs of the results derived for the edge-triangle model in the
previous sections, sometimes in a stronger form, and then conclude with the analysis
of the model at the critical point and on the critical curve. In particular, we obtain
the non-standard behavior stated in Theorem 8.8 and the conditional law of large
numbers and central limit theorem stated in Theorem 8.12. As a byproduct of this
analysis, in Propositions 8.6 and 8.10, we determine the speed of convergence of the
average edge density in the unconditional and conditional settings.

2. Model and background

To define the setting, let us consider the set Gn of all simple graphs on n labeled
vertices that are identified with the elements of the set [n] = {1, 2, 3, . . . , n}.

2.1. Exponential random graphs. An exponential random graph is devised to
enhance or decrease the probability of specific geometric structures in the graph.
Exponential weights, expressed in terms of subgraph densities, are assigned to graph
ensembles. For every fixed simple graph H, the homomorphism density of H in a
graph G is the probability that a random mapping V (H)→ V (G), from the vertex
set of H to the vertex set of G, is edge-preserving. We write the homomorphism
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density as

(2.1) t(H,G) :=
|hom(H,G)|
|V (G)||V (H)| .

We are going to define a probability distribution on Gn by means of the densities
of a given selection of graphs. For any k ∈ N, let H1, H2, . . . , Hk be pre-chosen
finite simple graphs (edges, stars, triangles, cycles,. . . ) and let β = (β1, . . . , βk) be
a collection of real parameters. On Gn we define a real functional Hn;β, referred to
as Hamiltonian of the model, by setting

(2.2) Hn;β(G) = n2

k∑
i=1

βi t(Hi, G), for G ∈ Gn,

and we construct the corresponding Gibbs probability density as

(2.3) µn;β(G) =
exp (Hn,β(G))

Zn;β

,

where the normalizing constant Zn;β, called partition function, is given by

(2.4) Zn;β =
∑
G∈Gn

exp (Hn;β(G)) .

We will denote the related Gibbs measure and average by Pn;β and En;β, respec-
tively.

Remark 2.1. Notice that the Gibbs measure (exponentially) concentrates on graphs
G ∈ Gn that maximize the Hamiltonian, thus favoring or penalizing (depending on
the choice of β) the specific geometric structures entering the Hamiltonian.

Finally, we define two functions that in the context of statistical mechanics are
commonly referred to as free energies (or pressures) of the system, respectively, of
finite and infinite size:

(2.5) fn;β :=
1

n2
lnZn;β and fβ := lim

n→+∞
fn;β .

When the function fβ is well-defined, generally depending on the value of β, it en-
codes most of the asymptotic features of the model. Indeed, from its analyticity
properties, one can detect the presence of a uniqueness/non-uniqueness phase tran-
sition for the Gibbs measure, and in turn derive some basic connectivity properties
for the large n limit of the random graph. The results given in the present sec-
tion, obtained by Chatterjee and Diaconis in [9], clarify these ideas and provide the
general framework for our analysis.

Let H1 be a single edge. The next theorem gives the limiting value of the free
energy fn;β whenever the parameters β2, . . . , βk are non-negative.

Theorem 2.2 ([9], Thm. 4.1). Suppose β2, . . . , βk are non-negative. Then

(2.6) fβ = sup
0≤u≤ 1

(
k∑
i=1

βi u
E(Hi) − 1

2
I(u)

)
,

where E(Hi) is the number of edges in Hi and I(u) := u lnu+ (1− u) ln(1− u).
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The set of values of β such that the limiting free energy is solution of the one-
dimensional variational problem (2.6) is referred to as replica symmetric regime
(term borrowed from spin glass theory). Theorem 2.4 shows that the latter phase can
be slightly extended so to include (not too big) negative values for the parameters
β2, . . . , βk. Theorem 2.3 describes the asymptotic behavior of an exponential random
graph under the replica symmetric regime.

Theorem 2.3 ([9], Thm. 4.2). Suppose β2, . . . , βk are non-negative. Then, in the
large n limit, an exponential random graph drawn from (2.3) is indistinguishable
from an Erdös-Rényi random graph with parameter u∗, where u∗ = u∗(β) is ran-
domly chosen from some probability distribution on the set of solutions of the scalar
problem (2.6).

Notice that the weights of the probability distribution mentioned in the previous
statement are unknown.

Theorem 2.4 ([9], Thm. 6.2). Suppose β2, . . . , βk are such that

(2.7)
k∑
i=2

|βi|E(Hi)(E(Hi)− 1) < 2,

where E(Hi) is the number of edges in Hi. Then the conclusions of Theorems 2.2
and 2.3 hold true. In particular, the parameters satisfying (2.7) fall into the replica
symmetric regime.

In the rest of the paper, we will restrict our analysis to the edge-triangle model,
obtained when the Hamiltonian (2.2) involves only edge and triangle densities. This
choice is motivated by the fact that in this setting the full characterization of the
phase diagram in the replica symmetric regime is known, hence it is possible to gain
control on the region of parameters where the free energy is analytic. Although
all results given in Section 3 address specifically the edge-triangle case, some of
them can be generalized by considering an arbitrary collection of subgraphs in the
Hamiltonian (2.2), as the techniques we use in the proofs are applicable provided
that we have some knowledge of the analyticity properties of the limiting free energy
(2.6). We present the statements in this general framework at the end of Section 3.

2.2. Edge-Triangle Model. As anticipated, we now leave the general setting and
we focus on the class of exponential random graphs obtained by considering only
the contributions from edges and triangles. More precisely, take G ∈ Gn and fix the
following subgraphs: H1 is an edge and H2 is a triangle. If β3 = · · · = βk = 0, the
Hamiltonian (2.2) reduces to

Hn;β(G) = n2 [β1t(H1, G) + β2t(H2, G)] .

Let E(G) (resp. T (G)) denote the number of edges (resp. triangles) in G. We have

t(H1, G) =
2E(G)

n2
and t(H2, G) =

6T (G)

n3
.



6 ALESSANDRA BIANCHI, FRANCESCA COLLET, AND ELENA MAGNANINI

Therefore, up to a parameter rescaling (h = 2β1; α = 6β2), we can equivalently
consider the Hamiltonian

(2.8) Hn;α,h(G) =
α

n
T (G) + hE(G) , with α, h ∈ R .

With a slight abuse of notation, we will denote the Gibbs probability density corre-
sponding to (2.8) by µn;α,h and the related measure and expectation by Pn;α,h and
En;α,h, respectively. This model is known in the literature as edge-triangle or Strauss
model [27].

Remark 2.5. Let G = G(n, p) be an Erdös-Rényi random graph with parameters n
and p. The probability density µERn;p , induced by G on Gn, is included as a particular
case in the edge-triangle model. Indeed

(2.9) µERn;p (G) := (1− p)(
n
2)ehpE(G) , with hp := ln

p

1− p
,

can be obtained from (2.8) by setting h = hp and α = 0.

In analogy with what we have done before, if Zn;α,h =
∑

G∈Gn e
Hn;α,h(G) denotes

the partition function, we write

(2.10) fn;α,h :=
1

n2
lnZn;α,h and fα,h := lim

n→+∞
fn;α,h

for the finite and infinite volume free energies associated with (2.8). As we will see in
Subsection 2.3, the limiting function fα,h is well-defined only for suitable parameter
values (α, h).
An easy computation shows that

(2.11) ∂hfn;α,h =
En;α,h (E)

n2
and ∂αfn;α,h =

En;α,h (T )

n3
,

providing a useful correspondence between the derivatives of the finite size free
energy and the averages of the edge and of the triangle densities.

Notice that, in the present setting, condition (2.7) reads |α| = 6|β2| < 2. Thus,
from Theorems 2.2 and 2.4, it turns out that, when α > −2, the edge-triangle
model is in the replica symmetric regime and therefore Theorem 2.3 holds true.
In particular, if α > −2, the free energy exists and it is given by

(2.12) fα,h = sup
0≤u≤1

(
α

6
u3 +

h

2
u− 1

2
I(u)

)
=

α

6
(u∗)3 +

h

2
u∗ − 1

2
I(u∗),

where I(u) is defined in Theorem 2.2 and u∗ = u∗(α, h) is a maximizer that solves
the fixed-point equation

(2.13)
eαu

2+h

1 + eαu2+h
= u.

Thus, it is clear that, if n is large, an edge-triangle model becomes indistinguishable
from an Erdös-Rényi random graph with connection probability u∗. The interesting
aspect is the presence of a phase transition within the replica symmetric regime.
Indeed, depending on the parameters, equation (2.13) can have more than one solu-
tion at which the supremum in (2.12) is attained. Having multiplicity of optimizers
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translates into the possibility of having limiting Erdös-Rényi random graphs with
very different edge densities.

The phase diagram of the edge-triangle model under the replica symmetric regime
is summarized in the next subsection. The description is based on the analysis given
in [25]. We would like to mention that the characterization of the (infinite size) free
energy out of the replica symmetric regime is still an open question. A numerical
investigation of the free energy for the case α ≤ −2 has been performed in [15].

2.3. Phase diagram. For the following discussion, it is convenient to characterize
the regions of the replica symmetric regime where the free energy fα,h is well-defined,
and where it is analytic (being the latter a subset of the former). It turns out that we
have uniqueness for the variational problem (2.12) on the whole replica symmetric
regime except for a certain critical curve contained in the cone α > 27

8
, h < ln 2− 3

2
.

Specifically, this curve starts at the critical point (αc, hc) =
(

27
8
, ln 2− 3

2

)
and it

can be written as h = q(α) for a (non-explicit) continuous and strictly decreasing
function q. It is known that off the curve and at the endpoint the scalar problem
(2.12) has one solution, while on the curve away from the endpoint it has two
solutions (see [25], Prop. 3.2). To summarize, if we denote by

(2.14) Mrs := {(α, h) ∈ (αc,+∞)× (−∞, hc) : h = q(α)}
the critical curve, then the uniqueness region within the replica symmetric regime
is described by

(2.15) U rs := ((−2,+∞) × R) \Mrs.

We provide a qualitative graphical representation of the phase diagram in Fig. 2.1.

rs

ℳrs

-2 αc
α

hc

h

Figure 2.1. Illustration of the phase space (α, h) for the edge-triangle model (2.8) under
the replica symmetric regime. The red curve is the critical curve (2.14) and represents
the parameter region where the optimization problem (2.12) admits two solutions. The
blue region, critical point included, corresponds to the uniqueness region for (2.12).

The free energy fα,h is analytic on U rs \ {(αc, hc)} (see [25], Thm. 3.9). On the
curveMrs a first order phase transition occurs, and the first order partial derivatives
of fα,h have jump discontinuities. At the critical point (αc, hc) the phase transition
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is of the second order, and the second order partial derivatives of fα,h diverge (see
[25], Thm. 2.1).

3. Main results

Let En denote the edge set of the complete graph on n vertices, with elements
labeled from 1 to

(
n
2

)
. Moreover, let An := {0, 1}En . Observe that the set An is

equivalent to the set of the adjacency matrices of the graphs in Gn (n× n symmet-
ric matrices with zero diagonal entries). As a consequence, there is a one-to-one
correspondence between graphs G ∈ Gn and elements x = (xi)i∈En ∈ An:

• xi = 1 if the edge i is present in G,
• xi = 0 otherwise.

With an abuse of nomenclature, in the sequel we will refer to the elements of An as
adjacency matrices.

In view of the bijection between the sets An and Gn, we may look at the Hamil-
tonian of the edge-triangle model as a function on An, defined by

(3.1) Hn;α,h(x) =
α

n

∑
{i,j,k}∈Tn

xixjxk + h
∑
i∈En

xi,

where Tn = {{i, j, k} ⊂ En : {i, j, k} is a triangle}, and then look at the correspond-
ing Gibbs probability density µn;α,h and measure Pn;α,h as acting on An. Notice that
the measures (Pn;α,h)n≥1 satisfy proper consistency conditions allowing for the appli-
cation of Kolmogorov Existence Theorem (see, for example, [11], App. A.7). As a
consequence, there exists a unique probability measure Pα,h on

(
{0, 1}N,B({0, 1}N)

)
,

with marginals corresponding to the measures Pn;α,h, for all n ∈ N.
Having the Hamiltonian (3.1) the form of a typical energy function used in the

context of interacting particle systems, we then borrow some tools and techniques
from statistical mechanics to analyze the model and derive our main results. In
particular, we are interested in understanding the asymptotic behavior of the number
of edges.

Let X = (Xi)i∈En be a random element of An, chosen with probability µn;α,h, and
define the (random) number of non-zero elements of X as

(3.2) Sn :=
∑
i∈En

Xi ,

so that, if x ∈ An is the adjacency matrix of the graph G ∈ Gn, then Sn(x) = E(G).

Remark 3.1. Notice that, even if Sn is the sum of the
(
n
2

)
Bernoulli random vari-

ables Xi’s, its distribution is not foregone: the Xi’s have a non-trivial dependence
structure due to the interaction Hamiltonian (3.1) and their distributional parame-
ters En;α,h(Xi) do not have an explicit expression as functions of the model param-
eters (see [23] for further details).

We consider the edge-triangle model under the replica symmetric regime and we
derive classical limit theorems for the sequence (Sn)n≥1. We start by characterizing
the limiting distribution of the edge density. We first prove a strong law of large
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numbers valid for parameter values falling in the uniqueness region U rs (see (2.15)).
Then, we cover the phase transition curve Mrs (see (2.14)), showing that the edge
density concentrates around the optimizers of (2.12).

Theorem 3.2 (SLLN for Sn). For all (α, h) ∈ U rs, it holds

(3.3)
2Sn
n2

a.s.−−−→ u∗(α, h) w.r.t. Pα,h, as n→ +∞,

where u∗(α, h) solves the maximization problem in (2.12).

Theorem 3.3. For all (α, h) ∈Mrs and for all sufficiently small ε > 0, there exists
a constant k = k(ε;α, h) > 0 such that if

J(ε) := (u∗1(α, h)− ε, u∗1(α, h) + ε) ∪ (u∗2(α, h)− ε, u∗2(α, h) + ε),

then, for large enough n, it holds

Pn;α,h

(
2Sn
n2
∈ J(ε)

)
≥ 1− e−kn2

,

where u∗1(α, h) and u∗2(α, h) are the two maximizers of the problem (2.12).

We are confident that the result presented in the previous statement can be pushed
forward to a convergence in distribution to a convex combination of delta measures,
but we have not been able to obtain that convergence so far. In this respect, we
present the following conjecture, which is based on the stronger result obtainable in
the mean-field setting (see Theorem 8.4).

Conjecture 3.4. For all (α, h) ∈Mrs, it holds

2Sn
n2

d−−→ κδu∗1 + (1− κ)δu∗2 w.r.t. Pn;α,h, as n→ +∞,

where u∗1 = u∗1(α, h), u∗2 = u∗2(α, h) solve the maximization problem in (2.12) and
the constant κ ∈ (0, 1) is given by

κ =

√(
1− 2α (u∗1)2 (1− u∗1)

)−1√(
1− 2α (u∗1)2 (1− u∗1)

)−1
+

√(
1− 2α (u∗2)2 (1− u∗2)

)−1
.

Having obtained a SLLN for Sn, it is natural to investigate the behavior of the
fluctuations of Sn around its mean value. To state this type of result, we define
average and variance of the edge density.

Definition 3.5. Let X ∈ An be an adjacency matrix randomly drawn accordingly
to µn;α,h and let Sn be the number of non-zero elements of X (see (3.2)).
For each n ∈ N, we define the average and the variance of the edge density,
respectively, as

(3.4) mn(α, h) :=
2En;α,h (Sn)

n2
and vn(α, h) := ∂hmn(α, h).
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The reason why vn(α, h) is referred to as a variance will become clear in the
statement of Theorem 3.6. We can immediately notice the relevant connection
between the quantities in (3.4) and the partial derivatives of the free energy with
respect to the parameter h; from (2.11), we get

(3.5) mn(α, h) = 2∂hfn;α,h and vn(α, h) = 2∂hhfn;α,h.

Theorem 3.6 (CLT for Sn). For all (α, h) ∈ U rs \ {(αc, hc)}, it holds

√
2
Sn − n2

2
mn(α, h)

n

d−−→ N (0, v(α, h)) w.r.t. Pn;α,h, as n→ +∞,

where N (0, v(α, h)) is a centered Gaussian distribution with variance given by

(3.6) v(α, h) := lim
n→+∞

vn(α, h) = ∂hu
∗(α, h).

Remark 3.7. Thanks to a mean-field approximation of the model (3.1), which will
be discussed in detail in Section 8, we are able to provide the explicit value of the

variance in (3.6) a posteriori. Indeed, we get v(α, h) = u∗(1−u∗)
1−2α(u∗)2(1−u∗) . We refer the

reader to Remark 8.9 for further information.

At this point, we would have liked to characterize the fluctuations of Sn at the
critical point (αc, hc) and on the critical curve Mrs, as we can do in the mean-field
setting (see Theorems 8.8 and 8.12). Technical difficulties have not allowed us to
obtain the desired result. However, speculating that the edge-triangle model belongs
to the same universality class of its mean-field approximation, as we believe, we are
led to the following conjectures.

Conjecture 3.8 (Non-standard CLT for Sn). If (α, h) = (αc, hc), it holds

2
Sn − n2

2
mn(αc, hc)

n3/2

d−−→ Y w.r.t. Pn;αc,hc , as n→ +∞,

where Y is a generalized Gaussian random variable with Lebesgue density `(y) ∝
e−

81
64
y4.

We stress that the above conjecture is also supported by the heuristic computation
given in (7.14), based on a large deviation property fulfilled by the law of Sn under
Pn;α,h.

To state the conjecture regarding the fluctuations of the edge-density on the crit-
ical curve Mrs, we need some further notation. For (α, h) ∈ Mrs, let u∗i (α, h)
(i = 1, 2) be the solutions of the scalar problem (2.12). For n ∈ N and any fixed
δ ∈ (0, 1), consider the event

B
(i)
n,δ =

{
x ∈ An :

∣∣∣∣2Sn(x)

n2
− u∗i (α, h)

∣∣∣∣ ≤ n−δ
}

and define the conditional probability measures

(3.7) P(i)
n;α,h ( · ) := Pn;α,h

(
·
∣∣∣B(i)

n,δ

)
, for i = 1, 2 .

We denote the corresponding averages by E(i)
n;α,h and set m

(i)
n (α, h) := E(i)

n;α,h

(
2Sn
n2

)
.
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The next conjecture provides the analog of Theorems 3.2 and 3.6, but it is obtained
under the constraint (conditioning) that the edge density is close to one of the
maximizers of the scalar problem (2.12).

Conjecture 3.9 (Conditional LLN and CLT). For i = 1, 2 and for all (α, h) ∈Mrs,
it holds

(3.8)
2Sn
n2

a.s.−−−→ u∗i (α, h) w.r.t. P(i)
α,h, as n→ +∞,

and

(3.9)
√

2
Sn − n2

2
m

(i)
n (α, h)

n

d−−→ N (0, vi(α, h)) w.r.t. P(i)
n;α,h, as n→ +∞,

where N (0, vi(α, h)) is a centered Gaussian distribution with variance

vi(α, h) =
u∗i (α, h)[1− u∗i (α, h)]

1− 2α[u∗i (α, h)]2[1− u∗i (α, h)]
.

3.1. Extension to the general framework. The results presented in Theorems
3.2, 3.3 and 3.6 can be extended to the general case when the Hamiltonian (2.2) is
a function of the densities of an arbitrary collection of subgraphs of the graph G,
including the simple edge H1. The main hurdle in this generality is that there is no
explicit characterization of the phase transition region under the replica symmetric
regime. However, our proofs can be mimicked if the phase diagram of the model
enjoys specific characteristics. Let us assume that the phase structure is as follows:
under the replica symmetric regime, we can identify subsets U rs (resp. Mrs), where
uniqueness for the variational problem (2.6) holds (resp. does not hold), and Crs,
where a phase transition occurs, in the sense that the limiting free energy loses
analyticity. In this setting, the following statements are true.

Theorem 3.10 (General SLLN for Sn). For all β ∈ U rs, it holds

(3.10)
2Sn
n2

a.s.−−−→ u∗(β) w.r.t. Pβ, as n→ +∞,

where u∗(α, h) solves the maximization problem in (2.6).

Theorem 3.11. Suppose that for β ∈ Mrs the variational problem (2.6) admits
exactly ` solutions u∗1, . . . , u

∗
` . For all β ∈ Mrs and for all sufficiently small ε > 0,

there exists a constant k = k(ε;β) such that if

J(ε) :=
⋃̀
i=1

(u∗i (β)− ε, u∗i (β) + ε),

then, for large enough n, it holds

Pn;β

(
2Sn
n2
∈ J(ε)

)
≥ 1− e−kn2

.
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Theorem 3.12 (General CLT for Sn). For all β ∈ U rs \ Crs, it holds

√
2
Sn − n2

2
mn(β)

n

d−−→ N (0, v(β)) w.r.t. Pn;β, as n→ +∞,

where N (0, v(β)) is a centered Gaussian distribution with variance given by

v(β) := lim
n→+∞

vn(β) = ∂β1u
∗(β),

being β1 the first component of the vector β.

4. Uniform convergence of the free energy and its derivatives

The validity of the strong law of large numbers and of the central limit theorem
as stated in Theorems 3.2 and 3.6 is deeply connected with the analyticity of the
free energy and with properties of uniform convergence of its derivatives. Indeed,
a crucial point is arguing whether it is allowed to commute limit and derivative
operations. Typically, when dealing with spin systems, this exchange is possible
due to the Griffiths, Hurst and Sherman inequality [16]. Unfortunately, this result,
which has been recently proved for the two-star model in [2], is not available for
the general family of exponential random graphs. Our argument will rest on the
Yang-Lee theorem [28], that goes through without any difficulty in our case.

4.1. Polynomial representation of the partition function. As a first step, we
consider the partition function Zn;α,h on An and we represent it as a polynomial.
Recall that

Zn;α,h =
∑
x∈An

e
α
n

∑
{i,j,k}∈Tn xixjxk+h

∑
i∈En xi .(4.1)

To improve the readability, in the sequel we will set n̄ ≡
(
n
2

)
. Notice that there is

a bijection between An and the power set P(En), mapping an element x ∈ An to
the set S = {i ∈ En : xi = 1}. We can then decompose An in a union of disjoint
subsets as

An =
n̄⋃

m=0

⋃
S⊆En:|S|=m

{x ∈ An : xi = 1⇔ i ∈ S},

and write

Zn;α,h =
n̄∑

m=0

ehm
∑

S⊆En:|S|=m

e
α
n
|{{i,j,k}⊂S : {i,j,k}∈Tn}|.(4.2)

Setting z := eh, we arrive at the following representation of the partition function
as a polynomial of degree n̄:

(4.3) Zn;α,h ≡ Zn̄(z) :=
n̄∑

m=0

Cm;αz
m .
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Equivalently, letting z1, z2, . . . , zn̄ be the roots of the polynomial (namely, the solu-
tions of the equation Zn̄(z) = 0), we can write

(4.4) Zn̄(z) =
n̄∏
i=1

(
1− z

zi

)
.

We are thus in the setting analyzed by the following Yang-Lee theorem.

Theorem 4.1 ([28], Thm. 2). Let Zn(z) be the polynomial representation of a par-
tition function as that given in (4.4). If there exists a region R ⊆ C containing a
segment of the real positive axis that is always root-free then, as n → +∞ and for
z ∈ R, all quantities

(4.5)
1

n
lnZn(z),

dk

d(ln z)k
1

n
lnZn(z), with k ∈ N,

converge to analytical limits with respect to z. In particular, the limit and derivative
operations switch in the whole region R.

The Yang-Lee theorem is a fundamental and powerful tool used in statistical
mechanics to characterize the analytical properties of the infinite volume free energy
relative to Zn(z). In our case, i.e. in the context of the edge-triangle model, thanks
to the analysis performed in [25] (see, in particular, Thms. 2.1 and 3.9), we already
know that the limiting free energy fα,h is analytic for all (α, h) ∈ U rs \{(αc, hc)}. As
a consequence, by a contradiction argument, we can infer that the partition function
(4.4) verifies the hypotheses of Theorem 4.1 for all (α, h) ∈ U rs \ {(αc, hc)}. Hence,
the convergence of the derivatives displayed in (4.5) holds.

4.2. Uniform convergence of the derivatives. We show how to exploit Theo-
rem 4.1 to obtain locally uniform convergence of the derivatives of the free energy.
We isolate this property in the proposition below and we briefly sketch the proof.

Proposition 4.2. Under the hypothesis of Theorem 4.1, the quantities displayed
in (4.5) converge locally uniformly (in n) inside the region R.

Proof. Let σ̂ be the radius of the largest open ball centered at the origin and con-
tained in the region R. Moreover, given σ < σ̂, let C ⊂ R be the open ball centered
at the origin and with radius σ. By construction, we have |zi| > σ and, for all z ∈ C,
|z| < σ.

By expanding 1
n

lnZn(z) in powers of z, we get

(4.6)
1

n
lnZn(z) =

+∞∑
`=0

b`(n)z`,

where b`(n) = − 1
`n

∑n
i=1 (zi)

−` is such that |b`(n)| ≤ σ−`

`
, for ` ∈ N and uniformly in

n ∈ N. Moreover, under the hypotheses of Theorem 4.1, it holds that, for all ` ∈ N,

b`(∞) := limn→+∞ b`(n) exists (see [28], Lem. 3) and is such that |b`(∞)| ≤ σ−`

`
.
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Putting together these observations, we obtain the following bound

sup
z∈C

∣∣∣∣∣
+∞∑
`=0

b`(n)z` −
+∞∑
`=0

b`(∞)z`

∣∣∣∣∣ ≤ sup
z∈C

+∞∑
`=0

|b`(n)− b`(∞)| |z|`

≤ sup
z∈C

+∞∑
`=0

|b`(n)− b`(∞)|σ`

≤ 2
+∞∑
`=0

(σ
σ̂

)` 1

`
,

where the last term is finite. Taking the limit as n goes to infinity, by dominated
convergence, we get

lim
n→+∞

sup
z∈C

∣∣∣∣∣
+∞∑
`=0

b`(n)z` −
+∞∑
`=0

b`(∞)z`

∣∣∣∣∣ ≤ lim
n→+∞

+∞∑
`=0

|b`(n)− b`(∞)|σ`

=
+∞∑
`=0

lim
n→+∞

|b`(n)− b`(∞)|σ`

= 0,

which provides the uniform convergence of the free energy in C. The very same
argument can be repeated for any open ball, contained in R, and centered at an
arbitrary point of this region. By iterating this procedure, one concludes that local
uniform convergence of the free energy holds throughout the region R.

The local uniform convergence of the derivatives of the free energy in R can be
derived analogously, as they all admit a series representation, similar to (4.6), with
coefficients that are summable in ` ∈ N, uniformly in n ∈ N. �

Corollary 4.3. Let (α, h) ∈ U rs\{(αc, hc)}. If we set m(α, h) := 2∂hfα,h = u∗(α, h)
and v(α, h) := 2∂hhfα,h = ∂hu

∗(α, h), then it holds

lim
n→+∞

mn(α, h) = m(α, h) and lim
n→+∞

vn(α, h) = v(α, h).

Proof. We prove only the first display, the other being similar. The result is an
immediate application of Theorem 4.1, that holds true since we are working in
the region U rs \ {(αc, hc)}, where the limiting free energy exists and is analytic.
First notice that, since in the polynomial representation (4.3) we have z = eh, the
derivative w.r.t. ln z of lnZn̄(z) is equivalent, up to a constant correction, to the
derivative w.r.t h of the (finite size) free energy fn;α,h. Therefore, Theorem 4.1 allows
to commute limit and derivative to get

lim
n→+∞

mn(α, h) = 2 lim
n→+∞

∂hfn;α,h = 2∂h

[
lim

n→+∞
fn;α,h

]
= 2∂hfα,h = m(α, h).

�
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5. Strong law of large numbers via exponential convergence

We prove the strong law of large numbers for the sequence (Sn)n≥1 by exploiting
exponentially fast convergence in probability. For the sake of completeness, we recall
the definition of exponential convergence.

Definition 5.1 (Exponential convergence). Let (Wn)n≥1 be a sequence of random
vectors which are defined on probability spaces {(Ωn,Fn, Pn)}n≥1 and which take
values in RD.
We say that Wn converges in probability exponentially fast to a constant z0, and

write Wn
exp−−−→ z0, if for any δ > 0 there exists a number L = L(δ) > 0 such that

Pn(‖Wn − z0‖ ≥ δ) ≤ e−nL for all sufficiently large n.

We present a preliminary theorem that, using the cumulant generating function,
guarantees exponential convergence under general hypotheses.

Theorem 5.2 ([11], Thm. II.6.3). Let (Wn)n≥1 be a sequence of random vectors
which are defined on probability spaces {(Ωn,Fn, Pn)}n≥ 1 and which take values in
RD. We define the cumulant generating functions as

cn(t) =
1

an
lnEn[exp(〈t,Wn〉)], n = 1, 2, . . . , t ∈ RD,

where (an)n≥ 1 is a sequence of positive real numbers tending to infinity, En denotes
the expectation with respect to Pn and 〈−,−〉 is the Euclidean inner product on RD.
We assume the following hypotheses hold:

• each function cn(t) is finite for all t ∈ RD;
• c(t) = limn→+∞ cn(t) exists for all t ∈ RD and is finite.

Then the following statements are equivalent:

• Wn

an

exp−−−→ z0;

• c(t) is differentiable at t = 0 and ∇c(0) = z0.

We rely on Theorem 5.2 to prove exponential convergence of the sequence (Sn)n≥1.
As we will see, existence and differentiability of the limiting cumulant generating
function of the number of edges will be a direct consequence of existence and ana-
lyticity of the infinite size free energy.

Proposition 5.3 (Exponential convergence). For all (α, h) ∈ U rs, it holds

(5.1)
2Sn
n2

exp−−−→ u∗(α, h) w.r.t. Pn;α,h, as n→ +∞,

where u∗(α, h) solves the maximization problem in (2.12).

Proof. Let cn(t) := 2n−2 lnEn;α,h[exp(tSn)] be the cumulant generating function of
Sn w.r.t. the Gibbs measure Pn;α,h. We check the requirements in Theorem 5.2.
First observe that, as Sn is a bounded random variable, cn(t) is obviously finite for
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any n ∈ N and t ∈ R. Moreover, we compute

cn(t) =
2

n2
ln
∑
x∈An

exp
(
Hn;α,h(x) + tSn

)
Zn;α,h

(5.2)

=
2

n2
ln
Zn;α,h+t

Zn;α,h

= 2 (fn;α,h+t − fn;α,h) ,

where the last equality is due to (2.10). From the existence of the infinite size free
energy, given by Theorems 2.2 and 2.4 (see also equation (2.12)), we obtain that,
for any (α, h) ∈ U rs and t ∈ R, the limit

(5.3) c(t) := lim
n→+∞

cn(t) = 2 (fα,h+t − fα,h)

exists and it is finite. Therefore, the hypotheses of Theorem 5.2 are satisfied. We
are left to show that c(t) is differentiable at t = 0 and that c′(0) = u∗, condi-
tions equivalent to the exponential convergence statement in (5.1). Notice that the
(infinite size) free energy is analytic on U rs \ {(αc, hc)}, and it is continuous and
differentiable also at (αc, hc), since at the critical point the phase transition is of the
second order (see [25], Thm. 2.1). As a consequence, since ∂tfα,h+t = ∂hfα,h+t, we
get c′(t) = 2∂hfα,h+t = u∗(α, h+ t), for every (α, h+ t) ∈ U rs. In particular, we get
differentiability of the function (5.3) at the origin, with c′(0) = u∗(α, h). Theorem
5.2 gives the desired result. �

We are now ready to prove the strong law of large numbers stated in Theorem 3.2.

Proof of Theorem 3.2. Note that, as a consequence of Borel-Cantelli lemma, expo-
nential convergence implies almost sure convergence (see [11], Thm. II.6.4). This
observation together with Proposition 5.3 leads to the conclusion. �

6. Central limit theorem

To describe the fluctuations of Sn around its mean value, we characterize the
asymptotic behavior of the sequence (Vn)n≥1, where

Vn :=
√

2
Sn − n2

2
mn(α, h)

n
.

To this purpose, we analyze the moment generating function of the random variable
Vn and show that it converges to the moment generating function of a Gaussian
random variable, whose variance can be explicitly computed. A key point in this
strategy is to relate the moment generating function of Vn to the second order deriva-
tive of the cumulant generating function of Sn (recall equation (5.2)). The existence
of the limit of the sequence (c′′n(t))n≥1 for t = tn = o(1) will provide the variance of
the limiting Gaussian.
We will rely on the analyticity of the free energy and on the uniform convergence
of the sequence (c′′n(t))n≥1, so Theorem 4.1 and Proposition 4.2 will be fundamental
tools in our proof.
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Let v(α, h) = ∂hu
∗(α, h). To show that Vn converges in distribution to a Gauss-

ian random variable with variance v(α, h), we prove that the convergence

(6.1) lim
n→+∞

En;α,h(exp(tVn)) = exp
(

1
2
v(α, h)t2

)
holds true for all t ∈ [0, η) and some η > 0. The first step is to express the average
En;α,h (exp(tVn)) in terms of the second order derivative of the cumulant generating
function (5.2). By a direct calculation, we get

(6.2) c′n(t) =
2En;α,h+t (Sn)

n2
and c′′n(t) =

2Varn;α,h+t(Sn)

n2
.

By using the definitions in (3.4), we can connect first and second order derivatives
of the cumulant generating function with average and variance of the edge density,
respectively. Indeed, for all t ∈ R, we have

(6.3) c′n(t) = mn(α, h+ t) and c′′n(t) = vn(α, h+ t).

The second identity comes from the fact that, by definition of the model, ∂tmn(α, h+
t) = ∂hmn(α, h+ t) and it explains why vn is referred to as a variance. In particular,
we obtain c′n(0) = mn(α, h) and c′′n(0) = vn(α, h). Moreover, by Corollary 4.3, we
deduce

(6.4) lim
n→+∞

c′′n(0) = v(α, h).

Now we move back to the moment generating function of Vn and we show how to
write it in terms of c′′n(t). Consider t > 0 and set tn :=

√
2t/n. We get

lnEn;α,h(exp(tVn)) = lnEn;α,h

(
exp(tnSn) exp

(
− tn√

2
mn(α, h)

))
(6.5)

=
n2

2
[cn(tn)− tnc′n(0)].

Notice that, since cn(0) = 0, the term in square brackets is the difference between
the function cn(tn) and its first order Taylor expansion at zero. Therefore, by using
Taylor theorem with Lagrange remainder, one gets

lnEn;α,h(exp(tVn)) =
c′′n(t∗n)t2

2
,

for some t∗n ∈ [0,
√

2t/n]. To conclude the proof of the central limit theorem, we need
to control the limiting behavior of c′′n(t∗n). We prove the following auxiliary lemma
that leans on the uniform convergence of the sequence of derivatives (c′′′n (t))n≥1.

Lemma 6.1. For (α, h) ∈ U rs \ {(αc, hc)}, there exists some η > 0 such that we
have limn→+∞ c

′′
n(tn) = v(α, h) for all tn ∈ [0, η) with limn→+∞ tn = 0.

Proof. Starting from the trivial bound

|c′′n(tn)− v(α, h)| ≤ |c′′n(tn)− c′′n(0)|+ |c′′n(0)− v(α, h)|,
we observe that the second term on the right-hand side of (6.1) vanishes in the
limit due to (6.4); while the first term can be expressed, by a first order Taylor
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expansion, as |c′′n(tn)− c′′n(0)| = |c′′′n (ξn)tn|, with ξn ∈ [0, tn). Since Mrs ∪ {(αc, hc)}
is a closed set in the parameter space, it is always possible to find η > 0 such that
if (α, h) ∈ U rs \ {(αc, hc)}, then (α, h+ t) ∈ U rs \ {(αc, hc)} for all t ∈ [0, η). As a
consequence, invoking Proposition 4.2, we obtain that the sequence of derivatives
(c′′′n (t))n≥ 1 converges uniformly in [0, η). In particular c′′′n (ξn) is bounded for every
n and consequently the term |c′′′n (ξn)tn| decays to zero as n→ +∞. �

Proof of Theorem 3.6. Lemma 6.1 readily implies that (6.1) holds. The convergence
in distribution of the sequence (Vn)n≥1 to N (0, v(α, h)) follows from [3], Sect. 30. �

The analysis performed in the present and in the previous sections allows to
extend to the critical point the convergence result for the average edge density given
in Corollary 4.3.

Corollary 6.2. Let (α, h) ∈ U rs. If we set m(α, h) := 2∂hfα,h = u∗(α, h), then it
holds

lim
n→+∞

mn(α, h) = m(α, h).

Proof. The proof is a consequence of Proposition 5.3 together with the following
lemma.

Lemma 6.3 ([11], Lem. IV.6.3). Let (fn)n≥1 be a sequence of convex functions on
an open interval A of R such that f(t) = limn→+∞ fn(t) exists for every t ∈ A. If
each fn and f are differentiable at some point t0 ∈ A, then limn→+∞ f

′
n(t0) exists

and equals f ′(t0).

The sequence (cn(t))n≥1 is a sequence of convex functions as c′′n(t) can be ex-
pressed as a variance (see (6.2)). From the proof of Proposition 5.3 we know that
c(t) = limn→+∞ cn(t) exists and it is finite for any (α, h) ∈ U rs and t ∈ R (see (5.2)
and (5.3)). Moreover, notice that both cn(t) and c(t) are differentiable at t = 0,
and more precisely c′(0) = 2∂hfα,h = u∗(α, h) and c′n(0) = mn(α, h) (see (6.3)). By
applying Lemma 6.3 we obtain limn→+∞ c

′
n(0) = c′(0), that concludes the proof. �

7. Analysis on the critical curve

Our proof makes use of notions, tools, and results in the language of graph limit
theory as developed in [4, 5, 6, 17, 18]. We start the section by giving a brief overview
of the concepts and properties that are relevant to our purpose.

Graph limits. Let (Gn)n≥1 be a sequence of simple graphs whose number of
vertices tends to infinity and let H be a fixed simple graph. The sequence (Gn)n≥1

converges if the graphs in the sequence become more and more similar as n grows,
in the sense that the homomorphism density t(H,Gn) (recall definition (2.1)) tends
to a limit t(H) for every possible H. A reasonable limit for a sequence of graphs is
thus an object from which the value t(H) can be read off. Indeed, there is a limiting
object and it is not a graph, but it can rather be represented by a measurable and
symmetric function g : [0, 1]2 → [0, 1], called graphon. The set of all graphons is
denoted by W .
Any sequence of graphs that converges in the appropriate way has a graphon as limit.
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Conversely, every graphon arises as the limit of an appropriate graph sequence. This
limiting object determines all limits of subgraph densities: if H is a simple graph
with vertex set [m], then

(7.1) t(H, g) =

∫
[0,1]m

∏
{i,j}∈E(H)

g(xi, xj) dx1 . . . dxm,

where E(H) denotes the edge set of H. A sequence of graphs (Gn)n≥1 is said to
converge to the graphon g if

(7.2) lim
n→+∞

t(H,Gn) = t(H, g),

for every finite simple graph H. Intuitively, the interval [0, 1] represents a continuum
of vertices and g(xi, xj) corresponds to the probability of drawing the edge {xi, xj}.
For instance, for the Erdös-Rényi random graph, if p is fixed and n → +∞, the
limit is represented by the function that is identically equal to p on the unit square.

Remark 7.1. Any finite simple graph admits a graphon representation. Let H be
a finite simple graph with vertex set [m]. The graphon gH , corresponding to H, is
defined by

(7.3) gH(x, y) =

{
1 if {dmxe, dmye} is an edge in H
0 otherwise,

where (x, y) ∈ [0, 1]2. In other words, gH is a step function corresponding to the
adjacency matrix of H. This representation allows all simple graphs, regardless of
the number of vertices, to be represented as elements of the single abstract space W.

In view of the above representation, the notion of convergence in terms of subgraph
densities outlined above can be captured by a specific metric on W . Let g1, g2 ∈ W
be two graphons. Their distance is given in terms of the cut distance as

(7.4) d�(g1, g2) = sup
S,T⊆[0,1]

∣∣∣∣∫
S×T

(g1(x, y)− g2(x, y)) dx dy

∣∣∣∣ .
A nontrivial difficulty arises from the arbitrary labeling of vertices as they are em-
bedded in the unit interval. For this reason, we introduce an equivalence relation
onW . Let Σ be the space of all bijections σ : [0, 1]→ [0, 1] preserving the Lebesgue
measure. We say that the functions g1, g2 ∈ W are equivalent, and we write g1 ∼ g2,
if g2(x, y) = g1(σ(x), σ(y)) for some σ ∈ Σ. The quotient space under ∼ is de-

noted by W̃ and τ : g 7→ g̃ is the natural mapping associating a graphon with its
equivalence class. Incorporating the equivalence relation ∼ in (7.4) yields a distance

(7.5) δ�(g̃1, g̃2) = inf
σ1,σ2∈Σ

d�(g1(σ1(x), σ1(y)), g2(σ2(x), σ2(y))),

making (W̃ , δ�) into a compact metric space (see [19], Thm. 5.1).
To any finite graph H, we can associate first an element in W : gH as in (7.3); and

then an element in W̃ : g̃H = τ(gH). We get the following result for the convergence
of a sequence of graphs.
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Theorem 7.2 ([5], Thm. 3.8). A sequence of graphs (Gn)n≥1 converges to a limit
g ∈ W in the sense of (7.2) if and only if δ�(g̃Gn , g̃)→ 0 as n→ +∞.

Large deviations for random graphs. Let G = G(n, p) be an Erdös-Rényi random
graph with parameters n and p. The graph G induces a probability distribution
PERn;p (with some abuse of notation) on W , through the mapping G 7→ gG, and a

probability distribution P̃ERn;p on W̃ , through the mapping G 7→ gG 7→ g̃G. The large

deviation principle for the sequence of probability measures (P̃ERn;p )n≥1 on (W̃ , δ�) is
the main result of [10] and it is formulated in the same way as Sanov theorem gives
a large deviation principle for a sequence of independent and identically distributed
random variables.

Theorem 7.3 ([10], Thm. 2.3). For each fixed p ∈ (0, 1), the sequence (P̃ERn;p )n≥1

satisfies a large deviation principle on the space (W̃ , δ�), with speed n2 and rate
function

(7.6) Ip(g̃) =
1

2

∫ 1

0

∫ 1

0

Ip(g(x, y)) dx dy,

where g is any representative element of the equivalence class g̃ and, for u ∈ [0, 1],
we set Ip(u) = u ln u

p
+ (1− u) ln 1−u

1−p .

Building on Theorem 7.3 and the following classical result, used to tilt the large
deviation principle for the Erdös-Rényi random graph to a large deviation principle
for integrals of exponential functionals w.r.t. the Erdös-Rényi probability distribu-
tion, we will prove Theorem 3.3.

Theorem 7.4 ([11], Thm. II.7.2). Let X be a complete separable metric space and
(Qn)n≥1 be a sequence of probability measures on the Borel σ-field B(X ). Assume
the sequence (Qn)n≥1 satisfies a large deviation principle with speed an and with rate
function I. Furthermore, let F : X → R be a continuous function that is bounded
from above. For n ≥ 1 and A ∈ B(X ), define the probability measures

Qn,F (A) :=

∫
A

exp(anF (x))Qn(dx) · 1∫
X exp(anF (x))Qn(dx)

.

Then,

(a) The sequence (Qn,F )n≥1 satisfies a large deviation principle with speed an and
with rate function

IF (x) = I(x)− F (x)− inf
x∈X
{I(x)− F (x)}.

(b) Let S ⊂ X be a closed set that does not contain a minimizer of IF . There
exists a constant k = k(S) > 0 such that

(7.7) Qn,F (S) ≤ e−ank, for all sufficiently large n.

Proof of Theorem 3.3. The proof consists in showing that the sequence of the laws
of the edge density w.r.t. the measure Pn;α,h is exponentially tight. In the first
instance, we observe that Pn;α,h can be equivalently written as a tilted probability
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measure on the space of graphons, that has as a priori measure the Erdös-Rényi
one. To this aim, we need to introduce a suitable representation of the partition
function.

Consider a graph G ∈ Gn and note that, with an abuse of notation, in view of

the bijection between Gn and An, it holds 2Sn(G)
n2 = t(H1, G), being H1 a single edge.

An important property, which will be extensively used throughout the proof, is that

t( · , G) = t( · , g̃), where g̃ is the image in W̃ of the graphon representation gG of G,

see Remark (7.1). Consequently, the function Hn;α,h extends naturally to (W̃ , δ�).
Indeed, for all G ∈ Gn, we can write

Pn;α,h(G) =
exp (Hn;α,h(G))∑

g̃∈W̃
∑

G∈[ g̃ ]n
exp (Hn;α,h(G))

=
exp (Hn;α,h(g̃))1(gG ∈ g̃)∑
g̃∈W̃ |[ g̃ ]n| exp (Hn;α,h(g̃))

,

where [ g̃ ]n := {G ∈ Gn : gG ∈ g̃} and | · | denotes the cardinality of a set.

Let PER
n; 1

2

be the Erdös-Rényi probability measure with parameters n and p = 1
2

and let P̃ER
n; 1

2

be the probability measure induced by PER
n; 1

2

on W̃ . The measure PER
n; 1

2

provides a uniform probability measure on Gn, therefore, we get

P̃ER
n; 1

2
(g̃) = PER

n; 1
2
([ g̃ ]n) =

|[ g̃ ]n|
2n(n−1)/2

.

It follows that

(7.8) Pn;α,h(G) =
2−n(n−1)/2 exp (Hn;α,h(g̃))1(gG ∈ g̃)∑

g̃∈W̃ exp (Hn;α,h(g̃)) P̃ER
n; 1

2

({g̃})
.

For notational convenience, let us now introduce the function

(7.9) Uα,h(G) = α
6
t(H2, G) + h

2
t(H1, G)

and write Hn;α,h(G) = n2Uα,h(G). For each n ≥ 1 and each Borel set Ã ⊆ W̃ , we
define the probability measures

(7.10) Q̃n;α,h(Ã) :=

∑
g̃∈Ã exp (n2Uα,h(g̃)) P̃ER

n; 1
2

(g̃)∑
g̃∈W̃ exp (n2Uα,h(g̃)) P̃ER

n; 1
2

(g̃)
.

Since Uα,h is a continuous and bounded function on the metric space (W̃ , δ�) (see [5,

6]), by Theorem 7.4(a) the sequence {Q̃n;α,h}n≥1 satisfies a large deviation principle
with speed n2 and rate function

(7.11) Iα,h(g̃) = I 1
2
(g̃)− Uα,h(g̃)− inf

g̃∈W̃

{
I 1

2
(g̃)− Uα,h(g̃)

}
,

where I 1
2

is obtained by setting p = 1
2

in (7.6). Since I 1
2

is lower semicontinuous (see

[10], Lem. 2.1), the function Iα,h is too (as a sum of lower semicontinuous functions)

and thus it admits a minimizer on the compact space W̃ . The minimizers of (7.11)

on W̃ are known: each optimizer is a constant function, where the constant solves
the variational problem (2.12) (see [9], Thms. 3.1 and 4.1). In particular, whenever
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(α, h) ∈ Mrs, there exist two solutions u∗1 = u∗1(α, h), u∗2 = u∗2(α, h) for the scalar
problem (2.12). For all sufficiently small ε > 0, let

J(ε) := (u∗1 − ε, u∗1 + ε) ∪ (u∗2 − ε, u∗2 + ε)

and consider the sets

C̃∗ε := {g̃ ∈ W̃ : t(H1, g̃) /∈ J(ε)} and C∗ε :=

{
G ∈ Gn :

2Sn(G)

n2
/∈ J(ε)

}
.

We point out that, due to (7.8) and (7.10), it holds Q̃n;α,h(C̃
∗
ε ) = Pn;α,h (C∗ε ). More-

over, being C̃∗ε a closed set, Theorem 7.4(b) guarantees that, for sufficiently large n,

there is some positive constant k = k(C̃∗ε ) such that Q̃n;α,h(C̃
∗
ε ) ≤ e−n

2k. The thesis
follows since

(7.12) Pn;α,h

(
2Sn
n2
∈ J(ε)

)
= 1− Q̃n;α,h(C̃

∗
ε ) ≥ 1− e−n2k .

�

The proof we did above can be carried out in the very same manner in the case
when (α, h) ∈ U rs, recovering the result in Proposition 5.3. In the uniqueness regime,

the set of minimizers of (7.11) is the singleton C̃∗ = {ũ∗}, where ũ∗ is the image

in W̃ of the unique solution u∗ = u∗(α, h) to the scalar problem (2.6). Therefore,
Theorem 7.4(b) gives exponential convergence of the sequence (2Sn/n

2)n≥1 to u∗.

Remark 7.5 (LDP for Q̃n;α,h). As a byproduct of the proof of Theorem 3.3 we

obtain that the sequence (Q̃n;α,h)n≥1 obeys a large deviation principle on the space

(W̃ , δ�), with speed n2 and rate function Iα,h. We have already mentioned that the

rate function Iα,h is lower semicontinuous; as a consequence, since W̃ is compact,
it has compact level sets.

Remark 7.6 (Heuristics on non-standard critical behavior). Having at hand a large
deviation principle allows us to perform a heuristic calculation to support Conjec-
ture 3.8. We define the random variable

Un := 2
Sn − n2

2
u∗(αc, hc)

n3/2
,

so that the random variable in the statement of the conjecture can be decomposed as

(7.13) 2
Sn − n2

2
mn(αc, hc)

n3/2
= Un +

√
n(u∗(αc, hc)−mn(αc, hc)) .

We use the approximation Pn;α,h

(
2Sn
n2 ≈ u

)
= exp (−n2Iα,h(u) + o(n2)), whenever

u is close to u∗, where Iα,h : [0, 1]→ R is the function Iα,h(x) = 1
2
I(x)− α

6
x3− h

2
x+

fα,h, with I(x) = x lnx + (1 − x) ln(1 − x) and fα,h given in (2.12). If we Taylor
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expand Iα,h around u∗ up to fourth order, we obtain

Iα,h(x) =
1

2

[
ln

u∗

1− u∗
− α(u∗)2 − h

]
(x− u∗) +

1

2

[
1

2u∗(1− u∗)
− αu∗

]
(x− u∗)2

+
1

2

[
2u∗ − 1

6(u∗)2(1− u∗)2
− α

3

]
(x− u∗)3 +

1

24

3(u∗)2 − 3u∗ + 1

(u∗)3(1− u∗)3
(x− u∗)4

+ o
(
(x− u∗)4

)
,

that, when we set (α, h) = (αc, hc) =
(

27
8
, ln 2− 3

2

)
, since u∗ = u∗(αc, hc) = 2

3
,

reduces to

Iαc,hc(x) =
81

64
(x− u∗)4 + o

(
(x− u∗)4

)
.

In conclusion, as n→ +∞, we find

Pn;αc,hc (Un ∈ dx) = Pn;αc,hc

(
2Sn
n2 ∈ u∗ + dx√

n

)
(7.14)

= e
−n2Iαc,hc

(
u∗+ x√

n

)
+o(n2)

dx = e−
81
64
x4+o(n2)dx,

which is the same density `c found in Theorem 8.8. However, notice that the error
term appearing in (7.14) might be relevant, also according to [21], Thm. 1.4(c), stated
in the context of the two-star model, as well as the shift term in (7.13). We believe
that a subtle compensation among this two contributions produces the conjectured
result.

8. Mean-field approximation

In this section, we consider a mean-field approximation of the edge-triangle model
(3.1). The mean-field approximation provides one of the simplest and most common
schemes for analyzing a model, when exact computations are infeasible, and it is
a helpful tool for deriving heuristic results. It will be shown that all results valid
for the distribution Pn;α,h are still valid in this approximation even in a stronger
form (e.g. Theorem 8.4). Moreover, we will derive a non-standard CLT at the
critical point (αc, hc), that together with the heuristics at the end of the previous
section suggests Conjecture 3.8. We will then focus on the behavior of the model
on the critical curve, and prove conditional LLN and CLT for the edge density.
The analysis of the mean-field approximation is very accurate and will allow us to
obtain also the speed of convergence of the average edge density in the unconditional
and conditional settings, given in Propositions 8.6 and 8.10, respectively. We will
conclude the section with a comparison among the edge-triangle model and its mean-
field approximation.

8.1. Mean-field model and limiting free energy. For any given α, h ∈ R, let
us consider the mean-field Hamiltonian

(8.1) H̄n;α,h(x) :=
4α

3n4

(∑
i∈En

xi

)3

+ h
∑
i∈En

xi , for x ∈ An ,
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with associated Gibbs probability density

(8.2) µ̄n;α,h(x) :=
eH̄n;α,h(x)

Z̄n;α,h

, Z̄n;α,h :=
∑
x∈An

eH̄n;α,h(x).

We denote the corresponding measure and expectation by P̄n;α,h and Ēn;α,h, respec-
tively. Moreover, as usual, we define the finite size free energy as

(8.3) f̄n;α,h :=
1

n2
ln Z̄n;α,h.

Notice that this is a mean-field model in the sense that the Hamiltonian (and the
corresponding probability density µ̄n;α,h) can be seen as a function of the one dimen-
sional parameter 2

n2Sn(x) = 2
n2

∑
i∈En xi, taking values in Γn :=

{
0, 2

n2 , . . . , 1− 1
n

}
.

In particular, for all x ∈ An such that 2Sn(x)
n2 = m, with m ∈ Γn, we have

(8.4) H̄n;α,h(x) = H̄n;α,h(m) = n2

(
α

6
m3 +

h

2
m

)
.

This identity induces on Γn the following measure

(8.5) P̄n;α,h

(
2Sn
n2
∈ A

)
=
∑
m∈A

Nm
en

2(α6m3+h
2
m)

Z̄n;α,h

, for A ⊆ Γn ,

where Nm :=

( n(n−1)
2

n(n−1)m
2

)
corresponds to the number of graphs x ∈ An with edge

density 2Sn(x)/n2 = m.
This model provides a mean-field approximation of the edge-triangle model (3.1)

in the following sense: whenever the parameters α, h are chosen so that the edge-
triangle model is in the replica symmetric regime, the two models share the same
limiting free energy. We will show this result below in Theorem 8.2. Before we prove
an auxiliary lemma that will be a useful tool in the proof of Theorem 8.2 and many
others in this section. It says that the main contribution to Z̄n;α,h comes from the
sum over the neighborhood(s) of the solution(s) of the scalar problem (2.12). Not
to clutter the statement of the next lemma, we anticipate some notation.

Energy function. For any (α, h) ∈ R2, let gα,h : [0, 1]→ R be the function defined as

(8.6) gα,h(m) :=
α

6
m3 +

h

2
m− I(m)

2
.

The function gα,h will play a major role in the determination of the leading order
term of the partition function Z̄n;α,h. Notice that gα,h(u

∗) = fα,h, where fα,h is the
infinite volume free energy of the edge-triangle model, as given in (2.12).
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Lattice sets. For any fixed δ ∈ (0, 1), we introduce the following sets

R(n) :=
(
−n1−δ, n1−δ) ∩{−nu∗,−nu∗ +

2

n
, . . . , n− 1− nu∗

}
,

R
(n)
i :=

(
−n1−δ, n1−δ) ∩{−nu∗i ,−nu∗i +

2

n
, . . . , n− 1− nu∗i

}
, for i = 1, 2,

R(n)
c :=

(
−n1/2−δ, n1/2−δ) ∩{−√nu∗,−√nu∗ +

2

n3/2
, . . . ,

√
n− 1√

n
−
√
nu∗
}
.

These sets are relevant as they represent integration ranges of variables obtained as
fluctuations of m ∈ Γn.

Normalization weights. Recall the definitions of the regions U rs and Mrs given in
Subsection 2.3. For (α, h) varying in the parameter space we define proper normal-
ization weights as follows:

• if (α, h) ∈ U rs \ {(αc, hc)},

D(n)
∗ :=

∑
x∈R(n)

2

n

e−c0x
2+

k0
n
x3√(

u∗ + x
n

) (
1− u∗ − x

n

) ,
with u∗ = u∗(α, h) solution of the scalar problem (2.12) and the constants
defined as

c0 := −
g′′α,h(u

∗)

2
=

1− 2α(u∗)2(1− u∗)
4u∗(1− u∗)

∈ (0,+∞)

and k0 := g′′′α,h(ũ)/6, for some ũ such that |ũ− u∗| < n−δ;

• if (α, h) ∈Mrs,

D
(n)
1 :=

∑
x∈R(n)

1

2

n

e−c1x
2+

k1
n
x3√(

u∗1 + x
n

) (
1− u∗1 − x

n

)
D

(n)
2 :=

∑
x∈R(n)

2

2

n

e−c2x
2+

k2
n
x3√(

u∗2 + x
n

) (
1− u∗2 − x

n

) ,
where u∗1 = u∗1(α, h), u∗2 = u∗2(α, h) are solutions of the scalar problem (2.12)
and the constants are defined as

ci := −g′′α,h(u∗i )/2 =
1− 2α(u∗i )

2(1− u∗i )
4u∗i (1− u∗i )

∈ (0,+∞)

and ki := g′′′α,h(ũ)/6, for some ũ such that |ũ− u∗i | < n−δ (i = 1, 2);
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• if (α, h) = (αc, hc),

D(n)
c :=

∑
x∈R(n)

c

2

n3/2

e
− 81

64
x4+ kc√

n
x5√(

u∗ + x√
n

)(
1− u∗ − x√

n

) ,
with u∗ = u∗(αc, hc) = 2

3
solution of the scalar problem (2.12) and kc :=

g
(v)
αc,hc

(ũ)/5!, for some ũ such that |ũ− u∗| < n−δ.

Lemma 8.1. Let (α, h) ∈ (−2,+∞) × R and let fα,h be the infinite volume free
energy of the edge-triangle model given in (2.12). For any fixed δ ∈

(
0, 3

8

)
, it holds

true that, as n→ +∞,

(8.7) Z̄n;α,h =
en

2fα,h

2
√
π

(
D(n)(α, h)

)
(1 + o(1)),

where

D(n)(α, h) :=


D

(n)
∗ if (α, h) ∈ U rs \ {(αc, hc)}

D
(n)
1 +D

(n)
2 if (α, h) ∈Mrs

√
nD

(n)
c if (α, h) = (αc, hc).

Proof. In view of the representation (8.4), we write the partition function as

(8.8) Z̄n;α,h =
∑
m∈Γn

Nmen
2(α

6
m3+h

2
m) .

The coefficient Nm can be approximated by using Stirling formula. In particular,
there exist two constants c, C > 0 such that, for all m ∈ Γn, it holds

(8.9) cn−1e−
n2

2
I(m) ≤ Nm ≤ Cne−

n2

2
I(m) .

The estimate (8.9) can be made more precise assuming n−2 � m� 1−n−2, so that
n2m→ +∞ and n2(1−m)→ +∞. We thus obtain

(8.10) Nm =
e−

n2

2
I(m)

n
√
πm(1−m)

(1 + o(1)) .

We start by considering (α, h) ∈ Mrs. Let u∗1 and u∗2 be the solutions of the scalar
problem (2.12). For any large enough n, we can split the sum in (8.8) in three parts,
according to the partition Γn = Bu∗1

∪Bu∗2
∪ C, where

Bu∗1
≡ Bu∗1

(n, δ) := {m ∈ Γn : |m− u∗1| ≤ n−δ},
Bu∗2
≡ Bu∗2

(n, δ) := {m ∈ Γn : |m− u∗2| ≤ n−δ},
C ≡ C(n, δ) := Γn \

(
Bu∗1
∪Bu∗2

)
,

(8.11)

and consider the three sums separately.
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Neighborhood of u∗1. From the Stirling approximation (8.10), we first get

(8.12) Z̄n;α,h(Bu∗1
) :=

∑
m∈Bu∗1

Nmen
2(α

6
m3+h

2
m) =

1√
π

∑
m∈Bu∗1

en
2gα,h(m)

n
√
m(1−m)

(1 + o(1)).

We Taylor expand gα,h(m) around u∗1. Since g′α,h(u
∗
1) = 0, as u∗1 is a maximizer of

gα,h, it holds that

(8.13) gα,h(m) = gα,h(u
∗
1)− c1(m− u∗1)2 + k1(m− u∗1)3,

where c1 > 0 and k1 are the constants given in the statement. Inserting (8.13) in
(8.12), and recalling that gα,h(u

∗
1) ≡ fα,h, yields

Z̄n;α,h(Bu∗1
) =

en
2fα,h

2
√
π

∑
m∈Bu∗1

2

n

e−c1n
2(m−u∗1)2+k1n2(m−u∗1)3√

m(1−m)
(1 + o(1))

=
en

2fα,h

2
√
π
D

(n)
1 (1 + o(1)),

(8.14)

where the last identity follows from the change of variable x = n(m− u∗1).

Neighborhood of u∗2. Since u∗2 is the maximizer of gα,h over Bu∗2
, following the same

procedure as for the sum over Bu∗1
, we get that

Z̄n;α,h(Bu∗2
) =

en
2fα,h

2
√
π

∑
m∈Bu∗2

2

n

e−c2n
2(m−u∗1)2+k2n2(m−u∗1)3√

m(1−m)
(1 + o(1))

=
en

2fα,h

2
√
π
D

(n)
2 (1 + o(1)),

(8.15)

with constants c2 > 0 and k2 as given in the statement.

Notice that since D
(n)
1 and D

(n)
2 are positive and uniformly bounded in n ∈ N, it

turns out that Z̄n;α,h(Bu∗1
) and Z̄n;α,h(Bu∗2

) have the same order as n→ +∞.

Complement set C. From the Stirling approximation (8.9), we get

Z̄n;α,h(C) ≤ Cn
∑
m∈C

en
2gα,h(m) ≤ C

2
n3en

2fα,he−n
2(fα,h−maxm∈C gα,h(m))

≤ en
2fα,he−kn

2−2δ

= en
2fα,ho(1),

(8.16)

where the last inequality holds for some k > 0 and any large enough n. We used
that |m− u∗j | > n−δ, for j = 1, 2 and for all m ∈ C, and that 2− 2δ > 0, whenever
δ < 1.

Taking (8.14)-(8.16) together gives

Z̄n;α,h =
(
Z̄n;α,h(Bu∗1

) + Z̄n;α,h(Bu∗2
)
)

(1 + o(1)) =
en

2fα,h

2
√
π

(
D

(n)
1 +D

(n)
2

)
(1 + o(1)),

that concludes the proof of the statement for any (α, h) ∈Mrs.
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If (α, h) ∈ U rs, being u∗ the unique solution of the scalar problem (2.12), we can
proceed similarly by splitting the sum in (8.8) over the neighborhood of u∗ and its
complement. The previous argument then applies straightforwardly by just adapting
the Taylor approximation of gα,h(m) around its maximum. By direct computation,
and taking into account that αc = 27

8
, hc = ln 2− 3

2
and u∗(αc, hc) = 2

3
, we get

(8.17)

gα,h(m)− gα,h(u∗) =

 −c0(m− u∗)2 + k0(m− u∗)3 if (α, h) ∈ U rs \ {(αc, hc)}

−81
64

(m− u∗)4 + kc(m− u∗)5 if (α, h) = (αc, hc),

where the constants c0 > 0, k0 and kc are those given in the statement. As a
consequence, after the change of variable x = n(m− u∗) if (α, h) ∈ U rs \ {(αc, hc)},
or x =

√
n(m− u∗) if (α, h) = (αc, hc), we get

Z̄n;α,h = Z̄n;α,h(Bu∗)(1+o(1)) =


e
n2fα,h

2
√
π
D

(n)
∗ (1 + o(1)) if (α, h) ∈ U rs \ {(αc, hc)}

√
n e

n2fα,h

2
√
π

D
(n)
c (1 + o(1)) if (α, h) = (αc, hc),

which concludes the proof. We point out that, when at the critical point, the
definition of Bu∗ as n−δ-neighborhood of u∗, under the assumption 0 < δ < 3

8
,

guarantees that the contribution to the partition function of the term Z̄n;αc,hc(C) is
exponentially small in n, thus negligible.

�

Theorem 8.2. Let (α, h) ∈ (−2,+∞) × R and let fα,h be the infinite volume free
energy of the edge-triangle model given in (2.12). Then it holds

(8.18) lim
n→+∞

f̄n;α,h = fα,h .

This result was already observed in [20], Ch. IV, and it is a straightforward con-
sequence of (8.7).

8.2. Limit theorems for the mean-field model. All results presented in Section
3 can be easily transferred, and in some cases strengthened, to the mean-field setting.
We summarize the statements and the relevant proofs below.

Theorem 8.3 (SLLN for Sn w.r.t. P̄n;α,h). For all (α, h) ∈ U rs, it holds

(8.19)
2Sn
n2

a.s.−−−→ u∗(α, h) w.r.t. P̄α,h, as n→ +∞,

where u∗(α, h) solves the maximization problem in (2.12).

Theorem 8.4. For all (α, h) ∈Mrs, it holds

2Sn
n2

d−−→ κδu∗1(α,h) + (1− κ)δu∗2(α,h) w.r.t. P̄n;α,h, as n→ +∞,
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where u∗1(α, h), u∗2(α, h) solve the maximization problem in (2.12), and

κ =

√(
1− 2α (u∗1)2 (1− u∗1)

)−1√(
1− 2α (u∗1)2 (1− u∗1)

)−1
+

√(
1− 2α (u∗2)2 (1− u∗2)

)−1
.

Theorem 8.5 (CLT for Sn w.r.t. P̄n;α,h). For all (α, h) ∈ U rs \ {(αc, hc)}, it holds

(8.20)
√

2
Sn − n2

2
m̄n(α, h)

n

d−−→ N (0, v(α, h)) w.r.t. P̄n;α,h, as n→ +∞,

where m̄n := Ēn;α,h(
2Sn
n2 ) and N (0, v(α, h)) is a centered Gaussian distribution with

variance

(8.21) v(α, h) := lim
n→+∞

vn(α, h) = ∂hu
∗(α, h).

The proofs of Theorems 8.3 and 8.5 can be obtained by retracing the computations
performed for proving Theorems 3.2 and 3.6. Indeed, both strategies we used to
prove the latter results rely on the knowledge of the limiting free energy (together
with its phase diagram) and, thanks to Theorem 8.2, this information is precisely
the same for the mean-field model (8.1) and the edge-triangle model (3.1).

Contrary to the proof of Theorem 3.3, the proof of Theorem 8.4 follows by direct
computation. In addition, in the present simplified setting we are able to provide
the coefficients of the mixture of delta measures describing the infinite volume dis-
tribution of the edge density. We give the proof below.

Proof of Theorem 8.4. We will determine the limit of Ēn;α,h [ϕ (2Sn/n
2)] for any con-

tinuous and bounded real function ϕ. Recall (8.5) and notice that

Ēn;α,h

[
ϕ

(
2Sn
n2

)]
=
∑
m∈Γn

ϕ(m)
Nmen

2(α
6
m3+h

2
m)

Z̄n;α,h

.

Implementing the same procedure as in the proof of Lemma 8.1, and adopting the
same notation therein, we split this average over the three sets Bu∗1

, Bu∗2
and C, and

analyze them separately.

Average over the neighborhood of u∗1. From the Stirling approximation (8.10) and
the identity (8.7), we get

∑
m∈Bu∗1

ϕ(m)
Nmen

2(α
6
m3+h

2
m)

Z̄n;α,h

=
∑

m∈Bu∗1

2

n

ϕ(m)√
m(1−m)

e−n
2(fα,h−gα,h(m))

D
(n)
1 +D

(n)
2

(1 + o(1)) .

(8.22)
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Recall the definitions of D
(n)
1 and D

(n)
2 and consider the explicit values of c1 and

c2, given by ci = −g′′α,h(u∗i )

2
=

1−2α(u∗i )2(1−u∗i )

4u∗i (1−u∗i )
, for i = 1, 2. It holds that

D
(n)
1

n→+∞−−−−−→ D1 :=
1√

u∗1 (1− u∗1)

∫
R
e−c1x

2

dx = 2

√
π
(
1− 2α (u∗1)2 (1− u∗1)

)−1

D
(n)
2

n→+∞−−−−−→ D2 :=
1√

u∗2 (1− u∗2)

∫
R
e−c2x

2

dx = 2

√
π
(
1− 2α (u∗2)2 (1− u∗2)

)−1
.

(8.23)

Hence, by the Taylor expansion (8.13) and the change of variable x = n(m − u∗1),
we can conclude∑
m∈Bu∗1

ϕ(m)
Nmen

2(α
6
m3+h

2
m)

Z̄n;α,h

=
∑
x∈R(n)

1

2

n

ϕ(u∗1 + x
n
)√

(u∗1 + x
n
)(1− u∗1 − x

n
)

e−c1x
2+

k1
n
x3

D
(n)
1 +D

(n)
2

(1 + o(1))

n→+∞−−−−−→ ϕ(u∗1)
D1

D1 +D2

.

Average over the neighborhood of u∗2. By the same arguments as for the average over
the neighborhood of u∗1, we get∑
m∈Bu∗2

ϕ(m)
Nmen

2(α
6
m3+h

2
m)

Z̄n;α,h

=
∑
x∈R(n)

2

2

n

ϕ(u∗2 + x
n
)√

(u∗2 + x
n
)(1− u∗2 − x

n
)

e−c2x
2+

k2
n
x3

D
(n)
1 +D

(n)
2

(1 + o(1))

n→+∞−−−−−→ ϕ(u∗2)
D2

D1 +D2

.

Average over the complement set C. Since ϕ is a bounded function, from (8.16) it
follows that the sum over C is exponentially small in n, and hence negligible in the
large n limit.

Summing up the three contributions, we obtain

lim
n→+∞

Ēn;α,h

[
ϕ

(
2Sn
n2

)]
= ϕ(u∗1)

D1

D1 +D2

+ ϕ(u∗2)
D2

D1 +D2

.

�

Having obtained a SLLN for Sn, it is natural to investigate at which speed the
convergence occurs. The next proposition gives the convergence rate in the law of
large numbers (8.19).

Proposition 8.6. For all (α, h) ∈ U rs \ {(αc, hc)},

(8.24) lim
n→+∞

n · Ēn;α,h

(∣∣∣∣2Snn2
− u∗(α, h)

∣∣∣∣) = E(|X|) ,
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where X is a Gaussian random variable with Lebesgue density `(x) ∝ e−c0x
2

and

c0 = 1−2α(u∗)2(1−u∗)
4u∗(1−u∗) ∈ (0,+∞). Moreover, at the critical point, it holds

(8.25) lim
n→+∞

√
n · Ēn;αc,hc

(∣∣∣∣2Snn2
− u∗(αc, hc)

∣∣∣∣) = E(|Y |) ,

where Y is a generalized Gaussian random variable with Lebesgue density `c(y) ∝
e−

81
64
y4.

Proof. Let (α, h) ∈ U rs and u∗ = u∗(α, h) be the unique solution of the scalar
problem (2.12). We keep using the notation introduced just before Lemma 8.1.
Following the same line of argument as in the proof of Theorem 8.4, we obtain

Ēn;α,h

(∣∣∣∣2Snn2
− u∗

∣∣∣∣) =
∑

m∈Bu∗

|m− u∗|Nme
n2(α

6
m3+h

2
m)

Z̄n;α,h

(1 + o(1))

=
∑

m∈Bu∗

2

n

|m− u∗|√
m(1−m)

e−n
2(fα,h−gα,h(m))

D(n)(α, h)
(1 + o(1)) ,

(8.26)

where the second identity is due to Lemma 8.1 and the Stirling approximation (8.10).
Observe that the infinitesimal correction appearing in (8.26) is exponentially small
in n, as it comes from the average over the complement set C = Γn \ Bu∗ (recall
(8.16)) and Stirling approximation.

To start with, focus on the case (α, h) ∈ U rs \ {(αc, hc)}. By means of the Taylor
expansion (8.17) and the change of variable x = n(m− u∗), we write

n · Ēn;α,h

(∣∣∣∣2Snn2
− u∗

∣∣∣∣) = n ·
∑

m∈Bu∗

2

n

|m− u∗|√
m(1−m)

e−n
2c0(m−u∗)2+n2k0(m−u∗)3

D
(n)
∗

(1 + o(1))

=
∑
x∈R(n)

2

n

|x| · e−c0x2+
k0
n
x3√

(u∗ + x
n
)(1− u∗ − x

n
) ·D(n)

∗
(1 + o(1)) ,

where R(n) :=
(
−n1−δ, n1−δ) ∩ {−nu∗,−nu∗ + 2

n
, . . . , n− 1− nu∗

}
. At last, let

(Xn)n≥1 be a sequence of random variables with probability density

`n(x) :=
2

n

e−c0x
2+

k0
n
x3√

(u∗ + x
n
)(1− u∗ − x

n
) ·D(n)

∗
1R(n)(x) , x ∈ R ,

so that, from the last display, we have n · Ēn;α,h

(∣∣2Sn
n2 − u∗

∣∣) = E(|Xn|)(1 + o(1)).

Notice that, due to the convergence D
(n)
∗

n→+∞−−−−→ D∗ and the Scheffé Lemma, we

obtain Xn
d−−→ X, where X is a Gaussian random variable with density

`(x) =

√
c0

π
e−c0x

2

, x ∈ R .
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Moreover, the random variables Xn’s have finite exponential moments for any suffi-
ciently large n. Therefore, by dominated convergence, we obtain

n · Ēn;α,h

(∣∣∣∣2Snn2
− u∗

∣∣∣∣) = E(|Xn|)(1 + o(1))
n→+∞−−−−−→ E(|X|) .

The proof of statement (8.25), relative to the critical point (αc, hc), runs similarly;
the major difference being that the Taylor approximation (8.17) brings the term
(m− u∗)4 in the exponent of (8.26). After the change of variable y =

√
n(m− u∗),

one gets

√
n · Ēn;αc,hc

(∣∣∣∣2Snn2
− u∗

∣∣∣∣) =
∑
y∈R(n)

c

2

n3/2

|y| · e−
81
64
y4+ kc√

n
y5√

(u∗ + y√
n
)(1− u∗ − y√

n
) ·D(n)

c

(1 + o(1))

= E(|Yn|)(1 + o(1)) ,

where R
(n)
c :=

(
−n1/2−δ, n1/2−δ) ∩ {−√nu∗,−√nu∗ + 2

n3/2 , . . . ,
√
n− 1√

n
−
√
nu∗
}

and Yn is a real random variable with Lebesgue density

(8.27) `cn(y) :=
2

n3/2

e
− 81

64
y4+ kc√

n
y5√

(u∗ + y√
n
)(1− u∗ − y√

n
) ·D(n)

c

1
R

(n)
c

(y) , y ∈ R .

The random variable Yn has finite exponential moments for any sufficiently large

n. Since, due to the convergence D
(n)
c

n→+∞−−−−→ Dc and the Scheffé Lemma, we

obtain Yn
d−−→ Y , where Y is a generalized Gaussian random variable with density

`c(y) ∝ e−
81
64
y4 , the statement (8.29) follows by dominated convergence:

√
n · Ēn;αc,hc

(∣∣∣∣2Snn2
− u∗

∣∣∣∣) = E(|Yn|)(1 + o(1))
n→+∞−−−−−→ E(|Y |) .

�

The strategy of the proof of Proposition 8.6 can be implemented to prove the
following.

Corollary 8.7. For all (α, h) ∈ U rs \ {(αc, hc)}, we have

(8.28) lim
n→+∞

n · (m̄n(α, h)− u∗(α, h)) = 0 ,

while at the critical point it holds

(8.29) lim
n→+∞

√
n · (m̄n(αc, hc)− u∗(αc, hc)) = 0 .

Proof. Recall that m̄n(α, h) = Ēn;α,h

(
2Sn
n2

)
. Following step by step the proof of

Proposition 8.6, with the same notation introduced there, we get that:

• for all (α, h) ∈ U rs \ {(αc, hc)}, then

n · (m̄n(α, h)− u∗(α, h)) = E(Xn)(1 + o(1))
n→+∞−−−−−→ E(X) = 0,



LIMIT THEOREMS FOR ERGM 33

• if (α, h) = (αc, hc), then
√
n · (m̄n(αc, hc)− u∗(αc, hc)) = E(Yn)(1 + o(1))

n→+∞−−−−−→ E(Y ) = 0,

which ends the proof. �

Notice that the central limit theorem stated in Theorem 8.5 is true even if we
replace m̄n(α, h) by u∗(α, h). Indeed, in view of (8.20) and (8.28), the decomposition

√
2
Sn − n2

2
u∗(α, h)

n
=
√

2
Sn − n2

2
m̄n(α, h)

n
+

n√
2

(m̄n(α, h)− u∗(α, h))

and Slutsky theorem prove the assertion.
Now we provide a non-standard central limit theorem at the critical point.

Theorem 8.8 (Non-standard CLT for Sn w.r.t. P̄n;αc,hc). If (α, h) = (αc, hc), it
holds

2
Sn − n2

2
m̄n(αc, hc)

n3/2

d−−→ Y w.r.t. P̄n;αc,hc , as n→ +∞,

where Y is a generalized Gaussian random variable with Lebesgue density `c(y) ∝
e−

81
64
y4.

Proof. Recall that αc = 27
8

, hc = ln 2 − 3
2

and u∗(αc, hc) = 2
3
. We keep using

the notation introduced just before Lemma 8.1 and, not to clutter too much our
formulas, we write u∗ in place of u∗(αc, hc) along the computations.

Consider the trivial decomposition

(8.30) 2
Sn − n2

2
m̄n(αc, hc)

n3/2
= 2

Sn − n2

2
u∗

n3/2
+
√
n (u∗ − m̄n(αc, hc)) .

Thanks to Corollary 8.7, it is enough to study the convergence in distribution of
2(Sn − n2

2
u∗)/n3/2. To this purpose, we analyze the moment generating function of

this random variable with the final goal of showing that, for any t ∈ R,

(8.31) M̄n(t) := Ēn;αc,hc

et
[

2
Sn−n

2

2 u∗

n3/2

] n→+∞−−−−−→
∫
R
ety`c(y)dy,

where `c is the density given in the statement. The proof follows the ideas developed
in the proof of Proposition 8.6. Observe that

M̄n(t) =
∑

m∈Bu∗

Nmet
√
n(m−u∗)+n2(αc

6
m3+hc

2
m)

Z̄n;αc,hc

(1 + o(1))

=
∑

m∈Bu∗

2

n3/2

et
√
n(m−u∗)−n2(fαc,hc−gαc,hc (m))√

m(1−m) ·D(n)
c

(1 + o(1)) ,

(8.32)

where the second identity follows from Lemma 8.1 and the Stirling approximation
(8.10). We mention that the definition of Bu∗ as the n−δ-neighborhood of u∗, to-
gether with the hypothesis δ < 3

8
, is crucial to ensure that the contribution of the av-

erage over the complement set C = Γn\Bu∗ is negligible for large n. Indeed, from the
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Stirling approximation (8.9) and the consequent rough bound Z̄n;α,h ≥ cn−1en
2fα,h ,

we get∑
m∈C

Nmet
√
n(m−u∗)+n2(αc

6
m3+hc

2
m)

Z̄n;αc,hc

≤ Cc−1n4et
√
n−n2(fαc,hc−maxm∈C gαc,hc (m))

≤ e−kn
−4δ

,

where the last inequality holds for some k > 0 and any large enough n. We used
that |m− u∗|4 > n−4δ for m ∈ C, and that 2− 4δ > 1/2, whenever δ < 3/8.

Inserting the Taylor expansion (8.17) in (8.32), and making the change of variable
y =
√
n(m− u∗), we get

M̄n(t) =
∑

m∈Bu∗

2

n3/2

et
√
n(m−u∗)− 81

64
n2(m−u∗)4+kcn2(m−u∗)5√

m(1−m) ·D(n)
c

(1 + o(1))

=
∑
y∈R(n)

c

2

n3/2

ety · e−
81
64
y4+kc

y5√
n√

(u∗ + y√
n
)(1− u∗ − y√

n
) ·D(n)

c

(1 + o(1)) .

In the last line we can recognize the probability density `cn of the random variable
Yn we introduced in (8.27). Thus we can conclude that M̄n(t) = E

(
etYn

)
(1 + o(1)) .

Since Yn
d−−→ Y , and Yn and Y have finite exponential moments, convergence (8.31)

follows for all t ∈ R. �

Remark 8.9. The very same strategy adopted to prove Theorem 8.8 can be used to
give an alternative proof of the central limit theorem stated in Theorem 8.5. The
approach of characterizing the moment generating function has the advantage of
allowing us to obtain the explicit value of the variance (8.21). In particular, it
yields

(8.33) v(α, h) = (4c0)−1 =
u∗(α, h) [1− u∗(α, h)]

1− 2α [u∗(α, h)]2 [1− u∗(α, h)]
.

In view of Theorem 8.2, the edge-triangle model and its mean-field approxima-
tion have the same infinite volume free energy, and therefore the same maximizer
u∗(α, h), for (α, h) ∈ U rs. As a consequence, thanks to (8.33), we obtain the value
of the variance (8.21) in the central limit theorem for the edge-triangle model.

We conclude the study of the mean-field model by analyzing further the behavior
of the system on the critical curve. In particular, we want to analyze the limiting
behavior of the edge density when confined in a suitable neighborhood of a solution
of the scalar problem (2.12). To this purpose, we introduce two conditional measures.

Consider (α, h) ∈Mrs and let u∗i = u∗i (α, h) (i = 1, 2) be the solutions of the scalar
problem (2.12). Moreover, for any δ ∈ (0, 1), let Bu∗i

(i = 1, 2) be the neighborhoods
introduced in (8.11). For i = 1, 2 we define the conditional probability measures

(8.34) P̂(i)
n;α,h

(
2Sn
n2
∈ A

)
:= P̄n;α,h

(
2Sn
n2
∈ A

∣∣∣∣2Snn2
∈ Bu∗i

)
, for A ⊆ Γn,



LIMIT THEOREMS FOR ERGM 35

and we denote the corresponding averages by Ê(i)
n;α,h.

Recall that, by definition, the neighborhoods Bu∗i
depend on δ, and so do the

conditional measures P̂(i)
n;α,h. Not to clutter our formulas, we prefer to leave this

dependence implicit. We remark that all the following results are valid for any
choice of δ ∈ (0, 1).

We want to prove standard limit theorems for the edge density under the probabil-

ity measures P̂(i)
n;α,h (i = 1, 2). We start by proving two auxiliary results concerning

the speed of convergence of the edge density to its average value.

Proposition 8.10. For i = 1, 2 and for all (α, h) ∈Mrs,

(8.35) lim
n→+∞

n · Ê(i)
n;α,h

(∣∣∣∣2Snn2
− u∗i (α, h)

∣∣∣∣) = E
(∣∣X(i)

∣∣) ,
where X(i) is a Gaussian random variable with Lebesgue density `i(x) ∝ e−cix

2
and

ci =
1−2α(u∗i )2(1−u∗i )

4u∗i (1−u∗i )
∈ (0,+∞).

Proof. We stick with the case i = 1, the other being similar. Let (α, h) ∈ Mrs and
u∗1 = u∗1(α, h) be a solution of the scalar problem (2.12). We keep using the notation
introduced just before Lemma 8.1 and we mimic the proof of Proposition 8.6. We
have

Ê(1)
n;α,h

(∣∣∣∣2Snn2
− u∗1

∣∣∣∣) =
∑

m∈Bu∗1

|m− u∗1|
Nm en

2(α
6
m3+h

2
m)

Z̄n;α,h(Bu∗1
)

=
∑

m∈Bu∗1

2

n

|m− u∗1|√
m(1−m)

e−n
2(fα,h−gα,h(m))

D
(n)
1

(1 + o(1)),

where the identities are due to (8.14) and the Stirling approximation (8.10). Observe
that the infinitesimal correction in the last line of the previous display is exponen-
tially small in n, as it comes from the Stirling approximation.

By means of the Taylor expansion (8.13) and the change of variable x = n(m−u∗1),
we obtain

n · Ê(1)
n;α,h

(∣∣∣∣2Snn2
− u∗1

∣∣∣∣) =
∑
x∈R(n)

1

2

n

|x| · e−c1x2+
k1
n
x3√

(u∗1 + x
n
)(1− u∗1 − x

n
) ·D(n)

1

(1 + o(1)),

where R
(n)
1 :=

(
−n1−δ, n1−δ)∩{−nu∗1,−nu∗1 + 2

n
, . . . , n− 1− nu∗1

}
. In other words,

if (Xn)n≥1 is a sequence of random variables with probability density

`(1)
n (x) :=

2

n

e−c1x
2+

k1
n
x3√

(u∗1 + x
n
)(1− u∗1 − x

n
) ·D(n)

1

1
R

(n)
1

(x), x ∈ R,

from the last display, we can write n · Ê(1)
n;α,h

(∣∣2Sn
n2 − u∗1

∣∣) = E(|Xn|)(1+o(1)). Notice

that, due to the convergence D
(n)
1

n→+∞−−−−→ D1 and the Scheffé Lemma, we obtain



36 ALESSANDRA BIANCHI, FRANCESCA COLLET, AND ELENA MAGNANINI

Xn
d−−→ X(1), where X(1) is a Gaussian random variable with density

`1(x) =

√
c1

π
e−c1x

2

, x ∈ R.

Moreover, as the random variables Xn’s have finite exponential moments for any
sufficiently large n, by dominated convergence, we get

n · Ê(1)
n;α,h

(∣∣∣∣2Snn2
− u∗1

∣∣∣∣) = E(|Xn|)(1 + o(1))
n→+∞−−−−−→ E

(∣∣X(1)
∣∣) .

�

Corollary 8.11. Set m̂
(i)
n (α, h) := Ê(i)

n;α,h

(
2Sn
n2

)
(i = 1, 2). For i = 1, 2 and for all

(α, h) ∈Mrs, we have

lim
n→+∞

n ·
(
m̂(i)
n (α, h)− u∗i (α, h)

)
= 0.

Proof. Following step by step the proof of Proposition 8.10, with the same notation
therein, we get that, for all (α, h) ∈Mrs,

n ·
(
m̂(1)
n (α, h)− u∗1(α, h)

)
= E(Xn)(1 + o(1))

n→+∞−−−−−→ E
(
X(1)

)
= 0.

�

The next theorem is the analog of Theorems 8.3 and 8.5, but it is obtained under
the constraint (conditioning) that the edge density is close to one of the maximizers
of the scalar problem (2.12).

Theorem 8.12 (Conditional LLN and CLT). For i = 1, 2 and for all (α, h) ∈Mrs,
it holds

(8.36)
2Sn
n2

a.s.−−−→ u∗i (α, h) w.r.t. P̂(i)
α,h, as n→ +∞,

and

(8.37)
√

2
Sn − n2

2
m̂

(i)
n (α, h)

n

d−−→ N (0, vi(α, h)) w.r.t. P̂(i)
n;α,h, as n→ +∞,

where N (0, vi(α, h)) is a centered Gaussian distribution with variance

vi(α, h) =
u∗i (α, h)[1− u∗i (α, h)]

1− 2α[u∗i (α, h)]2[1− u∗i (α, h)]
.

Proof. We prove only the i = 1 case. In the sequel, not to clutter too much our
formulas, we will drop the dependence on α and h in the function u∗1 = u∗1(α, h).

Firstly, we show the statement (8.36). We prove that, under P̂(1)
n;α,h, the sequence

(2Sn/n
2)n≥1 converges exponentially to u∗1, according to Definition 5.1. The al-

most sure convergence then follows by a standard Borel-Cantelli argument (see [11],
Thm. II.6.4).
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Let R ≡ R(η;n) :=
{
m ∈ Γn : η ≤ |m− u∗1| < n−δ

}
be the circular crown with

minor radius η and major radius n−δ. For any η > 0, we have

P̂(1)
n;α,h

(∣∣∣∣2Snn2
− u∗1

∣∣∣∣ ≥ η

)
≤
∑
m∈R

Nmen
2(α6m3+h

2
m)

Z̄n;α,h(Bu∗1
)

≤ Cc−1n4e−n
2(fα,h−maxm∈R gα,h(m))

≤ Cc−1n4e−n
2 minm∈R(fα,h−gα,h(m)),

where the second inequality is due to the Stirling approximation (8.9) and the re-

sulting estimate Z̄n;α,h(Bu∗1
) ≥ cn−1en

2fα,h . For sufficiently large n, the function
fα,h − gα,h(m) restricted to the neighborhood Bu∗1

is positive, convex and admits a
unique zero at m = u∗1 (see [25], Prop. 3.2). As a consequence, we obtain

min
m∈R

(fα,h − gα,h(m)) = min{fα,h − gα,h(u∗1 − η), fα,h − gα,h(u∗1 + η)} > 0,

giving the conclusion.
We turn now to the convergence (8.37). The proof of this statement runs similarly

to the proof of Theorem 8.8. Consider the trivial decomposition

√
2
Sn − n2

2
m̂

(1)
n (α, h)

n
=

n√
2

(
2Sn
n2
− u∗1

)
+

n√
2

(
u∗1 − m̂(1)

n (α, h)
)
.

By Corollary 8.11, it suffices to study the convergence in distribution of the random
variable n√

2

(
2Sn
n2 − u∗1

)
. To this purpose, we analyze its moment generating function

M̂n(t) := Ê(1)
n;α,h

(
e
tn√
2
( 2Sn
n2
−u∗1)

)
,

and we show that, for any t ∈ R, it converges to the moment generating function of
a centered Gaussian having variance v1(α, h).

Observe that

M̂n(t) =
∑

m∈Bu∗1

Nme
tn√
2

(m−u∗1)+n2(α
6
m3+h

2
m)

Z̄n;α,h(Bu∗1
)

=
∑

m∈Bu∗1

2

n

e
tn√
2

(m−u∗1)−n2(fα,h−gα,h(m))√
m(1−m) ·D(n)

1

(1 + o(1)),

where the second identity follows from the identity (8.14) and the Stirling approx-
imation (8.10). By using the Taylor expansion (8.13) and making the change of
variable y = n√

2
(m− u∗1), we get

M̂n(t) =
∑
y∈R̃(n)

2

n

ety · e−2c1y2+2
√

2k1
y3

n√(
u∗1 +

√
2y
n

)(
1− u∗1 −

√
2y
n

)
·D(n)

1

(1 + o(1))

= E
(
etYn

)
(1 + o(1)),
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where R̃(n) :=
(
−n1−δ, n1−δ) ∩ {− n√

2
u∗1,− n√

2
u∗1 +

√
2
n
, . . . ,− n√

2
u∗1 + n−1√

2

}
and Yn is

a real random variable having Lebesgue density

˜̀
n(y) :=

√
2

n

e−2c1y2+2
√

2k1
y3

n√(
u∗1 +

√
2y
n

)(
1− u∗1 −

√
2y
n

)
· D̃(n)

1

1R̃(n)(y), y ∈ R,

with D̃
(n)
1 = D

(n)
1 /
√

2. Notice that, due to the convergence D
(n)
1

n→+∞−−−−→ D1 and the

Scheffé Lemma, we obtain Yn
d−−→ Y , where Y is a Gaussian random variable with

density

˜̀(y) =

√
2c1

π
e−2c1y2 , y ∈ R.

Since Y has finite exponential moments and Yn as well, at least for sufficiently large
n, the convergence

M̂n(t)
n→+∞−−−−−→

∫
R
ety ˜̀(y) dy

follows for all t ∈ R.
�

8.3. Comparison among the edge-triangle model and its mean-field ap-
proximation. The analysis of the mean-field model carried out in this section
has highlighted various similarities between the asymptotic behavior of the edge-
triangle model and its mean-field approximation. These are essentially derived as
consequences of the equality between the infinite volume free energies of the two
models, stated in the Theorem 8.2. Thanks to the regularity of fα,h for parameters
in the region of U rs \ {(αc, hc)} and some classical statistical mechanics tools, it was
possible to derive analogous SLLN and CLT for the edge density in the two models.
In turn, this common behavior allowed us to infer some hidden properties of the
edge-triangle model. For example, by comparison, we have been able to provide an
explicit formula for the variance v(α, h) appearing in Theorem 3.6 (see Remark 8.9).

The main differences between these models emerge while analyzing the behavior
at criticality: at the critical point (αc, hc) and in the multiplicity region Mrs. For
parameters in Mrs ∪ {(αc, hc)}, the loss of regularity of fα,h must be compensated
with a deeper probabilistic analysis of the model, and large deviations estimates,
mainly connected to the analysis given in [9], come into play.

However, the mean-field approximation is a simpler model to deal with and we can
obtain much more detailed information on its asymptotic behavior. In particular,
the very precise characterization of the partition function given in Lemma 8.1 goes
much beyond a large deviation principle for the sequence of measures (P̄n;α,h)n≥1,
and it is indeed a key tool for the analysis of the mean-field model at criticality.

Beyond technical difficulties, it is natural to ask whether, at criticality, analogous
results hold for the edge density of the edge-triangle model and of its mean-field
approximation. As a first attempt of comparison, let us focus on the non-standard
CLT stated in Theorem 8.8, valid at the critical point (αc, hc), and on its proof.
Since the result is proved by showing the convergence of the moment generating
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function given in (8.31), one can try to recover a similar convergence for the edge-
triangle model by analyzing the corresponding moment generating function. If we
set

Mn(t) := En;αc,hc

et
[

2
Sn−n

2

2 u∗

n3/2

] , ∀t ∈ R ,

we would like to prove that limn→∞
(
Mn(t)− M̄n(t)

)
= 0 or, equivalently, that

(8.38) lim
n→∞

(
logMn(t)− log M̄n(t)

)
= 0 .

Elaborating on the characterization of the cumulant generating function of Sn w.r.t.
Pn;αc,hc given in (6.5) and setting c̄n(t) := 2

(
f̄n;αc,hc+t − f̄n;αc,hc

)
, the convergence

(8.38) can be proved by studying the limit, as n→∞, of

(8.39)
n2

2
cn(tn)− n2

2
c̄n(tn),

where tn := 2t/n3/2. By expanding the cumulant generating functions around zero,
we obtain that, for some t∗n ∈ (0, tn),

cn(tn) = 2 (fn;αc,hc+tn − fn;αc,hc) = 2tn∂hfn;αc,hc+t∗n = tnmn(αc, hc + t∗n)

and, similarly, c̄n(tn) = tnm̄n(αc, hc + t̄∗n). Substituting these expansions into (8.39),
and inserting the specific value of tn, we then get

(8.40) t
√
n [mn(αc, hc + t∗n)− m̄n(αc, hc + t̄∗n)] .

Although we do not have direct tools to compare the above difference, since the
average edge densities in the square brackets are averaged over distinct measures,
notice that mn(αc, hc + t∗n) and m̄n(αc, hc + t̄∗n) share the limit. Indeed, since for all
n ∈ N the functions cn(t) and c̄n(t) are convex with finite limit for all t ∈ R (see
equation (5.2)), and such that c′n(t∗n) = mn(αc, hc+ t∗n), c̄′n(t̄∗n) = m̄n(αc, hc+ t̄∗n) and
c′(0) = c̄′(0) = u∗ exist, from [11], Lem. V.7.5, it follows that

lim
n→∞

mn(αc, hc + t∗n) = lim
n→∞

m̄n(αc, hc + t̄∗n) = lim
n→∞

mn(αc, hc) = u∗(αc, hc).

These identities can then be used to rewrite (8.40) as the following sum of four
differences

t
√
n [(mn(αc, hc + t∗n)−mn(αc, hc)) + (mn(αc, hc)− u∗(αc, hc))]
− t
√
n [(m̄n(αc, hc + t̄∗n)− m̄n(αc, hc)) + (m̄n(αc, hc)− u∗(αc, hc))] .

However, with this rewriting, two different technical problems emerge. On the one
hand, on each of the two lines above, the first difference can be thought of as an
approximation of the second derivative in h of the finite volume free energy, whose
limit, as n → ∞, explodes as an unknown function of n. On the other hand,
while the second term in the second line converges to zero due to Corollary 8.7, the
convergence of the analogous term in the first line is not guaranteed. The technical
element missing at this point is a sufficient control of the speed of convergence of
mn(αc, hc) toward u∗(αc, hc). While in the mean-field setting the random variables
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2(Sn− n2

2
u∗(αc, hc))/n

3/2 and 2(Sn− n2

2
m̄n(αc, hc))/n

3/2 share the same limiting law
(recall identity (8.30)), in the edge-triangle model this might no longer be the case.
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