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Abstract

Dialogue games are a dynamic form of argumentation, with multiple parties
pooling their arguments with the intention of settling an issue. Such games
can have a variety of structures, and may be collaborative or competitive,
depending on the motivations of the parties. Strategic argumentation is a class
of competitive dialogue games in which two players take turns in contributing
their arguments, each attempting to have an issue settled in the way that they
would prefer. Thus strategic argumentation games are less about discovering a
joint truth than about a player imposing their view on an opponent. They are
reflective of legal argumentation.

In the games we study, players have perfect information of the moves players
make, but incomplete information on the possible moves (arguments) that other
players have available to them. We look both at games using logically structured
arguments and games using abstract arguments. We show that playing these
games can be computationally hard. We also examine issues of corruption in
such games, and discuss approaches to foiling it.

1 Introduction
When two or more parties are engaged in a debate, it is often the case that each
party has some information they are not willing to disclose to the other parties. Also,
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in some cases, the disclosure of some piece of information by one party could prove
detrimental for the party, in the sense that the information could be used to prevent
the party to reach their aim in the debate, or some of the information disclosed can
help the other party to achieve their goal. Accordingly we can provide the following
(informal) definition of strategic argumentation.

Definition 1.1. Strategic argumentation is the problem of determining what argu-
ments (pieces of information) to disclose during a debate in order to achieve the aim
a party has in the debate and to prevent the other party from gaining an undesired
advantage.

To illustrate the issue, consider the following argument exchange, first proposed
in [124]:

Example 1.2. Let Pr and Op be the players involved in the following argumentation
dialogue (Pr and Op denote, respectively, the proponent and the opponent):

Pr0 : “You killed the victim.”
Op1 : “I did not commit murder! There is no evidence!”
Pr1 : “There is evidence. We found your ID card near the scene.”
Op2 : “It is not evidence! I had my ID card stolen!”
Pr2 : “It is you who killed the victim. Only you were near the scene at the time

of the murder.”
Op3 : “I did not go there. I was at facility A at that time.”
Pr3 : “At facility A? Then, it is impossible to have had your ID card stolen since

facility A does not allow a person to enter without an ID card.”

We can easily represent arguments of this example with a rule-based formalism
as follows. We have rules R:

rPr0 : ∆ murderer(X)
rÕ

Op1
: ∆ ¬evidence_Against(X)

rÕÕ

Op1
: ¬evidence_Against(X) ∆ ¬murderer(X)

rPr1 : ID(X)_at_crime_scene ∆ evidence_Against(X)
rOp2 : ID(X)_stolen ∆ ¬evidence_Against(X)
rÕ

Pr2 : ∆ only(X)_at_crime_scene
rÕÕ

Pr2 : only(X)_at_crime_scene ∆ murderer(X)
rOp3 : at_facility_A(X) ∆ ¬only(X)_at_crime_scene
rPr3 : at_facility_A(X) ∆ ¬ID(X)_stolen

and a priority relation >= {rOp2 > rPr1}, where the notation ri : A(r) ∆ C(r)
identifies that ri is the name of the rule, A(r) is the set of antecedents (possibly empty)
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while C(r) is the conclusion, symbol ∆ denotes that the conclusion may be defeated
by contrary evidence, as for instance the conflict between rOp2 and rPr1, resolved by
> (the superiority relation) which allows us to conclude that ¬evidence_Against(X)
is the case.

A feature of this dialogue is that the exchange of arguments reflects an asymmetry
of information between the two parties. Each player does not know the other player’s
knowledge, thus they cannot predict which arguments will be attacked, nor which
counterarguments may be employed for attacking their own arguments. In addition,
the private information disclosed by a party might eventually be used by the adversary
to construct and play justified counterarguments. Thus, Pr3 attacks Op2, but only
after Op3 has been given. Thus, the attack Pr3 of the proponent is possible only
when the opponent discloses some private information through the move Op3 (in this
setting, after Op let Pr know that Op was at facility). If we assume that Pr wishes
to expose Op’s guilt, and Op wishes to hide it, then we can view this dialogue as a
game, where a move consists of stating an argument.

This example illustrates a scenario where some of the information disclosed by a
party could be detrimental to their aim. This is a common phenomenon in many
applications that are suitable to be formally represented by argumentation such as
negotiation [117], brokering [10], and in the legal domain [114; 63]. In a negotiation,
the other party could use the information to gain some advantage either on the issue
of the negotiation (e.g., price of an item) or on some side e�ects; in a legal proceeding
the opposite party could use the information to win the case. Hence, players in such
an argumentation game must be strategic in what arguments they expose, to put
themselves in the best position. We refer to such games as strategic argumentation
games.

Furthermore, in such applications the parties can be represented by agents acting
and debating on behalf of their clients, but these agents might not have their client’s
best interests at heart. This can corrupt the dialogue. For example, suppose the
agent for Pr was bribed by Op to omit the claim Pr2. Then Op3 would have remained
private, and Op’s lie would be undiscovered. Similar issues occur whenever we employ
an agent, whether human or software.

Technically, games involving privacy are called games of incomplete information.
As argued in [67], argument games with incomplete information can be modelled by
stating that each player has a logical theory, constituting their private knowledge,
and which is unknown by the opposite party, and there is an additional theory shared
by all parties with the information that is public. A player may build an argument
that supports their claim by using some of their private knowledge and the common
information; in turn, the other party may construct new arguments by re-using
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the adversary’s disclosed information (along with other pieces of their own private
knowledge) in order to defeat the opponent’s arguments. In a legal proceeding, we can
distinguish between two types of information: the norms in force in the underlying
jurisdiction, which are assumed to be known by both parties, and the information,
private to each party, on the facts of the case. Accordingly, the legal proceeding can
be modelled by three theories, a public one with the common knowledge, encoding
the norms of the underlying jurisdiction, plus two private theories: one for each
party.

When working with logically structured arguments, the di�erent logical theories
are represented by sets of rules (which may include unconditional facts). So, the set
R of all rules used to build arguments is partitioned into three (distinct) subsets:
a set RCom known by both players, and two subsets RPr and ROp corresponding,
respectively, to Pr’s and Op’s private knowledge. While the game is evolving, at each
turn, a party discloses some of their private arguments and, by doing so, the player
reduces their private information (RPr/ROp decreases) with what now becomes part
of the new common knowledge base (RCom increases). Consider a setting where
F = {a, d, f} is the known set of facts (categorical statements), RCom = F (the facts
are common knowledge), and the players have the following sets of rules:

RPr = {r0 : a ∆ b; r1 : d ∆ c; r2 : c ∆ b} ROp = {r3 : c ∆ e; r4 : e, f ∆ ¬b}.

If Pr’s intent is to prove b and plays {a ∆ b}, then Pr wins the game. In fact, Op
has no way to prove e and thus r4 is not active. If, on the other hand, Pr plays
{d ∆ c, c ∆ b} (or even the whole RPr), this allows Op to succeed. Here, a minimal
subset of RPr is successful. The situation can be reversed for Pr. Replace the sets of
private rules with

RPr = {a ∆ b; d ∆ ¬c} ROp = {d, c ∆ ¬b; f ∆ c}.

Playing {a ∆ b} is now not successful for Pr, while the whole RPr ensures victory.
Example 1.2 brings out the issues we will address in this chapter: formalizing

such dialogues as strategic argumentation games, addressing the di�culty of making
a move in a game, and examining the possibility of corruption in such games and
means to foil it. We will look at both defeasible logics [6] and ASPIC-style structured
argumentation [2; 111] as languages for expressing arguments. We will also show that
the same issues arise if we formulate strategic argumentation in terms of abstract
arguments [41]. In looking at corruption, we consider two forms: espionage and
collusion. To counter these possibilities, we examine the use of standards and audit
to limit the ability of players to behave corruptly, and the idea of computational
resistance to corruption to discourage corruption.
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The layout of this chapter is as follows. Section 2 describes the general setting of
argumentation and dialogue games. Section 3 provides some technical background on
computational complexity, elements of abstract argumentation [41], and a framework
for argumentation with logically structured arguments. Section 4 outlines Defeasible
Logic and its four main variants. Section 5 presents an instance of the strategic
argumentation game with Defeasible Logic as the basis for argumentation, and proves
the computational di�culty of playing the game. It extends this result to an instance
of structured argumentation under the grounded semantics. Section 6 extends the
idea of strategic argumentation further, to abstract argumentation over a variety of
semantics. Section 7 investigates how corruption can a�ect argumentation games,
and how it can be countered. Section 8 discusses related work and Section 9 considers
possible future directions of this research. Section 10 ends the chapter.

2 Argumentation and Dialogue Games
In this section we briefly describe a general setting of argumentation and dialogue
games. In doing so we will not bind concepts such as argument, aim, acceptance or
extension to a specific meaning, nor specify all details of concepts like argumentation
framework. They will be specified more precisely later.

Definition 2.1 (Argumentation framework). An argumentation framework AF is
a tuple (A, R), where A is a set of arguments, and R is a collection of relations over
A.

The literature in argumentation theory flourishes with di�erent frameworks
describing what arguments are, where the two main school of thoughts see them as
either monads (with no internal structure), or structured (made of sub-parts). We
will address both schools. For now, we are only interested in saying that there is a
function mapping arguments to elements of the language, referred to as conclusions
(or theses, claims).

Definition 2.2 (Conclusions). Given an argumentation framework AF and a lan-
guage of expressions L, the function conc : A ‘æ 2L maps each argument to a set of
elements of L. If cA œ conc(A), then we call cA a conclusion of argument A.

In the monadic view, each argument might have a single, distinct conclusion. In
that case, conclusions add nothing to the argumentation framework. In the structured
view, an expression might be a conclusion of several arguments, and its negation
might also be a conclusion of arguments. Any structured argumentation framework
with conclusions can be abstracted to a monadic argumentation framework by simply
ignoring its internal structure (and retaining the conclusion function).
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For the purposes of this chapter, a semantics maps an argumentation framework to
a set of extensions. Each semantics implicitly expresses a criterion for how arguments
can coherently be adjudicated together, given an argumentation framework. Each
extension in the semantics represents a “reasonable” adjudication, according to that
criterion, of the arguments in the argumentation framework. We leave open the
details of what an extension is and how it might be represented, but commonly it is
a set of arguments or a labelling for arguments (see Section 3.2 for more details of
these common representations).

Definition 2.3 (Semantics). A semantics is a function ‡ mapping argumentation
frameworks to a set of extensions.

There is a rich array of interactions that are considered dialogues in the argumen-
tation literature [24] but, as can be seen from the introduction, we have a specific
kind of dialogue in mind. We define a dialogue as the exchange of arguments between
two (or more) parties. We talk of dialogue games when we want to analyse the formal
properties of the dialogue, using criteria from game theory.

At the beginning of a dialogue game, each agent starts with a private set of
arguments but they also share a (possibly empty) set of arguments that are common
knowledge1 to all players. This shared knowledge among the agents will be enriched
throughout the game with the arguments played at each turn, as will be clear in the
following.

Each player also has an aim, the details of which we leave open. Aims might be
to have a particular argument accepted in at least one extension, under a particular
semantics, or to have the cardinality of each extension, under a given semantics, be
a prime number2.

Our dialogue games consist of a state and possible changes of state.

Definition 2.4 (Dialogue Game State). Given a set of agents Pl1, . . . , P ln (referred
to as players), a dialogue game state is an argumentation framework (A, R) where
R contains unary relations ›1, . . . ›n on A, one for each player, as well as ›Com and,
possibly, other relations.

Each unary relation ›i defines a subset Si of A: Si = {a | a œ A, ›i(a)}. Similarly,
SCom = {a | a œ A, ›Com(a)}. SCom is the set of arguments that are common
knowledge to all players, while Si is the additional set of arguments that player Pli
knows, but other players don’t know she knows (they are private).

1 By common knowledge we mean, not only that all players have knowledge of the arguments,
but also each player knows that the others know, and each knows that the others know that she
knows, and so on. [49]

2 Admittedly, the latter example is not likely to arise in practice.

1684



Strategic Argumentation

Thus, a dialogue game state can equally be viewed as a split argumentation frame-
work (A, SCom, S1, . . . , Sn, R

Õ), where SCom fl(fin
i=1Si) = ÿ and R

Õ is R\{›Com, ›1, . . . ,
›n}.

A dialogue game is a collection of players, each with their own aim, making
moves, in turn, to achieve their aim3.

Definition 2.5 (Dialogue Game). Given a set of players Pl1, . . . , P ln and an aim
for each player, a dialogue game consists of an initial dialogue game state in the form
of a split argumentation framework (A, SCom, S1, . . . , Sn, R), and state transition
rules (or moves) defined below.

1. Players take turns, meaning that only a single player can act at a given turn4.

2. At a given turn k, player Pli advances a subset T of its private arguments in
order to achieve their aim. If Sk≠1

Com and Sk≠1
i

denote, respectively, the common
shared argumentation framework and Pli’s private argumentation framework
at turn k ≠ 1, then

• Sk

Com = Sk≠1
Com fi T

• Sk
i

= Sk≠1
i

\ T

• Sk
j

= Sk≠1 for j ”= i

3. The game ends at turn k +1, when either: (i) the aim of each player is satisfied,
so no player has an incentive to change the state of the game, or (ii) no player
with an unsatisfied aim is able to satisfy that aim by making a move.

The state of the dialogue game after turn k is (A, Sk

Com, Sk
1 , . . . , Sk

n, R). The
common argumentation framework at that point is CAF k = (Sk

Com, R).

According to the typology of argumentation games in [128], these dialogue
games have a dialectical argumentation mechanism and players have no awareness of
other players’ arguments; agent type is not specified. The games we define below
(Definitions 2.6 and 2.7) have an indicator agent type.

3Many di�erent types of dialogue have been classified and many protocols have been provided
for them; we refer to Chapter 9 of the present volume [24] for in depth analysis of the various
alternatives. In this chapter we restrict ourselves to a minimal and limited view of dialogue games,
suitable to define strategic argumentation.

4We shall not dwell on the details of how/which players are selected to act at a given turn, as it
is outside the scope of this chapter. [128] discusses some other possibilities.
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If we ignore turn-taking, our dialogue games are memoryless: the permitted
moves are determined by the current dialogue state, independent of how that state
was reached. Other forms of dialogue game may not have this property.

Note that, although the set of common arguments increases monotonically, this
game is non-monotonic, meaning that, at any given turn, aims that were satisfied at
the previous turn might now be unsatisfied.

Also note that we are considering the relations R to have a fixed meaning, inde-
pendent of player’s beliefs or perceptions. The omniscient argumentation framework
corresponding to a dialogue game is (A, R).

We now formulate a specific type of dialogue games, namely strategic argumenta-
tion dialogues. In a strategic argumentation dialogue game, we have only two players,
who take turns in exchanging arguments to accept/reject a topic Ï, where Ï œ L. We
name one player Proponent (Pr), and the other Opponent (Op). We shall consider
two variants of the strategic argumentation dialogue game: the symmetric, and the
asymmetric strategic argumentation dialogue game. In the symmetric variant, both
parties have the burden of proof, that is, the proponent has to establish Ï, where
the opponent has to establish ¬Ï. (With ¬Ï, we denote the contrary of Ï.) In the
asymmetric variant, the proponent still has to establish Ï, whereas the opponent
aims to prevent this.

In the symmetric variant, at one turn, either Ï, or ¬Ï, is accepted. If Ï is
accepted, then it is the opponent’s turn; if ¬Ï is accepted, then is the proponent’s
turn. At a given turn, the player has two possible courses of action. First, they
play a subset of their private argumentation framework (i.e., a non-empty set of
arguments). By doing so, they increment the shared argumentation framework with
the arguments just played. Second, they pass and admit defeat. This happens when
they are not able to change the status of the conclusion. The game ends when a
player passes.

Definition 2.6 (Symmetric Strategic Argumentation Dialogue Game). Consider
two players, a proponent Pr and an opponent Op, an expression Ï œ L, a dialogue
game state in the form of a split argumentation framework (A, SCom, SPr, SOp, R),
and a conclusion function conc. Suppose that there is an argument a œ SPr such that
Ï œ conc(a).

Let Sk

Com, Sk

Pr, and Sk

Op denote, respectively, the common knowledge arguments,
Pr’s private arguments and Op’s private arguments after turn k. (In particular,
S0

Com = SCom, S0
Pr = SPr, and S0

Op = SOp.)
We define a symmetric strategic argumentation dialogue game as a dialogue game

where:

1. The players take turns; if Ï is accepted by CAF 0 under semantics ‡, then Op
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begins; otherwise Pr does so.

2. At turn k, if ¬Ï is accepted in CAF k≠1, then it is Pr’s turn to play, as follows

• Pr advances a subset of its private arguments T ™ Sk≠1
Pr so that Ï is

accepted in CAF k. As a result
– Sk

Com = Sk≠1
Com fi T ;

– Sk

Pr = Sk≠1
Pr \ T .

– Sk

Op = Sk≠1
Op

3. At turn k, if Ï is accepted in CAF k≠1, then it is Op’s turn to play, as follows

• Op advances a subset of its private arguments T ™ Sk≠1
Op so that ¬Ï is

accepted in CAF k. As a result
– Sk

Com = Sk≠1
Com fi T ;

– Sk

Pr = Sk≠1
Pr

– Sk

Op = Sk≠1
Op \ T .

4. The game ends at turn k + 1, when either (i) it is Pr’s turn and there is no
move for Pr such that CAF k+1 accepts Ï, in which case Op wins, or (ii) it
is Op’s turn and there is no move for Op such that CAF k+1 accepts ¬Ï, in
which case Pr wins.

The only di�erence in the asymmetric variant with respect to the symmetric
one is that, the opponent no longer has the burden of proof: during her turn, Op
proposes arguments in order to prevent acceptance of Ï, rather than to accept ¬Ï
(see point 3).

Definition 2.7 (Asymmetric Strategic Argumentation Dialogue Game). Consider
two players, a proponent Pr and an opponent Op, an expression Ï œ L, a dialogue
game state in the form of a split argumentation framework (A, SCom, SPr, SOp, R),
and a conclusion function conc.

Let Sk

Com, Sk

Pr, and Sk

Op denote, respectively, the common knowledge arguments,
Pr’s private arguments and Op’s private arguments after turn k. (In particular,
S0

Com = SCom, S0
Pr = SPr, and S0

Op = SOp.)
We define an asymmetric strategic argumentation dialogue game as a dialogue

game where:

1. The players take turns; if Ï is accepted by CAF 0 under semantics ‡, then Op
begins; otherwise Pr does so.
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2. At turn k, if Ï is not accepted in CAF k≠1, then it is Pr’s turn to play, as
follows

• Pr advances a subset of its private arguments T ™ Sk≠1
Pr so that Ï is

accepted in CAF k. As a result
– Sk

Com = Sk≠1
Com fi T ;

– Sk

Pr = Sk≠1
Pr \ T .

– Sk

Op = Sk≠1
Op

3. At turn k, if Ï is accepted in CAF k≠1, then it is Op’s turn to play, as follows

• Op advances a subset of its private arguments T ™ Sk≠1
Op so that Ï is not

accepted in CAF k. As a result
– Sk

Com = Sk≠1
Com fi T ;

– Sk

Pr = Sk≠1
Pr

– Sk

Op = Sk≠1
Op \ T .

4. The game ends at turn k + 1, when either (i) it is Pr’s turn and there is no
move for Pr such that CAF k+1 accepts Ï, in which case Op wins, or (ii) it is
Op’s turn and there is no move for Op such that CAF k+1 does not accept Ï,
in which case Pr wins.

Thus both variants are dialogue games between two players arguing about a
conclusion Ï on the basis of their common argumentation framework. They leave
open the notion of acceptance and the details of the set of relations R, but specify
more precisely the aims of the players. From now on, we will use the abbreviations
SSA for Symmetric Strategic Argumentation, and AsSA for Asymmetric Strategic
Argumentation.

The asymmetric game can be seen in situations where the parties have di�erent
proof standards. For example, in a criminal proceeding the prosecution must prove
its case “beyond a reasonable doubt”, while the defence has only to prevent this. An
asymmetric dialogue game was presented in [48].

The problems that the players must solve in order to move vary slightly according
to the kind of game played (SSA vs. AsSA) and the players (Pr and Op). We
formulate them as decision problems as follows:
SSA Problem under Semantics ‡

Let (A, Sk

Com, Sk

Pr, Sk

Op, R) be the split argumentation framework as in Defini-
tion 2.6 after turn k, and Ï œ L be the content of the dispute.
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Pr’s instance for turn k + 1: A split argumentation framework
(A, Sk

Com, Sk

Pr, Sk

Op, R) and an expression Ï œ L.

Question: Does there exist a subset T of Sk

Pr such that Ï is accepted
by CAF k+1 under semantics ‡?

Op’s instance for turn k + 1: A split argumentation framework
(A, Sk

Com, Sk

Pr, Sk

Op, R) and an expression Ï œ L.

Question: Does there exist a subset T of Sk

Op such that ¬Ï is accepted
by CAF k+1 under semantics ‡?

Analogously, we can formalise the AsSA Problem.
AsSA Problem under Semantics ‡

Let (A, Sk

Com, Sk

Pr, Sk

Op, R) be the split argumentation framework as in Defini-
tion 2.7 after turn k, and Ï œ L be the content of the dispute.

Pr’s instance for turn k + 1: A split argumentation framework
(A, Sk

Com, Sk

Pr, Sk

Op, R) and an expression Ï œ L.

Question: Does there exist a subset T of Sk

Pr such that Ï is accepted
by CAF k+1 under semantics ‡?

Op’s instance for turn k + 1: A split argumentation framework
(A, Sk

Com, Sk

Pr, Sk

Op, R) and an expression Ï œ L.

Question: Does there exist a subset T of Sk

Op such that Ï is not accepted
by CAF k+1 under semantics ‡?

In Section 5, we will give an implementation of the strategic argumentation game
with Defeasible Logic (DL) [104] as the underlying logical framework, and assess the
complexity of these problems.

3 Background
In this section we outline the concepts we use involving computational complexity,
abstract and structured argumentation. This is not intended to be an introduction
to these topics, it is simply a sketch of the concepts, assuming a familiarity with
the more common elements. Those with less familiarity with these topics might
want to read an introduction first, such as [75; 45] for computational complexity, [13;
12] for abstract argumentation, and [112] for structured argumentation.
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NP �p

2
™

™
™

™

P Dp
™ �p

2 ™ �p

2 Dp

2 ™ �p

3 ™ · · ·

™
™

™
™

coNP �p

2

· · · ™ PH ™ PPP
™ NPPP

™ PNPPP
™ NPNPPP

· · · ™ PSPACE

Figure 1: Some complexity classes in the polynomial counting hierarchy, ordered by
containment.

3.1 Complexity Classes

When addressing computational complexity we will focus on decision problems,
because of their more familiar complexity classes, rather than their functional
counterparts, which are more appropriate for many of the computational tasks we will
address. We assume familiarity with the polynomial time complexity hierarchy but
we will introduce some other complexity classes that we will need, and computational
problems that are complete for each class. As is usual, D

C denotes the class of
problems that can be solved with complexity D if given an oracle for a problem in C.

Within the polynomial hierarchy, a complete problem for �p
n (�p

n) is the satisfia-
bility of quantified Boolean formulas (QBF) with quantifiers in the form ÷’÷ · · · ÷

(respectively, ’÷’ · · · ÷) with n alternations of quantifiers. PSPACE is the class of
decision problems solvable in polynomial space. It contains the entire polynomial
hierarchy PH. A complete problem for PSPACE is satisfiability of all quantified
Boolean formulas.

Dp is the complexity class of problems that can be expressed as the conjunction
of a problem in NP and a problem in coNP. A complete problem for Dp asks, given
Boolean formulas „ and Â, is „ unsatisfiable and Â satisfiable? NPD

p = �p

2. Similarly
Dp

2 is the conjunction of problems in �p

2 and �p

2.
�p

2 is the class of decision problems solvable by a deterministic polynomial
algorithm with O(log n) calls to an NP oracle. It is equal to PNP

||
, the class of

problems solvable by a deterministic polynomial algorithm with non-adaptive calls to
an NP oracle. Non-adaptive refers to the restriction that oracle calls cannot depend
on the outcome of previous calls. NP�p

2 = �p

2.
�p

2 is equal to PNP. A complete problem for �p

2 is, given a Boolean formula Â,
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does the lexicographically last satisfying assignment for Â end with a 1?
PP is, roughly, the class of decision problems that have more accepting paths

than rejecting paths. It can be thought of as a decision problem version of the more
familiar counting complexity class #P, which addresses absolute counting, while PP
addresses relative size of counts. We have P#P = PPP and NP#P = NPPP. The
entire polynomial hierarchy is contained within NPPP. A complete problem for PP,
called MAJSAT, is to decide whether a given Boolean formula is satisfied by more
than half of the assignments to its variables. This can be expressed via a “counting”
quantifier C as satisfying CX Â. Similarly, a complete problem for NPPP, called
E-MAJSAT is satisfying formulas ÷XCY Â. And so on.

The counting polynomial hierarchy [137] extends the polynomial hierarchy by
incorporating PP, PPP, NPPP, coNPPP, etc. Figure 1 displays containment relations
among relevant complexity classes. In addition to the containments displayed,
�p

2 ™ PP ™ PPP.

3.2 Abstract Argumentation
Definition 3.1 (Abstract Argumentation Framework). An abstract argumentation
framework is a pair (A, ∫) where A is a set of arguments and ∫ is a subset of
A ◊ A, where (a, b) œ∫ denotes that a attacks b.

An abstract argumentation framework can be represented as a directed graph,
where each vertex is an argument, and a directed edge from a to b if a attacks b. An
argumentation framework is acyclic if the corresponding directed graph is acyclic.

For the purposes of this chapter, a semantics maps an argumentation framework
to a set of extensions, each extension being a set of arguments (the set of arguments
accepted in that extension)5. When representing the state of an argument in an
extension, we will use the labelling approach (see, for example, [13; 12]) in which
the argument is labelled either in, out, or undec. That is, an extension E is defined
as a function LabE : A æ {in, out, undec}. Then we can define an extension E as
{a œ A | LabE(a) = in}.

Given an argumentation framework AF = (A, ∫), an argument a is said to be
accepted in an extension E if LabE(a) = in, rejected in E if LabE(a) = out, and
undecided in E if LabE(a) = undec. An extension E is conflict-free if no accepted
argument is attacked by an accepted argument. An argument a is defended by E
if every argument that attacks a is attacked by some argument accepted in E. An
extension E of AF is stable if it is conflict-free and for every argument a œ A\E

5 Thus we will not address the gradual and ranking semantics discussed in [15; 1].
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there is an argument in E that attacks a. An extension E of AF is complete if it is
conflict-free and, a œ E i� a is defended by E.

The set of complete extensions forms a lower semi-lattice under the containment
ordering, and many semantics can be defined directly in terms of this semi-lattice.
The least complete extension under the containment ordering exists and is called
the grounded extension. The preferred extensions are the maximal complete exten-
sions under the containment ordering. The semi-stable extensions are the complete
extensions where the set of arguments labelled with in or out is maximal under
the containment ordering. The ideal extension is the maximal complete extension
contained in all preferred extensions. Similarly, the eager extension is the maximal
complete extension contained in all semi-stable extensions. These are not necessarily
the original definitions of these extensions, but they are equivalent definitions.

We will use GR to denote the grounded semantics, ST for the stable semantics,
CO for the complete semantics, PR for the preferred semantics, ST for the stable
semantics, SST for the semi-stable semantics, EA for the eager semantics, and ID

for the ideal semantics.
We say a semantics is completist if every argumentation framework is mapped to

a set of complete extensions. These semantics will be our main focus. A semantics
is strongly completist if it is completist and the set of extensions is determined
by the semi-lattice structure of the complete extensions. Among the completist
semantics are the grounded, preferred, stable, semi-stable, ideal, eager, and complete
semantics. All except the stable semantics are strongly completist. Stable extensions
are defined by a property of the individual extension, rather than by a structural
property within the semi-lattice of complete extensions, and it turns out there is
no equivalent structural definition [90]. Stable semantics is also exceptional in that
some argumentation frameworks have no stable extensions.

Each semantics implicitly expresses a criterion for what arguments can coherently
be accepted together, given an argumentation framework. Each extension in the
semantics represents a “reasonable” adjudication, according to that criterion, of the
arguments in the argumentation framework.

Our restriction to completist semantics is, then, an implicit requirement that
reasonable adjudications are conflict-free, defend all the accepted arguments, and
accept all the defended arguments.6 Each of the semantics, except (obviously)
the complete semantics, imposes extra requirements, reflecting di�erent emphases:
the grounded semantics is highly sceptical, requiring a minimal set of accepted
arguments7; the preferred semantics requires maximal sets of accepted arguments;

6 However, we make this restriction in this chapter only for simplicity, and not on the basis that
this implicit requirement is justified.

7 Or, equivalently, accepting only arguments that are accepted in all complete extensions.
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the stable semantics requires that no argument is left undecided; the semi-stable
semantics requires minimal sets of undecided arguments; the ideal semantics requires
accepting only arguments that are accepted in all preferred extensions, and accepting
as many of these as possible; the eager semantics requires accepting only arguments
that are accepted in all semi-stable extensions, and accepting as many of these as
possible.

The grounded, ideal and eager semantics are unitary: they contain exactly one
extension. Such semantics limit, somewhat, the range of possible strategic aims of
players in strategic argumentation, as we will see later.

Structural properties of an argumentation framework can influence the relationship
between various semantics, which can make proving the computational complexity
of some problems easier. An argumentation framework is well-founded if there is
no infinite sequence of arguments a1, a2, . . . , ai, ai+1, . . . such that, for each i, ai+1
attacks ai. Such argumentation frameworks have a single complete extension which
must be the grounded extension [41], in which every argument is either accepted or
rejected. Every completist semantics for such argumentation frameworks consists of
this single extension.

An argument framework is coherent if every preferred extension is stable. An
argument b indirectly attacks an argument a if there is a path of odd length from b to
a, and indirectly defends a if there is a path of even length from b to a. An argument
b is controversial wrt a if b indirectly attacks a and indirectly defends a. An argument
is controversial if it is controversial wrt some argument. An argument framework
is uncontroversial if there is no controversial argument. An argument framework is
limited controversial if there is no infinite sequence of arguments a1, a2, . . . , ai, . . . such
that ai≠1 is controversial wrt ai. Dung shows that (Theorem 33 of [41]) every limited
controversial argument framework is coherent, and every uncontroversial argument
framework is also relatively grounded. An argument framework is relatively grounded
if intersection of all preferred extensions coincides with the grounded extension.

3.3 Structured Argumentation

Argumentation takes place over a language of expressions, most commonly a language
of literals. For definiteness, in this chapter we consider propositional literals.

Definition 3.2 (Language). The language L of expressions consists of a set of
literals. Given a set PROP of propositional atoms, the set of literals is Lit =
PROP fi {¬p | p œ PROP}. We denote with ≥p the complementary of literal p; if p
is a positive literal q, then ≥p is ¬q, and if p is a negative literal ¬q, then ≥p is q.

Rules are built out of these expressions. Rules have labels to name them, but
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these are completely separate from labels used in abstract argumentation.

Definition 3.3 (Rules). Let Lab be a set of rule labels. A rule r with r œ Lab
describes the relation between a set of expressions, called the antecedent (or body or
the premise) of r and denoted by A(r) (which may be empty) and an expression, called
the consequent, or head, of r and denoted by C(r). Three kind of rules are allowed:
strict rules of the form r : A(r) æ C(r), defeasible rules of the form r : A(r) ∆ C(r),
and defeaters of the form r : A(r) ; C(r).

A strict rule is a rule in the classical sense: whenever the antecedent holds, so
does the conclusion. We call a strict rule without antecedent a fact, but we often
distinguish facts from “true” strict rules that have an antecedent. A defeasible rule is
allowed to assert its conclusion unless there is contrary evidence to it. A defeater is a
rule that cannot be used to draw any conclusion, but can provide contrary evidence
to complementary conclusions. A defeater in this sense [102] can be considered an
instance of the general notion of defeater in epistemology: evidence that counts
against a belief.

Definition 3.4 (Argumentation Theory). An argumentation theory D is a structure
(R, >), where R is a (finite) set of rules and > ™ R ◊ R is a binary relation on R
called the superiority relation.

The relation > describes the relative strength of rules, that is to say, when
a single rule may override the conclusion of another rule, and is required to be
irreflexive, asymmetric, and acyclic (i.e., its transitive closure is irreflexive). To
simplify discussion, we assume no strict rule is inferior to another rule. We use the
following abbreviations on R: the set of strict rules in R is denoted by Rs, the set of
strict and defeasible rules in R by Rsd, the set of defeasible rules by Rd, the set of
defeaters by Rdft, and R[q] is the set of rules in R whose head is q.

To demonstrate these definitions, we look at a time-honoured example of defeasible
reasoning.

Example 3.5. Consider an argumentation theory consisting of the following rules

r1 : bird(X) ∆ fly(X)
r2 : penguin(X) ∆ ¬fly(X)
r3 : penguin(X) æ bird(X)
r4 : injured(X) ; ¬fly(X)
f : penguin(tweety)
g : bird(freddie)
h : injured(freddie)
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and a priority relation r2 > r1.
Here r1, r2, r3, r4, f are labels and r3 is (a reference to) a strict rule, while r1 and

r2 are defeasible rules, r4 is a defeater, and f, g, h are facts. Thus Rs = {r3, f, g, h}

and Rsd = R = {r1, r2, r3} and > consists of the single tuple (r2, r1). The rules
express that birds usually fly (r1), penguins usually don’t fly (r2), that all penguins
are birds (r3), and that an injured animal may not be able to fly (r4). In addition, we
are given the facts that tweety is a penguin, and freddie is an injured bird. Finally,
the priority of r2 over r1 expresses that when something is both a bird and a penguin
(that is, when both rules can fire) it usually cannot fly (that is, only r2 may fire, it
overrules r1).

By combining the rules in a theory, we can build arguments (we adjust the
definition in [112] to meet Definition 3.4). In what follows, for a given argument
A, Conc returns its conclusion, Sub returns all its sub-arguments, Rules returns all
the rules in the argument and, finally, TopRule returns the last inference rule in the
argument.

Definition 3.6 (Argument). Let D = (R, >) be an argumentation theory and
Vœ {æ, ∆,;}. An argument A constructed from D has the form A1, . . . , An Vr Â,
where

• Ak is an argument constructed from D, for 1 Æ k Æ n, and

• r : Conc(A1), . . . , Conc(An) V Â is a rule in R.

The set of arguments constructed from D is the smallest set of arguments satisfying
this condition.

With regard to argument A, the following holds:

Conc(A) = Â
Sub(A) = Sub(A1) fi · · · fi Sub(An) fi {A}

TopRule(A) = r : Conc(A1), . . . , Conc(An) V Â
Rules(A) = Rules(A1) fi · · · fi Rules(An) fi {TopRule(A)}
(Rules(A1) fi · · · fi Rules(An)) fl Rdft = ÿ

If Rules(A) ™ Rs then argument A is strict, otherwise A is defeasible. If Rules(A) fl

Rdft ”= ÿ then argument A is non-supportive, otherwise it is supportive.

Conflicts between contradictory argument conclusions are resolved on the basis
of preferences over arguments using a simple last-link ordering. An argument A is
stronger than another argument B (written A > B) i� B is defeasible, and either A
is strict or TopRule(A) is stronger than TopRule(B) (TopRule(A) > TopRule(B)).
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Definition 3.7 (Attacks). An argument B attacks an argument A i� ÷AÕ
œ Sub(A)

such that Conc(B) = ≥Conc(AÕ), and AÕ
”> B.

We can now define the argumentation framework that is determined by an
argumentation theory.

Definition 3.8 (AF determined by an argumentation theory). Let D = (R, >) be
an argumentation theory. The argumentation framework determined by D is (A, ∫),
where A is the set of all arguments constructed from D, and ∫ is the attack relation
defined above.

Given this definition of argumentation framework, if D is an argumentation
theory, we can abuse notation somewhat and write GR(D) to denote the grounded
extension of the argumentation framework determined by D.

Definition 3.9 (Justified Conclusion). Given an argumentation theory D, we say
a conclusion Â is justified by D under the grounded semantics i� there exists a
supportive argument a in GR(D) such that Conc(a) = Â.

The following example illustrates the notions just introduced.

Example 3.10. Using the rules from Example 3.5, we have arguments:

A1 : æf penguin(tweety) (strict argument)
A2 : A1 ær3 bird(tweety) (strict argument)
A3 : A2 ∆r1 fly(tweety) (defeasible argument)
A4 : A1 ∆r2 ¬fly(tweety) (defeasible argument)

among others.
If we consider the argument A3, we have

Conc(A3) = fly(tweety)
Sub(A3) = {A1, A2, A3}

TopRule(A3) = r1
Rules(A3) = {f, r1, r3}

A4 attacks A3 because the two arguments have contradictory conclusions and
r1 ”> r2. On the other hand, A3 does not attack A4 because r2 > r1.

In the argumentation framework determined by this theory there is no argument
attacking A4. Hence A4 appears in the grounded extension. Since A4 is a supportive
argument, its conclusion ¬fly(tweety) is justified under the grounded semantics.
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4 Defeasible Logic

Defeasible Logic (DL) [103] is a rule-based sceptical approach to non-monotonic
reasoning. It is based on a logic programming-like language and is a simple, e�cient
but flexible formalism capable of dealing with many intuitions of non-monotonic
reasoning in a natural and meaningful way [4].

Defeasible rule languages like defeasible logic have been shown to be useful in
representing legal documents and reasoning [113; 9; 118; 68; 66; 74; 72]. There are a
variety of defeasible logics, which have been argued to represent the di�erent proof
standards that apply in legal systems [62; 64].

Defeasible logics have much in common with argumentation, but there is only
little work substantiating the relationship. [65] characterizes inference in two defeasi-
ble logics in terms of argumentation. [62] maps proof in Carneades [59] at a given
proof standard into proof in a defeasible logic. [79] showed how to map one instance
of ASPIC+ into a defeasible logic. [93] gave two embeddings of abstract argumenta-
tion frameworks AF into a small subset of defeasible rule languages, implying, in
particular, that acceptance in the grounded extension of AF can be implemented in
a wide variety of defeasible logics and other concrete defeasible reasoning formalisms.

In this section we define two defeasible logics, but first we introduce defeasible
logic in general.

4.1 Defeasible logic

The language of DL consists of literals and rules. To avoid notational redundancies,
we use the same definitions of PROP, Lit, complementary literal, and the same rule
types, structure and notation as already introduced in Definition 3.2.

A defeasible theory D is a triple (F, R, >), where F ™ Lit is a set of indisputable
statements called facts, R is a (finite) set of rules, and > ™ R ◊ R is a superiority
relation on R as introduced in Definition 3.4.

A derivation (or proof ) is a finite sequence P = P (1), . . . , P (n) of tagged literals
of the type +�q (q is definitely provable), ≠�q (q is definitely refuted), +d q (q is
defeasibly provable) and ≠d q (q is defeasibly refuted). The proof conditions below
define the logical meaning of such tagged literals. Given a proof P , P (n) denotes
the n-th element of the sequence, and P (1..n) denotes the first n elements of P . ±�
and ±df are called proof tags. Given # a proof tag, the notation D „ ±#q means
that there is a proof P in D such that P (n) = ±#q for an index n.

In the remainder, we only present the proof conditions for the positive tags: the
negative ones are obtained via the principle of strong negation. This is closely related
to the function that simplifies a formula by moving all negations to an inner most
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position in the resulting formula, and replaces the positive tags with the respective
negative tags, and the other way around [5].

The proof conditions for +� describe just forward chaining of strict rules.

+�: If P (n + 1) = +�q then either
(1) q œ F or
(2) ÷r œ Rs[q] s.t. ’a œ A(r). + �a œ P (1..n).

Literal q is definitely provable if either (1) is a fact, or (2) there is a strict
rule for q, whose antecedents have all been definitely proved. Literal q is definitely
refuted if (1) is not a fact and (2) every strict rule for q has at least one definitely
refuted antecedent. Conceptually, strict derivations are much stronger than defeasible
ones: the superiority relation plays no part in them. If we have two strict rules for
opposite conclusions whose antecedents are all proven, then the logic will derive both
conclusions, which signals an inconsistency within the theory itself.

The conditions to establish a defeasible proof +d have a structure similar to
arguments, and are formalised by the following schema.

+d: If P (n + 1) = +d q then either
(1) +�q œ P (1..n) or
(2) (2.1) ≠�≥q œ P (1..n) and

(2.2) ÷r œ Rsd[q] s.t. r is applicable, and
(2.3) ’s œ R[≥q]. either

(2.3.1) s is unsupported, or
(2.3.2) s is defeated.

Intuitively, a rule is applicable if all the literals in the antecedent have previously
been proven. Clause (2.3) considers the possible counter-arguments. To derive q,
each such counter-argument must be either unsupported, or defeated. A rule is
unsupported if it is not possible to give a (valid) justification for at least one of the
premises of the rule. The degree of provability of the conclusion we want to obtain
determines the meaning of valid justification for a premise. This could vary from a
derivation for the premise to a simple chain of rules leading to it. Finally, a rule is
defeated if there is an applicable rule stronger than it.

By instantiating the abstract definitions of applicable, supported and defeated,
the above structure defines several variants of DL. In particular, we address the
distinction between ambiguity blocking and ambiguity propagation. A literal q is
ambiguous if (i) there is a chain of reasoning that supports a conclusion q, (ii) one
(chain) supporting the complementary conclusion ≥q, and (iii) the superiority relation
does not resolve this conflict.

1698



Strategic Argumentation

Example 4.1. Consider the defeasible theory D = (ÿ, R, ÿ), such that

R = {r1 : ∆ a, r2 : ∆ b, r3 : ∆ ¬a, r4 : a ∆ ¬b}.

Here a is ambiguous since both r1 and r3 are applicable, and there is no superiority
between them.

In what follows we shall introduce two variants of DL, the first one supporting
ambiguity blocking, and the second one supporting ambiguity propagation. We
explain the intuitions behind the two variants by referring to Example 4.1, where a
is ambiguous. In a setting where ambiguity is blocked, b is not ambiguous because
rule r2 for b is applicable, whilst r4 for ¬b is not, since we cannot prove a. On the
other hand, in an ambiguity propagating setting, b is ambiguous because a is not
disproved, and so the applicability of r4 is not denied. In this way, the ambiguity is
propagated to b.

The ambiguity blocking and ambiguity propagation is a clash in intuitions in
non-monotonic reasoning [130]. However, [62] argues that the distinction can be used
to characterise di�erent proof standards, where ambiguity blocking corresponds to the
proof standard of preponderance of evidence while ambiguity propagation captures the
beyond reasonable doubt proof standard. Furthermore, there are scenarios where both
intuitions are needed (for di�erent conclusions), and the reasoning for conclusions
requiring one of the two proof standard depends on conclusions obtained using the
other proof standard. See [64] for the details and how to combine the two intuitions.

In the remainder, we shall use ˆ for the proof tag to indicate that a conclusion is
defeasibly provable (refutable) under ambiguity blocking, and ” for the corresponding
notions under ambiguity propagation.

4.2 Ambiguity Blocking Defeasible Logic

The ambiguity blocking variant of DL was introduced in [7] and is captured by the
following instantiation of +d:

+ˆ: If P (n + 1) = +ˆq then either
(1) +�q œ P (1..n) or
(2) (2.1) ≠�≥q œ P (1..n) and

(2.2) ÷r œ Rsd[q] s.t. ’a œ A(r) + ˆa œ P (1..n) and
(2.3) ’s œ R[≥q] either

(2.3.1) ÷a œ A(s) s.t. ≠ˆa œ P (1..n) or
(2.3.2) ÷t œ Rsd[q] s.t.

’a œ A(t) + ˆa œ P (1..n) and t > s.
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To prove +ˆq, we have to show that either (1) q is already definitely provable, or
(2.2) there is an applicable rule for q and (2.3) for very rule attacking q either (2.3.1)
at least one antecedent has been defeasibly refuted, or (2.3.2) the rule is defeated by
a (stronger) rule for q.

In other terms, a rule is applicable if all the elements of the body are defeasibly
provable. A rule is unsupported if there is an element of the body that is defeasibly
refuted. A rule is defeated if it is weaker than an applicable rule. We use DL(ˆ) to
denote the ambiguity blocking defeasible logic variant.

4.3 Ambiguity Propagating Defeasible Logic
Ambiguity propagation describes a behaviour where ambiguity of a literal is propa-
gated to dependent literals. This is achieved in DL by separating the invalidation of
a counterargument from the derivation of tagged literals. To do so, another kind of
conclusion, called support and denoted by �, is introduced [8].

+�: If P (n + 1) = +�q then either
(1) +�q œ P (1..n) or
(2) (2.1) ≠�≥q œ P (1..n) and

(2.2) ÷r œ Rsd[q] s.t.
(2.2.1) ’a œ A(r) + �a œ P (1..n) and
(2.2.2) ’s œ R[≥q] either

÷a œ A(s) s.t. ≠”a œ P (1..n), or s ”> r.

The condition for +d is thus instantiated as follows:

+”: If P (n + 1) = +”q then either
(1) +�q œ P (1..n) or
(2) (2.1) ≠�≥q œ P (1..n) and

(2.2) ÷r œ Rsd[q] s.t. ’a œ A(r) + ”a œ P (1..n) and
(2.3) ’s œ R[≥q] either

(2.3.1) ÷a œ A(s) s.t. ≠�a œ P (1..n) or
(2.3.2) ÷t œ Rsd[q] s.t.

’a œ A(t) + ”a œ P (1..n) and t > s.

The idea is that a conclusion q is supported if (2.1) there is a rule for q such that
(2.2.1) all the elements in the antecedent are (at least) supported, and that (2.2.2) all
rules for the opposite conclusion have (at least) one premise that has been refuted, or
such a rule is not stronger than the rule for q. This means that there is an undefeated
argument supporting the conclusion. Then to a�rm that a conclusion is provable,
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we have to provide an argument/rule where all the antecedents are provable, and
there is no argument/rule for the opposite that is at least supported. We refer to
the ambiguity propagating variant by using DL(”).

Example 4.1 (Continued). Consider, again, the theory D = (ÿ, R, ÿ), where

R = {r1 : ∆ a, r2 : ∆ b, r3 : ∆ ¬a, r4 : a ∆ ¬b}.

By definition of +ˆ, we obtain the following conclusions from D: ≠ˆa, ≠ˆ¬a, +ˆb,
≠ˆ¬b, capturing the ambiguity blocking behaviour of DL(ˆ). On the other hand, if
we compute the consequences of D by using the proof conditions for � and ”, we
obtain +�a, +�¬a, +�b, +�¬b and thus also ≠”a, ≠”¬a, ≠”b and ≠”¬b. In this
way, we capture the ambiguity propagation feature of DL(”).

4.4 Team or Individual Defeat?
The defeasible logics defined above have the property of team defeat: the rules for a
literal q are compared with the rules for ≥q. If each applicable rule for ≥q is inferior
to some applicable rule for q, then the rules for q, as a team, overcome the rules
for ≥q. Thus, q is inferred. In comparison, under individual defeat there must be
an applicable rule for q that is superior to all applicable rules for ≥q in order to
overcome the rules for ≥q and infer q. Clearly, any time individual defeat overcomes
the rules for ≥q, so does team defeat.

To get some intuition about these two forms of defeat we use a variation of an
example from [7].

Example 4.2. Consider some rules of thumb about animals and, particularly, mam-
mals. An egg-laying animal is generally not a mammal. Similarly, an animal with
webbed feet is generally not a mammal. On the other hand, an animal with fur is
generally a mammal. Finally, the monotremes are a subclass of mammal. These
rules are represented as defeasible rules below.

Furthermore, animals with fur and webbed feet are generally mammals, so r2
should overrule r4. And monotremes are a class of egg-laying mammals, so r1 should
overrule r3.

Finally, it happens that a platypus is a furry, egg-laying, web-footed monotreme.
Is it a mammal? (That is, is mammal(platypus) a consequence of the defeasible
theory below?)

r1 : monotreme(X) ∆ mammal(X) r3 : laysEggs(X) ∆ ¬mammal(X)
r2 : hasFur(X) ∆ mammal(X) r4 : webFooted(X) ∆ ¬mammal(X)
r1 > r3 r2 > r4
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monotreme(platypus) laysEggs(platypus)
hasFur(platypus) webFooted(platypus)

It is obvious that all four rules are applicable to the question of mammal(platypus).
Under team defeat, each rule for ¬mammal(platypus) is overcome by some rule for
mammal(platypus), so mammal(platypus) is inferred. However, there is no single
rule for mammal(platypus) that overcomes all rules for mammal(platypus), so un-
der individual defeat we cannot infer mammal(platypus) (nor ¬mammal(platypus)).

Thus, we see that team defeat can be useful in making a justified inference that
otherwise would not be made. On the other hand, most expressions of structured
argumentation employ individual defeat.

Fortunately, it is easy to adjust the inference conditions for the two logics defined
above to obtain individual defeat: we simply replace the sub-conditions (2.3.2) by
r > s. We denote the individual defeat logics by DL(ˆú) and DL(”ú). For more
discussion of the four variants of defeasible logic discussed here, see [23].

Finally, we consider the relationship between these logics. A series of papers [84;
85; 86; 87] investigates the relative expressiveness of variants of Defeasible Logic.
In brief, two (defeasible) logics L1 and L2 have the same expressiveness i� the two
logics simulate each other (where a defeasible logic L2 simulates a defeasible logic
L1 if there is a polynomial time transformation T that transforms a theory D1 of
L1 in a theory D2 = T (D1) of L2 such that, for any addition of facts A, all strict
and defeasible conclusions of D1 fi A are the same as those of D2 fi A in L1). [84;
85] provide polynomial time transformations between each of the four logics defined
above.

Theorem 4.3. [85] Each of DL(ˆ), DL(”), DL(ˆú), and DL(”ú) simulates the others.

5 Strategic Argumentation for Defeasible Logic and
Structured Argumentation

We now propose a Defeasible Logic instantiation of the games introduced in Section 2.
We shall hence specialise Definitions 2.6 and 2.7 for the instance at hand, and then
proceed with the formulation of two problems.

Given a defeasible theory D = (F, R, >), we define the corresponding split
defeasible theory as SD = (FCom, FPr, FOp, RCom, RPr, ROp, >) with F = FCom fiFPr fi

FOp and R = RCom fi RPr fi ROp. We call the content of dispute discussed by the
players the critical literal, and note that the arguments brought about by the players

1702



Strategic Argumentation

will be in the form of defeasible derivations. We assume that each player is informed
about the restriction of > to their private rules,

We will have three instances of the definitions of Section 2, owing to the extra
expressivity of defeasible logic. Defeasible logic o�ers the following three ways to
express a contrary to D „ +d q: the negation of q can be proved (D „ +d ≥q); within
the logic we can prove that that +d q cannot be proved (D „ ≠d q); and, we cannot
prove +d q (D ”„ +d q). Thus, if Pr wants to prove q, Op has three possible levels of
opposition. The first will lead to a symmetric game, and the third to an asymmetric
game. The second falls somewhere in between, and we will call it a semi-symmetric
game. In the semi-symmetric game Op shoulders a burden of proof, but only to
prove that Pr’s aim cannot be proved, not to prove the negation of q.

If we consider the asymmetric case corresponds to the Scottish verdict of not
proven8 and the symmetric case corresponds to not guilty, then what is the semi-
symmetric case? Technically, in defeasible logic, the distinction between semi-
symmetric and asymmetric opposition is caused by a circularity or infinite regress in
an argument. Abstractly, it might represent unknowability, or an incapacity of the
proceedings/inference rules – inability to decide that l is not provable, even though l,
in fact, is not provable (a little bit like Gödel’s incompleteness theorem).

The game rules discussed in Section 2 are instantiated as follows. The parties
start the game by choosing the critical literal l. Pr has the burden to prove +d l by
using the remainder of its private rules along with those that currently have been
played; Op’s final aim is to prove +d ≥l in the symmetric version of the game, to
prove ≠d l in the semi-symmetric game, and simply to prevent the proof of +d l in
the asymmetric game.

Note that, when putting forward an argument, the players: (1) may propose,
along with a subset of their private rules, a subset of their private facts to support
such rules (see Example 5.2 at the end of this section), and (2) may play an argument
whose terminal literal di�ers from l or ≥l (with the aim to attack/disprove one of
the premises of a rule in the proof proving l/≥l).

As the semi-symmetric and asymmetric games di�er from the symmetric one only
in Op’s final aim, to avoid pedantic redundancies we shall provide a single definition
for the three games.

Definition 5.1 (SSA (SSSA, AsSA) Game for Defeasible Logic). Consider two
players, a proponent Pr and an opponent Op, a split defeasible theory SD =

8 Roughly, under this verdict the jury considers the prosecution has not made the case for
“guilty”, beyond a reasonable doubt, but the defence has not made the case for “innocent”. A verdict
of guilty is given when the jury considers the prosecution has made its case, and not guilty when the
defence has made its case. See [11] or the Wikipedia entry for Not proven.
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(FCom, FPr, FOp, RCom, RPr, ROp, >), and a critical literal l œ L.
Let F k

Com, Rk

Com, F k

Pr, Rk

Pr, F k

Op, and Rk

Op denote, respectively, the common
(knowledge) facts and rules, Pr’s private facts and rules, and Op’s private facts
and rules, after turn k. (In particular, F 0

Com = FCom, R0
Com = RCom, F 0

Pr = FPr
R0

Pr = RPr, F 0
Op = FOp, and R0

Op = ROp.) The common defeasible theory at that
point is Dk = (F k

Com, Rk

Com, >).
We define a symmetric (resp. semi-symmetric, asymmetric) strategic argumenta-

tion game for Defeasible Logic as a dialogue game where:

1. The players take turns. If D0
„ +d l then Op begins; otherwise Pr does so.

2. At turn k, if Dk≠1
„ +d ¬l (resp. Dk≠1

„ ≠d l for the semi-symmetric version,
Dk

”„ +d l for the asymmetric version), then it is Pr’s turn to play, as follows

• Pr advances a subset of its private facts � ™ F k≠1
Pr and rules fl ™ Rk≠1

Pr so
that Dk

„ +d l. As a result
– F k

Com = F k≠1
Com fi � and Rk

Com = Rk≠1
Com fi fl;

– F k

Pr = F k≠1
Pr \ � and Rk

Pr = Rk≠1
Pr \ fl;

– Rk

Op = Rk≠1
Op .

3. At turn k, if Dk≠1
„ +d l, then it is Op’s turn to play, as follows

• Op advances a subset of its private � ™ F k≠1
Op and rules fl ™ Rk≠1

Op so that
Dk

„ +d ¬l (resp. Dk
„ ≠d l for the semi-symmetric version, Dk

”„ +d l
for the asymmetric version). As a result

– F k

Com = F k≠1
Com fi � and Rk

Com = Rk≠1
Com fi fl;

– Rk

Pr = Rk≠1
Pr ;

– F k

Op = F k≠1
Op \ � and Rk

Op = Rk≠1
Op \ fl.

4. The game ends at turn k+1, when either (i) it is Pr’s turn and there is no move
for Pr such that the common defeasible theory Dk+1

„ +d l, in which case Op
wins, or (ii) it is Op’s turn and there is no move for Op such that the common
defeasible theory Dk+1

„ +d ¬l (resp. Dk+1
„ ≠d l for the semi-symmetric

version, Dk
”„ +d l for the asymmetric version), in which case Pr wins.

The corresponding decision problems are as follows.
SSA (SSSA, AsSA) Problem for Defeasible Logic

Let SDk be a split defeasible theory as in Definition 5.1 after turn k, Dk+1 be the
corresponding common defeasible theory after turn k + 1, and l œ L be the critical
literal.
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Pr’s instance for turn k + 1: Let F k

Pr and Rk

Pr be, respectively, the
set of Pr’s private facts and rules after turn k, and that the common
defeasible theory assume Dk

„ +d ¬l (resp. Dk
„ ≠d l and Dk

”„ +d l for
the semi-symmetric and asymmetric problems).
Question: Do there exist � subset of F k

Pr and fl subset of Rk

Pr such that
the common defeasible theory Dk+1

„ +d l?

Op’s instance for turn k + 1: Let F k

Op and Rk

Op be, respectively, the
set of Op’s private facts and rules after turn k, and assume that the
common defeasible theory Dk

„ +d l.
Question: Do there exist � subset of F k

Op and fl subset of Rk

Op such
that the common defeasible theory Dk+1

„ +d ¬l (resp. Dk+1
„ ≠d l

and Dk+1
”„ +d l, for the semi-symmetric and asymmetric problems)?

We explore how these games are played through an example theory that shows
how di�erent moves by the players may lead to di�erent result of the game in the
symmetric and semi-symmetric/asymmetric variants.

Example 5.2. Consider SD = (FCom, FPr, FOp, RCom, RPr, ROp, >) such that

• FCom = {a} and RCom = ÿ;

• FPr = {d} and RPr = {r1 : a ∆ p, r2 : b, d ∆ p};

• FOp = {b, c} and ROp = {r3 : c ∆ ¬p, r4 : b ∆ ¬p}; and

• > {(r4, r1), (r2, r4)}.

The critical literal is p. Pr starts the game and can only advance r1; the fact that b is
not proven makes r2 unsupported. Consequently, for both variants, SD1

„ +d p. We
now detail the di�erent scenarios for Op wrt the symmetric, semi-symmetric, and
asymmetric games.

Symmetric variant. Op considers playing r3 but realises that is not a legal
move. In fact, as r3 is neither stronger than r1 nor r2, by playing it Op would not
prove +d ¬p. By playing r4, Op must also advance r4’s only premise, b (SD2

„ +d ¬p
and SD2

„ +d b). This makes r2 applicable and allows Pr to play it and win the
game.

Semi-symmetric variant. For this variant of the game, Op has the burden to
prove ≠d p and plays, again, r4 (SD2

„ +d ¬p and +d ¬p implies ≠d p). Pr can
again play r2 leading to SD3

„ +d p, but now if Op plays r3 (along with c), then
SD4

„ ≠d p. Pr has no more rules to play and this time Op wins.
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Asymmetric variant. This variant of the game unfolds in the same way as
the semi-symmetric variant because, for every k, SDk

„ ≠d p implies SDk
”„ +d p.

We can modify the above example to demonstrate the distinction between the
semi-symmetric and asymmetric games.

Example 5.3. Consider the modification of Example 5.2 where r3 in ROp is replaced
by

r3 : c, ¬p ∆ ¬p

Symmetric variant. This variant unfolds in exactly the same way as Exam-
ple 5.2. Op does not play r3.

Semi-symmetric variant. For this variant of the game, Pr plays r1, Op plays
r4, and Pr plays r2, just as in the symmetric variant. At this stage Op would like to
play r3 but, again, this is not a legal move: playing it would not achieve SD4

„ ≠d p.
Thus Pr wins.

Asymmetric variant. Again, Pr plays r1, Op plays r4, and Pr plays r2. How-
ever, in this variant Op can play r3, because then SD3

”„ +d p. Pr has no more
moves, so Op wins. Alternatively, Op could simply play r3 on her first move, to
which Pr has no response. Thus Op wins without exposing r4 and b (and without
inducing Pr to expose r2 and d).

We end this subsection with a brief discussion of fact-based strategic argumenta-
tion [88], a refinement of the strategic argument games where players can only play
facts. That is, strategic argument games where RPr = ÿ and ROp = ÿ. While general
strategic argumentation can be a model for legal argumentation in general, this
refinement reflects argument about whether regulations have been adhered to. The
players are the party subject to the regulations, and the enforcement body for the
regulations. RCom represents the regulations, which are fixed. The players can only
generate arguments by marshalling facts that support the applicability of clauses
in the regulations (i.e. rules) that, in turn, support the player’s contentions. This
refinement could also be considered a crude partial model for pleadings in civil law
(in that it elicits claimed facts from parties), although di�erent in many ways from
Gordon’s Pleadings Game [58].

Although this refinement appears to simplify the reasoning required to play the
game, in one sense it is no simpler [88]. Any general strategic argumentation game
SD = (FCom, FPr, FOp, RCom, RPr, ROp, >) can be reduced to the “simpler” game as
follows: for each rule ri : — V Ï in RPr we add the rule ri : —, –(ri) V Ï to RCom and
add the fact –(ri) to FPr, where –(ri) is a new proposition. And similarly for Op.
Every move in the resulting game SDÕ = (FCom, F Õ

Pr, F Õ

Op, RÕ

Com, ÿ, ÿ, >) corresponds
to a move of SD, and vice versa.
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5.1 Computational Results

We are now ready to show that deciding what arguments to play at a given turn
of a dialogue game under Dung’s grounded semantics is an NP-complete problem
even when the problem of deciding whether a conclusion follows from an argument is
computable in polynomial time.

[67] proved that this problem is NP-complete for DL with ambiguity blocking,
i.e., DL(ˆ). We present here an outline of the proof in [88]. Theorem 5.4 is provided
from the viewpoint of Pr. The same result holds for Op.

Theorem 5.4. The SSA Problem under DL(ˆ) is NP-complete.

Proof. First, the SSA Problem is polynomially solvable on non-deterministic machines.
Consider a dialogue game with sets R0

Com, R0
Pr, R0

Op and the defeasible theory Di≠1 =
(ÿ, Ri≠1

Com, >), the theory at turn i ≠ 1 of a dialogue game. An oracle guesses a set of
rules Ri

™ Ri≠1
Pr , we compute the consequences of the argumentation theory Di =

(ÿ, Ri≠1
Com fi Ri, >), and we check whether the critical literal is a positive or negative

consequence. The computation of consequences can be done in polynomial time [83;
23].

Second, we reduce 3SAT to the SSA Problem, proving therefore that the problem
is NP-hard. Consider a 3SAT formula Ï =

w
n

j=1 Cj such that Cj =
x3

k=1 xk
j
. Ri is

defined as follows:

1. For each proposition x occurring in Ï, Ri≠1
Pr and Ri≠1

Op both contain

tx : ∆ x

t¬x : ∆ ¬x.

2. For each clause Cj , Ri≠1
Com contains

rk

j : xk

j ∆ cj

where xk
j

is either a positive literal (x), or a negative literal (¬x).

3. Ri≠1
Com also contains

rsat : c1, . . . , cn ∆ sat.
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For any assignment ◊ of values to the Boolean variables in Ï, let S◊ be the set of
x literals that evaluate to true under ◊. And for any consistent subset S of x literals,
let ◊S be an assignment that evaluates all elements of S to true. We leave it for the
reader to verify that if ◊ satisfies Ï then choosing the move S◊ wins for Pr, and if S
is a winning move for Pr then S is consistent and ◊S satisfies Ï.

The same result holds for the semi-symmetric and asymmetric games.

Theorem 5.5. The SSSA and AsSA problems under DL(ˆ) is NP-complete.

Proof. The proof is essentially the same as that of Theorem 5.4 except for the case
when, at turn i, Op must play. In that case, the reduction is identical to the one
proposed above, with the only di�erence that Point 3. now also adds to Ri

Com the
following rule

rnsat : ∆ ¬sat

It is trivial to prove that an interpretation satisfies Ï i� rsat is applicable i�
sat and ¬sat are ambiguous. Thus Ï is satisfied i� ≠ˆ sat is proved i� ¬sat is not
proved.

While it is possible to define DL(ˆ) in terms of an argumentation semantics,
the logic corresponding to Dung’s grounded semantics is ambiguity-propagating [65;
79].

The next step is to determine the computational complexity of the problem at
hand for the ambiguity propagating variant of DL. The NP-completeness of the
strategic argumentation problem under DL(”ú) follows immediately from Theorems
4.3, 5.4, and 5.5.

Theorem 5.6. The SSA, SSSA, and AsSA problems under DL(”ú) are NP-complete.

We have the same results for DL(ˆú) and DL(”).
In [79], it is shown that the conclusions of an ASPIC+ argumentation theory

under grounded semantics are the same as those in DL(”ú) (after minor changes to
the superiority relation).

Theorem 5.7. [79] Given an ASPIC+ argumentation theory AT , there is a defea-
sible theory T (AT ) such that p is derived under the grounded semantics from AT
i� +”úp can be derived from T (AT ). Furthermore, all consequences of AT can be
computed in time polynomial in the size of AT .
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Thus we can use implementations of DL(”ú) to implement ASPIC+ argumen-
tation theories that employ the last-link ordering of arguments and the grounded
semantics.

We can solve the strategic argumentation problem by non-deterministically
choosing a set Ri of rules and then verifying whether the critical literal p is justified
in the argumentation framework determined by Di, or not. Further, the literals
justified by the grounded semantics are computable in polynomial time, as shown
above. The strategic argumentation problem is thus in NP.

Now, from Theorems 5.6 and 5.7, we obtain the following result.

Theorem 5.8. The strategic argumentation problems under the grounded semantics
are NP-complete.

6 Strategic Abstract Argumentation
In this section we look beyond the grounded semantics to a wide range of other
semantics for abstract argumentation frameworks. After exploring the range of
dialogue games that can be played in the context of abstract argumentation, we
investigate the possibilities for player aims, and identify the complexity of two
computational problems related to playing strategic abstract argumentation games,
for selected aims and semantics.

6.1 Strategic Argumentation in the Abstract
We formulate a split argumentation framework in this abstract sense as a tuple
(A, ACom, APr, AOp, ∫) where ACom is a set of abstract arguments that are common
knowledge to the players, APr (AOp) is the set of arguments known to Pr (Op),
and ∫ is the attack relation over all arguments. Each player knows ∫ restricted
to the set of arguments the player knows. For example, Pr knows ∫ restricted to
(ACom fi APr) ◊ (ACom fi APr). Each player has a strategic aim or desired outcome
(the two terms will be treated as equivalent) that expresses their desired property of
the state of the argument framework at the end of the strategic argumentation game.

A strategic abstract argumentation game consists of alternating moves by Pr
and Op until one player cannot make a move. In that case the other player wins.
Pr starts the game by playing a set of arguments, including a mutually agreed
critical argument which is the subject of the two players’ strategic aims9. By
“playing a set of arguments” we refer to the transfer of a set of arguments from the
player’s set of arguments to ACom such that the revised common argumentation

9 Aims will be discussed in the next subsection.
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framework (ACom, ∫) satisfies the player’s strategic aim. Thus a move by Pr
replaces a split argument framework (ACom, APr, AOp, ∫) by a new framework
(ACom fi X, APr\X, AOp, ∫), where X ™ APr is the set of arguments played by Pr in
that move, and the new framework achieves Pr’s strategic aim. Similarly, a move by
Op transfers arguments from AOp to ACom. Clearly, if APr or AOp is finite then the
game terminates. We will only consider games where ACom, APr and AOp are finite.

Thus, a strategic abstract argumentation game is a dialogue game played by two
players (Pr and Op). Let conc map arguments to distinct propositions, and let Ï be
the conclusion of the critical argument. Then the game is an asymmetric strategic
argumentation game, as defined in Definition 2.7, where “Ï is accepted” is defined
as: Pr’s aim wrt the critical argument is satisfied.

We assume that the players agree on what is an argument, and whether one
argument attacks another. This is implicit in the formulation as a split argumentation
framework. But, in theory, there is no reason why the two players should employ
the same semantics when they play a strategic argumentation game. For example,
Pr might formulate her aim in terms of the preferred semantics, while Op’s aim
is expressed in terms of the eager semantics. Indeed, it is quite reasonable that
di�erent players might perceive the world di�erently. This is no impediment to the
players playing a strategic argumentation game, since the definition of the game only
describes moves a player may make, and not the interpretation she puts on the game.

However, there has not been any work on such situations. This is not so surprising
when we consider that strategic argumentation is primarily treated as an adversarial
game. Real world situations that are modelled by strategic argumentation may need
the presence of an adjudicator to enforce any conclusions that result from the game.
Such an adjudicator might bring their own perceptions and semantics to the game.
Thus, playing in a common semantics could be considered as both players adopting
the adjudicator’s view of the world.

Similarly, there is no prima facie reason why the two players should focus on a
single critical argument, rather than have individual, separate foci. The literature
has rarely addressed this possibility ([71] is an exception). However, once we assume
that the players agree on a focus, the use of a single critical argument for each player
implies no loss of generality. Straightforward constructions can map a disjunction or
conjunctions of arguments to a single argument in most semantics10. In particular,
the arguments supporting the same conclusions can be united in a single argument.

In any case, many of the computational issues discussed in this and the next
section depend only on the semantics and the player’s aim, and so are still applicable
to these less-well-studied forms of strategic argumentation.

10 For example, see Proposition 2 of [90].
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Finally, even when addressing the same semantics and critical argument, there is
some freedom in the strategic aims of the two players. At one extreme the players
might have the same aim and, on the other extreme, have diametrically opposed
aims. In between these extremes the players might have di�erent but compatible
aims, or have incompatible aims. Aims are discussed in detail in the next subsection.
In this chapter we assume that the two players have incompatible aims: it is not
possible for both players to achieve their aims simultaneously.

In previous sections we have discussed both symmetric and asymmetric forms
of strategic argumentation. In abstract argumentation there is no explicit notion
of conclusion and, therefore, no notion of an argument supporting the negation of
the conclusion of another. Consequently, symmetric strategic argumentation is not
available, in general. We will focus on asymmetric strategic argumentation. That is,
whatever Pr’s aim is, Op’s aim is to prevent it.

In summary, a strategic abstract argumentation dialogue game consists of a split
abstract argumentation framework, a critical argument, an abstract argumentation
semantics, and aims for both Pr and Op. The play of the game is a sequence of moves
such that each player leaves the game in a state where her strategic aim is satisfied.

6.2 Players’ Aims

The range of strategic aims a player might have is limited under the grounded
semantics. But once we consider semantics with multiple extensions a player has a
much wider range.

Initially, work on abstract argumentation focussed on credulous and skeptical
acceptance. An argument a in argumentation framework AF under semantics ‡ is
credulously accepted if it is labelled in in at least one ‡-extension. a is skeptically
accepted if it is labelled in in every ‡-extension. These two statuses were inherited
from the field of non-monotonic reasoning.

[142] extended this work with the notion of justification status. The justification
status of an argument a in an argument framework AF is the set of labels a receives
in complete extensions. Thus a justification status is a subset of {in, out, undec}.
In general this might lead to 23 = 8 di�erent statuses, but only 6 are possible for
the complete semantics [142]. Obviously, this approach can be extended to any
extension-based semantics [44].

[91; 90] further extended the range of argument statuses to the following, casting
these as possible aims of a proponent

1. Existential: a is labelled in in at least one ‡-extension

2. Universal: a is labelled in in all ‡-extensions
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3. Unrejected: a is not labelled out in any ‡-extension

4. Uncontested: a is labelled in in at least one ‡-extension and is not labelled
out in any ‡-extension

5. Plurality: a is labelled in in more ‡-extensions than it is labelled out

6. Majority: a is labelled in in more ‡-extensions than it is not labelled in

7. Supermajority: a is labelled in in at least twice as many ‡-extensions than
it is not labelled in

The last three are called counting aims, distinct from the first four which are based
on zero/non-zero number of labels, like the justification statuses11. In addition, the
negation of such conditions and their dual (exchanging the role of in and out), which
are plausible aims for the opponent, have also been considered [90].

But clearly there are many more possibilities. Each of the first four strategic aims
can be formulated as a disjunction of justification statuses. So we might consider
any disjunction of justification statuses as a potential strategic aim. This would
give us 28 = 256 strategic aims. Many of these will be unrealizable under some
semantics and/or unrealistic in practice. Under the stable semantics, aims that the
argumentation framework has at least one extension or has no extension are also
sensible. Further possibilities are aims such as: a is accepted in at least 2 extensions
or is universally accepted. There are also many variations possible for the counting
aims. For example, [91] contemplates a weighting on all extensions, with the arguer’s
aim that the sum of the weights of extensions in which a is labelled in is greater
than the sum of weights of the remaining extensions.

Some of the aims seem similar to the ideas behind proof standards that are
formalized in [60], although those proof standards are formalized in a very di�erent
setting. The Existential aim is similar to a scintilla of evidence, the Majority and
Supermajority correspond to preponderance of the evidence and clear and convincing
evidence, respectively, while the Uncontested aim is like beyond a reasonable doubt.12

The Universal aim corresponds to beyond a doubt, in the phrasing of [51].
There are some obvious close relationships between these di�erent concepts. a

is skeptically accepted i� a has justification status {in} i� a satisfies the Universal
aim. Similarly, a is credulously accepted i� a’s justification status contains in i�

11 A counting utility function was defined in [128], but it counts the number of desired conclusions
that appear in all ‡-extensions rather than counting the number of ‡-extensions in which a conclusion
appears.

12 The Uncontested aim is also similar to the notion of argumentative inference in paraconsistent
reasoning from maximally consistent sets [20].
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GR ST CO PR SST EA ID

Existential in P NP-c NP-c NP-c �p
2-c �p

2-c in �p
2

Universal in P coNP-c in P �p
2-c �p

2-c �p
2-c in �p

2
Unrejected in P coNP-c coNP-c coNP-c �p

2-c �p
2-c in �p

2
Uncontested in P coNP-c Dp-c Dp-c Dp

2-c �p
2-c in �p

2
Plurality in P PP-c PP-c in PPNP in PPNP �p

2-c in �p
2

Majority in P PP-c PP-c in PPNP in PPNP �p
2-c in �p

2
Supermajority in P PP-c PP-c in PPNP in PPNP �p

2-c in �p
2

Table 1: Complexity of Aim Verification problem for selected strategic aims and
semantics [90]. For a complexity class C, C-c denotes that the problem is complete
for C.

a satisfies the Existential aim. a satisfies the Unrejected aim i� a has justification
status {in}, {undec} {in, undec}, or ÿ. a satisfies the Uncontested aim i� a has
justification status {in} or {in, undec}. Also, a satisfies the Uncontested aim i� a
satisfies the Existential and Unrejected aims.

Furthermore, when a semantics consists of a single extension (in particular, the
grounded semantics) credulous and skeptical acceptance are identical, there are only
three possible justification statuses for an argument ({in}, {undec}, and {out}),
and all but the Unrejected aim, of those listed, are identical. In summary, a unitary
semantics greatly simplifies analysis of player aims.

Thus, as we consider a wider range of semantics we must also address a wider
range of player aims.

6.3 Computational Problems

We can break down the play of a game into two computational problems: recognising
whether (or not) an argumentation framework satisfies a given aim, which is called
the Aim Verification problem, and determining what arguments to play in order to
leave the game in a state where the given aim is satisfied, the decision form of which
is called the Desired Outcome problem. These problems will be di�erent for the
di�erent players, because they have di�erent aims.

The problem of verifying that an aim is satisfied by some state of strategic
argumentation is a fundamental part of each move in a game.

The Aim Verification Problem

Instance A split argumentation framework (ACom, APr, AOp, ∫), an argumenta-
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tion semantics, a critical argument a œ ACom, and an aim.
Question Is the aim concerning the critical argument satisfied under the given

semantics by the argumentation framework (ACom, ∫)?

The complexity of this problem, for a selection of semantics and aims, is presented
in Table 1. Given Pr’s aim, the complexity of verifying Op’s aim is the complement
of the complexity of Pr’s aim.

These results are derived from existing work on the complexity of credulous and
skeptical acceptance in abstract argumentation frameworks for the various semantics
(see, for example, [43; 141]), and relations between the di�erent aims (Proposition
3 of [90]). For example, the Uncontested aim is the conjunction of Existential and
Unrejected, where the latter is the dual of the negation of Existential. Under the
(say) preferred semantics, credulous acceptance is NP-complete. Thus the complexity
of Uncontested is a conjunction of NP and coNP, which gives us Dp. Completeness
is a straightforward reduction.

For the counting aims, clearly the complexity is in PPV , where V is the complexity
of verifying that a set of arguments forms an extension of the appropriate type13.
The lower bound for the stable semantics is obtained by reduction from the MAJSAT
problem, and the complete semantics is treated by reduction from the stable semantics.

Table 1 only addresses a selected set of strategic aims. When a player has such
an aim, their opponent will usually have a quite di�erent aim, one not mentioned
in the table. Since we are considering only games where the opponent’s aim is the
complement of the proponent’s aim, the complexity of the Aim Verification problem
for Op is the complement of the complexity of the Aim Verification problem for
Pr. Thus, for example, under the complete semantics, if Pr has the Existential aim
then aim verification for Pr is NP-complete, and aim verification for Op is coNP-
complete. In general, though, when the opponent’s aim is not the complement of the
proponent’s, the complexity of the two problems is not so directly related.

The Desired Outcome problem [91] is the problem that a player must solve at
each step of a strategic abstract argumentation game. It involves identifying that
the player has a legal move, leaving the state of the game in a desired state.

The Desired Outcome Problem for Pr
Instance A split argumentation framework (ACom, APr, AOp, ∫) an argumenta-

13 There has been some work done on counting extensions, both on the complexity of counting and
identifying tractable cases [14; 53]. These works focus on absolute counting, rather than comparing
counts (as in the counting aims), so the results are presented in terms of #P rather than PP.
Nevertheless, the complexity results are comparable to those for the counting aims in the Aim
Verification problem.
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GR ST CO PR SST EA ID

Existential NP-c NP-c NP-c NP-c �p
2-c �p

3-c �p
2-c

Universal NP-c �p
2-c NP-c �p

3-c �p
3-c �p

3-c �p
2-c

Unrejected NP-c �p
2-c �p

2-c �p
2-c �p

3-c �p
2-c �p

2-c
Uncontested NP-c �p

2-c �p
2-c �p

2-c �p
3-c �p

3-c �p
2-c

Plurality NP-c NPPP-c NPPP-c NPPP-c NPPP-c �p
3-c �p

2-c
Majority NP-c NPPP-c NPPP-c NPPP-c NPPP-c �p

3-c �p
2-c

Supermajority NP-c NPPP-c NPPP-c NPPP-c NPPP-c �p
3-c �p

2-c

Table 2: Complexity of the Desired Outcome problem for Pr, for selected aims and
semantics [91; 90; 89]. For a complexity class C, C-c denotes that the problem is
complete for C.

tion semantics, a critical argument a œ ACom, and an aim for Pr.
Question Is there a set I ™ APr such that Pr’s aim with respect to the critical

argument is achieved in the argumentation framework (ACom fi I, ∫)?

This problem is a generalization of the strategic argumentation problem, as
defined in Section 2, which is restricted to accepting the critical argument under the
grounded semantics.

It is not di�cult to see that the Desired Outcome problem can be solved by a
non-deterministic algorithm with an oracle for the Aim Verification problem with
Pr’s aim. The complexity of this problem, for a selection of semantics and aims, is
presented in Table 2.

The complement of this problem decides when Pr does not have a next move. The
complexity of this complement problem is clearly the complement of the complexity
of the Desired Outcome problem.

We can define the Desired Outcome problem for Op similarly, based on Op’s aim.
The complexities of the Desired Outcome problems for Pr and Op are not as directly
related as is the case for aim verification.

Showing the presence of the Desired Outcome problem in the appropriate com-
plexity class is comparatively straightforward, but showing it is complete in the class
requires the construction of argumentation frameworks that extend those used for
credulous or skeptical acceptance. An example construction for the Desired Outcome
problem with the Universal aim under the stable semantics is shown in Figure 2.
In this case the problem is �p

2-complete, so we reduce the satisfiability of ÷X’Y Â
(where Â is in DNF) formulas to this problem. The diagram has three parts: on the
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Ip I¬p

Ap A¬p

Np Bp

Aq A¬q

AÂ

A¬Â

AD1 AD2

Figure 2: Example construction for the Desired Outcome problem with the Universal
aim under the stable semantics

left is the representation of a variable p in X, in the middle is the representation of
Â, and on the right is the representation of a variable q in Y .

In the diagram, the grey nodes are arguments in ACom, and the white nodes
(Ip and I¬p) are arguments in APr. ∫ is described by the directed edges. (AOp
is irrelevant to this problem.) Intuitively, an argument As (where s is a literal)
accepted in a stable extension corresponds to the literal s being true. The critical
argument is AÂ, and Pr must move so that AÂ is accepted in all stable extensions.
The construction ensures that if Pr plays either both Ip and I¬p or neither Ip nor I¬p

then either Bp or Np is accepted and AÂ is rejected in all stable extensions. Thus,
Pr must play only one argument for each p, and this ensures only one of Ap and A¬p

can be accepted. This part of the construction is common to all reductions.
In the diagram, the formula is ÷p’q ¬p ‚ (p · ¬q). It is represented in a slightly

roundabout way. The treatment of variables q in Y ensures that both stable extensions
containing Aq (i.e. q is true) and stable extensions containing A¬q (i.e. q is false) are
generated. A more formal description of this construction is in the proof of Theorem
7 of [91].

Given a specific game, we write AVPr (AVOp) for the Aim Verification problem for
Pr’s (respectively, Op’s) aim. Similarly, DOPr (DOOp) denotes the Desired Outcome
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problem for Pr (respectively, Op).
Play begins by Pr playing a set of arguments, including the critical argument, and

proceeds by Op and Pr alternately solving their Desired Outcome problem and playing
the corresponding set of arguments. Play can extend for, at most, min(|APr|, |AOp|)
rounds before play terminates, when one player does not make a move. Thus, play
for Pr, over the entire game, has a computational cost in PDOPr while the cost of
play for Op is in PDOOp [90].

The Aim Verification problem is of little interest for the concrete forms of
strategic argumentation discussed in Section 5. In those cases the inference problem
is polynomial [83; 23]. Consequently, verifying any of the aims or justification statuses
is also polynomial. The Desired Outcome problem corresponds to the SSA, SSSA
and AsSA problems in Section 5: they represent the computational cost of making a
move, in their respective games. In the case of structured arguments, conceptually
the argumentation theory gives rise to an argumentation framework, which can
then be interpreted in a chosen semantics. However, this does not mean that the
NP-completeness for grounded semantics in Table 2 can be used to prove Theorem 5.8.
The di�culty is that there might be greater than polynomially many arguments
generated from the argument theory.

7 Corruption in Argumentation

When a game such as strategic argumentation is a model of a real-world situation,
we must acknowledge the extra forces and influences that operate upon a player,
beyond those of the specific role they have in the game. Often a player is assumed
to have no motivations beyond performing their role and conforming to the rules of
the game, but this is a rather simplistic view. While games do have rules, we need
to consider the possibility that a player breaks the rules, or “cheats”.

The context of the game is important in this regard. Organizations have many
mechanisms to discourage the risk of corruption of their processes by the individuals
performing these processes: managerial oversight, transparency through audit trails,
the presence of co-workers, random inspections, etc. Society, as a whole, provides
an entire justice system to enforce the rules the society considers important, and
to detect and punish violations. When these mechanisms are not available, or are
limited, how can we discourage rule-breaking?

[16] proposed an answer to this question in the case of vote manipulation: if
the computational di�culty of determining what an individual must do to alter the
result of an election is too great, a potential vote manipulator may be discouraged
from the manipulation, even though he has the opportunity to do it. They called this
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concept computational resistance to strategic manipulation. This insight has spawned
a whole subfield of computational social choice [29]. In this section we describe the
application of these ideas to strategic argumentation.

Throughout this section, we consider that players are engaged by a client to
play the game. A player is expected to adhere to the rules of the game and, in
particular, play the game to win for her client. However, while the client is invested
in winning the game, the player has various competing incentives. These are the
source of the corruption we consider. A player might cheat on behalf of her client,
or might sacrifice her client’s chances for other incentives. This issue is known in
management theory as the principal-agent problem or the agency problem [47].

7.1 Corruption and Resistance
Strategic argumentation has relatively few rules, though some are implicit rather
than explicitly stated. The players must take turns, but violations of this rule are
obvious and, anyway, o�er no advantage to the players. A player must make a move
if one is available to her. This rule is implicit in the assumption that the player will
play her role properly. Such a rule is di�cult to enforce without knowledge of the
player’s arguments. The player’s arguments are assumed to be private, but this is
also di�cult to enforce. We will focus on violations of this privacy14.

We consider two forms of corruption. The first, collusion, arises when one player
induces the other to let her win. Such behaviour on its own is straightforward,
though illicit, and does not, as such, appear in the game. But it is complicated by the
desire of the guilty parties not to be detected. Thus, colluding players must not only
ensure the “right” player wins, they must also make sure that an external observer
cannot distinguish the collusive play from normal play. If the work to ensure this
is computationally more di�cult than simply playing the game honestly, then we
consider the game to be resistant to collusion.

The following example is an instance of collusion.

Example 7.1. Consider the strategic argument game depicted in Figure 3, where
vertices are arguments (grey if they can be played by Pr, white for Op) and edges are
attacks of one argument on another. For concreteness, we assume that we employ the
grounded semantics and Pr’s strategic aim is that argument A is accepted. Normal
play would proceed as follows: Pr plays A, Op plays B1 (thus defeating A), Pr plays
C (restoring A by defeating B1), and Op plays D (defeating C, and allowing B1 to
defeat A). Thus, normally, Pr loses.

14 Earlier works that consider privacy include [32] and [105], which have a focus on minimizing
the exposure of a player’s arguments during play, rather than the loss of privacy by corruption.

1718



Strategic Argumentation

A B1

B2

C

D

Figure 3: A strategic argumentation game. An argument is grey if it can be played
by Pr and white if it can be played by Op.

However, Pr and Op might collude to ensure Pr wins by playing as follows: Pr
plays A, Op plays B1 and B2, and Pr plays C (restoring A). Pr now wins because Op
has no e�ective move: to play D would have no e�ect because it is defeated by B1.

This example also serves to show the di�erence between collusion and an om-
niscient argumentation framework (ACom fi APr fi AOp, ∫). Under any completist
semantics, A is accepted in the omniscient argumentation framework, but if Pr and
Op collude to ensure Op wins they can do so by following the normal play above.

The second form of corruption, espionage, occurs when, through some means,
one player gains knowledge of the other player’s arguments. Again, this act is not
apparent in the game, but it requires work to develop a strategy, based on that
knowledge, to defeat the other player. If this is computationally more di�cult than
playing the game honestly, then we consider the game to be resistant to espionage.

In Example 7.1, the corrupt sequence of moves might also occur if Op committed
espionage on Pr in order to ensure Pr wins.

For both forms of resistance, we need to clarify what “computationally more
di�cult” means. Computational di�culty will be measured in terms of a hierarchy
of complexity classes where, although one class might be contained in another, it is
often not known that the two classes are distinct. However, if the two classes were
equal then part of the (say) polynomial complexity hierarchy would collapse, and this
is commonly believed by complexity theorists not to happen. Thus “computationally
more di�cult” is subject to this commonly-believed assumption. For counting
aims we are dealing with the counting polynomial hierarchy, and the corresponding
assumption is messier. The topic is less investigated and there are some collapses
known within the counting hierarchy. However, those collapses do not a�ect the
containments

PPP
™ NPPP

™ PNPPP
™ NPNPPP

™ · · · ™ PSPACE
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The assumption that these containments are strict is the basis of resistance for
counting aims.

Inherent in the resistance approach to corruption is the assumption that players
will be e�ectively penalised if their corruption is detected. This assumption relies on
issues of governance, lasting identification of the players, and enforcement and scale
of penalties, among others. But these issues depend on the context of the game and
are beyond the scope of this chapter.

7.2 Computational Problems

We now consider the computational problems that must be solved by players in order
to exploit corruption.

Colluders need to to construct an alternating sequence of moves that ends with
Pr winning, that is, with Op unable to make a move. This is formalized as follows.
The Winning Sequence Problem for Pr

Instance A split argumentation framework (ACom, APr, AOp, ∫) and a desired
outcome for Pr.

Question Is there a sequence of moves such that Pr wins?

A similar problem arises when the colluders wish to ensure that Op wins.
The problem for Pr can be solved by nondeterministically generating a sequence

of moves, verifying that each move achieves the aim for its player, and verifying that
Op has no further move. That is, it can be solved in NP with oracles for AVPr, AVOp
and (the complement of) DOOp. AVOp = coAVPr, since we assume Pr and Op have
complementary aims, so the larger of NPAVPr and NPDOOp is an upper bound for this
problem.

In the case of espionage, one player, say Pr, knows her opponent’s arguments
AOp and desires a strategy that will ensure Pr wins, no matter what moves Op
makes. A strategy for Pr in a split argumentation framework (ACom, APr, AOp, ∫) is
a function from a set of common arguments to the set of arguments to be played in
the next move. A sequence of moves S1, T1, S2, T2, . . . resulting in common arguments
A

Pr,1
Com

, A
Op,1
Com

, A
Pr,2
Com

, A
Op,2
Com

, . . . is consistent with a strategy s for Pr if, for every j,
Sj+1 = s(AOp,j

Com
, APr). A strategy for Pr is winning if every valid sequence of moves

consistent with the strategy is won by Pr.

The Winning Strategy Problem for Pr
Instance A split argumentation framework (ACom, APr, AOp, ∫) and a desired

outcome for Pr.
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GR ST CO PR SST EA ID

Existential �p
2-c �p

3-c �p
3-c �p

3-c �p
4-c �p

3-c �p
3-c

Universal �p
2-c �p

2-c �p
2-c �p

3-c �p
3-c �p

3-c �p
3-c

Unrejected �p
2-c �p

2-c �p
2-c �p

2-c �p
3-c �p

4-c �p
3-c

Uncontested �p
2-c �p

2-c �p
3-c �p

3-c �p
4-c �p

3-c �p
3-c

Plurality �p
2-c NPNPPP

-c NPNPPP
-c NPNPPP

-c NPNPPP
-c �p

3-c �p
3-c

Majority �p
2-c NPNPPP

-c NPNPPP
-c NPNPPP

-c NPNPPP
-c �p

3-c �p
3-c

Supermajority �p
2-c NPNPPP

-c NPNPPP
-c NPNPPP

-c NPNPPP
-c �p

3-c �p
3-c

Table 3: Complexity of the Winning Sequence problem for Pr for selected aims and
semantics [90].

Question Is there a winning strategy for Pr that satisfies the standards?

There is also, of course, the corresponding problem for Op which arises when Op
conducts the espionage.

The following result shows that the Winning Strategy problem is PSPACE-
complete for all completist semantics and all the aims discussed in this chapter. This
is not surprising since, as a result of the espionage, Pr is essentially playing a complete
knowledge game and such games are known to be PSPACE-hard, in general.

Theorem 7.2. [90] Consider any completist semantics for abstract argumentation,
and any of the above aims for Pr.

The Winning Strategy problem is PSPACE-complete.

This theorem applies both to espionage by Pr and espionage by Op. The con-
structed argumentation framework for this proof is well-founded. Consequently the
construction serves for all completist semantics.

7.3 Audit: Standards and Compliance
To investigate collusion, we need to understand what “normal play” looks like and
how to recognise it. [92] proposes that we view this as a matter of audit, with
an external body setting standards for play and testing for compliance. In this
view there can be multiple standards. We have already seen one standard: that
a player must make a move, if she has one (we will call this the compulsory move
standard). Consequently, colluding players must arrange their play to ensure that
the designated loser has no possible moves at the end of the game. Earlier work [91;
90; 89] implicitly operated under this standard.
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However, this standard fails to address obvious collusion, like that in Example 7.1.
Thus, additional standards are required. However, a standard can only be justified if
it does not interfere with honest play. That is, a player should never face a choice
between following the standard and improving her chances of winning. Otherwise,
any violation of the standard can be explained away as an attempt to improve those
chances.

It is clear that the problem in Example 7.1 stems from Op playing B2. But it
is not clear what is an appropriate standard that would prevent this move. Several
possibilities suggest themselves:

(1) A player should not play an argument that attacks one of her own (unplayed)
arguments, thus causing a self-inflicted injury.

(2) A player should play the smallest number of arguments to achieve her aim15.

(3) A player should play a subset-minimal set of arguments that achieve her aim.

(1) is clearly too strong to be a standard. If, in Example 7.1 (Figure 3), B1
also attacked B2 then following this standard would cause Op to lose immediately.
However, when the omniscient argumentation framework is known to a player, [128]
prove that this standard (which they call the overcautious selection function) is
dominant. Unfortunately, a player cannot be expected to know the omniscient
argumentation framework.

(2) is more plausible, but consider the following example from [92].

Example 7.3. Consider the strategic argumentation game in Figure 4, and play
that proceeds as follows: Pr plays A, Op plays B1 and B2, and Pr plays C1 and C2.
At this stage O must attack both C1 and C2, and she has two alternatives: (1) play
E, which attacks both C1 and C2, or (2) play both D1 and D2, each attacking one
of the C arguments. Clearly (1) is the minimum cardinality move. However, Pr
then responds with F, and wins. In (2), the play of F is insu�cient for Pr, since B2
remains undefeated. Hence Op wins.

Thus minimum cardinality is not suitable as a standard, because it can prevent a
winning move.

However, [92] showed that (3) is compatible with normal play: every non-minimal
move is dominated by a minimal move16. Thus the requirement to play only subset-
minimal moves is a suitable standard. It remains open whether there are other
standards that could be applied.

15 This is similar to the heuristic of [105], though the details of the game are di�erent.
16 Previous work addressing redundancy or relevance in argumentation includes [54; 98].

1722



Strategic Argumentation

A

B1

B2

C1

C2

D1

D2

F

E

Figure 4: Split argumentation framework demonstrating non-dominance of minimum
cardinality moves.

In addition, we need to consider how play can be verified as compliant with a
standard. This involves issues of which data need to be accessed by the auditor, as
well as the computational di�culty of verifying compliance

In terms of accessibility, all that an auditor needs for subset-minimality is an
ability to inspect the initial ACom, the sequence of moves, and ∫ restricted to the
current ACom, all of which can be considered public information. On the other hand,
to verify the compulsory move standard requires knowledge of the player’s arguments,
which is private. Thus an auditor verifying both standards needs access to all aspects
of a split argumentation framework. (However, each client might be in a position to
audit the compulsory move standard, which would allow the player’s arguments to
be kept private from the auditor.)

For the auditor, the cost of verifying compliance with the subset-minimality
standard involves polynomial many solutions of the Minimal Move problem (see
next subsection) for Pr, and the same for Op. In comparison, the compulsory move
standard requires a coDOL check, where L is the loser of the game, to verify that
there is no move for L left to play.

For the players, compliance with the subset-minimality standard increases the
di�culty of making a move. Not only must they find a move, they must also verify
that it is minimal. It also increases the cost to players exploiting collusion: they
must arrange the game so that their designated player wins, but also ensure that
each move is minimal. Furthermore, one easy avenue for exploiting collusion has
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A B C D

E F

G H

Figure 5: A strategic argumentation game demonstrating weakness of the compulsory
move and subset-minimality standards.

been eliminated. Consequently, there are games (like Example 7.1) where compliance
with both standards ensures that exploitation of collusion cannot be disguised as
normal play.

This leads to some questions. Are these two standards su�cient to prevent the
disguise of collusion? If not, can we add standards to achieve this goal? Unfortunately,
the answer to the first question is no, as the following example shows.

Example 7.4. Consider the strategic argument game depicted in Figure 5, where
arguments in APr are grey and arguments in AOp are white, and A is the critical
argument. If Pr refrains from playing H then Pr will win, since the two arguments
attacking A (B and E) can be attacked by Pr’s arguments F and G, which cannot
be attacked by Op. For example, the sequence of moves: A, B, F, E, G results in Pr
winning.

On the other hand, the sequence of moves: A, E, H, B, C, D results in Op winning.
Thus, Pr and Op can collude to ensure Op wins.

This example suggests that a variation of (1) above might be needed to detect
collusion more thoroughly. Which leads us to the second question: is it possible to
impose enough justified standards that no collusion can be disguised as compliant
play? Again the answer is no.

Consider the argumentation game in Figure 6 under the grounded semantics,
where A is the critical argument. After Pr plays A, Op has the choice of playing B or
C. Depending on this choice, either Pr or Op will win. If Pr and Op collude they can
determine the outcome, but any real restriction imposed by a standard will restrict
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A

B

C D

Figure 6: A strategic argumentation game demonstrating that no accumulation of
justifiable standards can make all collusion detectable.

to one possible outcome, so it cannot be a justified standard. Thus any collusion in
this game cannot be detected by imposing justified standards.

Hence, we see that collusion cannot be prevented simply by imposing more and
more standards. We must continue to rely on computational di�culty to discourage
corruption.

We now take a stab at formalizing these considerations. A standard is a restriction
on moves a player may make. More precisely, a standard is a function from a player’s
aim, her private set of arguments (APr or AOp), a proposed move (a subset of her
private arguments), and the set of arguments ACom, that are common knowledge, to
the set {permitted, not_permitted}. The standard is complied with by a player in
the play of a game if each move by the player is permitted by the standard.

A set of standards is justified if, for every argumentation game, if for every
unpermitted move that achieves the player’s aim there is a better (or equal) permitted
move that achieves the player’s aim. A move m by a player is considered better or
equal to another move mÕ if, for every behaviour of the opposing player, the player
can achieve a better or equal outcome of the game by playing m, rather than playing
mÕ. Note that a set of standards might be unjustified even though each standard,
individually, is justified. However the combination of the compulsory move and
subset-minimality standards is justified.

We say that a strategic argumentation game played under a given finite set of
standards has detectable collusion if any occurrence of collusion that a�ects the
outcome of the game violates a standard. The set of standards must be finite because
an infinite set of standards creates di�culties for compliance verification, both for
the players and the auditor. The best that could be done is checks on a random
subset of standards. On the face of it, this might be su�cient for the auditor, but if
the player has no way to verify her move is compliant with all standards then the
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auditor cannot reliably infer collusion or incompetence from her failure to comply.
We say that a strategic argumentation game played under a given set of standards

is determined if all compliant plays of the game lead to the same winner. It appears
that collusion is detectable i� the game is determined.

These considerations are similar to the issues in game-theoretic mechanism design
(see, for example, [57]) where the aim of the design is to achieve some social good,
such as fairness, honesty, ..., despite the self-interest of the parties involved. Thus
there is a strong focus is on a strategy-proof mechanism, where there is no advantage
to players in deviating from socially good behaviour. A classic example of mechanism
design is two-person cake-cutting, where the mechanism specifies that one player
cuts the cake in two, and the other chooses a piece. This mechanism encourages
fairness in the division of the cake.

In an argumentation setting, [116] addresses a version of strategic abstract argu-
mentation (with multiple players) where all players simultaneously play a selection
of their arguments, aiming for their focal argument to be accepted. The social
good desired is that the arguments accepted after all moves are those that would
be accepted if all arguments were available (the omniscient view of the split argu-
mentation framework). That is, roughly, the social good is that arguments are not
hidden17. Other work, such as [126; 122], also considers hiding of arguments as unfair
or dishonest.

This is a di�erent attitude than in strategic argumentation, which treats argument
hiding as an inherent feature of adversarial argumentation. [116] characterize when
their game is strategy-proof, that is, when there is no advantage to players from
hiding arguments. It is only in very restrictive circumstances that honesty is the
best policy. Their focus is on the game itself. In particular, the self-interest players
have derives from their goals within the game. This is in common with most work
on mechanism design. In contrast, the work in this section aims at aligning the
self-interest of players with their clients, where that self-interest extends beyond the
game itself. The introduction of standards is an instance of mechanism design, but
we have seen that there is no mechanism that allows strategic play and prevents all
collusion. Consequently, computational resistance serves as a back-stop, to discourage
collusion.

17 An argument a is hidden if it is not played, even though a player has it available to play.
Sometimes, more specifically, it refers to an argument a that defeats an argument b, but is not
played when b is played.
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GR ST CO PR SST EA ID

Existential Res Res Res Res Res Res
Universal Res Res Res
Unrejected Res Res Res
Uncontested Res Res Res Res Res
Plurality Res Res Res Res Res Res
Majority Res Res Res Res Res Res
Supermajority Res Res Res Res Res Res

Table 4: Resistance to collusion to ensure Pr wins, for several aims and semantics
[90]. Res denotes that the combination of aim and semantics is computationally
resistant to collusion, while a blank denotes that it is not resistant.

7.4 Resistance to Corruption

Recall that resistance to collusion is based upon the relative computational di�culty
of exploiting the corruption, while disguising it, versus the di�culty of playing the
game honestly. In other words, we compare the complexity of the Winning Sequence
problem with the complexity of normal play as described at the end of subsection
6.3. This comparison is presented in Table 4. While not all combinations of aim and
semantics show computational resistance, many do. However, it is notable that three
of the aims under the stable semantics do not have resistance to collusion.

This comparison, however, deals only with the initial standard: that a player
must play if she has a move. We need to recalculate both the computational cost
of normal, honest play and the complexity of the Winning Sequence problem under
both standards, in order to determine resistance to collusion when both standards
apply. Hence, we need to consider the computational cost of verifying compliance
with the subset-minimality standard. The Minimal Move Problem is to verify that a
given move is a subset-minimal move.

The Minimal Move Problem for Pr
Instance A split argumentation framework (ACom, APr, AOp, ∫), an argumen-

tation semantics, an aim for Pr, and a move M ™ APr that achieves the aim for
Pr.

Question Is M a minimal set that achieves the aim under the given semantics?
That is, is there no subset N µ M such that Pr’s desired outcome is achieved in the
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argumentation framework (ACom fi N, ∫)?

It is clear that the complement of this problem can be solved by a non-deterministic
algorithm that guesses N and uses an oracle for the Aim Verification problem. Thus
the Minimal Move Problem is in coNPAV , where AV is the complexity of the Aim
Verification problem. The complexity of the Minimal Move problem for Pr and Op
(denoted by MMPr and MMOp) for selected aims (of Pr) and the grounded and
stable semantics is given in Table 5. This is also the work that an auditor must do
to verify compliance with the subset-minimality standard. All aims for the grounded
semantics lead to the same complexity, so these results have been condensed to a
single row.

Honest (i.e. non-corrupt) play under both standards consists of a polynomial
number of moves, each involving the search for an e�ective move, incorporating a
verification that the aim is satisfied and the move is minimal. The cost of a single
move for Pr is DOMPr, which is in NP{AVPr,MMPr} and the total cost of honest play
is PDOMPr , and similarly for Op. The total cost of honest play for each player, under
the two standards, is shown in Table 5. In some cases the complexity of play has
increased as a result of the additional standard, but in other cases it remains the
same.

Finally, we must recalculate the cost for collusive play (assuming the players
want Pr to win), denoted by WSM . This is the cost of solving the Winning
Sequence problem when each player is constrained by the standard to play only
subset-minimal moves. The players must search for a sequence of e�ective min-
imal moves, and ensure Op has no e�ective move remaining. Thus WSM is in
NP{AVPr,MMPr,AVOp,MMOp,coDOOp}. The complexity of WSM is also given in Table 5.
In most cases the additional standard does not change the complexity of solving the
Winning Sequence problem.

We can see from the table that, once the subset-minimality standard is incorpo-
rated, all aims under the stable semantics are resistant to collusion, an improvement
(compare with Table 4).

While the additional standard may increase the cost of playing a strategic
argumentation game, it is still not comparable to the cost of solving the Winning
Strategy problem. Hence all the completist semantics and all the aims remain
resistant to espionage.

Of all the semantics that have been investigated, the naive semantics has an
interesting property – it is corruption-proof, at least for the non-counting aims
[89]. Under this semantics the extensions are the maximal conflict-free sets. It is
corruption-proof because the outcome is determined by the arguments the players
have, if they comply with the compulsory move standard. In this sense, the game is
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MMPr MMOp Hon
Min
Pr Hon

Min
Op W SM

Grounded semantics coNP-c coNP-c �p
2-c �p

2-c �p
2-c Res

Stable semantics
Existential coNP-c �p

2-c �p
2-c �p

3-c �p
3-c Res

Universal �p
2-c coNP-c �p

3-c �p
2-c �p

3-c Res

Unrejected �p
2-c coNP-c �p

3-c �p
2-c �p

3-c Res

Uncontested �p
2-c coNP-c �p

3-c �p
2-c �p

3-c Res

Plurality/Majority coNPPP-c coNPPP-c PNPPP -c PNPPP -c NPNPPP -c Res

Supermajority coNPPP-c coNPPP-c PNPPP -c PNPPP -c NPNPPP -c Res

Table 5: Complexity of Minimality problems and normal play with the minimality
standard (for Pr and Op), Winning Sequence problems (for Pr), and resistance to
collusion (to ensure Pr wins), under the grounded and stable semantics, for selected
aims (of Pr) [92].

strategy-proof. Consequently, if the game has an outcome di�erent from the expected
one, we detect corruption/incompetence. But, since every game is determined, this
is not a suitable semantics in which to do strategic argumentation.

7.5 Concrete Argumentation Systems

As we saw in Section 5, the SSA, SSSA, and AsSA problems for DL(ˆ) and DL(”) are
NP-complete, as are the problems for the ASPIC-like language under the grounded
semantics. These correspond to the Desired Outcome problem. It was shown in [88]
that the Winning Strategy problem is PSPACE-complete and the Winning Sequence
problem is �p

2-complete for DL(ˆ); hence, argumentation in DL(ˆ) is resistant to
corruption. These results relied on careful constructions and proofs reliant on the
specific logic.

There are many concrete languages, beyond those discussed in Section 5, that
can be used to express arguments. There is a wide variety of defeasible logics [23;
96; 95; 22; 94], languages incorporating inheritance in logic programming [78; 28],
other logic programming-based languages [139; 140; 76; 123], languages inspired by
argumentation [38; 135], as well as primitive systems like non-monotonic inheritance
networks [129]. Unlike systems such as ASPIC [2; 112; 143] and assumption-based
argumentation [26], these languages are designed independently from – and sometimes
prior to – abstract argumentation. Thus the results of this section do not apply
directly to such languages, and following the approach of [88] to establish resistance
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to corruption would be time-consuming.
However, it was shown in [93] that many of these concrete languages can encode

abstract argumentation frameworks under appropriate semantics. Most of the
languages employ the grounded semantics, while DefLog [135], ASPDA [140] and a
version of NDL [95] employ the stable semantics. Similarly, defeasible logics defined
in the framework of [5] for a range of logic programming semantics can encode
corresponding abstract argumentation frameworks under the corresponding (in the
sense of [31]) completist semantics. As a result, the hardness complexity results for
these semantics are carried over to the concrete languages. Consequently, many of
these languages are shown to be resistant to corruption. See [91] for details.

8 Related Work

Dialogue games for argumentation describe systems where two opponents argue about
the tenability of one or more claims (and thus are in the class of persuasion dialogues
[138]). Persuasion dialogues are typically substantive: the participants provide
substantive reasons for their claims [81]. As a consequence, the information available
during the game evolves, each participant discovering new pieces of information each
time the opponent makes new claims.

A structural di�erence between strategic argumentation and many persuasion
dialogues lies within the nature of the reply/counter-argument a player may present:
in our setting a participant never asks a why? question to a previous opponent’s
claim. In fact, the answer to the why? question is already provided at the very
moment a claim is made: every and each claim is justified/supported by the argument
proving it (all the rules in the proof of which the claim is the conclusion). Dialogue
systems have been classified based on their structural properties, that is whether a
player can make a single or multiple moves in one turn, and whether she is allowed to
reply only once or multiple times to the other player’s moves. In our game, the turn
shifts immediately after a player’s move, but this is nonetheless a relaxed constraint
given that, during such a move, the player may advance a set of arguments, and not
just a single one. Moreover, the player is not obliged to respond to the opponent’s
last move but she may attack any argument proposed so far (possibly her own if
this can prove her claim). It is nonetheless true that our framework is a a sort of
unique/move protocol (a hybrid version): a player can respond only once before the
turn passes to the other player even if, as we have shown, such a response is not
limited to a single argument.

We do not allow argument retractions (also known as withdrawals): once an
argument is played, it will remain as part of the common rules/knowledge base till
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the end of the game. But it is clear that such a constraint does not prevent a player
attacking one of her previously played arguments. We force a replying move to be
structurally relevant, that is it must be capable of changing the dialogical status
of the critical literal/argument (except for the surrendering move which, instead,
gives the victory to the adversary). Even allowing retraction in our framework, the
computational complexity does not change: a retraction operation would choose a set
of rules/arguments to be discarded; thus there is still a choice to be made. However,
retraction would change the nature of the game: in the game of Figure 6, Op would
not lose. Furthermore, retraction requires restrictions to ensure games terminate.

On the other hand, within our framework a player is not committed to the
arguments she plays. Commitments typically require that moves do not contradict
or challenge previous commitments/statements; in our framework, players have
commitments only towards the claim at dispute as they may, at any time, advance
arguments contradicting their own previous statements.

Our turn-taking is in line with the notion of [109; 82] where “when a player is to
move, s/he keeps moving until s/he has changed the status of the initial move his or
her way”. The sole di�erence is that we consider the playing of more arguments as a
single move, but the essential idea is that even in our framework the player must
change the status of the initial claim (the critical literal/argument).

The structure of the arguments defined by our framework is in line with [109].
The idea of an argumentation theory is that of containing all the arguments that are
constructible on the basis of a certain theory or knowledge base.

Our framework is sound and fair according to definitions given in [109]. It is
sound because if the proponent wins the game, then the current theory actually
proves the critical literal. (Symmetrically, if the opponent wins, the theory either
fails to prove the critical literal, disproves it, or proves the opposite, depending on
the game variant.) The framework also satisfies fairness given that if, at a given turn,
the theory proves the critical literal, then proponent is winning the game. (Again,
depending on the type of game, we have that if the theory either fails to prove the
critical literal, disproves it, or proves the opposite at a given turn, then the opponent
is winning the game.)

The conceptual basis of our formalisation that an argument moved at some
earlier stage might be a legal counterargument against some later arguments is not a
novelty in the literature of the field, and has been adopted in many frameworks [108;
109].

Our dialogues are coherent (in the sense proposed by [109, Section 7.1]) since we
do not allow players to retract their claims. A participant can play a set of arguments
conflicting with some of the moves she has put forward in previous steps, if this helps
her in taking advantage of information disclosed by the adversary.
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[36] describe a rigorous persuasion dialogue game RPDGD obtained by adapting
the game RPD0 of [138], replacing propositional logic as the underlying information
carrier with abstract argumentation. It has some features in common with strategic
argumentation, including private arguments, alternating moves and strategic play.
On the other hand, each move is a single locution, which may be a statement,
challenge, or question; the only semantics considered is the grounded semantics; and
the roles of Pr and Op are quite di�erent from each other, in comparison to strategic
argumentation. [36] analyse strategies for their game but it is unclear whether they
could be adapted to strategic argumentation.

In game-theoretic terms, a player in a strategic argumentation game has per-
fect information of the structure of the game, the history of the game, and the
e�ects of each move. On the other hand, the players have incomplete information
of the arguments – and, hence, the possible moves – of adversaries. Most games
in the argumentation literature are games of perfect information, while many as-
sume complete information of the adversary, or don’t care. For dialogues that are
collaborative, seeking to find a joint truth18, privacy/incomplete information would
seem not to matter; for those designed to provide an operational characterization
(or proof theory) for specific semantics19, again it would seem that privacy does
not matter. Many works seeking to apply game-theoretic solution concepts, such
as Nash equilibria, to argumentation games [120; 115; 97; 50] assume players have
complete information about an adversary’s possible moves, since that is an underlying
assumption of Nash equilibria. On the other hand, many argumentation games in
the literature are incomplete information games, for example [121; 107; 116; 125; 27;
69].

One way of analysing argumentation games of incomplete information is to frame
them as Bayesian extensive games with observable actions [106, chap. 12]: this is
possible because every player observes the move of the other player and uncertainty
only derives from an initial move of Chance that distributes private information
(rules or arguments) among the players. Hence, Chance selects types for the players
by assigning to them possibly di�erent theories from the set of all possible theories
constructible from a given language. If this hypothesis is correct, notice that Bayesian
extensive games with observable actions allow to simply extend the argumentation
models proposed, for example, in [120; 69]. Despite this fact, however, complexity
results for Bayesian games are far from encouraging (see [61] for games of strategy).
Indeed, it seems that considerations similar to those presented by [34] can be applied
to argument games: the calculation of the perfect Bayesian equilibrium solution can

18 Such dialogues are known as inquiry dialogues [138].
19 Examples of such work are [136; 3; 100].

1732



Strategic Argumentation

be tremendously complex due to both the size of the strategy space (as a function of
the size of the game tree, and it can be computationally hard to compute it [40]),
and the dependence between variables representing strategies and players’ beliefs.

Many works, for example [119; 70] (and see [127; 24] for more discussion), have
addressed the development of a model of the adversary, which can help in developing
heuristics for choosing a particular move. Such work does not change the worst-case
complexity of making a move, which is NP-hard or worse (see Table 2). Furthermore,
even with full knowledge of the adversary, the problem of developing a strategy to
beat the adversary is PSPACE-complete (Theorem 7.2).

As mentioned earlier, some work [116; 122] considers hiding arguments (that is,
playing an argument a1 that you know is defeated by a2, but keeping a2 private) to
be dishonest or even lying. However, in a game of incomplete knowledge a player
does not know which arguments hold in the omniscient argumentation framework,
so this attitude seems harsh. In any case, our focus is on strategic arguing, where
hiding arguments is acceptable. Those works also address “bullshitting” [56] (the
introduction of arguments that the player does not know), which is not acceptable in
strategic argumentation. We assign to the adjudicator the responsibility for rejecting
such arguments. [116] shows that, for their single simultaneous move game, honesty
is the best policy only in very restrictive circumstances. [122] identifies some cases
in which a player can detect a dishonest adversary, while [107] show that, as the
players play more games the probability of a lie being caught by the adversary
approaches 1. Apart from these works, which might be considered as addressing
corruption isolated to a single player, there seems no discussion of corruption in
formal argumentation prior to [88]. [126] address “argumentational integrity”, but
this refers to fairness in the performance of general argumentation; they do, however,
agree that “pretence of truth” is unfair, and would also consider hidden arguments
as “insincere contributions”.

A majority of the (persuasion) dialogue and argumentation literature takes the
perspective of Dung, which sees arguments as monadic elements. There, arguments
are typically abstract: the players know such arguments, can propose one (or a set) of
them during a turn of the game, but the players do not know their internal structure.
Although for many applications this perspective is admissible and gives good benefits
in simplifying the problem, in some cases it results in an oversimplification. Anyway,
restricting to abstract argumentation does not reduce the complexity of the problems,
in general. We have seen in Section 7.5 that hardness results at the abstract level can
be extended to the concrete level. Thus, it seems that the complexity of the problems
largely comes from the problems themselves (including semantics and strategic aims)
and not from the level of detail of the arguments.

Strategic argumentation can be considered a specific form of collective argumen-
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tation [25] (and judgement aggregation), where di�erent argumentation frameworks
contribute to a combined judgement on the arguments. This topic is usually consid-
ered in the context of collaboration, but some work considers self-interested agents [27;
77]. Strategic argumentation is clearly a framework-wise approach, in the classifica-
tion of [25], where argument frameworks are combined, and arguments then evaluated
in the result. See Chapter 4 [18] of this handbook for additional discussion of this
topic from a computational social choice perspective.

An approach to argumentation of interest for strategic argumentation is proba-
bilistic argumentation. We refer the readers to Chapter 7 of this volume [73] for an
in-depth discussion of this topic. Under the constellations approach to probabilistic
argumentation, the key idea is that the existence (or, perhaps, validity) of arguments
and attacks is unknown, but there is a probability distribution function describing
the likelihood of di�erent possibilities. Such an approach could be a useful refinement
for strategic argumentation, allowing the replacement of a complete unknown (the
adversary’s arguments) with a more detailed model of the adversary. This might
provide the basis for a player to choose among di�erent moves.

Within the framework proposed in [80], probabilities are used to represent the
likelihood that arguments and attacks exist. This defines a probability distribution
over all possible worlds, where each possible world is an abstract argumentation
framework consisting of some subset of the arguments and attacks. Extensions arise,
as usual, for a possible world, by applying any of various semantics. In [80; 52], the
authors tackle the probabilistic counterpart of the problem VER‡(S), that is, the
problem PROB‡

F
(S) of computing the probability Prs‡

F
(S) that a set S of arguments

is an extension according to a given semantics ‡, given a probabilistic argumentation
framework F . [80] suggested that computing the exact value of probability Prs‡

F
(S)

requires exponential time, and employed a Monte-Carlo simulation approach to
approximate PROB‡

F
(S). However, as far as the admissible and stable semantics are

concerned, [52]’s results show that the exact value of Prs‡

F
(S) can be determined in

polynomial time, without enumerating the possible worlds. Nevertheless, in general
the number of extensions is potentially exponential and, for other semantics, the
problem is intractable. Consequently, it seems likely that many of the problems
arising in strategic probabilistic argumentation will also be di�cult.

Finally, there are some works that might appear to be addressing strategic
argumentation, but have only weak relevance to the topic. Strategic manoeu-
vring was introduced in [133] to bridge the gap between dialectical and rhetor-
ical approaches to the study of argumentation [134]. It refers to “the e�orts
arguers make in argumentative discourse to reconcile aiming for rhetorical e�ec-
tiveness with maintaining dialectical standards of reasonableness” [134]. It was
introduced in the context of the pragma-dialectical theory of argumentation [132;
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131], which focuses on analysis and evaluation of lingual argumentation. This theory
is a much broader view of argumentation than we address here. Nevertheless, there
might be links between strategic manoeuvring and strategic argumentation applied
to value-based or audience-based argumentation frameworks [19].

We have already mentioned [126], which addresses ethics of lingual argumentative
communication. It proposes standards for lingual argumentation, under the title
argumentational integrity, and develops a taxonomy of these standards. The standards
address rhetoric rather than the relation between arguments, and the notion of
integrity does not include corruption (except to the extent already discussed in
Section 7.1).

Despite the title, [46] analyzes a very di�erent scenario than we do here. In that
work, a decision-maker consults an expert, who possibly has an ulterior motive, about
deciding between two alternatives. For example, a customer consulting a camera
salesman about which camera to buy. The expert has all the arguments (which
are informal) for both alternatives, and the decision-maker has none. The game is
modelled probabilistically, and the paper performs an equilibrium analysis. Apart
from the words “strategic argumentation” and the possibility of a self-interested player,
there is no relationship between this work and the work on strategic argumentation
presented here.

9 Future Directions

There are multiple avenues for further research in this area.

• The NP-completeness results in Section 5.1 apply to a wide variety of logics
whose inference problem can be solved in polynomial time. Other logics, such as
those in [21], that have a harder inference problem might result in complexities
higher in the polynomial hierarchy. An analysis of such cases could extend the
existing results.

• Structured argumentation theories can generate a large number of arguments,
possibly infinitely many. This prevents applying the results of Section 7 to
structured argumentation directly. For example, we used a di�erent method to
prove Theorem 5.8. What is needed is to find a polynomially-sized argumenta-
tion framework that is equivalent to the generated argumentation framework
for the semantics of interest.

• In this chapter we have focused on a competitive situation, where the two players’
aims are inconsistent. However, the basics of strategic argumentation also apply
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when the player’s aims are consistent. In this case, strategic argumentation
represents a crude adversarial negotiation. It is worth exploring how concepts
from strategic argumentation can be used to analyse such negotiations, both in
strategic argumentation games and in other negotiation games.

• Work has focused on two-player games of strategic argumentation. However,
there are often more than two stakeholders in an adjudication, and so it would be
interesting to see how strategic argumentation can be extended to more players.
Among the many issues that would need to be addressed are: the protocol
for turn-taking, the criterion for terminating the game, and the possibility of
some players cooperating to construct an argument that none of them could
construct individually. There is discussion of multi-party dialogues in [37; 99;
127]. In general, game play would appear to be more complex because of the
potential for shifting alliances between players, and because players might not
be compelled to make a move at each opportunity. Corruption might also be
more complicated.

• In current work, the players’ aims are implicitly assumed to be known and
fixed. In some scenarios this might be realistic. However, there are scenarios
where the motivations of a player are unclear, and/or may change over the
course of argumentation. For example, a defence lawyer might begin with a
“not guilty” aim but, if the trial is going badly, change tack to instead aim at a
mis-trial. Thus, the extension of strategic argumentation to consider aims as
possibly private and flexible/changeable is an interesting one.

• In the treatment of strategic abstract argumentation, the most prominent
semantics for Dung’s framework have been addressed, but there remain many
semantics in the literature for which resistance to corruption is unknown. In
addition, the treatment of the subset-minimality standard remains to be done
for most semantics.

• The treatment of espionage assumes that full knowledge of an adversary’s
arguments is obtained. Perhaps the illicit gain of only some knowledge is more
realistic. How can this framework be extended to cases where only partial
knowledge is obtained? The work of [39] could be a first step in this direction.
That paper represents partial knowledge and determines whether a player has
the ability to force a desired outcome. However, it will need much expansion,
as it only addresses Existential and Universal outcomes, and only for the stable
semantics; assumes that the player’s control arguments cannot be attacked by
partially-known attacks; and does not consider multiple moves.
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• Although standards are insu�cient to make corruption visible, they can also be
useful in guiding heuristic approaches to playing strategic argumentation games.
For example, the subset-minimality standard prevents a player needlessly
creating an opening for the adversary. ([105] employ this as a heuristic in a
di�erent dialogue game than the one we have presented.) Thus, it would be
helpful to identify more standards, especially those that can be incorporated in
heuristics or used to improve a heuristic move.

• The brief discussion of argument retraction in Section 8 deserves expansion.
Strategic argumentation with retraction would seem to produce an outcome
that is less arbitrary than without retraction, but perhaps the strategic element
would be much diminished. Argument retraction would need to be restricted in
some way, or an explicit termination rule introduced, otherwise a losing player
might be able to prevent termination by repeatedly retracting arguments and
then replaying them. Treating such retraction as a disavowal of some or all of
the backtracked arguments (i.e. a commitment not to use those arguments in
the remainder of the game) might temper the power of retraction and lead to
a richer game.

• The notion of resistance to corruption we discussed is based on worst-case
complexity, but this is sometimes not reflective of the di�culty of problems
that arise in practice. An empirical comparison of the di�culty of solving
the problems in practice and a study of approximation algorithms for these
problems are needed.

• As observed in subsection 6.1, it can be worthwhile to consider an adjudicator as
part of a strategic argumentation game. In this case we might consider whether
the adjudicator can be subject to corruption. If the role of the adjudicator
is simply to enforce the consequences arrived at by the players then there is
nothing in the game that allows us to detect corruption.

However, if we assume that the adjudicator chooses the semantics under which
the game will be adjudicated, we have an action by the adjudicator that can
be subject to analysis. This leads to quite di�erent games, especially if the
adjudicator changes the semantics during the playing of the game. While this
appears to be rather Kafkaesque, it might be somewhat reflective of some
situations where the judiciary can be influenced by other arms of government.
The adjudicator then has both the choice of semantics to impose, and the choice
of timing of this move. More realistically, [110] presents a game where the
adjudicator plays an active role, based on a detailed model of legal procedure.
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Perhaps that model is a base on which corruption of adjudication can be
investigated.

10 Conclusions
Strategic argumentation is a primarily adversarial approach to dialogue games with
incomplete information. It reflects aspects of legal argument. The idea can be
applied at a concrete level, as we have demonstrated using defeasible logic rules as
the basis for arguments, and at an abstract level, which was demonstrated using
Dung’s argumentation system.

The key element of strategic argumentation games is each player re-establishing
their aim at the end of their turn. The details of the argument framework are not
needed at this level of abstraction, only that they can be used to define a notion of
acceptance/aim achievement. Consequently, we have a formulation of strategic argu-
mentation that applies to Dung’s notion of argumentation framework [41], but also to
bipolar argumentation frameworks [33], abstract argumentation frameworks with sets
of attacking arguments [101; 55]20, and preference-based argumentation frameworks [3;
17]. If, in the dialogue game (A, R), we extend R beyond simply relations on A then
we can have strategic argumentation on constrained argumentation frameworks [35],
weighted argument systems [42], abstract dialectical frameworks [30], and probabilis-
tic argumentation frameworks [80], and the ideas might well be applicable to other
forms of argumentation framework. Similarly, the ideas of strategic argumentation
apply to semantics other than Dung-style semantics.

We have also demonstrated how the strategic argumentation framework can be
used to address issues of corruption, even when the corrupt behaviour is motivated
by rewards extrinsic to the game. We have not much addressed the strategies that
a player might employ when playing a strategic argumentation game, although the
study of standards in Section 7 provides some guidelines. More information on that
topic can be found in Section 5.2 of Chapter 9 [24] in this handbook.
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