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Data Analytics is being deployed to predict the dissolved nitrous oxide (N2O) concentration in a full-scale
sidestream sequence batch reactor (SBR) treating the anaerobic supernatant. On average, the N2O
emissions are equal to 7.6% of the NH4eN load and can contribute up to 97% to the operational carbon
footprint of the studied nitritation-denitritation and via-nitrite enhanced biological phosphorus removal
process (SCENA). The analysis showed that average aerobic dissolved N2O concentration could signifi-
cantly vary under similar influent loads, dissolved oxygen (DO), pH and removal efficiencies. A combi-
nation of density-based clustering, support vector machine (SVM), and support vector regression (SVR)
models were deployed to estimate the dissolved N2O concentration and behaviour in the different phases
of the SBR system.

The results of the study reveal that the aerobic dissolved N2O concentration is correlated with the drop
of average aerobic conductivity rate (spearman correlation coefficient equal to 0.7), the DO (spearman
correlation coefficient equal to �0.7) and the changes of conductivity between sequential cycles. Addi-
tionally, operational conditions resulting in low aerobic N2O accumulation (<0.6 mg/L) were identified;
step-feeding, control of initial NH4

þ concentrations and aeration duration can mitigate the N2O peaks
observed in the system. The N2O emissions during aeration shows correlation with the stripping of
accumulated N2O from the previous anoxic cycle. The analysis shows that N2O is always consumed after
the depletion of NO2

� during denitritation (after the “nitrite knee”). Based on these findings SVM clas-
sifiers were constructed to predict whether dissolved N2O will be consumed during the anoxic and
anaerobic phases and SVR models were trained to predict the N2O concentration at the end of the
anaerobic phase and the average dissolved N2O concentration during aeration. The proposed approach
accurately predicts the N2O emissions as a latent parameter from other low-cost sensors that are
traditionally deployed in biological batch processes.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years the sustainability and operational efficiency of
wastewater treatment plants (WWTPs) have come to the fore (Liu
et al., 2018). Several biological technologies such as partial-
nitritation e anammox (anaerobic ammonium oxidation) have
emerged, towards the efficient, low-cost treatment of high-
strength municipal wastewater streams (Lackner et al., 2014;
Zhou et al., 2018). The anaerobic supernatant is a by-product of
dewatering of the anaerobic digestion effluent and represents less
sou).

Ltd. This is an open access article u
than 1e2% of the total influent flow in the WWTP. It contains
10e30% of the N load and 20e30% of the P load (Janus and van der
Roest, 1997; van Loosdrecht and Salem, 2006). Sidestream treat-
ment of the anaerobic supernatant can contribute to the reduction
of energy consumption for N-removal, decrease of nitrogen loads in
the secondary treatment, and the minimisation of risks related to
exceeding effluent regulatory requirements of nitrogen concen-
trations in the water line of WWTPs (Eskicioglu et al., 2018).
However, the performance and environmental evaluation of
different sidestream technologies is still under investigation
(Eskicioglu et al., 2018; Rodriguez-Garcia et al., 2014).

SCENA (Short-Cut Enhanced Nutrient Abatement) is a new
sidestream process, that combines the conversion of NH4

þ to NO2
�
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under aerobic conditions (nitritation) with the subsequent reduc-
tion of NO2

� to nitrogen gas and enhanced biological phosphorus
uptake by polyphosphate-accumulating organisms (DPAOs) in a
sequencing batch reactor (SBR) (Frison et al., 2015). External vola-
tile fatty acids (VFAs), are produced via acidogenic fermentation of
the primary and secondary sludge on-site and dosed into the SBR.
In a recent study, Longo et al. (2016), quantified the environmental
and cost benefits and impacts of the integration of the SCENA
process in a full-scale WWTP. They reported major energy savings
for aeration after the integration of sidestream SCENA process. The
direct N2O emissions were equal to 1.42% of the influent N-load.
Short-term monitoring campaigns were implemented, while the
effect of operational conditions on N2O generation was not
investigated.

N2O is a potent cause of global warming, its global warming
potential is 265e298 times more than that of CO2 (IPCC, 2013). The
emission of N2O in full-scale sidestream partial-nitritation/partial-
nitritationeanammox or nitrification-denitrification systems range
from 0.17% to 5.1% of the influent N-load (average equal to ~2.1% of
the N-load is emitted (Vasilaki et al., 2019). Schaubroeck et al.
(2015) showed that N2O emissions from a full-scale sidestream
DEMON process in Austria were significantly higher than the direct
N2O emissions from the mainstream treatment in a full-scale
WWTP. On average, 0.256 g N2O were emitted compared to
0.005 g emitted in the secondary treatment per m3 treated
wastewater. The increased direct N2O emissions can be mainly
attributed to low DO concentrations, higher ammonia oxidation
rates (AOR) and NO2

� build-up (Desloover et al., 2011; Kampschreur
et al., 2008); conditions that also prevail in the SCENA process. The
variability of EF reported in sidestream technologies can be
partially attributed to both complex relationships between emitted
N2O and operational conditions and different configurations (i.e.
SBR, continuous systems), loads (i.e. NH4

þ concentrations), feeding
strategies and operational control (i.e. DO set-points). Additionally,
different interactions between operational variables trigger a
different response of N2O generation. For instance, in a recent
modelling study of a granular one-stage partial-nitritation-anam-
mox reactor, Wan et al. (2019) showed that higher temperatures
resulted in increased N2O emissions in the presence of COD
(chemical oxygen demand) and in decreased N2O emissions in the
absence of COD (due to increased anammox activity and reduction
of NO2

� accumulation in higher temperature). Additionally, the
long-term temporal variations of direct N2O emissions were not
adequately assessed in sidestream technologies; the majority of the
monitoring campaigns in sidestream reactors lasted less than 5
days (Vasilaki et al., 2019).

The digitalisation of water services and the data-driven
knowledge discovery from wastewater treatment plant may in-
crease the resilience of water utilities under climate change and
other water-related challenges (Sarni et al., 2019). Recent studies
have provided extensive overviews of the use of data-driven
techniques in the wastewater sector for different applications
including the development of soft-sensors, fault prediction and
multi-objective optimisation of control of water utilities
(Corominas et al., 2018; Haimi et al., 2013; Newhart et al., 2019).
Data-mining and extraction of the information hidden in the raw
sensor signals can facilitate the identification of patterns and hid-
den structures and reveal significant information on the behaviour
of N2O emissions in continuous wastewater treatment processes
(Vasilaki et al., 2018). The SBR in the SCENA process is multiphase
(i.e. anaerobic, aerobic, anoxic conditions) applying different
operational variables (unsynchronised data), non-linear and sub-
ject to different disturbances, such as influent compositions and
fermentation liquid characteristics. Moreover, SBR process data are
based on a 3d-structure that consists of the number of i) cycles, ii)
variables and iii) sampling points within each cycle. Therefore, the
identification of process abnormalities and patterns can be
complicated. N2O emissions could be affected by both within-cycle
and between-cycle batch dynamics.

In this study, sensor and laboratory analyses data from a full-
scale SCENA SBR were analysed to provide insights on the N2O
emissions behaviour and generation. A structured approach was
followed for knowledge discovery from the available dataset using
a combination of abnormal events detection, classification and
regression techniques. The objectives of the study were to i)
investigate whether the sensors integrated in the system (i.e.
conductivity, pH) can provide actionable information on the dy-
namics of N2O emissions, ii) detect hotspots for the accumulation
and emission of N2O and iii) develop data-driven regression and
classification models to predict the dissolved N2O behaviour and
concentration for the different phases (anaerobic, aerobic, anoxic)
of the SBR.

2. Materials and methods

2.1. Process description and data origin

The Carbonera plant is designed to treat domestic wastewater of
a population equivalent of 40,000 (dry weather flow equal to
10,000 m3/d). After screening and degritting and primary sedi-
mentation, the effluent from the primary clarifier is sent to a
Schreiber reactor (single basin e working volume 4671 m3).
Schreiber reactor effluent is pumped to two secondary clarifiers
(2260 m3 each) and subsequently to the tertiary treatment unit for
disinfection and filtration before final discharge in theMelma River.

Waste activated sludge (WAS) generated by the biological
treatment is recycled to the primary sedimentation unit and mixed
with primary sludge. The final concentration of the thickened
mixed sludge is around 5% total solids (TS). About 75% of the mixed
thickened sludge is fed to an anaerobic digestion unit (1800 m3

working volume). Digestate is dewatered by a centrifuge with the
addition of polyelectrolyte; the solid fraction is mechanically
composted and used as agricultural fertilizer. The anaerobic su-
pernatant is sent to the equalization tank (of 90 m3) in the SCENA
system for the biological N and P removal.

The remaining portion of mixed sludge (25%) is fed to a
sequencing batch fermentation reactor (SBFR) with hydraulic
retention time (HRT) equal to 5 days. The SBFR is operated under
mesophilic condition (37 �C) for the fermentation of thickened
sewage sludge and the on-site production of carbon source
enriched of VFAs (mainly acetic and propionic acids). Daily, around
10 m3 of fermentation sludge are extracted and replaced with fresh
thickened sludge. The solid/liquid separation of the fermented
sewage sludge is carried out by a screw-press (SCAE), generating
~2e4 m3/h of fermentation liquid rich of VFAs (in total, ~110.5 m3/
d). The latter is collected in a storage tank of 20 m3 and automat-
ically dosed during the anaerobic and anoxic phases of a short-cut
sequencing batch reactor (SBR) based on pH and conductivity
sensors. The solid fermented fraction (13e15% TS based) is mixed
with the thickened mixed sludge and fed to the anaerobic digestor.

The anaerobic supernatant is treated in an SBR with a maximal
working volume of 70 m3 (3e4 cycles daily). The SBR is fed with
~7e9 m3 of anaerobic supernatant in each cycle that is treated via
nitrite enhanced phosphorus removal associated with nitritation-
denitritation (SCENA process). The typical SBR (Fig. 1) cycle con-
sists of feeding (6e8 min), anaerobic conditions (30 min), aerobic
conditions (200e240min), anoxic (~60e140min), settling (30min)
and discharge (8 min). The sensors integrated in the SBR include:
pH, Dissolved Oxygen (DO), conductivity, Oxidation Reduction Po-
tential (ORP), mixed liquor suspended Solids (MLSS) and



Fig. 1. Schematic representation of a complete cycle in the S.C.E.N.A process and
datasets used in the analysis.
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temperature. Conductivity and pH are used to control the length of
the aerobic and anoxic phases and the carbon source dosage.
Additionally, variable frequency driver is used to control the air
flow-rate of the blowers, maintaining the dissolved oxygen during
aerobic phase in the range of 1.0e1.5 mg/L. The aeration system
consists of volumetric blowers (nominal power 11 kW) and n80
diffusers (INVENT), providing ~500 m3/h of compressed air at
400 mbar of pressure. The treated supernatant is recirculated back
to the WWTP headworks.

A monitoring campaign was conducted in the sidestream line at
Carbonera WWTP treatment plant for approximately 4 months
(January 2019eApril 2019). Dissolved N2O concentrations were
measured using a polarographic Clark-type electrode (Unisense,
Aarhus, Denmark). To supplement the long-term monitoring
campaignwith Unisense probes, N2O emissions in the headspace of
the SBR reactor, were also continuously monitored with
MIR9000CLD analyser (Environment Italia S.p.A.) during
MarcheApril 2019. Details of the monitoring campaign, N2O
emissions’ calculation and laboratory analyses are provided in the
supplementary material (S1eS3).

2.2. Data analysis

2.2.1. Methodological framework
Fig. 2 summarises the methodological framework of the study.

Phase one includes preliminary analysis of the collected data.
Features extraction and density-based clusteringwas applied (Ester
et al., 1996), to isolate abnormal cycles. The methodology and re-
sults of abnormal cycles’ isolation are given in the supplementary
material (section S4). In phase two, the behaviour of N2O emissions
and dissolved N2O concentration during normal operation was
investigated; efforts were focused to identify dependencies with
the operational dataset and laboratory analyses. Finally, in phase
three, classification and regression models were trained to predict
the behaviour of aerobic dissolved N2O concentration in the
different cycles. Support vector machine classification (SVM) and
regression (SVR) models were constructed (Cortes and Vapnik,
1995).

The first step for the prediction of the average aerobic dissolved
N2O concentration included the training of an SVM classifier
(ANOXSVM) to predict whether dissolved N2O will be consumed
during the anoxic phase. This was significant, given that accumu-
lated dissolved N2O in the beginning of the aerobic phase, will be
stripped during aeration. All cycles were divided in two classes:
class anoxA (dissolved N2O < 0.6 mg/L) and class anoxB (dissolved
N2O > 0.6 mg/L). The dissolved N2O concentration threshold was
set equal to 0.6 mg/L, since in ~88% of these cases, N2O was
consumed by the end of subsequent anaerobic phase. In cycles
belonging to class anoxA, no N2O carryover was assumed. It is
important to note that the term anaerobic phase, is used to describe
the first operational phase of the SBR (Fig. 1) within each cycle and
is not necessarily representative of the actual conditions in the
reactor.

Subsequently, an SVM classifier (ANSVM) was trained to predict
if dissolved N2O will be consumed in the subsequent anaerobic
phase. The threshold of N2O at the end of the anaerobic phase was
set equal to 2.6 mg/L (sensor calibration limit). Therefore, anaerobic
phases with accumulated N2O were classified in two groups: class
anaerA (N2O concentration < 2.6 mg/L) and anaerB (N2O
concentration > 2.6 mg/L). Cycles belonging to anaerA class, were
used to train an SVR model (ANSVR) to predict the dissolved N2O
concentration at the end of the anaerobic phase.

Finally, an SVR model was trained to predict the average N2O
concentration during the aerobic phase (AERSVR), utilizing the
ANSVR model predictions for cycles with initial aerobic N2O less
than 2.6 mg/L. Finally, the aerobic SVR model was also tested to
cycles belonging in class anaerB (N2O concentration > 2.6 mg/L). In
anaerB cycles, initial aerobic N2O accumulation exceeds the cali-
bration limit of the sensor. Additionally, aerobic N2O accumulation
starts before completion of the stripping of pre-existing dissolved
N2O. In these cases, the average dissolved N2O concentration of the
cycle, was calculated considering the period from the first mini-
mum of dissolved N2O concentration until the end of aeration (or
after 30 min if a local minimum did not exist). Additionally, initial
N2O accumulation was assumed to be equal to 0.6 mg/L (average
minimum after initial N2O stripping observed in these cycles).

In practice, the methodology followed was not linear as it is
illustrated in Fig. 2; it involves several backward and forward loops
between the different steps. The feedback loops were necessary to
leverage the knowledge discovered and adjust the data-
preparation (i.e. new features extraction, different pre-
processing) and mining phases.

2.2.2. Support vector machines classification and support vector
regression

Support vector machines (SVMs) are a range of supervised non-
parametric classification and regression algorithms that have
various applications in several fields including hydrology
(Raghavendra and Deka, 2014), bioinformatics (Byvatov and
Schneider, 2003) and wastewater (Corominas et al., 2018). For
instance, in wastewater, support vector regression (SVR) has been
successfully applied to data generated from mechanistic modelling
of biological processes (Fang et al., 2011) or to experimental data
(Seshan et al., 2014) to predict reactors’ performance.

SVM classification and SVR models were constructed to predict
the behaviour of dissolved N2O production/consumption in
different phases of the SBR operation (Fig. 2). SVM aims to define an
optimum separating hyperplane in the feature space that maxi-
mizes the margin between two different classes. Classes with large
margins are clearly separable and provide a ‘safety’ for the gener-
alisation of the algorithm when applied to new points. In practical
applications, the overlapping of a number of data belonging to the
two classes, is common. Therefore, soft margins are introduced to
allow a number of misclassifications to identify feasible solutions
when the training dataset is not strictly linearly separable. Simi-
larly, in the SVR case, the aim of the method is to identify the hy-
perplane that has the minimum distance to all data points. A
complete description of the SVM and SVR algorithms is provided in
the supplementary material. Radial basis function (RBF) is a widely
used kernel function and was selected to construct the models in
this study. The ‘kernel trick’ enables SVMs to operate even in
infinite feature space (where data are mapped), without in practice
executing calculations there (Luts et al., 2010).



Fig. 2. Methodological Framework followed in the study.
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The algorithms were implemented with the kernlab package
(Karatzoglou et al., 2004) in R software. Repeated 10-fold cross
validation (3 repetitions) was applied to select the cost and gamma
(g) regularization parameters over a grid-search with the caret
package (Kuhn, 2008). The cost determines the penalty of mis-
classified instances or instances violating the maximal margin
whereas g determines the amplitude of the kernel. The dataset was
randomly divided into test and train, with 70% of the available data
used for training the SVM model and 30% used for testing.

In the classification case, over-sampling was applied for the
minority classes within the 10-fold cross validation loop (before
training). Local models were developed based on observations from
each phase of the SBR reactor instead of the dataset from the
duration of the whole cycle. The underlying characteristics and
dependencies of the operational variables vary between anoxic,
aerobic and anaerobic conditions. Additionally, the performance of
the system under different phases within the cycle can also vary.
There are significant benefits in the development of local phase-
based models. The behaviour of dissolved N2O and triggering
operational conditions vary between the different phases; local
models enable to investigate the phase-based dependency struc-
tures that would not be possible using the whole cycle dataset. The
performance of the classification SVM models were evaluated
based on accuracy and kappa and from the sensitivity and speci-
ficity as described in the supplementary material (S3.1). Similarly,
the regression models were evaluated considering the root mean
squared error (RMSE) and R-squared (R2) (S3.1).
3. Results and discussion

3.1. SCENA performance

The SBR treats up to 43 kg of N/day of anaerobic supernatant,
which results in a volumetric nitrogen loading rate up to 0.62 kgN/
m3 day. The performance of the SBR reactor in terms of NH4eN
removal, was stable during the monitoring campaign. During sys-
tem’s normal operation (January 2019eApril 2019), the average
removal efficiency of NH4eN, TN and PO4ePwas 78%, ~77% and 78%
respectively. Influent and effluent concentrations of the SCENA
system for the duration of themonitoring campaign are provided in
Table 1. A detailed description of the abnormal cycles isolated is
provided in the supplementary material.
3.2. N2O emission factor

N2O emissions were measured using a gas analyser (March-
eApril 2019); on average ~0.8 kg of N2OeN was emitted in each
cycle, equivalent to 7.6% of the NH4eN load in the SBR. In terms of
the NH4eN removed the N2O EF was equal to 11% (±4). The emis-
sions during the aerobic phase were considered. N2O emissions
exhibited significant variability ranging from 0.14 kg N2OeN/cycle
(1.3% of NH4eN load) to ~2 kg N2OeN/cycle (19% of NH4eN load) as



Table 1
Influent and effluent concentrations of the SCENA system.

Parameter unit mean Sd

SBR Influent NH4eN mg/L 992.5 90
PO4eP mg/L 30.8 6.9
pH 8.2 0.2
sCOD mg/L 1111.7 562
Flow-rate m3/d 30 (8.4 per cycle) 2.2
Air flow-rate m3/h 450 (170e520) 78
Dimensions mxmxm 8 x 3.5 x 2.5

SBR Effluent NH4eN mg/L 214.7 80.93
NO2eN mg/L 3.23 9.7
NO3eN mg/L 0.28 0.34
PO4eP mg/L 6.78 2.22
pH 8.04 0.3

SBR Reactor MLSS g/L 5.05 0.87
HRT d 2.39 0.18
SRT d 13 -15
pH 7.7 0.5
T �C 30.02 1.56

Fermentation Liquid NH4eN mg/L 715 72.6
PO4eP mg/L 86 12
pH 5.6 0.6
T �C 36 5.1
sCOD mg/L 13082 2228
ferm_Hac mg/L 3250 546
ferm_HPr mg/L 2281 588
ferm_Hbut mg/L 1347 196
Flow-rate to SBR m3/day 7.45 (~2.41 per cycle) 3.0
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shown in Fig. 3 (a). Emission peaks higher than 1.5 kg N2OeN/cycle
and the increasing trend observed close to the end of the moni-
toring campaign coincide with peaks in the conductivity change in
the aerobic phase of the cycles (Fig. 3 (b)). Laboratory analyses
performed approximately four times per week, did not demon-
strate any significant changes in the influent COD, NH4eN loads and
removal efficiencies linked with the increasing trend of the
Fig. 3. (a) N2O emissions and (b) aerobic phase conductivity decrease, during moni-
toring campaign (gas analyser, MarcheApril).
emissions observed in Fig. 3 (a). Given the wide range of the N2O
emissions observed in the system, in the following sections, efforts
were focused to identify triggering operational conditions.
3.3. Energy consumption vs N2O emissions

The operational carbon footprint of the sidestream line was
estimated using the direct GHG emissions (from N2O) and elec-
tricity consumption. The electricity consumption was relatively
steady over the monitoring period; on average ~5.4 kWh was
consumed in the SBR for the removal of 1 kg of NH4eN from the
anaerobic supernatant. The average energy consumption of the SBR
represented ~77% of the total electricity consumption of the SCENA
system. On average ~48.7 kg of CO2eq are generated for the removal
of 1 kg of NH4eN due to the direct N2O emissions and electricity
consumption in the system. The contribution of the total N2O
emissions to the operational carbon footprint of the SCENA process
ranged from 66.7% to 96.8% when all the equipment electricity
consumption (i.e. fermenter, dynamic thickener) were considered.
Given the variability of the N2O emissions observed in the system
(Fig. 3) the kg of CO2eq emitted per kg of NH4eN removed ranged
between 9.5 kg CO2eq to 117.7 kg CO2eq. Fig. 4 (a), shows the average
operational carbon footprint (considering direct N2O emissions and
electricity consumption) of the SCENA system for two cases with
different ranges of N2O emissions. In the first case (26/03), a
considerable amount of N2O was emitted, equal to ~10.5% of the
influent NH4eN load. In the second case, the emissions were
significantly lower, equal to ~4% of the influent NH4eN load. Both
cases are characterised by similar influent NH4eN concentrations,
phase duration, temperature and ammonia removal efficiencies
(~79%). The DO concentration is equal to ~1 mg/L. In case 1, the
operational carbon footprint of the process is ~136% higher
compared to case 2. This example shows that under similar con-
ditions (considering laboratory analyses, average pH and DO), dis-
solved N2O concentrations can vary significantly in the studied
system. Investigation of the behaviour of conductivity during the



Fig. 4. (a) Example of the effect of N2O emissions in the operational carbon footprint
for two cases, (b) aerobic profiles of conductivity, ORP and (c) DO for the two cases
shown in (a).
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two aerobic phases, showed higher conductivity and pH decrease in
case one (~510 mS/cm and ~1 respectively) compared to case two
(~350 mS/cm and 0.7 respectively) (Fig. 4(b) and (c)). Additionally,
the initial aerobic ORP in case 2, was higher (�43 mV) compared to
case 1 (�274 mV) (Fig. 4 (b)). Therefore, efforts to understand the
N2O triggering operational conditions and mitigate GHG emissions,
should consider the dynamic in-cycle behaviour of the variables
monitored in the system. The relationship between the operational
variables (i.e. DO, NH4eN concentration, ORP, conductivity) will be
discussed in the following sections.

3.4. Variability of N2O emissions during normal operation

N2O was emitted during aeration phase in all cycles and corre-
lated significantly with the dissolved N2O accumulation. One
representative cycle profile for the dissolved N2O concentration
and N2O emissions in cycles starting without dissolved N2O accu-
mulation from the previous cycle is shown in Fig. 5, together with
the DO, NH4eN, conductivity, ORP and pH.

ORP at the beginning of the aerobic phase shows a correlation
with the DO, whereas N2O accumulation is minimum. Dissolved
N2O increases in the first 60e70 min of aeration (a small change in
the pH slope can be seen coinciding with the peak of accumulated
N2O) indicating that the generated N2O is higher than the stripped
N2O. N2O accumulation shows a decreasing trend after ~90 min of
aeration. Subsequently dissolved N2O concentration increases
when aeration stops, and the anoxic phase starts. This shows that
production of N2O continues under decreasing DO and until DO
depletion. The calibration range of the dissolved N2O probe is be-
tween 0 and 2.6mg/L. Therefore, the accumulation of dissolved N2O
can be higher than the peak shown in Fig. 5. During the anoxic
phase, pH increases rapidly during the dosage of fermentation
liquid, followed by a slow decrease upon the end of carbon dosage
phase. A sudden change in the ORP signal slope (“nitrite knee”)
indicates the depletion of nitrite whereas TN still exists in the form
of N2O. Accumulated N2O is subsequently depleted rapidly after
NO2eN depletion.

3.5. The pattern of N2O emissions

Offline data from laboratory studies and the ranges of the
operational variables were analysed in order to investigate signif-
icant changes that contribute to high accumulation of dissolved
N2O concentration and high N2O emissions.

Fig. 6 (a) shows the daily average dissolved N2O concentration
(coloured points) during aerobic phase versus conductivity at the
end of aerobic phase and the effluent NH4eN concentration. Con-
ductivity is significantly related and can be linked with the NH4eN
concentration in the reactor (spearman correlation coefficient
equal to 0.97). High average aerobic dissolved N2O concentration
(>1.5 mg/L) was mainly observed with NH4eN concentrations
lower than 150 mg/L and higher than 300 mg/L in the effluent of
the SBR. Additionally, the spearman correlation coefficient between
dissolved N2O and average aerobic conductivity decrease rate (mS/
cm/min) was equal to �0.7 and N2O concentration peaks were
observed for conductivity decrease rate > 1.8 mS/cm/min. The latter
indicates that higher emissions occur under high ammonia removal
efficiency that can be linked with higher ammonia oxidation rates
(AOR) (i.e. due to pH values observed ~8) triggering the NH2OH
oxidation pathway or higher than average NO2

�N accumulation
(triggering nitrifier denitrification pathway). Domingo-F�elez et al.
(2014) found that N2O production rates were positively correlated
with the extant nitrification rate in a single-stage nitritation/
Anammox reactor. Similarly, Law et al. (2011) identified a linear
relationship between AOR and N2O emissions in a partial nitritation
SBR reactor treating the reject water from anaerobic digestion. Law
et al. (2011) suggested that is attributed to higher accumulation of
the ammonium oxidation intermediates (hydroxylamine (NH2OH)
and nitrosyl radical (NOH)) leading to faster N2O formation or to the
increased use of electrons reducing nitrite to nitric oxide (nitrifier
denitrification pathway) under low DO concentrations. High nitrite
accumulation has been also linked with elevated N2O emissions
and the nitrifier denitrification pathway, especially under low DO
concentrations (Tallec et al., 2006; Kampschreur et al., 2008;
Desloover et al., 2011; Peng et al., 2015; Massara et al., 2017; Law
et al., 2012). For instance, Peng et al. (2017) and Kampschreur
et al. (2009), in a nitritation-denitritation SBR and a full-scale sin-
gle stage nitritation-Anammox reactor respectively, identified
linear relationship between nitrite accumulation and N2O emis-
sions at DO levels below 1.5 mg/L. Similarly, Tallec et al. (2006) in a
nitrifying activated sludge observed eightfold increase of N2O
emissions with the addition of nitrite pulses (10 mg/L) at DO equal
to 1 mg/L. Therefore, both hydroxylamine oxidation and the nitri-
fier denitrification are possible during aeration in the investigated
SBR.

The average dissolved N2O concentration during the aerobic
phase of different cycles varied significantly in relation to the
average DO concentration. Fig. 6 (b), shows that the dissolved N2O



Fig. 5. Representative cycle profile for the (a) dissolved N2O concentration, N2O emissions, conductivity, DO, (b) ORP and pH, and (c) NH4eN, NO2eN and PO4eP concentrations.
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concentration peaks coincided with average DO concentrations less
than 0.9e1 mg/L. The spearman correlation coefficient between
dissolved N2O and DO concentrations was equal to �0.7. The col-
oured points in the Figure, represent the ORP at the end of the
aerobic phase; ORP is higher than 40 mV in the majority of the
cycles with average aerobic dissolved N2O concentration less than
1 mg/L. Only cycles without dissolved N2O accumulation from the
previous anoxic phase are shown in the graph. Stenstr€om et al.
(2014) showed decreasing DO concentrations lower than
1e1.5 mg/L are linked with higher nitrite accumulation and are
positively correlated with N2O emissions during nitrification in a
full-scale predenitrification-nitrification SBR treating anaerobic
supernatant. Similarly, Pijuan et al. (2014) reported an increase of
N2O emissions in a nitritation reactor with the reduction of DO
from 4 to <1mg/L. During the monitoring period, blowers operated
at maximum flow-rate. Therefore, the presence of residual biode-
gradable COD concentration in the aerobic, is expected to decrease
DO concentration. Similarly, higher influent NH4

þ loads or higher
ammonia oxidation rates (that can also result in increased NO2
�

accumulation) can impact the DO concentration in the system. The
dissolved N2O concentration can be affected by a combination of
variables; therefore, it cannot be deduced that the decreased DO is
the sole contributing factor triggering the increased N2O generation
observed.
3.6. Impact of accumulated N2O in the end of anoxic and anaerobic
phase

Several parameters have been reported to affect the N2O accu-
mulation under anoxic conditions, such as the inhibition of the
nitrous oxide reductase (Nos) by free nitrous acid (FNA) or high
accumulation of NO2

�, the electron competition between electron
acceptors and the type of carbon source (Itokawa et al., 2001; Pan
et al., 2013; Zhou et al., 2008; Zhu and Chen, 2011). Additionally,
low values of COD/N can result in incomplete denitritation and
therefore, N2O accumulation via the heterotrophic denitrification



Fig. 6. (a) Daily average conductivity at the end of the aerobic phase versis effluent
NH4eN concentration (coloured points: average dissolved N2O accumulated in the
aerobic phase), (b) Aerobic average accumulated dissolved N2O in respect to DO
concentration; only cycles without initial N2O accumulation from the previous anoxic
cycle are shown (coloured points: ORP at the end of the aerobic phase).

Fig. 7. (a) Representative profiles of dissolved N2O concentration based on different
initial concentrations of N2O in the beginning of the aerobic phase and (b) ORP and DO
profiles.
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pathway during the anoxic phase of the SBR. Accumulated N2O in
the end of the anoxic phase is stripped in the subsequent cycle,
increasing the N2O emissions. Caranto et al. (2016) have recently
showed that N2O can be the main product of anaerobic NH2OH
oxidation catalysed by the cytochrome P460 in N. europaea. The
latter can be an evidence of the biological N2O generation under
limited DO and high NH3 concentrations, both conditions occurring
in the target system in the during the transition from aerobic to
anoxic phases when N2O accumulation rapidly increases.

In this study, the average soluble COD concentration in the
fermentation liquid was equal to 13082 mg COD/L over the moni-
toring period (Table 1). Overall, in >27% of the examined cycles the
N2O was completely consumed by the end of the anoxic phase. Zhu
and Chen (2011), showed that the use of sludge alkaline fermen-
tation liquid as carbon source in an anaerobic-aerobic system
treating high-strength stream, can reduce the N2O production by
up to 68.7% compared to alternative carbon sources (i.e. acetic acid).
On the other hand, Li et al. (2013a) in a process utilizing PHA as
internal carbon source, observed higher N2O production and
reduction rates at higher influent COD concentrations linked with
higher anaerobic PHA synthesis (ranging from 100 to 500 mg/L).
The higher N2O production rates were attributed to the accumu-
lated NO2

� inhibiting the N2O reduction.
The dissolved N2O concentration in the anoxic phase exceeded

the calibration limit of the sensors; only cycles in which “nitrite
knee”was observed and N2O reduced to values lower than 2.6 mg/L
could be investigated. Therefore, the effect on NO2

� in anoxic N2O
generation could not be studied. However, studies have shown that
elevated NO2

� concentrations during denitrification can reduce the
denitrification rate and increase the N2O accumulation (Schulthess
et al., 1995). The electron competition between nitrite reductase
NIR, nitric oxide reductase (NOR) and nitrous oxide reductace
(NOS) is intensified under high NO2
� concentrations; NOS is less

competitive under limitation of electron donor and this will result
in N2O accumulation (Pan et al., 2013; Ren et al., 2019).

Based on the profiles shown in Fig. 5, N2Owas always consumed
after the depletion of NO2

� during denitritation; specifically, dis-
solved N2O concentration decreased after the “nitrite knee”.
Gabarr�o et al. (2014), studied a partial-nitritation reactor treating
landfill leachate, and operated under alternating aerobic/anoxic
conditions to allow heterotrophic denitritation. The authors
demonstrated that significant N2O accumulation was observed
during anoxic periods. NO2

� denitrification rate was higher under
both biodegradable COD limiting conditions and after acetate
addition compared to N2O reduction; N2O reduction rate was
maximum after NO2

� removal (similar to what was observed in this
study). In denitrifying phosphorus removal processes, Li et al.
(2013)a,b showed that the N2O accumulation can be higher
compared to conventional denitrification; the authors suggested
that in the electron competition between denitrifying enzymes and
PHA, N2O reductase is less competitive. On the other hand, Ribera-
Guardia et al. (2016) investigated the electron competition during
denitrification (PHA as the sole carbon source) of enriched dPAO
and dGAO biomass and found that higher N2O accumulation in the
latter culture. Additionally, the last step of denitrification was
inhibited in dGAO cultures (N2O accumulation up to ~84% of the N-
reduced), under high levels of NO2

� (~15 mgN/gVSS) whereas N2O
consumption in dPAO biomass was not affected. Wang et al. (2015)
demonstrated that during denitrifying phosphorus removal, miti-
gation of NO2

� accumulation is possible via continuous dosage of
phosphate and nitrate. Wang et al. (2011), showed that optimisa-
tion of the synthesis of PHA during the anaerobic phase can miti-
gate the N2O production during the anoxic phase leading to
complete denitrification.

In the system, N2O emissions and dissolved N2O concentration
in the aerobic phase is strongly related with incomplete deni-
tritation in the previous cycle. In ~26% of the cycles with incomplete
denitritation, the N2O concentration did not decrease below ~2mg/
L in the anaerobic phase and therefore the stripping of accumulated
N2O in the subsequent aerobic phase was substantial. Fig. 7 (a)
shows representative profiles of the dissolved N2O concentration
and the N2O emissions based on different initial concentrations of
N2O in the beginning of the aerobic phase. The profiles of the ORP,
DO and pH are comparable in the preseted cycles (Fig. 7 (b)). In
cycle B ~0.56 kgN of N2O were emitted during the aerobic phase,
wheareas in cycle A N2O emissions are equal to 0.33 kgN (given the
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duration of these cycles is not equal only 220minwere considered).
The initial dissolved N2O concentration in cycles A and B is equal to
0.27 and > 2.6 mg/L respectively. The N2O emissions increased
significantly due to the accumulated N2O at the beginning of the
previous anoxic phase that was stripped at the beginning of
aeration.

Overall, in ~72% of the cycles, the dissolved N2O concentration at
the beginning of the anaerobic phase was higher than 0.3 mg/L. In
cycles with dissolved N2O concentration higher than 0.3 mg/L at
the beginning of the anaerobic phase, the change in dissolved N2O
concentration during the anaerobic phase was highly correlated
with the ORP at the beginning of the anaerobic phase. Additionally,
the spearman correlation coefficient between the magnitude of the
ORP reduction and magnitude of the dissolved N2O reduction was
equal to 0.7. Fig. 8 shows the boxplots of dissolved N2O reduction in
relation to initial anaerobic ORP and ORP change for two cases: i)
negligible dissolved N2O change mainly due to influent dilution or
anaerobic dissolved N2O concentration >2.6 mg/L, and ii) occasions
with N2O reduction during the anaerobic phase. In Fig. 8 (a) only
occassions with ORP decrease higher than �50 mV are shown. The
presence of nitrites in the bulk liquid during the (anaerobic) phase
affected the ORP. NO2eN depletion in the bulk liquid resulted in a
sharp “nitrite knee” in the ORP profile (similar to the one observed
during the anoxic phase. Therefore, higher ORP change was ex-
pected in cycles with NO2eN depletion and N2O consumption
during the anaerobic phase.

Anaerobic phase term, is used to describe the first operational
phase of the SBR (Fig. 1) within each cycle and might not represent
the actual conditions in the reactor. For instance, ORP ~ �80 mV in
the anaerobic phase of the SBR indicates anoxic conditions, due to
residual NO2

�N concentration from the previous anoxic phase of the
reactor.

3.7. Prediction and control of N2O accumulation in the anoxic and
anaerobic phases

As discussed in section 3.6, the behaviour of ORP was signifi-
cantly relatedwith the behaviour of NO2

� and consequentially of the
dissolved N2O concentration during the anaerobic phase. Therefore,
in the ANSVM model, features related with the ORP profile were
mainly used (Table 2). Similarly, there was a strong link with the
ORP behaviour and the “nitrite knee” with the N2O accumulation
during the anoxic phase. The features considered in ANOXSVM
model are shown in Table 2.

The classification matrices for train and test datasets of the
ANSVM and ANOXSVM models are presented in Table 3. The
average classification accuracy for the ANOXSVMmodel, was equal
to 99% and 97% for the test and validation datasets. Similar results
were obtained for the anaerobic phase with 95% and 98% accuracy
in the train and test datasets respectively.
Fig. 8. Box-plots of the (a) initial anaerobic ORP and (b) the ORP change during the
anaerobic phase for cycles with and without N2O consumption (Class 0: no significant
N2O consumption or anaerobic N2O concentration > 2.6 mg/L; Class 2: significant N2O
consumption).
Jaramillo et al. (2018) developed an SVM classifier to estimate
online the end of partial nitrification in a laboratory aerobic-anoxic
SBR based on features extracted from pH and DO sensors over time-
windows, resulting in 7.52% reduction in the operational time. In
this study, the main focus was to estimate offline the behaviour of
N2O emissions based on historical batch data. The results from this
study indicate that ORP and pH sensor data can be used to detect
the consumption of N2O during the nitritation/nitrification in SBR
reactors. The results show that knowledge-based feature-extrac-
tion and SVM classification could help in explaining the behaviour
of the system and potentially optimise the control to consider the
consumption of accumulated N2O (i.e. in this system the deni-
tritation can be stopped after the local maximum of the ORP rate
after the “nitrite knee” in all the cycles investigated.)

Fig. 9(a) and (b) illustrate the predicted and measured N2O
concentration at the end of the anaerobic phase (ANSVR model).
The SVR parameters were optimised based on the root mean square
error using the train dataset. RMSE of the SVR model was equal to
0.11 and 0.1 mg N2OeN/L for the train and test datasets respectively
(R-squared equal to 0.85 and 0.75 respectively). As shown in Fig. 9
(b) the simulation results follow the behaviour of the actual dis-
solved N2O concentrations observed. One of the major factors
affecting the performance is the limited number of data points, but
the prediction is still accurate.
3.8. Prediction of the N2O concentration in aerobic phase

The input features are shown in Table 4 and were selected based
on the identified influential variables. The N2O predicted values of
the ANSVR model were used (anaerP). The procedure followed for
the selection of model parameters was similar to the respective one
followed for the anaerobic phase. Additionally, ANSVR test dataset
cycles, were identified and used in AERSVR test dataset A. The
model was also applied in anaerB cycles (test dataset B).

Fig. 10 (a), shows the predicted and measured average aerobic
N2O concentration for the trained and test datasets. RMSE of the
SVR model was equal to 0.06 and 0.11 mg N2OeN/L for the train
dataset and test dataset A respectively, whereas the R-squared was
equal to 0.94 and 0.82 (Fig. 10(a) and (b)).

The RMSE of the predicted values for the test dataset B, was
equal to 0.29 mg N2OeN/L and the R-squared was equal to 0.72
(Fig. 10 (a)). The AERSVR model underpredicted the average dis-
solved N2O concentration of test B dataset. This is expected given
that in test B dataset cycles, the initial aerobic N2O accumulation
exceeds the sensor calibration limit. Therefore, on many occasions
the initial aerobic N2O accumulation was also underestimated
(section 2.2.1 - anaerB cycles). An example is shown if Fig. 11. In
cycle A, the average dissolved N2O concentration (calculated as
discussed in section 2.2.1 for anaerB cycles) is equal to 1.33 mg/L.
The AERSVRmodel predicted 0.87 mg/L underestimating the actual
concentration (considering initial accumulation equal to 0.6 mg/L).
In cycle B, the AERSVR model predicted N2O concentration equal to
0.61 mg/L (considering initial accumulation equal to 0.6); the
observed average dissolved N2O concentration (after the local
minimum), was equal to 0.6 mg/L.

The results show that under the investigated operational con-
ditions, the framework shown in Fig. 2 can provide a good esti-
mation of the real dissolved N2O behaviour and concentration
observed during the different phases of SBR operation. Instabilities
in the performance of machine learning models due to changes in
the operational conditions in wastewater bioreactors have been
reported in the literature (Shi and Xu, 2018). Therefore, long-term
datasets and investigation of different patterns and dependencies
should be investigated before model construction.



Table 2
Features used in the classification algorithm to predict the accumulation of dissolved N2O at the end of the anoxic and anaerobic phases.

Anaerobic Anoxic Anaerobic regression

ORP phase initial Last ORP value ORP phase initial
ORP change ORP change ORP change
First local maximum ORP first derivative Mean pH
Local minimum of ORP first derivative after first

local maximum ORP first derivative
Difference between first local maximum (after carbon dosage)
and subsequent local minimum of the ORP first derivative

pH phase initial

Duration between first local maximum and
subsequent local minimum of the ORP first
derivative

Duration of carbon dosage Time of ORP first derivative minimum/duration of
phase

pH phase initial Duration between first local maximum (after carbon dosage)
and subsequent local minimum of the ORP first derivative

Difference between first local maximum and
subsequent local minimum of the ORP first
derivative

Time local minimum ORP first derivative/Phase
duration

Last ORP first derivate

Table 3
SVM classification results anoxic and anaerobic phases.

Phase Dataset Misclassified Sensitivity Specificity Accuracy (%) Kappa Class

Anoxic phase cycle N Train anoxA: 1
anoxB: 0

1 0.99 99 0.97 anoxA: Final dissolved N2O concentration end of anoxic < 0.6 mg/L
anoxB: Final dissolved N2O concentration end of anoxic > 0.6 mg/L

Test anoxA: 1
anoxB: 0

1 0.98 98 0.92

Anaerobic phase cycle Nþ1 Train anaerA:2 anaerB: 1 0.98 0.97 97 0.94 anaerA: N2O end of anaerobic > 2.6 mg/L
anaerB: N2O end of anaerobic < 2.6 mg/LTest anaerA: 1

anaerB: 0
1 0.97 98 0.95

Fig. 9. (a) Predicted vs measured dissolved N2O concentration in the end of the
anaerobic phase (ANSVR) for the test and train datasets and (b) comparison of pre-
dicted and measured dissolved N2O concentration for the test dataset.
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3.9. Mitigation strategy

During aerobic phases, elevated average dissolved N2O con-
centration was linked with DO less than 1 mg/L and increased
conductivity decrease rates (conductivity values represent NH4eN
concentration values in the reactor). Therefore, cycles with
increased conductivity decrease rate indicate higher NH4eN
Table 4
Features selected in the SVR model for the aerobic phase.

Aerobic Features

Average conductivity rate
ORP end of aeration
ORP increase during aeration
Conductivity at the beginning of aeration
Average DO
pH at the beginning of aeration
Conductivity increase (based on the conductivity at the end of the aerobic phase of th
pH change during aeration
Initial aerobicN2O concentration (based on ANSVR predictions)
removal efficiency and NO2
�N accumulation. Dissolved N2O con-

centrations lower than 0.6 mg/L were identified in cycles with
average DO concentration equal to ~1.36 mg/L, and conductivity
decrease rate >1.8 mS/cm/min. Increasing the reactor DO concen-
tration to values higher than 1.3 mg/L can result in decreased aer-
obic N2O generation (Law et al., 2012). However, with the current
anaerobic supernatant feeding strategy, blowers operate at
maximum flowrate, so it is not possible to increase the aeration in
the system.

On the other hand, the implementation of a step-feeding
strategy could foster the reduction of N2O emissions thanks to
the lower NH4eN and free ammonia (FA) concentration at the
beginning of the cycle, which has been recognized as a triggering
factor for N2O production (Desloover et al., 2012). Conductivity at
the end of the cycle can act as surrogate to estimate the effluent
NH4eN concentration of the reactor and optimise the anaerobic
supernatant feeding load. Consequently, the aerobic initial NH4eN
concentration could be controlled to avoid either FA accumulation
or high AOR with subsequent N2O generation.

Additionally, frequent alternation of aerobic/anoxic phases can
be introduced in order to avoid high nitrite accumulation. The
impact of nitrite concentration on N2O production can be also
minimized by ensuring adequate DO levels within the reactor to
e previous cycle)



Fig. 10. (a) Predicted vs measured dissolved N2O concentration (AERSVR) in the aer-
obic phase for the train dataset, the test dataset A and the test dataset B and (b)
comparison of predicted and measured dissolved N2O concentration for the test
dataset B.

Fig. 11. An example of dissolved N2O profiles for cycles belonging to anaerB cycles
(test dataset B). The red points represent the first point considered for the calculation
of the average aerobic N2O accumulation (as described in section 2.2.1). Data points in
the beginning of aeration exceeding sensor calibration limits are not shown. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the Web version of this article.)
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inhibit the nitrifiers denitrification pathway (Blum et al., 2018; Law
et al., 2013). Rodriguez-Caballero et al. (2015) reported that in a
full-scale SBR treating municipal wastewater, intermittent aeration
(alternation between 20 and 30 min oxic and anoxic) led to a
minimisation of N2O compared to long oxic periods that enhanced
N2O emission. The authors related this behaviour to the presence of
shorter aeration times with subsequently lower nitrite accumula-
tion and N2O production.

In addition, Su et al. (2019) reported that slightly acidic or
neutral pH in nitritation reactors (at values that do not inhibit
microbial activity) can decrease N2O generation by up to seven
times. Based on the pH profiles observed in this study, regulation of
aerobic (alkalinity consumption) phase duration can be also
considered to control the pH at lower levels.

The developed models can be used to estimate rapidly and
precisely the hard-to-measure N2O concentrations during aeration
and detect N2O accumulation in non-aerated phases. Additionally,
it can alert operators about cycles with anoxic and anaerobic N2O
accumulation and elevated aerobic N2O concentrations, that
require modifications to the system operation. The ANOXSVM
model can predict if N2O is consumed in anoxic phases or if anoxic
duration should be extended. Thus, additional provision of
fermentation liquid can be performed to promote N2O consump-
tion through denitritation, when after 70e90 min the anoxic SVM
model still indicates incomplete denitritation.

This study provides evidence on the relationship of DO, ORP and
conductivity and pH with the dissolved N2O concentration (in
terms of correlation coefficients, behaviour and thresholds that
indicate specific ranges of N2O accumulation). These findings
together with the models developed in this study, can be the basis
for the development of intelligent control algorithms to integrate
emissions control in sidestream SBR reactors performing nitrita-
tion/partial nitritation or other systems similar to SCENA. More-
over, features based on ORP, pH, DO and conductivity
measurements in wastewater SBR processes, that can be used to
predict dissolved N2O concentrations have been identified. The
developed framework can be also tested in continuous processes
for the data-driven prediction of N2O emissions.
4. Conclusions

Knowledge discovery and data-mining techniques were
employed to extract useful information about the dynamic behav-
iour of N2O, and to predict the behaviour of dissolved N2O con-
centration in a full-scale SBR reactor treating the anaerobic
supernatant. The main conclusions are summarized as follows:

� The N2O emissions in SCENA process varies from 1.3% to 19% of
NH4eN load, therefore they can contribute considerably to the
operational carbon footprint of the process (~90% on average).

� Average aerobic dissolved N2O concentration could significantly
vary under similar influent loads, DO, pH and removal effi-
ciencies. Extracting information from the dynamic in-cycle
behaviour of the variables monitored in the system is a signifi-
cant step towards understanding N2O behaviour.

� Aerobic dissolved N2O concentration peaks (>1 mg/L), were
observed in cycles with average DO concentrations less than
0.9e1 mg/L and ORP concentration at the end of the aerobic
phase less than 40 mV. Conductivity was correlated with the
reactor NH4eN concentration (0.97). N2O peaks were also
observed in cycles with elevated decrease of conductivity during
aeration. Step-feeding, control of initial NH4eN concentrations
and control of pH via the regulation of aerobic phase duration
can mitigate the N2O peaks observed in this study.

� The accumulated N2O at the end of the SBR anoxic phase was
stripped in the subsequent aerobic phase and had a significant
impact on the amount of N2O emitted. The accumulated N2O
was consumed rapidly after “nitrite knee” that was linked with
the nitrite depletion. The ANOXSVMmodel can be used to detect
if anoxic duration should be extended or additional fermenta-
tion liquid provided to enhance N2O consumption in anoxic
phases.

� This study shows that low-cost sensors, conventionally used to
monitor SBR systems (i.e. pH, DO, ORP), have good capabilities to
predict the dissolved N2O behaviour and concentrations when
couple with knowledge discovery techniques. The AERSVR
model, showed reliable estimations of the aerobic N2O con-
centration and can provide guidance to WWTPs operators, on
whether N2O levels are acceptable or mitigation actions are
required.
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