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Abstract

This thesis aims to contribute to the goal of improving autonomy
in robotic surgery, focusing on the following challenges: (1) the devel-
opment of accurate models for flexible surgical tools, (2) the investi-
gation of properties for the real-time control of surgical instruments,
during the execution of minimally invasive robotic surgery.

In the first part of the thesis, we investigate interaction control al-
gorithms that take advantage of the inherent flexibility of commonly
used surgical instruments. We leverage continuum mechanics theory
and high-order approximants to model the surgical instrument and
investigate passivity and stability properties. For the first time, this
thesis theoretically demonstrates that force control based on a collo-
cated feedback signal from a continuum flexible beam can be passive
with respect to the environment port, meaning that stability can be
guaranteed in any passive environment. On the other hand, when
the feedback is non-collocated, passivity may be hampered, and these
cases are analyzed using a high-order lumped approximant. An exper-
imental validation using real-world surgical instruments is provided,
showing coherence with theoretical expectations.

In the second part, we focus on modelling the interaction between
a bevel-tip biopsy needle and the surrounding tissue to enable au-
tomated needle insertion during a robotic prostate biopsy. In this
context, the objective is to estimate the deflection of the tip during
insertion and to plan the trajectory accordingly. An experimental
comparison is conducted to assess the accuracy of existing models in
predicting needle deflection.





"Success is not final; failure is not fatal;
it is the courage to continue that counts."

- Winston S. Churchill
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Chapter 1

Introduction

Robotic surgery, also called robot-assisted surgery, allows doctors to perform many
types of complex procedures with more precision, flexibility, and control than is
possible with conventional techniques. Robotic surgery is usually associated with
minimally invasive surgical procedures performed through tiny incisions. Using
robotic surgery, surgeons can perform delicate and complex procedures that may
be difficult or impossible with other methods. Often, robotic surgery makes mini-
mally invasive surgery possible. The benefits of minimally invasive surgery include
fewer complications, less pain and blood loss, shorter hospital stay, a quicker re-
covery and less noticeable scars. Nowadays, the da Vinci Surgical System (Figure
1.1) is the most advanced robotic system for minimally invasive surgery. Its
technical characteristics make it usable in various sectors, from urology to gy-
naecology, from thoracic surgery to general surgery. The surgeon, seated at a
computer console near the operating table, moves the robot’s arms, associated
with the endoscopic instruments introduced through small incisions. The console
gives the surgeon a high-definition, 3D view of the surgical site.

1.1 Autonomy in Robotic Surgery

Recent research in robotic-assisted minimally invasive surgery mostly focuses on
autonomous systems that perform repetitive surgical steps, such as suturing, ab-
lation, and needle insertions. Leaving monotonous tasks to the robot could allow
surgeons to concentrate on the more mentally demanding aspects of the proce-
dure. Despite having all the necessary mechanical and computational capabilities,
most surgical robots do not currently carry out any autonomous tasks due to tech-
nical and legal constraints such as the complexity of the surgical environments
(patient-specific variations), perception and sensing limitations (lack of real-time
feedback required for precise operations) and some ethical considerations about
patient consent, trust in automated systems.

Six increasing levels are identified in a surgical system’s autonomy grade clas-
sification [3].

• Level 0: Systems at level-0 are not autonomous, the motion of the robot

1
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Surgeon Side

(Console and Viewer) (Instruments and Camera)

(a)

Workstation Robotic Arms

Patient Side

Robotic Surgery Procedure

(b)

Figure 1.1: (a) The da Vinci Surgical System. Image adapted from [1]; (b) 3D
view of the surgical site during a robotic procedure.

is controlled exclusively by the surgeon, and no supports or constraints are
provided.

• Level 1: Systems classified within Level-1 “Robot Assistance” are capable
of interacting with the surgeon to guide or support the execution of a par-
ticular task. The assistance provided consists of either active constraints to
guide the surgeon’s motion or a virtual fixture to enhance the surgical site
visualisation.

• Level 2: Systems classified within Level-2 “Task Autonomy” are capable
of accomplishing specific surgical tasks upon specifications provided by the
surgeon.

• Level 3: Systems categorised in Level-3 “Conditional Autonomy” are pro-
vided with perceptual capabilities to understand the surgical scenario, to
plan and execute a specific task and to update the plan during execution.

• Level 4: Surgical systems at Level-4 “High Autonomy” can interpret pre-
operative and intra-operative information, devise an interventional plan
composed by a sequence of tasks, and execute it autonomously, re-planning
if necessary.

• Level 5: Surgical systems at Level-5 “Full autonomy” can perform an entire
surgery. This can be construed broadly as a system capable of all procedures
performed.
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Figure 1.2: Different levels of autonomy as mapped to robotic surgery. Image
adapted from [2].

The introduction of autonomy involves the development of systems with ad-
vanced perception, reasoning, and motion planning skills as well as specific ap-
proaches for controlling interaction with the external environment. Due to the
complex nature of the patient’s anatomical environment, these tasks are extremely
difficult in the surgical field. Recently, several projects have been carried out to
provide surgical robots with a certain level of autonomy, as exemplified by ARS
(Autonomous Robotic Surgery Project)1 and its proof of concept, PROST (The
Autonomous Prostate Biopsy Project)2. This thesis is integrated within both
ARS and PROST Projects. We are focusing on controlling the forces exchanged
between the patient and the surgical instrument to ensure the accuracy and the
safety of the procedure in two areas: Minimally Invasive Robotic Surgery (MIS)
with da Vinci Research Kit (dVRK) and Prostate Biopsy. The following section
describes in detail both European projects.

1.2 European Projects on Autonomy in Robotic Surgery

1.2.1 The Autonomous Robotic Surgery Project

The ARS European Project aims to develop methodologies that will enable the
execution of surgical intervention by a robotic system with complete autonomy.
The goal of the ARS project is the derivation of a unified framework for the
autonomous execution of robotic tasks in challenging environments in which ac-
curate performance and safety are of paramount importance. The framework
for autonomous robotic surgery will include five main research objectives. The

1The Autonomous Robotic Surgery project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
under grant agreement No. 742671

2The Autonomous Prostate Biopsy project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
under grant agreement No. 875523
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first will address the analysis of the robotic surgery data set to extract action
and knowledge models of the intervention. The second objective will focus on
planning, consisting of instantiating the intervention models to a patient-specific
anatomy. The third objective is to develop methods for the real-time control of
the surgical instruments during the execution of the intervention. The fourth re-
search objective will focus on real-time reasoning to assess the intervention state
and the overall surgical situation. Finally, the last research objective will address
autonomous surgical robotic capabilities’ verification, validation, and benchmark-
ing. Surgical instruments have undergone great innovation over time, from short
and rigid instruments such as forceps, scissors, spreaders, scalpels, etc., to long
and more flexible robotic laparoscopic instrumentation that allows the replication
of human movement through an articulation (wrist) positioned at the tooltip.

(a) (b)

Figure 1.3: (a) Open-Surgery Instruments; (b) The da Vinci Surgical System
Laparoscopic Instruments.

1.2.2 The Autonomous Prostate Biopsy Project

The PROST European PoC proposal aims at demonstrating the technical, clini-
cal and economic feasibility of autonomous prostate biopsy execution, by applying
the technologies developed by the ERC project ARS to a robotic prostate biopsy
system. The project is made feasible by two enabling factors: the ongoing ERC
project ARS which is developing sensing and control architecture for autonomous
surgical robots, and the availability of a prototype of a robot for prostate biopsy
developed with a grant by the Italian Ministry of Foreign Affairs and Interna-
tional Cooperation. Prostate cancer is the second most common cancer in men,
early diagnosis is key to improve patients’ therapeutic path and reduce the mor-
tality rate. Prostate biopsy is a good candidate for applying automation in clin-
ical practice since it is a rather simple procedure, carried out on more than 1
Mil/year patients in Europe, and still affected by a diagnostic error higher than
30%. due to the difficulty in identifying the location of the lesion and in man-
ually aiming the biopsy gun. The diagnostic tool developed by PROST Project
will allow the autonomous robotic execution of the biopsy: a new paradigm that
will turn a subjective and operator-dependent procedure into a safer and more
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accurate procedure. The clinical process to identify a possible carcinoma involves
a blood sampling with the evaluation of the PSA enzyme followed by a digital
rectal examination in which the doctor surrounds the gland in search of surface
abnormalities. To have a final diagnosis, a histopathological evaluation is made
on the samples taken during the prostate biopsy. There are two types of biopsies:
transrectal and transperineal. Although the first is simpler and more intuitive
PROST device performs a transperineal biopsy in order to limit complications
such as sepsis. The standard procedure consists of 12 samples and other target
samples chosen from Magnetic Resonance Imaging (MRI) images. The needle is
inserted into the cannula and then "fired" into various areas.

Figure 1.4: Transperineal Prostate Biopsy.

1.3 Contributions and structure of the thesis

This thesis contributes to the ambitious goal of achieving surgical autonomy in
robotic surgery by providing feedback on the interaction between instruments and
the anatomical environment. Feedback allows surgeons to control their movements
and actions during surgery precisely. This is especially important in delicate
procedures where even slight deviations can cause significant harm. Excessive
force can damage tissues, while insufficient force may be ineffective. Feedback
helps manage the amount of force applied, reducing the risk of tissue damage.
In robotic surgery, where the surgeon is not directly in contact with the tissues,
feedback is essential to simulate the tactile sensation and ensure appropriate force
application.

Two different robotic systems are considered: da Vinci Surgical System and a
robotic device to perform prostate biopsy. Starting from the study of the mathe-
matical models of tools available in robotics, we developed methodologies in order
to measure and control the forces exchanged between the instrument and organs
involved during a procedure. During the robotic laparoscopic procedure, the sur-
geon decides to perform certain movements based on visual information and his
experience, but he has not any physical perception of the reaction forces between
the laparoscopic tool and the tissues. In this thesis, we take advantage of the
flexibilities within the laparoscopic tool to control interaction forces with human
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tissues.
During a prostate biopsy, the estimation of the needle deflection during the

insertion is a problem that needs to be addressed in order to ensure accurate needle
tip placement, especially when considering the small dimension of the organ and
the possibility of taking tissue samples in the most distal areas. Given the high
flexibility of prostate biopsy needles, important deflections can indeed be observed
due to the tissue reaction forces acting on the bevelled tip during insertion (Figure
1.5).

(a) (b)

Figure 1.5: (a)Prostate Cancer (b) Bevelled-tip needle deflection.

The thesis is divided into two distinctive parts. In part I, we focus on exploit-
ing the flexible nature of surgical links for force control. Chapter 2 shows that the
force control, based on feedback from the deformation at the base of the link, is
passive with respect to the surrounding environment. Using a continuum mechan-
ics model that considers the dynamics of the system ensures that the force control
is able to maintain stability in any passive environment. In chapter 3, we present
a software library that can generate nth-order lumped models to accurately ap-
proximate the dynamics of flexible links characterized by certain inertia, stiffness,
and damping parameters under the action of non-collocated feedback. The pas-
sivity and stability of these models are analysed considering robotic surgery as
a reference application. In part II of the thesis, we focus on modelling the in-
teraction forces between a biopsy needle and tissues in the prostate area. We
propose an experimental comparison to evaluate the accuracy of the kinematic
models available in the literature. Kinematic models should then be compared
with finite elements models and approximate quasi-static mechanical models. The
final goal is to provide a comprehensive and detailed assessment of the accuracy
of different models within the needle-prostate tissue interaction. Finally, Chapter
5 summarizes the results of this thesis and proposes future extensions for both
parts.



Part I

Flexible Links and Force Control

7



Chapter 2

Force control exploiting link
flexibility: passivity
considerations

Structural flexibility may appear in different robotic systems. It can emerge as a
consequence of certain design requirements, such as lightweight, safety or minimal
encumbrance [4], or it can be added on purpose to absorb impacts and reduce
mechanical stress, like in the case of certain legged robots [5]. Once flexibility
is there, one needs to deal with it and, if possible, take advantage of it. Some
results in the last three decades of force control research have highlighted that
flexibilities can help to improve stability margins [6, 7, 8]. These results are based
on lumped models: series elastic actuators [9] and, more in general, series elastic
systems [10] represent a main example. In particular, it has been proved that
collocated flexibilities and collocated force feedback allow higher gain stability
margins. In turn, higher force feedback gains allow to better mask the inherent
actuator dynamics, including inertia, friction and stiction phenomena leading to
enhanced performance and transparency [8, 7, 6]. With the rise of series elastic
actuation flexibilities are deliberately introduced at the joint level by adding a
(lumped) deformable element between the motor and the link, leading to accurate
force sensing and control at each robot joint [7, 9, 11]. Indeed, the deformation
of such flexible element can be used to provide collocated force feedback and may
lead to improve the so-called accuracy-robustness tradeoff [12]. As a matter of
fact, several passive controllers have been proposed for series elastic actuators
guaranteeing a stable interaction with any passive environment [13, 14].

Interestingly, it is possible to achieve a similar advantage by exploiting differ-
ent forms of flexibilities, appearing at the link level instead of at the joint level
[15, 16]. Unfortunately, link flexibility is harder to model in comparison to joint
flexibility as it involves a more complex formalism from continuum mechanics
theory. Probably due to these modelling complexities, the idea of exploiting link
flexibilities has received little attention in the force control literature. The few
existing works are limited to simulation studies [17], or they present simple exper-

8
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imental results without considering a solid theoretical analysis [18], or they use
approximated lumped models [19, 20, 16, 21, 22].

Nevertheless, different kinds of robotic systems exhibit inherent link flexi-
bilities, from medical to collaborative robotics. In surgical robots, flexibilities
are unavoidable due to the thin diameter of the laparoscopic tool used for min-
imally invasive surgery [23]; in certain collaborative robots, flexibilities can be
due to safety requirements, which leads to preferred lightweight structures [4]; in
exoskeletons, link flexibilities can be added on purpose to reduce kinematic mis-
alignments [24]. All these systems can take advantage of force control technology,
which in turn can take advantage of flexibilities already embedded in the robot
structure. Unfortunately, a solid theoretical foundation to exploit link flexibilities
in robot force control does not exist yet, and the objective of this work is to start
filling this gap. This Chapter considers force control based on feedback from link
deformation and investigates related passivity properties, considering a contin-
uum mechanics model expressing the link dynamics. Even if some results exist on
passive control of distributed systems [25, 26, 27], they are not specifically linked
to force control applications. We recall that passivity represents a fundamental
requirement in interaction control since the high uncertainties that typically char-
acterize the environment affect the closed-loop stability. Passivity is the only tool
able to guarantee stability in any passive environment. The discussion proposed in
this Chapter could be applicable to a wide class of robotic systems with structural
flexibilities, such as lightweight collaborative robots, industrial and medical ex-
oskeletons, or medical robots. In this Chapter, the term force control is intended
in a general sense, including both force and torque feedback.

The Chapter is organised as follows: Section 2.1 summarizes the past work on
flexible link and force control and motivates our choice to focus on single joint-
link modules. Sections 2.2 and Appendix 2.6 report continuum mechanics models
for a flexible link interacting with a generic environment under small and large
joint angle assumptions, respectively. In section 2.3, force control passivity is
proven with respect to the environment port and considering feedback from link
deformation measured at the link base while in Appendix 2.7 trunked lumped
approximants of the system are reported and passivity conditions for collocated
force feedback are calculated. In Section 2.4 and Appendix 2.8, a high-order
lumped approximation of the continuum mechanics model is built up to validate
results using numerical examples. Section 2.5 reports our conclusions and plans
for future work.

The results of this chapter are reported in "Force Control Exploiting Link
Flexibility: Passivity Considerations" submitted to "IEEE Transactions on Au-
tomatic Control".
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2.1 Background

2.1.1 Flexible links in force control applications

Few attempts to exploit link flexibility in force control applications appeared in
the literature. One example is the work by Garcia [18], which describes exper-
iments using link deformation, measured at the link base, as a feedback signal
to close a force control loop. The work is only empirical and reports force con-
trol experiments without theoretically proving stability. Instead, a theoretical
stability analysis is reported in the work by Feliu-Talegon [28] where a hybrid
position-force controller is proposed aiming at controlling the tip position (in free
motion) and the force exerted on the environment (in constrained motion). An
interesting point about this work is that stability analysis considers a numerable
set of environments, thus guaranteeing robustness to environment uncertainties.
Robustness to environment uncertainty is indeed a fundamental feature in force
control applications since the environment is, in most cases, unknown or at least
uncertain. A critical point in the work by Feliu-Talegon is that the considered
link model is trunked to the second order. Such approximation leads in practice
to a lumped model that is equivalent to those used for series elastic actuation
and cannot account for the continuum nature of flexible links, which should be
formalised as a partial differential equation (PDE). A similar trunked model was
used in our previous work, where we described the concept with the term Series
Elastic Link [15] to highlight the analogy with series elastic actuation. The work
by Morita [17] is the only example we could find where a PDE model is consid-
ered for the link within a force feedback application. Unfortunately, the proposed
system does not aim to control forces; it presents a position control architecture
where force feedback from link deformation, measured at the link base, is just
used to damp link oscillations. While the works reported so far consider force
control applications on a single flexible link, the work by Malzahn represents the
only example we could find on multiple-link robots. Unfortunately, the consid-
ered link model is again trunked to the second order and does not account for
the continuum nature of the system [16, 29, 30, 31]. Quite interestingly, even if
Malzahn has been the first to exploit elastic link deformations on a multi-DOF
robot, his main contribution is related to decentralized single-DOF controllers “to
shape the closed loop dynamics of each joint-link module," leading to simplify the
complex multi-elastic-body model. In other words, Malzahn stated that if each
joint-link subsystem can be considered an ideal torque source, thanks to quality
force control, the whole manipulator dynamics could be approximated to simpler
equations. Therefore, advancing the control of single joint-link subsystems to
better approximate ideal torque sources is of fundamental importance. Starting
from this consideration, our contribution focuses on a single joint-link module,
and the continuum nature of links is considered within a force control application
and passivity arguments are introduced.
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2.1.2 Existing models for Flexible links

Most of the existing models for flexible links come from position control literature
where the main objective is to control the link end-point position while suppress-
ing vibrations due to the link dynamics [32, 33, 34, 35, 36, 37, 38]. All existing
models are based on the small link deformation assumption. In addition, these
models assume small joint displacements to obtain an overall linear description of
the link dynamics. Two main modelling approaches can be found. A first class of
approaches (time-space models) use partial differential equations along time and
space coordinates derived using the Lagrangian formalism [39, 17, 40, 41, 36, 42].
A second class of approaches (frequency models) consider linearized models along
a defined spatial coordinate and use time-space separation to define the frequency
relation between the motor input torque and the position (or orientation) at a
selected spatial coordinate [43, 44, 45, 46, 47, 48, 49, 50, 19, 51]. This class intro-
duces a further approximation by only considering the dominant system dynamics
expressed in terms of dominant poles and zeros. The infinite-order expression de-
rived from time-space models is often trunked to the second order, leading to
the approximation discussed in section 2.1.1, which is equivalent to a series elas-
tic actuation model [15]. Rarely, higher-order models are used, trunking to the
fourth or sixth order [52, 53]. In conclusion, the first class of models (time-space
models) seems to provide the most accurate description of flexible links subject
to small deformations, and these are the kinds of models considered in this work.
In particular, we take inspiration from the model in [17], which is, among the few,
the only one including external forces acting on the link.

2.2 System Modelling

Z = Z1

O = O1

Y1
Y

X

rθ(t)

θ(t) FE(t) m

w(t, r)

w(t, L)

L
X1

Figure 2.1: Flexible link clamped to a revolute joint

In this section, we use the Lagrangian formalism to derive the motion equa-
tions for the joint-link module represented in Figure 2.1. It includes a flexible
link clamped to a revolute joint, rotating on Z-axis, driven by an electric motor
in such a way that the motor torque τm and the external force FE produce a
link bending deformation laying on the XY plane. Since only the planar motion
of the link is considered, even the external FE is taken into account. Reference
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{O,XY Z} represents the fixed frame, while {O1, X1Y1Z1} is the body frame with
O = O1. However, since θ is assumed small, as in [17], the two frames coincide.
The quantities θ(t), τm(t), and Jm represent the angle of rotation of the motor,
the torque developed by the motor, and the moment of inertia of the motor. The
function w(t, r) denotes the link bending displacement at a spatial coordinate r
expressed in the motor body frame. The link has length L, uniform mass density
ρ per unit length, and uniform bending stiffness EI where E is Young’s modulus
and I is the second moment of area. Torsional and axial stiffness are assumed to
be infinite. The interaction with the environment generates an external force FE

applied at the link endpoint. According to the continuum mechanics theory, since
the force FE lies on the XY plane, it can be expressed as

FE =
[
FEx FEy 0

]T
. (2.1)

Also, since the force component considered link bending is perpendicular to the
link and considering small θ, it can be obtained considering the third derivative
of w(t, r) with respect to the space r computed at the tool endpoint position.

FE⊥ =
[
0 EIw′′′

E (t) 0
]T (2.2)

with wE(t) = w(t, L). This is the only component affecting the in-plane link
bending. In our notation, the symbols (.) and (′) represent the time and the space
derivative, respectively. The bold symbols represent the vectors, while the normal
symbols represent the scalar and the vector modules. As mentioned before, the
model assumptions for the motion are small link deformations w(t, r) and small
joint angle displacement θ(t), as in [17]. The boundary conditions are w(t, 0) = 0
and w′(t, 0) = 0, and no torque applied at the link endpoint EIw′′(t, L) = 0.
These conditions are applied to derive the motion equations because the link is
considered as a cantilever beam fixed at the rotational joint. By considering these
assumptions, the tip position vector P can be expressed as

P =
[
L Lθ(t)− wE(t) 0

]T (2.3)

Similarly, the vector r, which represents the position of an infinitesimal portion
of the link at the spatial coordinate r, can be expressed as

r =
[
r rθ(t)− w(t, r) 0

]T
. (2.4)

To derive the motion equations using the Lagrangian formalism, one needs to
consider the total kinetic energy τTOT and the potential energy ν, which are
given by
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τTOT = τmotor + τlink + τtip

τmotor =
1

2
Jmθ̇2(t)

τlink =
1

2

∫ L

0
ρṙT ṙ dr

τtip =
1

2
mṖ

T
Ṗ

ν =
1

2

∫ L

0
EIw′′2(t, r) dr

(2.5)

τmotor, τlink and τtip are the kinetic energies of the three components of the system:
the motor, the link, and the mass m placed on the tip of the link on which the
environment force FE acts. The equations of motion for the system in Figure 2.1
are derived, given the Lagrangian formulation, by minimising the action functional
F . Let’s construct the Lagrangian equation as

L = τTOT − ν

L =
1

2
Jmθ̇2 +

1

2

∫ L

0
ρṙT ṙ dr +

1

2
mṖ

T
Ṗ − 1

2

∫ L

0
EIw′′2 dr

(2.6)

where

ṙT ṙ =
[
0 rθ̇(t)− ẇ(t, r) 0

]  0

rθ̇(t)− ẇ(t, r)
0

 (2.7)

and

Ṗ
T
Ṗ =

[
0 Lθ̇(t)− ẇE(t) 0

]  0

Lθ̇(t)− ẇE(t)
0

 (2.8)

The action functional F is defined as the time integral of the Lagrangian L on a
specific trajectory

F =

∫ t1

t0

∫ L

0
L(r, θ(t), w(t, r), θ̇(t), ẇ(t, r), w′′(t, r)) dr dt

=

∫ t1

t0

∫ L

0

Jm
2L

θ̇2 +
ρ

2
(rθ̇ − ẇ)2 +

m

2L
(Lθ̇ − ẇE)

2 − EI

2
w′′2 dr dt

(2.9)

According to Hamilton’s principle, motion equations are obtained by introducing
small perturbations on the states θ+εv and w+εz for any ε ∈ R, and these must
be zero at the endpoints of the trajectory. The perturbations produce a variation
δF of the functional action given by:

0 = δF =
d

dε

∣∣∣∣
ε=0

∫ t1

t0

∫ L

0

Jm
2L

(θ̇ + εv̇)2 +
ρ

2
(r(θ̇ + εv̇)+

−(ẇ + εż))2 +
m

2L
(L(θ̇ + εv̇)− (ẇE + εżE))

2+

−EI

2
(w′′ + εz′′)2 dr dt

(2.10)
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0 = δF =

∫ t1

t0

∫ L

0

Jm
L

θ̇v̇ + ρ(rθ̇ − ẇ)(rv̇ − ż)+

+
m

L
(Lθ̇ − ẇE)(Lv̇ − żE)− EIw′′z′′ dr dt

(2.11)

Since Hamilton’s principle requires that δF is zero for all possible perturbations
ε, both perturbations are set to 0, and integrals are computed to obtain the
equations of motion. As a first step, considering z = 0 in Eq. (2.11), one can
obtain

∫ t1

t0

∫ L

0

Jm
L

θ̇v̇︸ ︷︷ ︸
δFA

+ ρr(rθ̇ − ẇ)v̇︸ ︷︷ ︸
δFB

+m(Lθ̇ − ẇE)v̇︸ ︷︷ ︸
δFC

dr dt. (2.12)

Then, integrals δFA, δFB and δFC are computed by parts

δFA =

∫ t1

t0

Jm
L

θ̇v̇ dt
P.I
= −

∫ t1

t0

Jm
L

θ̈v dt

δFB =

∫ t1

t0

ρr(rθ̇ − ẇ)v̇ dt
P.I
= −

∫ t1

t0

ρr(rθ̈ − ẅ)v dt

δFC =

∫ t1

t0

m(Lθ̇ − ẇE)v̇ dt
P.I
= −

∫ t1

t0

m(Lθ̈ − ẅE)v dt

(2.13)

∫ t1

t0

∫ L

0
−
[
Jm
L

θ̈ + ρr(rθ̈ − ẅ) +m(Lθ̈ − ẅE)

]
︸ ︷︷ ︸

=0

v dr dt (2.14)

to get the following equation

Jm
L

θ̈ + ρr(rθ̈ − ẅ) +m(Lθ̈ − ẅE) = 0 (2.15)

As a second step, considering v = 0 in Eq. (2.11), the following expression is
obtained

∫ t1

t0

∫ L

0
−ρ(rθ̇ − ẇ)ż︸ ︷︷ ︸

δFD

− m

L
(Lθ̇ − ẇE)żE︸ ︷︷ ︸

δFE

−EIw′′z′′︸ ︷︷ ︸
δFF

dr dt (2.16)

Then, integrals δFD, δFE and δFF are computed by parts
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δFD = −
∫ t1

t0

ρ(rθ̇ − ẇ)ż dt

P.I
=

∫ t1

t0

ρ(rθ̈ − ẅ)z dt

δFE = −
∫ t1

t0

m

L
(Lθ̇ − ẇE)żE dt

P.I
=

∫ t1

t0

m

L
(Lθ̈ − ẅE)zE dt

δFF = −
∫ L

0
EIw′′z′′ dr

P.I
=

∫ L

0

FE⊥

L
zE − EIw′′′′z dr

(2.17)

∫ t1

t0

∫ L

0

[
ρ(rθ̈ − ẅ)− EIw′′′′)

]
︸ ︷︷ ︸

=0

z+

[
FE⊥

L
+

m

L
(Lθ̈ − ẅE)

]
︸ ︷︷ ︸

=0

zE dr dt

(2.18)

and the following equations of motion are obtained

ρ(rθ̈ − ẅ)− EIw′′′′ = 0 (2.19)

FE⊥

L
+

m

L
(Lθ̈ − ẅE) = 0 → m(Lθ̈ − ẅE) = −FE⊥ (2.20)

Substituting the equation of motion for the link (2.19) and the boundary condition
of the tip mass (2.20) in the equation of motion for the motor (2.15), one can
obtain

∫ L

0

Jm
L

θ̈︸︷︷︸
M1

+ rEIw′′′′ − FE⊥︸ ︷︷ ︸
M2

dr =

∫ L

0

τm
L︸︷︷︸
M3

dr. (2.21)

Then, the integrals M1, M2 and M3 are computed
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M1 =

∫ L

0

Jm
L

θ̈ dr = Jmθ̈

M2 =

∫ L

0
rEIw′′′′ dr −

∫ L

0
FE⊥ dr

P.I
= EIrw′′′

∣∣∣∣L
0

− EI

∫ L

0
w′′′ dr − FE⊥L

= FE⊥L− EIw′′
∣∣∣∣L
0

− FE⊥L

= −EIw′′
E︸ ︷︷ ︸

=0

+EIw′′
0 = EIw′′

0

M3 =

∫ L

0

τm
L

dr = τm

(2.22)

and the motion equations are obtained as

Jmθ̈(t) + EIw′′(t, 0) = τm(t) (2.23)

ρ(rθ̈(t)− ẅ(t, r))− EIw′′′′(t, r) = 0 (2.24)

m(Lθ̈(t)− ẅE(t)) = −FE⊥(t) (2.25)

where (2.23) represents the motor dynamics, (2.24) the link dynamics, (2.25) the
end-point mass dynamics and FE is the module of FE . For the sake of complete-
ness, Appendix 2.6 reports the derivation of the same equation by removing the
small joint angle assumption, which leads to a more complex formulation.

2.3 Passivity Analysis

Now that the system model has been derived, the following theorem considers the
application of a proportional force controller in the form

τm(t) = −kpEIw′′(t, 0), kp > −1 (2.26)

where the term EIw′′(t, 0) represents the torque measured at the link clamping
point, which is used as feedback signal. The theorem proves that such controller
ensures passivity at the environment port (FE , Ṗ ).

Theorem 1. The PDE model (2.23), (2.24) and (2.25) controlled by the
control law (2.26), where kp is a proportional gain and EIw′′(t, 0) the torque
measured at the link clamping point, is passive at the port (FE , Ṗ )

Proof: Let us consider as Lyapunov candidate function V the summation of
the system kinetic and potential energy.

V =
1

2
αJmθ̇2 +

1

2

∫ L

0
ρṙT ṙ dr +

1

2

∫ L

0
EIw′′2 dr (2.27)
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with α = 1
kp+1 . Note that since kp > −1, then 0 < α < 1. Differentiating the

Lyapunov candidate function with respect to t yields

V̇ = αJmθ̇θ̈ +

∫ L

0
ρṙT r̈ dr +

∫ L

0
EIw′′ẇ′′ dr (2.28)

where
r̈ =

[
0 rθ̈(t)− ẅ(t, r) 0

]T (2.29)

and

ṙT r̈ =
[
0 rθ̇(t)− ẇ(t, r) 0

]  0

rθ̈(t)− ẅ(t, r)
0

 (2.30)

The link equation (2.24) is substituted in the Lyapunov candidate equation (2.28)

V̇ = αJmθ̇θ̈ +

∫ L

0
EIrw′′′′θ̇︸ ︷︷ ︸
V̇A

+

∫ L

0
EIw′′ẇ′′ dr︸ ︷︷ ︸

V̇B

+

−
∫ L

0
EIẇw′′′′︸ ︷︷ ︸
V̇C

dr

(2.31)

and integrals V̇A, V̇B, V̇C are computed by parts

V̇A =

∫ L

0
EIrw′′′′θ̇ dr

P.I
= EILθ̇w′′′

E + EIw′′
0 θ̇

= FE⊥Lθ + EIw′′
0 θ̇

V̇B =

∫ L

0
EIw′′ẇ′′ dr

P.I
= EI[[w′′ẇ′]L0+

−
∫ L

0
EIw′′′ẇ′︸ ︷︷ ︸
V̇D

dr]

(2.32)

Let’s call V̇D the last term of V̇B and, again, let’s calculate it by parts

V̇D =

∫ L

0
EIw′′′ẇ′ dr

P.I
= EI[[w′′′ẇ]L0 −

∫ L

0
EIẇw′′′′ dr]

= EIw′′′
E ẇE −

∫ L

0
EIẇw′′′′︸ ︷︷ ︸
V̇C

dr
(2.33)

It can be noted that the last term of V̇D equals V̇C , so substituting V̇D in V̇B

yields to
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V̇B = −EIw′′′
E ẇE + EI

∫ L

0
ẇw′′′′ dr

= −FE⊥ẇE + EI

∫ L

0
ẇw′′′′︸ ︷︷ ︸

V̇C

dr
(2.34)

Then, replacing V̇A, V̇B, V̇C in V̇, it is possible to cancel out V̇C leading to

V̇ = αJmθ̇θ̈ + FE⊥Lθ̇ + EIw′′
0 θ̇ − FE⊥ẇE . (2.35)

Finally, by substituting the motor motion (2.23)

V̇ = αθ̇(τm − EIw′′
0) + FE⊥Lθ̇ + EIw′′

0 θ̇ − FE⊥ẇE (2.36)

and then the control law (2.26), one has

V̇ = FE⊥(Lθ̇ − ẇE) = FE⊥
T Ṗ (2.37)

since, due to the Poisson equation, Ṗ is perpendicular to P , (FE⊥
T , Ṗ ) is equiv-

alent to (FE , Ṗ ) and passivity at the environment port is proved. ■
We can conclude that Theorem 1 proves the passivity of proportional force

feedback (Eq. 2.26) with respect to the environment port. This means that if
and only if any passive environment is coupled to the system, stability is always
retained [54]. This is a novel approach in which force control passivity has been
proven using feedback from link deformation without relying on trunked models.
Since the link deformation is measured at the base, we can name this feedback
as "collocated" similarly to the nomenclature related to lumped models [55, 43].
In our case, the link deformation is indeed measured infinitely close to the motor
shaft, exactly at the clamping point1. We acknowledge that the proposed passivity
proof does not apply to the cases of non-collocated torque feedback i.e τm =
−kpEIw′′(t, ε), ε > 0 where the feedback torque is measured far from the clamping
point.

We highlight that the theoretical finding of Theorem 1 agrees with existing
passivity results on lumped models [54, 14]. These results often consider trans-
lational equivalent models [56]. In Appendix 2.7, we considered translational
equivalent lumped models, and we derived the passivity conditions for collocated
force feedback. These conditions are analytically derived for low-order models
up to order 10. For all these models, it holds that collocated proportional force
feedback is passive with kp > −1. This is in line with Theorem 1. The analyt-
ical derivation of passivity conditions for higher-order models requires too long
algebric computations and is not reported. To test higher-order cases, the next
section considers a 50-order lumped model and passivity is tested numerically.

1According to [55, 43], when the feedback sensor is located on the same rigid body of the
actuator we fall into the definition of “collocation”
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System Parameters Range

Proportional Gain kp ∈
{
−1,−10−1,−10−2, 10−2, 10−1, 1, 10, 102, 103, 104, 105

}
Motor Mass Mm ∈ [0.01, 0.1] kg

Motor Friction dm ∈ [0.01, 0.1, 1] N
m2

Motor Stiffness k0 ∈ [100, 1000] N
m

Link Block Mass mi ∈ [0.1, 1, 10] kg

Link Block Stiffness ki ∈ [20, 40, 100] N
m

Table 2.1: Considered parameters in passivity tests

2.4 Numerical Validation

As a first step to validate the theoretical finding expressed in Theorem 1, we
derived a lumped 50-order translational equivalent model. We used the sym-
bolic Python library Sympy [57] to compute the system impedance I(s) at the
environment port under the feedback action of a collocated proportional con-
troller, as in Eq.(2.26). Details on the derivation and the implementation of such
lumped model are reported in Appendix 2.8. In this section, we numerically
evaluate the symbolic expression of such 50-order model, considering different
link block mass and stiffness, which are reported in Table 2.1. For all the pos-
sible combinations of such values, we considered proportional controllers with
kp ∈

{
−1,−10−1,−10−2, 10−2, 10−1, 1, 10, 102, 103, 104, 105

}
and we tested the

passivity of the transfer function I(s) as defined in Appendix 2.8. To verify the
passivity of the system, the phase of the impedance transfer function I(s) in the
Bode diagram was checked. The phase angle remains within the range of -90
to 90 degrees across the frequency spectrum for every proportional gain kp with
collocated feedback. This criterion confirms that the system does not generate
energy. The result we found is that passivity is always verified, and this agrees
with the statement of Theorem 1.

2.5 Conclusion

The main contribution of this chapter was to provide a solid theoretical motivation
for the exploitation of link flexibilities in robot interaction control. In particular,
while existing literature on interaction control passivity usually considers lumped
models for the robotic system, here we account for the inherent continuum nature
of robot links. Considering such a continuum link model, this work demonstrates
that force control based on collocated link deformation feedback is always pas-
sive with kp > −1. The theoretical result we found agrees with existing results
on linear lumped models. As a future extension of this study, passivity could
be studied by removing the small angle assumption for the joint variable θ, by
including 3-dimensional external forces and by considering robots with multiple
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degrees of freedom.

2.6 APPENDIX I

In this Section, the equations of motion of the system in Figure 2.1 are derived
considering small link deformations w(t, r) as in Section 2.2 but removing the
small joint angle assumption. Let us define, in this case, the position vector r as

r =

r cos θ(t) + w(t, r) sin θ(t)
r sin θ(t)− w(t, r) cos θ(t)

0

 (2.38)

where r is the distance with respect to the center of rotation and the tip position
vector P as

P =

L cos θ(t) + wE(t) sin θ(t)
L sin θ(t)− wE(t) cos θ(t)

0

 (2.39)

The total kinetic energy τTOT and the potential energy ν are given, as in the
case of small joint angle, by

τTOT = τmotor + τlink + τtip

τmotor =
1

2
Jmθ̇2(t)

τlink =
1

2

∫ L

0
ρṙT ṙ dr

τtip =
1

2
mṖ

T
Ṗ

ν =
1

2

∫ L

0
EIw′′2(t, r) dr

(2.40)

where τmotor, τlink and τtip are the kinetic energies of the three components of the
system: the motor, the link, and the mass m placed on the tip of the link on which
the environmental force FE acts. The symbols (.) and (′) represent the time and
the space derivative, respectively. The equations of motion for the constrained
system in Figure 2.1 are derived from the Lagrangian equation:

L = τTOT − ν

L =
1

2
Jmθ̇2 +

1

2

∫ L

0
ρṙT ṙ dr +

1

2
mṖ

T
Ṗ+

−1

2

∫ L

0
EIw′′2 dr

(2.41)

where, differently from the case in Section 2.2,

ṙT ṙ = r2 θ̇2 + ẇ2 + w2 θ̇2 − 2rẇθ̇ (2.42)
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and
Ṗ

T
Ṗ = L2 θ̇2 + ẇ2

E + w2
E θ̇2 − 2LẇE θ̇. (2.43)

As in Section 2.2, the action functional F is defined as the time integral of the
Lagrangian L on a specific trajectory. However, in the case of large joint angle
assumption, the definitions of r, P are different and will lead to a non-linear
formulation of motion equations. In particular,

F =

∫ t1

t0

∫ L

0
L(r, θ(t), w(t, r), θ̇(t), ẇ(t, r), w′′(t, r)) dr dt

=

∫ t1

t0

∫ L

0

Jm
2L

θ̇2 +
ρ

2
(r2 θ̇2 + ẇ2 + w2 θ̇2 − 2rẇθ̇)+

+
m

2L
(L2 θ̇2 + ẇ2

E + w2
E θ̇2 − 2LẇE θ̇)−

EI

2
w′′2 dr dt

(2.44)

According to Hamilton’s principle, motion equations are obtained by introducing
small perturbations on the states θ+εv and w+εz for any ε ∈ R, and these must
be zero at the endpoints of the trajectory. The perturbations produce a variation
δF of the action functional given by:

0 = δF =
d

dε

∣∣∣∣
ε=0

∫ t1

t0

∫ L

0

Jm
2L

(θ̇ + εv̇)2 +
ρ

2
[r2(θ̇ + εv̇)2+

(ẇ + εż)2 + (w + εz)2(θ̇ + εv̇)2 − 2r(ẇ + εż)(θ̇ + εv̇)]+

+
m

2L
[L2(θ̇ + εv̇)2 + (ẇE + εż)2 + (wE + εz)2(θ̇ + εv̇)2+

−2L(ẇE + εż)(θ̇ + εv̇)]− EI

2
(w′′ + εz′′)2 dr dt

(2.45)

0 = δF =

∫ t1

t0

∫ L

0

Jm
L

θ̇v̇ +
ρ

2
[2r2θ̇v̇ + 2ẇż + 2wθ̇2z+

+2w2θ̇v̇ − 2rθ̇ż − 2rẇv̇] +mLθ̇v̇ +
m

L
ẇE żE+

−mẇE v̇ −mθ̇żE +
m

L
θ̇2wEzE +

m

L
w2
E θ̇v̇+

−EIw′′z′′ dr dt

(2.46)

Hamilton’s principle requires that δF is zero for all possible perturbations ε.
Thus, both perturbations must be set to 0 and integrals are applied to obtain the
equations of motion. As a first step, considering z = 0 in Eq. (2.46), one can
obtain

∫ t1

t0

∫ L

0

(
Jm
L

+mL

)
θ̇v̇︸ ︷︷ ︸

δFA

+ ρr2θ̇v̇︸ ︷︷ ︸
δFB

+ ρw2θ̇v̇︸ ︷︷ ︸
δFC

− ρrẇv̇︸ ︷︷ ︸
δFD

+

−mẇE v̇︸ ︷︷ ︸
δFE

+
m

L
w2
E θ̇v̇︸ ︷︷ ︸

δFF

dr dt

(2.47)
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Then, integrals from δFA to δFF are computed by parts

δFA =

∫ t1

t0

(
Jm
L

+mL)θ̇v̇ dt
P.I
=

∫ t1

t0

−(
Jm
L

+mL)θ̈v dt

δFB =

∫ t1

t0

ρr2θ̇v̇ dt
P.I
=

∫ t1

t0

−ρr2θ̈v dt

δFC =

∫ t1

t0

ρw2θ̇v̇ dt
P.I
=

∫ t1

t0

−ρv(w2θ̈ + 2wẇθ̇) dt

δFD =

∫ t1

t0

−ρrẇv̇ dt
P.I
=

∫ t1

t0

ρrẅv dt

δFE =

∫ t1

t0

−mẇE v̇ dt
P.I
=

∫ t1

t0

mẅEv dt

δFF =

∫ t1

t0

m

L
w2
E θ̇v̇ dt

P.I
=

∫ t1

t0

−m

L
v(w2

E θ̈ + 2wEẇE θ̇) dt

(2.48)

∫ t1

t0

∫ L

0

[
−
(
Jm
L

+mL

)
θ̈ − ρr2θ̈ − ρ(w2θ̈ + 2wẇθ̇)+

+ ρrẅ +mẅE − m

L
(w2

E θ̈ + 2wEẇE θ̇)

]
v dr dt

(2.49)

to get the following equation

(
Jm
L

+ ρw2 +
m

L
w2
E)θ̈ + ρr(rθ̈ − ẅ) + (2ρwẇ+

+2
m

L
wEẇE)θ̇ +m(Lθ̈ − ẅE) = 0

(2.50)

As a second step, considering v = 0 in Eq. (2.46), the following expression is
obtained

∫ t1

t0

∫ L

0
−ρ(rθ̇ − ẇ)ż︸ ︷︷ ︸

δFG

− m

L
(Lθ̇ − ẇE)żE︸ ︷︷ ︸

δFH

−EIw′′z′′︸ ︷︷ ︸
δFI

+

+ρwθ̇2z +
m

L
θ̇2wEzE dr dt

(2.51)

Then, integrals δFG, δFH and δFI are computed by parts
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δFG =

∫ t1

t0

−ρ(rθ̇ − ẇ)ż dt

P.I
=

∫ t1

t0

ρ(rθ̈ − ẅ)z dt

δFH =

∫ t1

t0

−m

L
(Lθ̇ − ẇE)żE dt

P.I
=

∫ t1

t0

m

L
(Lθ̈ − ẅE)zE dt

δFI = −
∫ L

0
EIw′′z′′ dr

P.I
=

∫ L

0

FE⊥

L
zE − EIw′′′′z dr

(2.52)

∫ t1

t0

∫ L

0

[
ρ(rθ̈ − ẅ)− EIw′′′′ + ρwθ̇2)

]
︸ ︷︷ ︸

=0

z+

[
FE⊥

L
+

m

L
(Lθ̈ − ẅE) +

m

L
θ̇2wE

]
︸ ︷︷ ︸

=0

zE dr dt

(2.53)

and the following equations of motion are obtained

ρ(rθ̈ − ẅ) = EIw′′′′ − ρwθ̇2 (2.54)

FE⊥

L
+

m

L
(Lθ̈ − ẅE) +

m

L
θ̇2wE = 0

m(Lθ̈ − ẅE) = −FE⊥ −mθ̇2wE

(2.55)

Substituting the equation of motion for the link (2.54) and the boundary condition
of the tip mass (2.55) in the equation of motion for the motor (2.50), one can
obtain

(
Jm
L

+ ρw2 +
m

L
w2
E)θ̈ + r(EIw′′′′ − ρwθ̇2) + (2ρwẇ+

+2
m

L
wEẇE)θ̇ − FE⊥ −mθ̇2wE =

τm
L

(2.56)

2.7 APPENDIX II

According to Hogan and Colgate [54], a linear, time-invariant 1-port is passive if
and only if:
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1. I(s) has no poles in the right half-plane

2. I(s) has a Nyquist plot which lies wholly within the closed left half-plane

This section investigates the passivity conditions of two lumped models that are an
equivalent linear representation of the system in Figure 2.1 where angular quanti-
ties are translated into linear quantities. The considered system is discretized in a
number of blocks from 2 to 5 characterised by lumped mass, and stiffness, under
the action of a proportional force controller feeding back a collocated signal.

2.7.1 System discretized into 2 blocks

Fm
Mm

xm

F1F0

k0

m0

x0

k1

x1

Environment

Figure 2.2: Linear representation of a two-blocks model of flexible link

The system is modelled as two rigid blocks, representing the motor and the
link, respectively, connected by linear springs. The link has the whole mass
lumped on its centre. In this case, the link is represented by the second block, so
its mass is m0. Let us call xm and Mm the motor linear equivalent position and
mass, x0 the linear position of the center of mass of the link and x1 the linear
position of the environment. Fm denotes the motor input force, F0 and F1 the
linear springs force, where F1 measures the interaction force with the environ-
ment. k0 describes the motor gearbox stiffness while k1 the link bending stiffness.
Therefore, the dynamics of the system in Figure 2.2 can be expressed as

Mmẍm + dmẋm = Fm − F0

F0 = k0(xm − x0)

m0ẍ0 = F0 − F1

F1 = k1(x0 − x1)

(2.57)

with dm the motor damping.

2.7.1.a Passivity conditions

Considering the system represented in Fig. 2.2, subject to a collocated propor-
tional force controller in the form Fm = −kpF0, the transfer function I2(s) = −F1

ẋ1
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represents the system impedance seen at the environment port (F1, ẋ1). It can be
computed as

I2(s) =
N(s)

D(s)
(2.58)

where

N(s) = (Mms3m0 + dms2m0 + dmk0 + s(Mmk0 + kpk0m0 + k0m0))k1 (2.59)

D(s) = (Mms4m0 + dms3m0 + kpk0k1 + s2(Mmk0 +Mmk1 + kpk0m0+

+ k0m0) + s(dmk0 + dmk1) + k0k1)
(2.60)

To satisfy the stability condition (1), I2(s) must have no poles in the right half-
plane. For this reason, the Hurwitz criterion was applied. Considering the char-
acteristic polynomial P (s) of I2(s)

P (s) = a0s
4 + a1s

3 + a2s
2 + a3s+ a4 (2.61)

with

a0 = Mmm0 (2.62a)
a1 = dmm0 (2.62b)
a2 = Mmk0 +Mmk1 + kpk0m0 + k0m0 (2.62c)
a3 = dmk0 + dmk1 (2.62d)
a4 = kpk0k1 + k0k1 (2.62e)

The Hurwitz matrix is constructed as

H =


a1 a3 0 0
a0 a2 a4 0
0 a1 a3 0
0 a0 a2 a4

 (2.63)

Considering P (s), the four principal minors of the Hurwitz matrix are analysed

Min1 = a1 (2.64a)

Min2 =

[
a1 a3
a0 a2

]
(2.64b)

Min3 =

a1 a3 0
a0 a2 a4
0 a1 a3

 (2.64c)

Min4 = H (2.64d)
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H1 : det(Min1) > 0 ⇒ dmm0 > 0 ⇒ dm > 0, m0 > 0 (2.65a)

H2 : det(Min2) > 0 ⇒ dmk0m
2
0(kp + 1) > 0 ⇒ dm > 0, k0 > 0, kp > −1

(2.65b)

H3 : det(Min3) > 0 ⇒ d2mk20m
2
0(kp + 1) > 0 ⇒ kp > −1 (2.65c)

H4 : det(Min4) > 0 ⇒ d2mk30k1m
2
0(kp + 1)2 > 0 ⇒ k0 > 0, k1 > 0, kp > −1

(2.65d)

Considering Mm and m0 the motor mass and the link mass, motor damping dm,
linear stiffnesses k0 and k1, positive terms the system is stable for kp > −1.

To find the passivity condition (2), I2(s) must have a Nyquist plot that lies
wholly within the closed left half-plane. Considering the I2(s) transfer function,
s must be replaced with iω. This represents the Laplace transform of the system
frequency response.

N(iω) = k1(iω(Mmk0 + k0m0 + k0kpm0) + dmk0 − dmm0ω
2 −Mmm0iω

3)
(2.66)

D(iω) = k0k1 − ω2(Mmk0 +Mmk1 + k0m0 + k0kpm0) + k0k1kp +Mmm0ω
4+

+ iω(dmk0 + dmk1)− dmm0iω
3

D(iω) = a− ib

with a = Mmm0ω
4 + (−Mmk0 −Mmk1 − k0m0 − k0kpm0)ω

2 + k0k1 + kpk0k1

and b = −dmm0ω
3 + (dmk0 + dmk1)ω

(2.67)

To simplify the transfer function I2(iω), it must be rationalised by multiplying
the numerator and the denominator by the conjugate of the denominator (a− ib).
Then, we looked for the condition for Re(I2(iω)) strictly positive. Both the real
part of the numerator and denominator must be strictly positive: Re(N(iω)) > 0
and Re(D(iω)) > 0. We found only the condition on the numerator because the
real part of the denominator equals a2 + b2, so it is always strictly positive.

N(iω) = (k1(iω(Mmk0 + k0m0 + k0kpm0) + dmk0 − dmm0ω
2 +Mmm0iω

3))

(a+ bi)

(2.68)

Re(N(iω)) = admk0k1 + bωMmk0k1 + bωk0k1m0 − bMmk1m0ω
3 − admk1m0ω

2+

bk0k1kpm0ω

(2.69)

Substituting the definitions of a and b (2.67), the passivity condition on
Re(N(iω)) > 0 is calculated

Re(N(iω)) > 0 ⇒dmk20k
2
1(kp + 1) > 0 ⇒ dm > 0, kp > −1 (2.70)

Considering Mm, m0 the motor mass and the link mass, motor damping dm, linear
stiffnesses k0 and k1 positive terms the system is passive for kp > −1.
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2.7.2 System discretized into 3 blocks

The system is modelled as three rigid blocks connected by linear springs. The
link is split into the second and third blocks of masses mi. Each block has the
mass lumped at its centre.

Fm
Mm

xm

F0

k0

m0

x0

k1

x1 x2

F2F1

m1

k2

Environment

Figure 2.3: Linear representation of a three-blocks model of flexible link

We define xm and Mm as the motor position and mass, x0 and x1 as the posi-
tions of the center of mass of the link blocks, x2 as the position of the environment
and m0 and m1 represent the mass discretization of the link. The input force of
the motor is indicated by Fm while F0, F1 and F2 are the linear springs force
and F2 measures also the interaction force with the environment. k0 represents
the motor gearbox stiffness while k1 and k2 are the linear stiffness of the link.
Therefore, the dynamics of the system in Figure 2.3 can be expressed as

Mmẍm + dmẋm = Fm − F0

F0 = k0(xm − x0)

m0ẍ0 = F0 − F1

F1 = k1(x0 − x1)

m1ẍ1 = F1 − F2

F2 = k2(x1 − x2)

(2.71)

with dm the motor damping.

2.7.2.a Passivity Conditions

Considering the system represented in Fig. 2.3, subject to a collocated propor-
tional force controller in the form Fm = −kpF0, the transfer function I3(s) = −F2

ẋ2

represents the system impedance seen at the environment port (F2, ẋ2). It can be
computed as

I3(s) =
N(s)

D(s)
(2.72)
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where

N(s) = (Mms5m0m1 + dms4m0m1 + dmk0k1 + s3(Mmk0m1 +Mmk1m0+

+Mmk1m1 + kpk0m0m1 + k0m0m1) + s2(dmk0m1 + dmk1m0+

+ dmk1m1) + s(Mmk0k1 + kpk0k1m0 + kpk0k1m1 + k0k1m0+

+ k0k1m1))k2
(2.73)

D(s)(Mms6m0m1 + dms5m0m1 + kpk0k1k2 + s4(Mmk0m1 +Mmk1m0 +Mmk1m1+

+Mmk2m0 + kpk0m0m1 + k0m0m1) + s3(dmk0m1 + dmk1m0 + dmk1m1+

+ dmk2m0) + s2(Mmk0k1 +Mmk0k2 +Mmk1k2 + kpk0k1m0 + kpk0k1m1+

+ kpk0k2m0 + k0k1m0 + k0k1m1 + k0k2m0) + s(dmk0k1 + dmk0k2+

+ dmk1k2) + k0k1k2)

(2.74)

As in the previous case, to find the stability conditions, I3(s) must have no poles
in the right half-plane. This condition is verified using the Hurwitz criterion.
Considering the characteristic polynomial P (s) of I3(s)

P (s) = a0s
6 + a1s

5 + a2s
4 + a3s

3 + a4s
2 + a5s+ a6 (2.75)

with

a0 = Mmm0m1 (2.76a)
a1 = dmm0m1 (2.76b)

a2 = Mmk0m1 +Mmk1m0 +Mmk1m1 +Mmk2m0 + k0m0m1 + kpk0m0m1

(2.76c)

a3 = dmk0m1 + dmk1m0 + dmk1m1 + dmk2m0 (2.76d)

a4 = Mmk0k1 +Mmk0k2 +Mmk1k2 + k0k1m0 + k0k1m1 + k0k2m0+

kpk0k1m0 + kpk0k1m1 + kpk0k2m0
(2.76e)

a5 = dmk0k1 + dmk0k2 + dmk1k2 (2.76f)
a6 = k0k1k2 + kpk0k1k2 (2.76g)

The Hurwitz matrix is constructed as

H =



a1 a3 a5 0 0 0
a0 a2 a4 a6 0 0
0 a1 a3 a5 0 0
0 a0 a2 a4 a6 0
0 0 a1 a3 a5 0
0 0 a0 a2 a4 a6

 (2.77)
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Considering P (s), the six principal minors of the Hurwitz matrix are analysed

Min1 = a1 (2.78a)

Min2 =

[
a1 a3
a0 a2

]
(2.78b)

Min3 =

a1 a3 a5
a0 a2 a4
0 a1 a3

 (2.78c)

Min4 =


a1 a3 a5 0
a0 a2 a4 a6
0 a1 a3 a5
0 a0 a2 a4

 (2.78d)

Min5 =


a1 a3 a5 0 0
a0 a2 a4 a6 0
0 a1 a3 a5 0
0 a0 a2 a4 a6
0 0 a1 a3 a5

 (2.78e)

Min6 = H (2.78f)

H1 = det(Min1) > 0 ⇒ dmm0m1 > 0 ⇒ dm > 0, m0 > 0, m1 > 0 (2.79a)

H2 = det(Min2) > 0 ⇒ dmk0m
2
0m

2
1(kp + 1) > 0 ⇒ dm > 0, k0 > 0, (2.79b)

kp > −1 (2.79c)

H3 = det(Min3) > 0 ⇒ d2mk20m
2
0m

3
1(kp + 1) > 0 ⇒ m1 > 0, kp > −1 (2.79d)

H4 = det(Min4) > 0 ⇒ d2mk30k1m
2
0m

4
1(kp + 1)2 > 0 ⇒ k0 > 0, k1 > 0, kp > −1

(2.79e)

H5 = det(Min5) > 0 ⇒ d3mk40k
2
1m

2
0m

4
1(kp + 1)2 > 0 ⇒ dm > 0, kp > −1 (2.79f)

H6 = det(Min6) > 0 ⇒ d3mk50k
3
1k2m

2
0m

4
1(kp + 1)3 > 0 ⇒ dm > 0, k0 > 0,

(2.79g)

k1 > 0, k2 > 0, kp > −1 (2.79h)
(2.79i)

Considering the motor mass Mm, link mass m0 and m1, motor damping dm and
linear stiffnesses k0, k1, k2 positive terms, the system is stable, as in the case
(2.7.1.a), for every kp > −1.

To find the passivity conditions, I3(s) must have a Nyquist plot that lies
wholly within the closed left half-plane. Considering the I3(s) transfer function,
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s must be replaced with iω.

N(iω) = k2(dmk0k1 − ω2(dmk0m1 + dmk1m0 + dmk1m1) + dmm0m1ω
4+

+ iω(Mmk0k1 + k0k1m0 + k0k1m1 + k0k1kpm0 + k0k1kpm1)+

− iω3(Mmk0m1 +Mmk1m0 +Mmk1m1 + k0m0m1 + k0kpm0m1)+

+Mmm0m1iω
5)

(2.80)

D(iω) = iω(dmk0k1 + dmk0k2 + dmk1k2)− iω3(dmk0m1 + dmk1m0 + dmk1m1+

+ dmk2m0)− ω2(Mmk0k1 +Mmk0k2 +Mmk1k2 + k0k1m0 + k0k1m1+

+ k0k2m0 + k0k1kpm0 + k0k1kpm1 + k0k2kpm0) + ω4(Mmk0m1+

+Mmk1m0 +Mmk1m1 +Mmk2m0 + k0m0m1 + k0kpm0m1) + k0k1k2+

+ k0k1k2kp −Mmm0m1ω
6 + dmm0m1iω

5

(2.81)

D(iω) = a+ ib (2.82)

with a = −Mmm0m1ω
6 + (Mmk0m1 +Mmk1m0 +Mmk1m1 +Mmk2m0+

+ k0m0m1 + k0kpm0m1)ω
4 + (−Mmk0k1 −Mmk0k2 −Mmk1k2+

− k0k1m0 − k0k1m1 − k0k2m0 − k0k1kpm0 − k0k1kpm1+

− k0k2kpm0)ω
2 + k0k1k2 + k0k1k2kp

(2.83)

and b = dmm0m1ω
5 + (−dmk0m1 − dmk1m0 − dmk1m1 − dmk2m0)ω

3+

+ (dmk0k1 + dmk0k2 + dmk1k2)ω
(2.84)

To simplify the transfer function I3(iω), it must be rationalised by multiplying
the numerator and the denominator by the conjugate of the denominator (a− ib).
Then, we looked for the condition for Re(I3(iω)) strictly positive. Both the real
part of the numerator and denominator must be strictly positive: Re(N(iω)) > 0
and Re(D(iω)) > 0. We found only the condition on the numerator because the
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real part of the denominator equals a2 + b2, so it is always strictly positive.

N(iω) = (k2(dmk0k1 − ω2(dmk0m1 + dmk1m0 + dmk1m1) + dmm0m1ω
4+

+ iω(Mmk0k1 + k0k1m0 + k0k1m1 + k0k1kpm0 + k0k1kpm1)+

− iω3(Mmk0m1 +Mmk1m0 +Mmk1m1 + k0m0m1 + k0kpm0m1)+

+Mmm0m1iω
5))(a+ bi)

(2.85)

Re(N(iω)) = admk0k1k2 −Mmbk0k2m1ω
3 −Mmbk1k2m0ω

3 −Mmbk1k2m1ω
3+

+Mmbk2m0m1ω
5 − admk0k2m1ω

2 − admk1k2m0ω
2+

− admk1k2m1ω
2 + admk2m0m1ω

4 − bk0k2m0m1ω
3+

+Mmbk0k1k2ω + bk0k1k2m0ω + bk0k1k2m1ω + bk0k1k2kpm0ω+

+ bk0k1k2kpm1ω − bk0k2kpm0m1ω
3

(2.86)

Substituting the definitions of a and b (2.82), the passivity condition on
Re(N(iω)) > 0 is calculated

Re(N(iω)) > 0 ⇒ dmk20k
2
1k

2
2(kp + 1) > 0 ⇒ dm > 0, kp > −1 (2.87)

so the passivity condition is again for kp > −1.

2.7.3 Lumped models with 3 and 4 segments

The cases of lumped models with 3 and 4 segments are similar to the previous
ones. Since mathematical expressions are too long, we just report the passivity
condition which is again kp > −1 for both models.

2.8 APPENDIX III

This section shows the derivation of a high-order lumped model and the compu-
tation of the system impedance I(s) to the environment port (Fn−1, ẋn−1).

The dynamics of the system can be modelled as a series of rigid blocks con-
nected by linear springs as shown in Figure 2.4.

Fm Mm

xm

FiF0

k0 ki+1

m0

x0

mi

xi xi+1 xn−2

Fi+1

kn−1

mi+1

Fn−2 Fn−1

Environment

mn−2

xn−1

Figure 2.4: Linear representation of a n-blocks model of flexible link
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The system is modelled as n rigid blocks connected by linear springs. The flexible
link is split into n− 1 segments. Each link block has the mass mi lumped at its
centre. We define xm and Mm as the motor position and mass, xi as the position
of the center of mass of the i-th block and xn−1 as the position of the environment.
The input force of the motor is indicated by Fm while Fi is the linear spring force
of the i-th block and Fn−1 measures the interaction force with the environment.
The linear springs have stiffness ki while k0 is the motor gearbox stiffness. The
dynamics of the system in Figure 2.4 can finally be expressed in iterative form as

Mmẍm + dmẋm = Fm − F0

F0 = k0(xm − x0)

miẍi = Fi − Fi+1

Fi+1 = ki+1(xi − xi+1)

mn−2ẍn−2 = Fn−2 − Fn−1

Fn−1 = kn−1(xn−2 − xn−1)

(2.88)

Using the Laplace transform, the system dynamics can be expressed as

F0 = Fm − sxm(Mms+ dm)

sxm =
sF0

k0
+ sx0

Fi+1 = Fi −mis
2xi

sxi =
sFi+1

ki+1
+ sxi+1

Fn−1 = Fn−2 −mn−2s
2xn−2

sxn−2 =
sFn−1

kn−1
+ sxn−1

(2.89)

Then, a collocated proportional force controller in the form Fm = −kpF0 is
applied and the impedance I(s) = Fn−1

ẋn−1
at the environment port (Fn−1, ẋn−1) is

computed following the steps reported in Table 2.2. This procedure has been im-
plemented using the Python Simbolic library [57] in order to obtain the impedance
of a generic flexible link split into n− 1 segments.
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Algebric steps to compute I(s)

Substitution Leads to

sxm(F0, sx0) in F0 F0(sx0, Fm)

F0(sx0, Fm) in Fi+1 Fi+1(sxi, Fm)

sxi(Fi+1, sxi+1) in Fi+1 Fi+1(sxi+1, Fm)

Fi+1(sxi+1, Fm) in Fn−1 Fn−1(sxn−2, Fm)

sxn−2(Fn−1,sxn−1) in Fn−1 Fn−1(sxn−1, Fm)

Table 2.2: steps to find impedance I(s)



Chapter 3

Force control exploiting
non-collocated feedback

3.1 Introduction

The previous chapter derived a general result about force control passivity: pro-
portional collocated force control of a continuum flexible link is passive at the
environment port. However, we derive passivity conditions only in the case of
collocated feedback. On one side, existing results on lumped models state that
non-collocated feedback can lead to inferior stability properties [55]; on the other
side, non-collocated feedback can lead to important application-specific advan-
tages. As an example, in robotic surgery, the force measured at the laparoscopic
tool base (collocated) is subject to noise due to friction effects when sliding into
trocars, which may significantly hinder the accurate measurement of tissue inter-
action forces [23]. Such noise can easily be avoided by placing a force sensor after
the trocar, e.g., close to the tip of the surgical tool. This arrangement could pro-
vide an extremely accurate estimation of tissue interaction forces. Since we were
not able to derive passivity conditions for non-collocated sensor arrangement on
continuum links, this chapter presents some passivity and stability results using
accurate high-order lumped approximants of the continuum mechanics model in
Fig. 2.1. First, Section 3.2 presents a symbolic software library able to model
a generic flexible link clamped to a revolute robotic joint. The software library
can generate nth-order lumped models to accurately approximate the dynamics
of flexible links characterized by certain inertia, stiffness, and damping parame-
ters under the action of non-collocated feedback. Stability and passivity of these
models are then analysed in Section 3.3, considering robotic surgery as a reference
application. A high-order lumped model of a commonly used laparoscopic tool is
used to analyse the stability margins of proportional control using non-collocated
feedback. Different kinds of non-collocation are compared, coming from defor-
mation measures at different tool locations (e.g. base, middle points and tip).
Finally, an experimental validation of theoretical findings is reported in Section
3.5 and the conclusion are drawn in Section 3.6.

34
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The results of this chapter are reported in "Force control of a flexible link
exploiting non-collocated feedback" submitted to "IEEE Transactions on Mecha-
tronics".

3.2 Modelling flexible links using high-order lumped
models

This section describes a symbolic software library implemented using the Python
Simbolic library [57] able to derive a high-order lumped approximation of the
continuum mechanics model in Fig. 2.1.

The system is modelled as n rigid blocks connected by rotational springs and
dampings, as shown in Figure 3.1. The link of length L and mass M is split into
n− 1 segments. Each link block has a mass mi =

M
n−1 and a rotational moment

of inertia ji.

τn−2

θ

L

Environment

θ qi qn−2q0 qi+1

Environment

MOTOR LINK

m0
j0

mi mn−2
jn−2

mi+1
ji ji+1

θ qi

mi mi+1ji

qn−2

mn−2jn−2ji+1
m0j0

q0 qi+1

Environment

ki+1, di+1k0 kn−1, dn−1

τ0 τn−1τi τi+1

Jm

Jm

τm

Jm

Figure 3.1: Modelling of a flexible link driven by a motor into discrete blocks

Let us call θ and Jm the motor position and inertia, and qi the positions of
the center of mass and inertia of the motor and the i-th block. The motor input
torque is denoted τm while τi is the torsional spring torque related to the i-th
block, and τn−1 is the interaction torque with the environment. k0 represents
the motor gearbox stiffness, while ki and di represent the torsional stiffness and
damping of the i-th block. Given the bending stiffness of the link K and the link
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damping D, the stiffness of the rotational springs and damping of the i-th block
is calculated respectively as ki = (n − 1)K and di = (n − 1)D. l = L

n−1 is the
distance between one block and another. The dynamics of the system in Figure
3.1 interacting with a stiff environment can be expressed in iterative form as

Jmθ̈ + dmθ̇ +
n−2∑
h=0

(mh((h+ 1)l)2 + jh)q̈h = τm

τ0 = k0(θ − q0)

jiq̈i +
n−2∑

h=i+1

(mh((h− i)l)2 + jh)q̈h = τi

τi+1 = ki+1(qi − qi+1) + di+1(q̇i − q̇i+1)

jn−2q̈n−2 = τn−2

τn−1 = kn−1(qn−2) + dn−1(q̇n−2)

(3.1)

with i from 0 to n− 3.
Eventually, the model can be re-written as:

Jmθ̈ + dmθ̇ +

n−2∑
h=0

mh((h+ 1)l)2q̈h = τm − τ0

τ0 = k0(θ − q0)

jiq̈i +

n−2∑
h=i+1

mh((h− i)l)2q̈h = τi − τi+1

τi+1 = ki+1(qi − qi+1) + di+1(q̇i − q̇i+1)

jn−2q̈n−2 = τn−2 − τn−1

τn−1 = kn−1(qn−2) + dn−1(q̇n−2)

(3.2)

Using the Laplace transform, the system dynamics is derived as

sθ =
τm − τ0 −

∑n−2
h=0 mh((h+ 1)l)2s2qh
Jms+ dm

τ0 =
k0
s
(sθ − sq0)

sqi =
τi − τi+1 −

∑n−2
h=i+1mh((h− i)l)2s2qh

jis

τi+1 =
ki+1

s
(sqi − sqi+1) + di+1(sqi − sqi+1)

sqn−2 =
τn−2 − τn−1

jn−2s

τn−1 =
kn−1

s
sqn−2 + dn−1sqn−2

(3.3)

The dynamics of the system represented in Figure 3.1 can be described by splitting
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the actuator and link-environment models into n− 1 subsystems PMi(s) defining
the relation between τm and τi.

τn−2

qi qi+1

miji

qn−2

mn−2jn−2
mi+1ji+1

m0j0

q0

Environment

ki+1, di+1k0 kn−1, dn−1

τ0 τn−1τi τi+1τm
Jm

PM (s)

θ

PMi+1(s) PMn−1(s)

Figure 3.2: Model subsystems

The τ0 signal represents the deformation at the base of the link, τi the de-
formation of the link measured in different (non-collocated) locations of the link
and τn−1 the deformation at the tip of the link. Practically, these signals can
be measured using deformation sensors such as strain gauges, providing a mea-
sure of the link interaction torque with different levels of collocation, as shown in
Figure 3.2. PMi is calculated by multiplying the transfer function G1(s), which
represents the dynamics between the motor torque τm and the interaction torque
with the environment τn−1 and the transfer function G2(s), which describes the
dynamics between the torque sensor signals τi and the interaction torque with
the environment τn−1. These transfer functions are derived following the steps
reported in Table 3.1.

3.3 Case Study

In this chapter, robotic surgery is considered as the application of interest, and a
laparoscopic tool used in minimally invasive surgery is selected as an example of
a flexible link. The laparoscopic tool is an empty cylinder 380 millimetres long,
with an external radius of 4.1 millimetres and a thickness of 0.85 millimetres. It
is made of a fibre-reinforced composite that is characterized by a Young modulus
E, Shear modulus S and Poisson ratio νRATIO equals, respectively, to 54.48 GPa,
11.41 GPa and 0.32 GPa.

The laparoscopic tool is driven by two different motor models (Maxon model
EC45 and Maxon model DCX22L with a reduction gearbox of 1000 and 103,
respectively). Table 3.2 reports parameters related to these two application cases.

In order to define a suitable order of the lumped approximant, i.e. how many
link segments we need to consider, we implemented lumped approximants with
different orders and, for each order, we computed a common stability parameter:
the gain margin Gm in order to check how the approximation truncation affects
stability. Results are reported in Tables 3.3, 3.4, considering a non-collocated
sensor placed at a distance L from the motor shaft (on the tip of the instrument).

It is possible to observe that, for both cases, as the number of segments in-
creases, the gain margin Gm converges to a plateau and the stability parameter
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Algebric steps to compute G1(s) =
τn−1(s)
τm(s)

Substitutions Leads to

sθ in τ0 τ0(sqi, sqn−2, τm)

τ0 in sqi sqi(τi, τm)

sqi in τi+1 τi+1(sqi+1, sqn−2, τm)

τi+1 in sqi+1 sqi+1(τn−1, τm)

sqn−1 in τn−1 τn−1(τm)

Algebric steps to compute G2(s) =
τi(s)

τn−1(s)

Substitutions Leads to

sτi in τi+1 τi+1(sqi+1, sqn−2, τi)

τi+1 in sqi+1 sqi+1(τi+1, τi)

sqi+1 in τn−1 τn−1(τi+1)

Table 3.1: Algorithm to find system dynamics

EC45 DCX22L

Motor Parameters Jm [kgm2] 0.133 0.0104

dm [Nms
rad ] 0.8 0.1

Motor Gearbox k0 [Nm
rad ] 1000 103

Link Parameters

L [m] 0.38 0.38
M [kg] 0.1 0.1

K [Nm
rad ] 61.07 61.07

D [Nms
rad ] 0.01 0.01

Table 3.2: Physical parameters related to the considered case studies

does not significantly change for orders higher than 40 (20 masses). Thus, we
chose 25 as a suitable number of segments that reasonably approximates the con-
tinuum system.

We used the symbolic software library described before to derive such high-
order frequency model: a lumped 50-order approximant of the continuum me-
chanics model. The order can be computed as the number of segments × 2 plus
2 to represent the motor dynamics.
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Case Maxon EC45: System Gain Margin Gm

N°segments 6 8 10 20 30

Gm 38.25 41.93 44.30 49.62 51.77

Table 3.3: Laparoscopic Tool driven by Maxon EC45 motor - Gain Margin Gm
with sensor at L

Case Maxon DCX22L: System Gain Margin Gm

N°segments 6 8 10 20 30

Gm 3.11 3.52 3.79 4.43 4.70

Table 3.4: Laparoscopic Tool driven by Maxon DCX22L motor - Gain Margin
Gm with sensor at L

3.4 Passivity and stability analysis

In this section, we analyzed the passivity and stability of the 50-order approximant
of the laparoscopic tool driven by two different motor models (Maxon model EC45
and Maxon model DCX22L with reduction gearbox of 1000 and 103, respectively).
Table 3.2 reports parameters related to these two application cases.

Regarding stability, the system dynamics G(s) = τi(s)
τm(s) is computed consider-

ing the action of non-collocated feedback and considering a stiff environment. We
decided to consider a stiff environment because it is the most challenging case for
stability [58, 11]. Also, characterizing a soft environment is not simple, as many
different cases should be considered. Figure 3.3 shows the Bode diagrams of G(s)
for the two cases of study reported in Table 3.2. One can observe that the system
has a first low-frequency peak ωS =

√
K/Jm given by the motor inertia and the

link stiffness parameters. The other peaks correspond to the link resonances, and
one can observe several link harmonics. Depending on the motor parameters, the
first resonance may significantly vary in frequency and amplitude, but the Bode
diagram retains a similar shape. In addition, the variation of the position of the
sensor location along the link affects the system’s dynamics. Moving the sensor
location towards the tip of the link leads to changes in the Bode diagram. In
particular, it is noted that the zeros of the system can be lost. Variations in the
amplitude and phase in the Bode diagram evidence this phenomenon. As ex-
pected, the poles of the system remain the same. They are stable as they reflect
the intrinsic passivity of the system itself.

3.4.1 Stability

To evaluate the stability of the system G(s) under the action of non-collocated
feedback, we analyzed the minimum distance that the Nyquist diagram of the
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(a) Bode Diagram - Case EC45 motor

(b) Bode Diagram - Case DCX22L motor

Figure 3.3: Bode Diagrams - Maxon models EC45 e DCX22L

system takes from the critical point in the complex plane. The critical point is
placed at the coordinate −1 on the real axis. Being all poles stable, crossing
this point leads to system instability. To compute such distance (which actually
measures the "distance from the instability"), we use the following expression:

min_distance =
1

∥ 1
kpG(jω)+1∥∞

. (3.4)

When the system is stable, this value provides an indicator of the stability robust-
ness. Low values correspond to oscillating behaviour where at least one closed-
loop pole is close to the unstable area Re(s) > 0. In this work, we define an
acceptability threshold based on the value of the minimum distance (Eq. 3.4) set
to 0.15 which emerged from experimental observations. The system is considered
too oscillating if the minimum distance (Eq. 3.4) is below this threshold.

For the specific application cases of the laparoscopic tool in robotic surgery
(system’s parameters are reported in Table 3.2), we considered a proportional
controller with kp ∈ [1, 2, 3, 5, 10, 20]. Considering these gain values, Figure 3.4
shows the stability index (3.4) related to non-collocated force feedback when the
laparoscopic instrument is in contact with a rigid environment. We consider 24
sensor locations across the line. In case of system instability, i.e. when the Nyquist
diagram crosses −1, the index is set to 0. Thus, in Figure 3.4, the value 0 means
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(a) Minimum distance with motor EC45

(b) Minimum distance with motor DCX22L

Figure 3.4: Stability Analysis considering the minimum distance

instability and not marginal stability.

3.4.2 Passivity

In this section, we describe the computation of the system impedance I(s) to
the environment port (τn−1, q̇n−1) under the feedback action of non-collocated
proportional force controllers for the two case studies in Table 3.2.

τn−2

qi qi+1

ji
mi mi+1

qn−2

jn−2
mn−2ji+1j0

m0

q0 qn−1

Environment

ki+1, di+1k0 kn−1, dn−1

τ0 τn−1τi τi+1

τm

Jm

θ

Figure 3.5: Modelling as discrete blocks

We consider the dynamics of the 50-order lumped model represented in Figure
3.5, approximants the continuum mechanics model in Fig. 2.1.
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Jmθ̈ + dmθ̇ +
n−2∑
h=0

mh((h+ 1)l)2q̈h = τm − τ0

τ0 = k0(θ − q0)

jiq̈i +
n−2∑

h=i+1

mh((h− i)l)2q̈h = τi − τi+1

τi+1 = ki+1(qi − qi+1) + di+1(q̇i − q̇i+1)

jn−2q̈n−2 = τn−2 − τn−1

τn−1 = kn−1(qn−2 − qn−1) + dn−1(q̇n−2 − q̇n−1)

(3.5)

Using the Laplace transform, the system dynamics can be expressed as

sθ =
τm − τ0 −

∑n−2
h=0 mh((h+ 1)l)2s2qh
Jms+ dm

τ0 =
k0
s
(sθ − sq0)

sqi =
τi − τi+1 −

∑n−2
h=i+1mh((h− i)l)2s2qh

jis

τi+1 =
ki+1

s
(sqi − sqi+1) + di+1(sqi − sqi+1)

sqn−2 =
τn−2 − τn−1

jn−2s

τn−1 =
kn−1

s
(sqn−2 − sqn−1) + dn−1(sqn−2 − sqn−1)

(3.6)

The passivity at the environment port (τn−1, q̇n−1) = (τ24, q̇24) was calculated
using a symbolic software library implemented in Python [57] that follows the
steps reported in Table 3.5.

Algebric steps to compute I(s)

Substitution Leads to

sθ in τ0 τ0(sqi, sqn−2, τm)

τ0 in τi+1 τi+1(sqi, sqn−2, τm)

sqi in τi+1 τi+1(sqi+1, sqn−2, τm)

τi+1 in τn−1 τn−1(sqn−2, sqn−1, τm)

sqn−2 in τn−1 τn−1(sqn−1, τm)

Table 3.5: steps to find impedance I(s)

We tested the passivity of the transfer function I(s) considering 24 sensor
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locations along the link, which provide a non-collocated feedback. For each case,
we search for the maximum proportional gain kp, which retains passivity.

(a) Maximum kp gain guaranteeing passivity - Case study
with the EC45 motor

(b) Maximum kp gain guaranteeing passivity - Case study
with the DCX22L motor

Figure 3.6: Passivity Analysis - Maxon models EC45 e DCX22L

The identified gain was found through a trial and error approach, gradually
increasing the value of the proportional parameter kp and verifying the system
passivity. Results are reported in Table 3.6 and in Figure 3.6 on a logaritmic
scale. One can observe that the maximum gain retaining passivity dramatically
drops as the sensor location approaches the link’s tip. Comparing the two cases
of study, one can see that the motor inertia significantly affects the maximum
allowable gain. For instance, by placing the sensor at the tip, one can reach
kp = 29 in the case of the EC45 motor and kp = 2.3 in the case of the DCX22L
motor. The experimental validation will show coherence with these values. We
highlight that passivity cannot define the performance do the closed-loop system.
This implies that a passive system can stably interact with a passive environment
but eventually can show extremely bad performance, e.g. with high overshoots
and oscillations. This is particularly true in the case of the "high" gains reported
in Figure 3.6.
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Maximum Proportional Gain kp - Passivity Index

EC45 Motor DCX22L Motor

Feedback at τ1 105 105

Feedback at τ2 105 4862

Feedback at τ3 105 1519

Feedback at τ4 15556 599

Feedback at τ5 6892 298

Feedback at τ6 3430 166

Feedback at τ7 1917 104

Feedback at τ8 1072 65

Feedback at τ9 673 46

Feedback at τ10 475 32

Feedback at τ11 376 25

Feedback at τ12 265 20

Feedback at τ13 210 16

Feedback at τ14 166 12

Feedback at τ15 148 10

Feedback at τ16 117 8.1

Feedback at τ17 93 7.2

Feedback at τ18 83 5.0

Feedback at τ19 65 4.5

Feedback at τ20 58 4.0

Feedback at τ21 52 3.6

Feedback at τ22 41 3.2

Feedback at τ23 36 2.5

Feedback at τ24 29 2.3

Table 3.6: Maximum kp gain guaranteeing passivity
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3.5 Experimental Validation

A laparoscopic tool used in minimally invasive surgery is selected as an example
of a flexible link. The laparoscopic tool is an empty cylinder made of a fibre-
reinforced composite. Link parameters are reported in Table 3.2. The link is
arranged on a custom test bed in such a way that the motor torque produces a
link bending deformation when pushing a kinematic constraint, the metal cube
in Figure 3.7. A rigid kinematic constraint is selected as a worst-case passive
environment since stability is more challenging to observe in stiff environments
[58, 11]. In this configuration, the system can be modelled exactly as in Figures 2.1
and 3.1. We chose two motors: model Maxon EC45 and model Maxon DCX22L
with reduction gearbox of 1000 and 103, respectively.

The link deformation is measured using strain gauges in half-bridge configura-
tion arranged at different positions along the link. Of course, we cannot arrange
sensors exactly at the clamping point because of mechanical accessibility issues
and existing edge effects. The following experiments are related to different sensor
arrangements considering small ε, L

2 and L. The strain gauges are connected to a
custom electronic board, which includes a Wheatstone bridge and an amplification
stage.

The proportional control algorithm is implemented in C++ on a custom mi-
crocontroller running the control task with an execution frequency of 2000 Hz.
More details on the implementation can be found in [59].

Figures 3.8 and 3.9 show the torque step response of the proportional force con-
troller based on link deformation feedback at the link base for kp ∈ [1, 2, 3, 5, 10, 20],
the same gain values considered in section 3.4.1. The torque reference τref is
shown in blue, and the measured torque τ is in red. Plots 3.10, 3.11, 3.12 and
3.13 show the same kind of responses, considering link deformation feedback at
the middle point and at the tip of the link for both motors.
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(a) Setup with Maxon motor EC45: the laparoscopic tool is
arranged on a custom test bed in such a way that the motor
torque produces a link bending deformation when pushing a
kinematic constraint, the rigid cube

(b) Setup with Maxon motor DCX22L: the laparoscopic tool
is arranged on a custom test bed in such a way that the motor
torque produces a link bending deformation when pushing a
kinematic constraint, the rigid cube

ε = L ε = L
2 ε ≃ 0

Electric Motor

(c) Sensor (strain gauges) arrangements on the flexible link in order to mea-
sure the deformation/torque in different locations

Figure 3.7: The experimental setup with EC45 and DXC22L motors and sensor
arrangements on the flexible link
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(a) Step Response with kp = 1 (b) Step Response with kp = 2

(c) Step Response with kp = 3 (d) Step Response with kp = 5

(e) Step Response with kp = 10 (f) Step Response with kp = 20

Figure 3.8: Step Response with torque feedback at the link base with motor EC45

(a) Step Response with kp = 1 (b) Step Response with kp = 2

Figure 3.9: Step Response with torque feedback at the link base with motor
DCX22L
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(a) Step Response with kp = 1 (b) Step Response with kp = 2

(c) Step Response with kp = 3 (d) Step Response with kp = 5

(e) Step Response with kp = 10 (f) Step Response with kp = 20

Figure 3.10: Step Response with torque feedback at L
2 with motor EC45

(a) Step Response with kp = 1 (b) Step Response with kp = 2

Figure 3.11: Step Response with torque feedback at L
2 with motor DCX22L
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(a) Step Response with kp = 1 (b) Step Response with kp = 2

(c) Step Response with kp = 3 (d) Step Response with kp = 5

(e) Step Response with kp = 10 (f) Step Response with kp = 20

Figure 3.12: Step Response with torque feedback at the L with motor EC45

(a) Step Response with kp = 1

Figure 3.13: Step Response with torque feedback at L with motor DCX22L. The
case kp = 2 is unstable and not reported.
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3.5.1 Discussion on passivity

It is known that experimentally validating passivity conditions is a hard task be-
cause of the existing discrepancies between theory and practice due to neglected
dynamics and discretization [60]. However, it’s interesting to observe that when
the feedback sensor is located on the tip, the theoretical passivity constraint de-
fines kp ≤ 29 and kp ≤ 2.3 for EC45 and DCX22L motors, respectively. Similar
limits can be observed in the practice. As reported in Figure 3.6, kp = 20 leads to
marginal stability for the EC45 motor while kp = 1 leads to marginal stability for
the DCX22L motor. Besides confirming coherence between theoretical and exper-
imental results, this observation highlights that motor dynamics has a significant
impact on passivity, as already observed in section 3.4.2.

3.5.2 Discussion on stability

Similarly to the previous section, the motor dynamics has a significant effect also
on stability. Theoretically, this can be observed by comparing plots (a) and (b)
in Fig. 3.4. Regarding the case study with the EC45 motor, quite surprising
we didn’t notice significant differences on stability margins due to the level of
collocation: the plots in Figure 3.8 are qualitatively similar to plots in Figure
3.10 and to those in Figure 3.12. Instead, the case study with DCX22L motor
seems to be much more sensitive to non-collocation issue: this can be observed
by looking at differences between plots in Figures 3.11, 3.13. For instance, using
feedback from the tip we couldn’t reach a stable response with kp = 2, whereas
the same gain could be used for base-link and mid-link feedback. Both these
observations agree with the trends in Figure 3.4a (where the minimum distance
is almost constant) and in Figure 3.4b (where the minimum distance decreases
when approaching the tip). As a final observation, one can see that the most
oscillating responses occur when the minimum distance values reported in Figure
3.4 approach the value 0.15. This means that the minimum distance (Eq. 3.4)
can be an effective indicator of stability margins.

3.6 Conclusion

In this chapter, we developed a symbolic library to derive a high-order lumped
approximant for a common surgical instrument (a laparoscopic tool) in order
to analyse related passivity and stability properties. Considering proportional
force feedback measured at different locations, we found, as expected, that the
passivity constraint is more strict as the sensor location approaches the instrument
tip, especially in the case of a low-inertia motor. Interestingly, the passivity
constraint found at the tip is coherent with maximum allowable gain during real-
world experiments on a stiff environment. Regarding stability, we found that the
system is less sensitive to non-collocation, especially in the case of high-inertia
motors. In the case of low-inertia motors, non-colocation can become an issue.
Experimental results agree with these findings.
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In this case study, we consider the mass, length, and stiffness of the laparo-
scopic tool, focusing our analysis on minimally invasive robotic surgery applica-
tions. However, the developed solver is versatile and can be used to analyze the
passivity and stability margins of various systems depending on the context of
interest.
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Needle Insertion and deflection
estimation
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Chapter 4

Needle Insertion Models - A
Comparison between Kinematic
Models for Robotic Needle
Insertion with Application into
Transperineal Prostate Biopsy

4.1 Background and state of art

One of the main causes of death for men is prostate cancer (PCa), which is the
second most common cancer after breast cancer [61]. Epidemiologic studies of
prostate cancer have revealed numerous ways in which individual biology and
lifestyle factors, such as older age and family history, influence the risk of de-
veloping prostate cancer and survival from this disease [61]. Prostate cancer is
a clinically heterogeneous disease; some men have an aggressive form, and most
others have a slow-growing or indolent form of the disease. The successful treat-
ment of high-risk patients and avoiding overtreatment in low-risk patients depends
greatly on early and accurate PCa detection. Needle biopsy is the most reliable
technique for detecting PCa and estimating its aggressiveness [62]. Robot-assisted
needle insertion can improve the accuracy of this procedure, helping to place the
tip of the needle safely and accurately without damaging tissues, organs, or ves-
sels. Unfortunately, precise needle placement is difficult to accomplish in real
practice because of tissue heterogeneity, needle bending, and tissue/organ defor-
mation and movement. As a result, modelling the interaction between the needle
and the tissue is a critical requirement for robotic needle insertion.

During a transperineal prostate biopsy, the physician uses ultrasound images
to guide the needle from the perineum entry points towards the selected target
spots [63]. Due to several reasons, including economic cost, needles with a bev-
elled tip are the most commonly used. Unfortunately, when these needles cross
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the prostate, they deflect due to tissue forces acting on the bevelled tip, producing
an unwanted deflection and degrading the accuracy of the system. The advan-
tage of a bevelled tip is that it causes less tissue damage than a symmetric tip
and that curved trajectories can be used to avoid delicate tissues, such as bones
and blood vessels, which are located between practical entry sites and possible
targets. During a transperineal prostate biopsy, the surgeon can compensate for
the deformation of the needle by twisting the instrument to reach the lesion on
the prostate. If we consider robotic automated insertions of needle for prostate
biopsy, needle twisting is not possible so it is necessary to plan the trajectory
from the entry points to the points to be sampled on the organ, considering the
deformation of the needle and surrounding tissue. Thus, modelling the needle
deflection path becomes of paramount importance, and several authors have ad-
dressed this topic over the years [64, 65]. Previous reports depict three different
formalisms to model needle deflection: kinematic models, finite elements (FE)
models, and quasi-static approximated mechanical models.

The first research team that presented a kinematic model is Park et al. [66].
The authors developed a simple nonholonomic 2D unicycle model to describe how
an ideal needle with a bevelled tip moves through a firm tissue. One year later,
Webster et al. [67] introduced a nonholonomic 3D bicycle-like model for steering
flexible bevelled tip needles. This model describes the same circular arc of the
unicycle model but differs when an axial rotation of the needle occurs between
two straight insertions. Both models assume that the tissue does not deform.
Inserting the needle into a stationary tissue causes negligible deformation of the
surroundings as the needle bends, so the modelling is limited to the motion of
the tip. However, if the tissue is not stiff, as the instrument bends, the tissue
is compressed. This leads the needle tip to follow a non-circular path. For this
reason, Fallahi et al. [68] proposed an extension to the bicycle model of Webster et
al. [67]. In this model, the back wheel is replaced with an omnidirectional wheel
that can move sideways, allowing the needle to follow a path with a variable radius
of curvature. The principal limitation of this model is that only the position of
the needle tip is estimated, and all forces applied by the tissue along the needle
shaft cannot be calculated. This information is critical to account for target
displacement, so a finite elements model has been proposed.

DiMaio et al. and Goksel et al. were the first to use FE to model the needle-
tissue interaction [69, 70]. Initially, a FE model was used to simulate the deflection
of a needle in free space and take geometric nonlinearities into account [71]. Then,
to model the effects of the surrounding tissue, a linear elastic tissue model was
used. The geometry of the soft tissue is typically defined using a mesh composed
of 2D or 3D polyhedral elements that are deformed as the needle cuts and ad-
vances into tissue [72]. Alterovitz et al. presented a 2-D finite element method
of needle insertion considering the effect of tip bevel to perform motion planning
for steerable needles without the need for explicit position feedback [73, 74, 75]
and then Chentanez et al. expanded the model in 3-D [76]. In Maghsoudi and
Jahed [77, 78], FEM is also used to estimate the needle-tissue contact forces that
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Figure 4.1: Unicycle and Extended bicycle models of a bevelled tip needle

result from tissue deformation. Other applications of FEM include modelling
the effect of external forces applied to the tissue to shift the target location and
improve needle targeting accuracy [79]. Mallapragada, Sarkar, and Podder used
this concept for breast biopsy procedures [80]. It can also be used to enhance
target accessibility by pushing obstacles and sensitive tissue away from the needle
path. Because of their high flexibility, FE-based models can effectively describe
the behaviour of needles in tissue in the presence of external perturbations.

Figure 4.2: Finite Elements Simulation of Needle Insertion

Employing a comprehensive FE model of tissue can be very time-consuming and
not suitable for real-time control [81, 71]. More computationally efficient models
may come at the expense of reduced accuracy [70]. Furthermore, certain pa-
rameters in FEM simulators may not relate to physical properties that can be
experimentally and independently measured. In this regard, the right tradeoff
may be a quasi-static, approximated mechanical model.

The needle’s mechanical behaviour during insertion depends on the coupled
deformations of both the needle shaft and the surrounding tissue. The interac-
tion can be classified into four distinct phases: tissue puncturing, tissue cutting,
needle-tissue friction, and tissue deformation [82, 81, 83].

• Tissue puncturing happens at the initial contact between the needle tip and
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the tissue. It starts by deforming the tissue and continues until the contact
force reaches its maximum and a crack is formed on the tissue surface.
Puncturing results in a relatively large force at the needle tip that drops
when the needle tip enters the tissue [84, 82, 83].

• Tissue cutting: As the needle tip further advances into tissue, it displaces
the immediately surrounding tissue and the crack grows, creating the effect
of tissue cutting [85]. Considering the tissue as an elastic medium, tissue
compression at the needle tip leads to a distributed load being applied on
both sides of the needle tip that, due to the asymmetric bevel tip, results
from a net force normal to the needle shaft [81].

• Friction is applied tangentially to the needle shaft against the motion of the
needle. Three regimes of interest exist: (1) static friction while the needle
is in a steady state; (2) transition from the steady state to the sliding state;
and (3) velocity-dependent forces as the needle moves [86, 87]. Friction
contributes to tissue displacement along the needle shaft but does not have
a significant effect on needle deflection [81].

• Tissue deformation: the force Q applied at the needle tip makes the needle
bend and follow a curved trajectory as it moves. Consequently, the deformed
needle shaft compresses the surrounding tissue, which in turn applies forces
to the needle shaft and influences the tip trajectory [85]. Tissue reaction
forces are applied perpendicularly to the contact surface between the needle
shaft and the tissue. Therefore, needle deflection and tissue deformation are
coupled effects that influence each other [88, 89].

Figure 4.3: Needle insertion fases

As a bevelled-tip needle advances in soft tissue, the needle tip cuts and dis-
places the tissue, and a force F is created normal to the bevel. The resultant
vertical force Q = F cos(ϕ), where ϕ is the bevel angle, causes the needle to
bend and deform the surrounding tissue, resulting in the distributed load q being
applied to the needle shaft.
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To account for the fact that needle deflection and tissue deformation are
coupled effects, researchers have adopted beam theories to develop fundamen-
tal mechanics-based models of needles in tissue [86, 71, 87, 90]. Goksel et al.
were among the first to develop mechanics-based models of a needle in free space
subjected to a constant load applied at the tip. Tissue deformation is modelled
by contact forces that evolve as the needle bends and compresses the tissue. The
Euler-Bernoulli equation describes the relationship between the beam’s deflection
v at a point z along its shaft and the applied load q as dz.

d2

dz2
(EI

d2v

dz2
) = q (4.1)

where EI is the needle’s flexural rigidity, and q is a distributed load that acts
anywhere along the needle shaft. Integrating both sides of (2.1) with respect
to the position z gives the shear force acting on the needle. To the obtained
shear force, the tip force Q is added, and the result is further integrated until the
deflection v(t,z) is obtained.

Figure 4.4: Forces acting on the needle shaft

We have also Misra et al. that used an energy-based formulation for a beam
which is in contact with a nonlinear hyperplastic tissue to simulate needle steering
[81]. This model accounts for lateral and axial deflection of the needle, tissue
deformation, and input force applied at the needle base. Later, the same model
was extended to include needle rotation during needle insertion [91]. Khadem
et al. used a dynamic beam theory to study the effects of insertion velocity on
needle deflection [87]. Reed et al. studied the effects of torsional friction on needle
deflection dynamics [92]. They developed an estimator that allows the needle to
maintain motion in a prescribed plane. The design of needle steering planners and
most types of feedback controllers requires a model of the needle-tissue interaction
that predicts the needle tip position given the inputs at the needle base, such as
insertion velocity and needle axial rotation.

In the end, in a recent MICCAI conference, Daniel Glozman and Moshe
Shoham [93, 94] have presented a simplified virtual spring model that allowed fast
path planning and real-time tracking for the needle insertion procedure. They as-
sumed small tissue displacement and a linear lateral force response. So the tissue
forces on the needle could be modelled as lateral virtual springs distributed along
the needle curve plus friction forces tangent to the needle’s longitudinal axis.
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Modelling of a flexible needle was based on the assumption of quasistatic motion,
so the needle is in an equilibrium state at each step. They adopted the nodal
degrees of freedom from finite elements theory, in which the coordinates were
specifically identified with a single nodal point and represented a displacement
or rotation. A third-degree polynomial was used to calculate the displacement of
each element. A compromise had to be made between computation efficiency and
model accuracy.

In this Chapter, we propose an experimental comparison of kinematic mod-
els evaluating their accuracy in the context of a transperinary prostate biopsy,
considering different needle insertion speeds and different organ stiffnesses. We
adapted Fallahi’s extended bicycle model to suit our application. To enable a
comparative experimental analysis of models, we develop:

1. identification procedures to estimate model parameters,

2. a vision algorithm based on an RGB-D camera system to reconstruct the
needle tip position at each insertion step,

3. four transparent phantoms with different stiffnesses which allow the use of
standard cameras to collect needle insertion frames.

The Chapter is organised as follows: Section 4.2 provides the theoretical
background on kinematic models and explores in detail the considered models.
Section 4.3 describes the proposed method, including the vision algorithm that
recognizes and tracks the needle, the robotic setup and the phantom design. Sec-
tions 4.4 and 4.5 describe the experimental results and their discussion and
Section 4.6 reports our conclusions and future works.

The results of this chapter are reported in "A Comparison between Kinematic
Models for Robotic Needle Insertion with Application into Transperineal Prostate
Biopsy" published to "Technologies 2024, 12, 33", https://doi.org/10.3390/
technologies12030033.

4.2 Kinematic models

The transperineal prostate biopsy procedure consists of straight needle insertion
into tissues, without twisting. For this reason, the original bicycle model [67]
cannot be used in this context because it describes a needle trajectory in the
3D space which is not distinguishable from the unicycle model when limited to
the 2D space. Therefore, our comparison will consider the unicycle [66] and the
extended bicycle models [68]. These models consider a bevelled-tip needle driven
by an insertion speed v. The tip moves along a path defined by the surrounding
material’s properties, the geometry of the needle’s bevelled tip, and the needle
insertion speed. We suppose that the needle is inserted at a constant velocity v,
measured with respect to the {A} frame along the z-axis and without twisting.

https://doi.org/10.3390/technologies12030033
https://doi.org/10.3390/technologies12030033
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4.2.1 Unicycle Model

The unicycle model considers the needle tip as located at the center of a single
wheel (unicycle) lying on the ZY plane as shown in Fig. 4.5. The labels {A} and
{B} represent the global fixed frame and the needle tip frame, respectively.

Y

Y

Z

OA

{A}

{B} γ

Z

c

r

v

Figure 4.5: Unicycle model of a flexible needle with a bevelled tip.

According to this model, the needle tip follows a planar path formed by single-
arc of fixed curvature with center c = [0, cy] and radius r, considering the entry
point OA at (0, 0) in the {A} frame. Here we assume that the needle tip is oriented
such that bending occurs toward the negative y-axis as in Fig. 4.5. Let (z, y, γ)
define the configuration of the needle tip frame shown in Fig.4.5, where the vector
(z, y) is the tip location and γ is the angle between the z-axis of the {A} frame
and the z-axis of the {B} frame that is the needle tip direction. Considering that
the needle bends toward the negative y-axis, we have γ ∈ [−π/2, 0].

Since the wheel movement satisfies the pure rolling, non-slipping, constraint,
in the {B} frame, the velocity has only z-axis component, without lateral move-
ments:

Bvy = 0 (4.2a)

where we suppose that the wheel speed vz equals the insertion velocity. The
dynamic evolution of the needle configuration can be described as:

Aż(t) = cos γ(t)vz (4.3a)
Aẏ(t) = sin γ(t)vz (4.3b)
Aγ̇(t) = −vz

r
(4.3c)
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with r constant. Considering OA as the entry point of the insertion at t = 0, the
integration of equations (4.3), leads to:

Az(t) = −r sin γ(t) (4.4a)
Ay(t) = cy + r cos γ(t) (4.4b)
Aγ(t) = −vz

r
t (4.4c)

4.2.2 Extended Bicycle Model

The extended bicycle model [68] considers a bicycle lying on the ZY plane as
shown in Fig. 4.6 where the labels {A}, {B} and {C} denote, respectively, the
global fixed frame, the needle tip frame (back wheel) and the front wheel frame.
The model consists of two wheels positioned at a fixed distance l from each other
with the front wheel oriented at a fixed angle β. The well-known bicycle model
with front and back wheels is defined as (z, y, γ), parameterized by the (z, y)
location of the back wheel and the angle of the bicycle body with respect to the
horizontal, γ. The constraints for the front and back wheels are formed by setting
the sideways velocity of the wheels to zero. Using the Pfaffian constraints, the
following dynamical system is obtained:

ż = vz cos γ (4.5a)
ẏ = vz sin γ (4.5b)

γ̇ =
vz
l
tanβ (4.5c)

with β constant. This model has been modified in such a way that, when the
needle is moving forward into the tissue, lateral movements can happen on the
back wheel due to tissue deformation. In this case, the final shape of the needle
doesn’t follow the tip path. This model, in contrast to the bicycle model (4.5),
accounts for this phenomenon by considering an additional state θ. As for the
unicycle model, we suppose that the needle path points toward the negative y-axis
starting from the entry point OA. As in the standard bicycle, (z, y, θ) represents
the {B} frame configuration which is the back wheel body frame. Differently from
the standard bicycle model, the needle tip configuration is (z, y, γ) where γ is the
angle between the z-axis of the {A} frame and the needle tip velocity vector Bv.
In practice, γ describes a back wheel slippage phenomenon along the y-axis of
{B} frame. If γ defines the needle tip velocity with respect to the frame {A}, α
defines the same quantity respect to frame {B} and the following relation holds

Bα = θ − γ (4.6)

As the needle bends toward the negative y-axis, the tissue deformation pulls the
needle in the opposite direction, so α ∈ [−π/2, 0] and γ ∈ [−π/2, 0]. The needle
tip velocity vector Bv and the lateral slipping velocity Bvy are defined as:
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Figure 4.6: Extended bicycle model of a flexible needle with a bevelled tip.

Bv = vz + vy (4.7a)
Bvy = vz tanα (4.7b)

where authors assume α as a quadratic function of γ

Bα = λ1γ
2 + λ2γ (4.8)

and λi represent tissue-specific parameters related to its mechanical properties.
Considering the definition of α as the slippage of the back wheel (Eq. (4.8)), it
is clear that for non-zeros λ1 and λ2, the needle path deviates from the constant
curvature circular path corresponding to λ1 = λ2 = 0. Using the definition of
the needle tip velocity Bv (4.7a) and the angle Bα (4.6), the angle Bθ can be
expressed as

B
θ̇ =

vz + vy
l

[tan (θ − γ) + tanβ] (4.9)

Considering the angle Bα (4.6)- (4.8) the time variation of the angle Bγ, B γ̇, is
calculated as

B γ̇ = θ̇ − α̇ (4.10a)
B γ̇ = θ̇ − γ̇(2λ1γ + λ2) (4.10b)

B γ̇ =
θ̇

1 + 2λ1γ + λ2
(4.10c)

B γ̇ =
θ̇

1 + ∂α
∂γ

(4.10d)
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Finally, the extended bicycle model [68] can be written as:

B ż = v cos γ (4.11a)
B ẏ = v sin γ (4.11b)
B
θ̇ =

v

l
[tan (θ − γ) + tanβ] (4.11c)

B γ̇ =
θ̇

1 + ∂α
∂γ

(4.11d)

4.3 Method

The experimental comparison has been carried out with the setup shown in
Fig 4.7. It consists of a robotic system which performs the insertion with a bev-
elled tip needle. This system, described in Section 4.3.4, includes a force sensor on
the needle base and an external RGB-D camera. The insertions were performed
on phantoms with different stiffnesses that emulate the prostate with different
tumour levels defined by the Gleason score, which is a grading system for the
progress of the tumour. Phantoms’ preparation is described in Section 4.3.5.

Figure 4.7: Expeimental Setup: A robotic system which performs the insertion
with a bevelled tip needle into transparent phantoms

A fundamental step of our methodology is to identify the parameters of the
unicycle and extended bicycle models to fit a needle tip trajectory (Sections 4.3.1
and 4.3.2). The trajectory is reconstructed using a vision algorithm (Section 4.3.3)
that identifies and tracks the needle tip throughout its insertion.

4.3.1 Unicycle Model Identification

This section introduces a methodology to estimate the parameters r and cy for
the unicycle model. Given the needle tip coordinates Bz(t) and By(t) computed
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from the vision algorithm (see section 4.3.3), these are fitted to the unicycle
circumference. The implicit equation of a circumference with center in (0, cy) and
radius r can be written as:

z2(t) + (y(t)− cy)
2 = r2 (4.12)

To obtain a formulation suitable for least-square regression in the form Φρ⃗ = b,
we rewrote (4.12) as:

2yρ1 + ρ2︸ ︷︷ ︸
Φρ⃗

= z2 + y2︸ ︷︷ ︸
b

(4.13)

where ρ1 = cy and ρ2 = r2 − c2y. Then cy and r can be easily found.

4.3.2 Extended Bicycle Model Identification

Authors of [68] introduced a methodology to estimate the parameters of the ex-
tended bicycle model: β and l in (4.9) and λ1, λ2 in (4.8). From the needle tip
trajectory (z, y), computed from the vision algorithm in section 4.3.3, it is possi-
ble to measure the γ angle as the orientation of the needle tip velocity in the {A}
frame:

γ = sin−1(
∆y

∆d
) = tan−1(

∆y

∆z
) (4.14)

where ∆y, ∆z, and ∆d denote, respectively, the variations of the needle tip deflec-
tion, insertion, and depth between two sample times. In this context, depth refers
to the Euclidean distance in the ZY plane between two successive tip positions.
The angle θ is not directly measurable, but its time variation can be expressed in
two different formulations leading to:

θ̇ =
v

l
(tan (λ1γ

2 + λ2γ) + tanβ) (4.15a)

θ̇ = γ̇

(
1 +

∂α

∂γ

)
= γ̇(1 + 2λ1γ + λ2) (4.15b)

where (4.15a) is obtained from (4.9) substituting (4.8) while (4.15b) is calculated
from (4.11d) considering (4.8). We combined (4.15a) and (4.15b) to obtain

−2lλ1γ
γ̇

v
− lλ2

γ̇

v
− l

γ̇

v
+ tanβ + tan

(
λ1γ

2 + λ2γ
)
= 0 (4.16)

which is a function of parameters and known quantities. Known quantities are γ,
(4.14), its time variation γ̇ and the needle tip speed v. Unknown parameters are l,
β, λ1, λ2 and can be identified by a non-linear least square regression algorithm, as
proposed by authors [68]. Unfortunately, the objective function presents several
local minima and, to improve the results, the following constraints are imposed:
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l ∈ [0, 2] (4.17a)

β ∈ [−π

2
, 0] (4.17b)

λ1 ∈ [−1, 1] (4.17c)
λ2 ∈ [−1, 1] (4.17d)

Even by using such constraints, this methodology, as proposed by authors [68],
was not always able to find an appropriate solution. For this reason, we used a
genetic algorithm to minimize the residual error between the experimental data
and the predicted ones.

4.3.3 Needle recognition and tracking

To track the needle tip position in each time frame, we used the semantic segmen-
tation module based on the Generative Adversarial Network (GAN) model [95].
Compared to the other models, this network has the advantage of requiring very
few RGB samples representing the setup to obtain high-quality results. The GAN
consists of two main components: a generator and a discriminator.

• Generator: The generator takes an input image, processes it through a
neural network, and produces an output image. It learns to create realistic
and visually appealing results by mimicking the patterns, textures, and
styles found in the training data. As training progresses, the generator
becomes increasingly adept at generating images that are indistinguishable
from real data.

• Discriminator: The discriminator, on the other hand, acts as a critic. It tries
to distinguish between real images from the training dataset and fake images
generated by the generator. Through adversarial training, the discrimina-
tor becomes skilled at identifying flaws or inconsistencies in the generated
images.

As training continues, the generator and discriminator engage in a competitive
process, with the generator constantly improving its ability to generate convincing
output, while the discriminator becomes better at discerning real from fake. This
dynamic equilibrium ultimately results in the generator producing high-quality,
pixel-to-pixel output that retains the essential characteristics of the input data.

Figure 4.8 shows an example of segmentation of an image acquired from the
realsense camera. The classes corresponding to objects in the scene are encoded
following the Table 4.1.

Once we obtained the segmented image, we defined the workspace by placing
a chessboard over a 3D-printed support where the needle passes through. This
allows us to retrieve the pixels/millimeters ratio that is needed to have the needle
position in the 3D metric space. Starting from the pose of the chessboard, we
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Color Semantic Meaning

Background
Needle
Markers
Tissue

Table 4.1: Semantic Scene Color Encoding

(a) Realsense view (b) Segmented image

Figure 4.8: An example of real-time semantic segmentation computed with the
realsense camera

Figure 4.9: An example frame with the needle tip estimation represented as a red
dot

filter out an area of interest around the needle path and create a bounding box
in the semantic image then work with a smaller image. Finally, we segment the
needle from the semantic image and then we can extract the center point of the
needle tip as shown in Fig 4.9, which will be used later for model estimation.

The coordinates (z, y) of the needle tip, which are derived from the mask ob-
tained through semantic segmentation for each frame, are individually subjected
to a third-order polynomial fitting process over time-to-position data in order to
mitigate measurement noise.

4.3.4 Experimental Setup

We design a robotic system to perform insertion experiments into tissues, with
one degree of freedom (DoF) capable of translational motion along the needle’s
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principal axis. A mechanical drive system pushes the needle into the phantom
using a direct drive motor (model EC90flat) and a worm gear system. The tra-
jectory of the needle tip is reconstructed by using an Intel RealSense d435 camera
positioned approximately 20 centimeters from the surface of the phantom, op-
erating at a rate of 30 Hz to capture the images fed into the vision algorithm.
The use of transparent phantoms and a camera allows us to acquire the entire
needle tip trajectory during the insertion with good accuracy, which is something
ultrasound imaging cannot afford due to its noise.

The needle bevel tip is oriented so that the needle deflection plane ZY is par-
allel to the imaging plane. In the experiments, a standard 18 gauge brachytherapy
needle with a bevel angle of 15◦ was used. The insertions are carried out at various
constant velocities to a depth of 100 mm.

4.3.5 Phantom Design

In our experimentation comparison, we consider four transparent phantoms with
increasing stiffness (30, 50, 70, 100 kPa) in the range of prostate gland stiffnesses
in benign and malignant disease conditions [96, 97]. Two-component silicone
elastomers (SL 3358 A and SL 3358 B, KCC Silicone) were utilized in equal
amounts for the preparation of the phantom. Silicone oil (G Line T100, KCC
Silicone) in differing amounts (50, 55.5, 66.6) and 0.03 wt % cotton fibers were
added to the silicone mixture to adjust the stiffness of the model and simulate
the fibrous and muscular tissue of the prostate. The preparation of the first layer
of the phantom body with fibers (2.5 cm height) was followed by the insertion of
the 65 pin markers (13 x 5 rows) positioned at the required locations (Fig. 4.10
- a). Subsequently, the final layer of the phantom (0.5 cm height) with fibers
was produced by curing the silicone formulation that is equivalent to the bottom
layer. Each layer was cured separately at 70 °C in an oven for 100 min (20 cm x
14 cm x 3 cm) (Fig. 4.10 - b).

(a) (b)

Figure 4.10: a) The sketch of the prostate phantom and the markers; b) The view
of the prostate phantom from the top
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4.3.6 Mechanical Characterization

Different formulations of the two-component silicone elastomers with silicone oil
and cotton fibers supplements were prepared in dog bone shape according to
the American Society for Testing and Materials International (ASTM) standards.
The specimens were tested with 200 N force via the Universal Testing Machine
(UTM) (Zwick/Roell) and an average of three tests were reported (Fig. 4.11).

Figure 4.11: a) The mechanical properties measurement setup in Zwick/Roell
UTM, b) silicone sample prepared in dog-bone shape, and the image of the silicone
sample, c) during the tensile test and d) at the end of the test (fracture)

The stiffnesses were adjusted with the addition of silicone oil and supple-
mentary materials (e.g., cotton fibers) to reach the highest resemblance to the
reported values of the prostate tissue. The stiffness of the phantom body range
was between 32.8–107 kPa (Fig. 4.12).

Figure 4.12: The stiffness of the different silicone-based prostate model formula-
tions with supplements that are utilized in the design of the phantom body
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4.4 Experimental Results

Using the robotic setup the needle is inserted to a depth of 100 mm consid-
ered between the longest distances between the perineum and the apex of the
prostate. Insertions are performed at two different velocities (10, 20 mm/s). For
each stiffness and velocity pair, we performed four repetitions. We performed
model identification procedures using data from the first three repetitions, and
we used the fourth repetition to assess the prediction accuracy of the models.
The unicycle model and the extended bicycle model are labeled, respectively, as
M1 and M2. Results in Tables 4.2 and 4.3 show respectively the average final
tip deflection ωexp(l) with the standard deviation of the final tip position σexp
and the average tip error identification for unicycle model emeanM1 and extended
bicycle model emeanM2 with their standard deviation σeM1 and σeM2 for every
phantom’s stiffness and velocity pair. Figure 4.13 shows examples of data from
identification procedures related to phantoms with stiffness 30 kPa and 100 kPa
at velocities 10mm

s and 20mm
s .

Insertion Velocity Stiffness ωexp(l) σexp
[mm/s] [kPa] [mm] [mm]

10

30 -8.26 0.43
50 -10.80 0.95
70 -12.18 1.13
100 -12.58 1.11

20

30 -7.65 0.56
50 -9.51 0.20
70 -10.57 1.14
100 -11.78 1.44

Table 4.2: Average final tip deflection and standard deviation considering 8 exper-
imental conditions (4 phantoms and 2 velocities pair) with four repetitions each

We estimated the parameters of the models by performing a least square iden-
tification for the unicycle model and using a genetic algorithm for the extended
bicycle model as described in Sections 4.3.1 and 4.3.2. To robustify the identifica-
tion procedure the estimated parameters are averaged considering data from the
three insertions. To access the models’ accuracy, the simulated needle trajectory is
compared to experimental data of the fourth repetition. Results in Table 4.4 show
the maximum tip prediction error for the unicycle model emaxM1 and the extended
bicycle model emaxM2 and their root-mean-squared error (RMSE) RMSEM1 and
RMSEM2 for every phantom’s stiffness and velocity pair. Figure 4.14 shows ex-
amples of data from prediction procedures related to phantoms with stiffness 30
kPa and 100 kPa at velocities 10mm

s and 20mm
s .
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(a) Stiffness 30 kPa, Velocity 10 mm/s (b) Stiffness 30 kPa, Velocity 20 mm/s

(c) Stiffness 100 kPa, Velocity 10 mm/s (d) Stiffness 100 kPa, Velocity 20 mm/s

Figure 4.13: Models identification on needle insertions experiments in the prostate
stiffness range (30, 100 kPa) at two different velocities (10, 20 mm/s)

Insertion Velocity Stiffness emeanM1 emeanM2 σeM1 σeM2

[mm/s] [kPa] [mm] [mm] [mm] [mm]

10

30 6.15 10−4 0.012 5.18 10−7 2.52 10−4

50 0.051 0.065 0.005 0.006
70 0.056 0.338 0.005 0.156
100 0.130 0.364 0.020 0.174

20

30 0.053 0.126 0.004 0.022
50 0.013 0.142 0.022 0.032
70 0.014 0.151 0.027 0.033
100 0.153 0.166 0.031 0.034

Table 4.3: Average tip error identification and standard deviation for Unicycle
Model and Extended Bicycle Model considering 8 experimental conditions (4
phantoms and 2 velocities pair) with four repetitions each

4.5 Discussion

From Table 4.2 one can notice that insertions exhibit a notable final displacement,
around 10% of their whole length and this motivates the use of models for the
prediction of needle deflection. From Table 4.4 one can observe that both models
are quite accurate in predicting the tip’s final position. In terms of RMSE, we
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Insertion Velocity Stiffness emaxM1 emaxM2 RMSEM1 RMSEM2

[mm/s] [kPa] [mm] [mm] [mm] [mm]

10

30 0.18 0.77 0.11 0.49
50 0.32 0.45 0.26 0.27
70 0.43 2.07 0.31 0.76
100 0.44 1.04 0.28 0.71

20

30 0.20 0.61 0.12 0.19
50 0.22 0.45 0.18 0.26
70 0.29 0.78 0.19 0.33
100 0.75 1.24 0.29 0.85

Table 4.4: Maximum tip prediction error and the root-mean-squared error
(RMSE) for Unicycle Model emaxM1 and Extended Bicycle Model emaxM2 con-
sidering 8 experimental conditions (4 phantoms and 2 velocities pair) with four
repetitions each

(a) Stiffness 30 kPa, Velocity 10 mm/s (b) Stiffness 30 kPa, Velocity 20 mm/s

(c) Stiffness 100 kPa, Velocity 10 mm/s (d) Stiffness 100 kPa, Velocity 20 mm/s

Figure 4.14: Unicycle and Extended Bicycle Models prediction on the fourth
needle insertion experiment

achieved a tenth of a millimetre accuracy down to the millimetre (in the case of
more rigid phantom insertions). The maximum errors are less than or equal to
0.75 mm for the unicycle model and less or equal to 2.07 mm for the extended
bicycle model. In spite of its lower complexity, the unicycle model is more accurate
than the extended bicycle model. Both in terms of RMSE and maximum error, the
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unicycle model is, on average, 2.5 times more accurate than the extended bicycle
model. In any experimental scenario, the unicycle model generates smaller errors
than the extended bicycle model (for each stiffness and velocity pair). For both
model, higher errors in predicting the final needle tip deflection are obtained when
the needle is pushed into the more rigid phantoms (70 and 100 kPa) at the highest
velocity (20 mm

s ). Since the unicycle model is a linear regression identification, it is
faster and requires less computational effort than the extended bicycle model. We
measured an average computation time of 0.7ms for the unicycle model and 45s
(range 20s-65s, executed on Intel Core i7-6700HQ processor running 4 threads)
for the extended bicycle model as a final remark.

4.6 Conclusion

This work compared the kinematic models for robotic needle insertion targeting
straight needle insertion as in transperineal prostate biopsy. Our experimental
comparison considers four transparent phantoms with increasing stiffness simu-
lating fibrous and muscular prostate tissue in benign and malignant disease con-
ditions. Experimental results show that, in spite of its simplicity, the unicycle
model outperformed the extended bicycle model in terms of accuracy and com-
putational time. Modelling the deformation of the needle and surrounding tissue
during insertion into the prostate allows surgeons to take samples accurately from
the organ, thus ensuring the accurate identification of prostate cancer and indicat-
ing the level of risk for the patient. A prostate biopsy is one of the most impactful
and independent parameters that direct physicians to the surgery if it is not pos-
sible to follow other treatments. In this comparative study of kinematic models,
the tissue is considered rigid or with small deformation, allowing the deflection of
the needle to be modelled without necessarily considering the forces of interaction
with the tissue. However, heterogeneous tissues with different stiffness levels are
crossed in the transperineal biopsy procedure. In our future work, we will evalu-
ate non-straight needle insertions, including more complex models such as virtual
spring mechanical models [98, 99] and finite elements models [100, 101, 102] and
the influence of skin tension, subcutaneous fat, and pelvic diaphragm will be
considered to evaluate the targeting error in a complete robotic needle insertion
procedure.



Chapter 5

Conclusions

In the first part of the thesis, we investigated interaction control algorithms which
take advantage of the inherent flexibility of commonly used surgical instruments.
First, we leverage on continuum mechanics theory to model the surgical instru-
ment and investigate passivity properties. Using the Lyapunov approach, we
demonstrated that proportional force control based on a collocated feedback signal
from a continuum flexible beam is always passive with respect to the environment
port. However, using the same methodology, we were not able to derive passivity
results for non-collocated feedback. Then, we used high-order approximants to
investigate non-collocated feedback, focusing on application-specific conditions.
The result was that passivity imposes a constraint on maximum gain values, hav-
ing more strict conditions as non-collocation approaches the tip of the instrument.

In the second part, we focus on modelling the interaction between a bevel-tip
biopsy needle and the surrounding tissue to enable automated needle insertion
during a robotic prostate biopsy. In this context, the objective is to estimate the
deflection of the tip during insertion and to plan the trajectory accordingly. An
experimental comparison is conducted to assess the accuracy of existing models
in predicting needle deflection. Interestingly, we found that the simplest model is
also the most accurate both in fitting and prediction.

All the results in this thesis are validated on custom setups, which mimic some
of the challenges of real robotic surgery within the Autonomous Robotic Surgery
(ARS) and the Autonomous Prostate Biopsy Project (PROST) projects.
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