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Neutrophils, the most abundant leukocytes in peripheral 
blood (PB), ensure host immunity by sensing and phago-
cytosing invading pathogens, as well as by releasing cyto-

toxic molecules via granule discharge or neutrophil extracellular 
traps (NETs)1. Individuals with severe congenital neutropenia or 
chronic granulomatous disease, diseases characterized by defec-
tive neutrophil development or functions, are indeed sensitive to 
opportunistic infections2, and rapid reconstitution of neutrophil 
counts after hematopoietic stem cell transplantation (HSC-T) is 
associated with higher survival and hematological recovery in 
chemotherapy-treated patients3. On the other hand, aberrant neu-
trophil activation underlies a variety of inflammatory conditions, 
including autoimmunity, stroke, neurodegeneration and cancer4.

The multifaceted activities of neutrophils in health and disease 
underscore a remarkable functional diversity5. In this context, tra-
ditional views of neutrophils as short-lived effectors with limited 
plasticity are challenged by findings that, already at the steady state, 
these cells persist within organs and acquire tissue-specific genomic 

programs6. Heterogeneity of neutrophils also reflects the output of 
bone marrow (BM) granulopoiesis, a demand-adapted process sen-
sitive to homeostatic fluctuations7, alterations of the hematopoietic 
niche or changes in the concentration of mediators such as granu-
locyte colony-stimulating factor (G-CSF)8. During stress-induced 
myelopoiesis, committed precursors and immature neutrophils 
undergo expansion and premature release in the blood, where they 
coexist with terminally differentiated subsets9–11. Neutrophil prop-
erties are further diversified as cells are exposed to stress-associated 
stimuli in the circulation or in target organs, leading to the pro-
duction and release of a spectrum of inflammatory and regulatory 
products12–16.

A systematic analysis of the phenotypic and transcriptome 
changes occurring in human neutrophils during inflammation is 
a prerequisite for the interpretation and rational targeting of these 
cells’ activities in homeostasis and disease; however, the extent and 
drivers of neutrophil heterogeneity in humans have remained elu-
sive. We addressed these issues by performing a comprehensive 
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immunophenotype and transcriptome analysis, at the bulk and 
single-cell level, of human neutrophils and monocytes in healthy 
controls and in patients undergoing stress-induced myelopoiesis 
driven by exposure to G-CSF, myeloablative conditioning followed 
by HSC-T, development of pancreatic ductal adenocarcinoma 
(PDAC) or infection with severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2).

Results
Dynamics and phenotype of G-CSF-elicited human neutrophils. 
To characterize stress-elicited neutrophil dynamics in humans, we 
performed a comprehensive immunophenotype analysis of PB or 
BM samples from control and age-matched individuals undergo-
ing G-CSF treatment (Supplementary Tables 1–6). Unfractionated 
blood samples were analyzed using multiparametric flow cytom-
etry with a panel of 16 antibodies able to quantify up to 28 subsets 
of hematopoietic stem and progenitor cells (HSPCs), committed 
precursors and differentiated cells17 (Extended Data Fig. 1a and 
Supplementary Table 7). To assess neutrophil phenotypes, PB and 
BM samples were additionally subjected to density gradient separa-
tion followed by targeted flow cytometry analyses of CD15+CD66b+ 
cells that sedimented in the erythrocyte/granulocyte fraction 
(referred to as normal-density neutrophils (NDNs)) or in the mono-
nuclear cell layer (low-density neutrophils (LDNs)) (Extended Data 

Fig. 1b–d and Supplementary Table 7). Neutrophils indeed show 
variable buoyant densities according to changes in their granule 
content and nuclear morphology during maturation and/or activa-
tion. We observed a robust mobilization of myeloid-biased HSPCs 
in G-CSF-treated donors (Extended Data Fig. 1e–h), concomi-
tant with a preferential surge of circulating neutrophils and other 
myeloid cells (Fig. 1a and Extended Data Fig. 1i,j). In line with 
previous studies18,19, G-CSF exposure led to increased numbers of 
neutrophil precursors (SSChiCD33/CD66b+CD38+CD11c−CD10−) 
and of immature neutrophils (SSChiCD33/CD66b+CD38−CD11c−

/+CD10−) (Fig. 1b,c and Extended Data Fig. 1a,k). G-CSF-treated 
donors displayed high frequencies of LDNs (Fig. 1d,e) that 
expressed low levels of the neutrophil differentiation and activa-
tion markers CD11b, CD11c, CD62L, CD16 and CD10 (Fig. 1d,f 
and Extended Data Fig. 2a). G-CSF-elicited LDNs were heteroge-
neous and included cells corresponding to neutrophil precursors 
(CD15+CD66b+CD49d+CD16−), immature neutrophils (CD15+

CD66b+CD49d−CD16int) and mature neutrophils (CD15+CD66
b+CD49d−CD16hi) (Fig. 1g–i and Extended Data Fig. 2b,c)9–11. Ex 
vivo assays of 5-ethynyl-2′-deoxyuridine (EdU) incorporation con-
firmed that LDNs contained neutrophil precursors with prolifera-
tive potential9,10 (Fig. 1j,k and Extended Data Fig. 2d,e). As reported 
previously19, NDNs from G-CSF-treated donors were mostly com-
posed of mature neutrophils with an activated phenotype (lower  
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Fig. 1 | Dynamics and phenotype of neutrophils elicited by G-CSF. a, Absolute counts of neutrophils (gated as CD45+CD33+/CD66b+SSChi) in whole PB of 

controls or G-CSF-treated donors (n�=�15). b,c, Absolute counts (b) and percentage (c) of neutrophil subsets (gated as shown in Extended Data Fig. 1a)  

in whole PB of controls (n�=�15) or G-CSF-treated donors (n�=�15). d,e, Representative contour plots (d) or cumulative histogram plots (e) showing the 

frequencies of LDNs in the PBMC fraction of controls (n�=�16) and G-CSF-treated donors (n�=�15). f, Histogram plots showing representative expression 

levels of the indicated markers in NDNs from PB of controls (n�>�10) or G-CSF-treated donors and LDN of G-CSF-treated donors (n�>�12). g, Gating strategy 

used to identify neutrophil precursors (pre), immature (imm) and mature (mat) neutrophils within LDNs. h,i, Percentage of neutrophil precursors, immature 

and mature neutrophils within the PBMC fraction (h) or within LDNs (i) in controls (n�=�12) and G-CSF-treated donors (n�=�17). j,k, Representative contour 

plots (j) and cumulative histogram plots (k) showing percentages of EdU+ cells within neutrophil precursors, immature and mature neutrophils in controls 

(n�=�3) or G-CSF-treated donors (n�=�8). Gating strategies for the indicated cell types are reported in Extended Data Fig. 1a–c and Supplementary Table 7. 

Bar plots represent data as mean�±�s.d. Data were analyzed with a two-sided Mann–Whitney U-test (a,b,e,h).
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expression of CD10 and CD62L; Fig. 1f and Extended Data Fig. 2a) 
and increased levels of CD35 (CR1) and CD54 (ICAM-1) (Extended 
Data Fig. 2f,g) than control NDNs. These data highlight the hetero-
geneous phenotype of G-CSF-elicited human neutrophils.

Dynamics and phenotype of neutrophils during HSC-T or PDAC. 
We next profiled neutrophil dynamics in age-matched individu-
als undergoing emergency myelopoiesis secondary to HSC-T with 
high-intensity conditioning (Supplementary Tables 1–6). PB and/or 
BM samples were collected from these patients shortly after treat-
ment (first follow-up, PB collected 16–27 days after HSC-T), at clin-
ical recovery (second follow-up, PB and BM collected 28–40 days 
after HSC-T) and months after HSC-T (third follow-up, PB and BM 
collected >180 days after HSC-T) (Extended Data Fig. 2h–j). Flow 
cytometry analyses of unfractionated PB samples highlighted mobi-
lization of phenotypically defined neutrophil precursors in patients 
receiving HSC-T at the first or second follow-up (Fig. 2a–c), coincid-
ing with the appearance in the circulation of heterogeneous LDNs 
(Fig. 2d,e) containing proliferating and non-proliferating precur-
sors as well as immature neutrophils (Fig. 2f,g and Extended Data 
Fig. 2d,e,k,l). We then analyzed PB samples from treatment-naive 
patients with locally advanced or metastatic PDAC (n = 19) or 
with intraductal papillary mucinous neoplasms (IPMN) (n = 15), 
a type of lesion that often precedes tumor onset20. Total neutro-
phil counts were largely unaltered in patients with PDAC, whereas 
those of other hematopoietic cells (HSPCs, monocytes and T lym-
phocytes) were significantly reduced (Extended Data Fig. 2m–p). 
Thus, the neutrophil-to-lymphocyte ratio (NLR), a frequently used 
marker of cancer progression21, was higher for patients with PDAC 
than for healthy controls or patients with IPMN (Extended Data 
Fig. 2q,r). In line with previous reports22, we observed increased  

frequencies of circulating LDNs in patients with PDAC (Fig. 2h,i), with 
this cell population spanning cycling and non-cycling precursors, 
immature, as well as mature neutrophils (Fig. 2j and Extended Data  
Fig. 2s–v). We highlight that PDAC patients enrolled in the study 
are significantly older than healthy donors (Supplementary Tables 
1, 3 and 4); however, no increase in LDN frequencies nor NLR val-
ues were detected in age-matched patients with IPMN (Fig. 2i and 
Extended Data Fig. 2r), suggesting that age is not a key determinant 
of neutrophil dynamics. Our results highlight mobilization of het-
erogeneous LDNs as a hallmark of stress myelopoiesis induced by 
G-CSF treatment, HSC-T or PDAC.

Functional properties of G-CSF-elicited neutrophils. We next 
performed ex vivo experiments to assess reactive oxygen species 
(ROS) production, neutrophil extracellular trap (NET) release and 
cytokine synthesis by neutrophil populations isolated from control 
or G-CSF-treated individuals (Fig. 3a). As compared to those of 
healthy individuals, NDNs from G-CSF-treated donors displayed 
a weaker respiratory burst upon treatment with phorbol myristate 
acetate (PMA) (Fig. 3b,c), possibly reflecting the pre-activated phe-
notype of these cells in vivo. G-CSF-elicited LDNs also showed 
lower responses to PMA than controls (Fig. 3b,c), with ROS gen-
eration occurring mostly within phenotypically mature cells  
(Fig. 3d,e). Dose–response experiments revealed that, at a limiting 
dose of stimulus, LDNs from G-CSF-treated donors were substan-
tially less able to produce ROS than matched NDNs (Fig. 3f). We also 
found that G-CSF-elicited LDNs underwent PMA-driven NETosis 
less efficiently than NDNs (Fig. 3g), corroborating the notion that 
LDNs contain neutrophils that have not fully acquired effector 
capacities. We next measured the levels of a panel of cytokines, che-
mokines and growth factors in the culture supernatant of neutrophil 
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Fig. 2 | Dynamics and phenotype of neutrophils during HSC-T or PDAC. a, Absolute counts of neutrophils in whole PB of controls (n�=�8) or patients 

receiving HSC-T (first follow-up (FU1), n�=�8; second follow-up (FU2), n�=�9; third follow-up (FU3), n�=�3). b,c, Absolute counts (b) and percentage (c) of 

neutrophil subsets (gated as shown in Extended Data Fig. 1a) in whole PB of controls (n�=�8) or patients receiving HSC-T (first follow-up, n�=�7; second 

follow-up, n�=�8, third follow-up, n�=�3). d,e, Representative contour plots (d) or cumulative histogram plots (e) showing the frequencies of LDNs in the 

PBMC fraction of controls (n�=�16) and HSC-T patients (first follow-up, n�=�8; second follow-up, n�=�8; third follow-up, n�=�5). f,g, Representative contour 

plots (f) and cumulative histogram plots (g) showing percentages of EdU+ cells within neutrophil precursors, immature and mature neutrophils in PB 

samples of patients receiving HSC-T (second follow-up, n�=�3). h,i, Representative contour plots (h) or cumulative histogram plots (i) showing the 

frequencies of LDNs in the PBMC fraction of controls (n�=�16), patients with IPMN (n�=�14) and patients with PDAC (n�=�16). j, Representative contour plots 

showing percentages of EdU+ cells within neutrophil precursors, immature and mature neutrophils in PB samples of patients with PDAC. Gating strategies 

for the indicated cell types are reported in Extended Data Fig. 1a–c and Supplementary Table 7. Bar plots report data as mean�±�s.d. Statistical analyses used 

were Kruskal–Wallis test plus two-sided Dunn’s multiple comparison (a,b,e,i).
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populations treated ex vivo with the Toll-like receptor (TLR)-8 ago-
nist resiquimod (R848), a powerful stimulator of cytokine release by 
human neutrophils23. A differential biosynthetic capacity emerged 
when comparing control and G-CSF-elicited NDNs, with the lat-
ter cells displaying efficient release of inflammatory molecules 
upon stimulation (Fig. 3h). Notably, LDNs from G-CSF-treated 
donors were particularly responsive to TLR ligation and synthe-
sized the highest levels of cytokines such as interleukin (IL)-1β, 
IL-1RA, G-CSF, CCL2, CCL5 and tumor necrosis factor (TNF)-α  
(Fig. 3h). These findings suggest that, while lacking at least some 
effector features of terminally differentiated cells, mobilized imma-
ture neutrophils retain immune regulatory capacity via cytokine 
synthesis and release. Collectively, our data underscore the influ-
ence of maturation and exposure to growth factors on the functional 
effector and the immunoregulatory properties of stress-elicited  
neutrophil subsets.

Bulk transcriptome analysis of monocytes, NDNs and LDNs. To 
define the gene expression programs of myeloid cells at steady state 
and after stress, we performed bulk RNA-sequencing (RNA-seq) 
analyses of NDNs, LDNs and monocytes isolated from the PB of 
healthy controls (n = 19) and G-CSF-treated donors (n = 17) as well 
as of patients receiving HSC-T (n = 8) and patients with PDAC 
(n = 15) or IPMN (n = 14). We also analyzed neutrophil differ-
entiation intermediates from BM samples of controls (n = 3) or 
patients receiving HSC-T (n = 7), generating a total of 210 RNA-seq 
samples from 73 individuals (Supplementary Table 8). Cell purity 
after magnetic bead selection or sorting was consistently higher 
than 95% (Extended Data Fig. 3a–f). Principal-component analy-
sis (PCA) and unsupervised k-means clustering highlighted clear 
segregation of monocyte, NDN and LDN transcriptomes (Fig. 4a, 
Extended Data Fig. 4a–c and Supplementary Table 9). Monocytes 
were characterized by selective expression of transcripts encoding 

for known myeloid transcription factors (KLF4, IRF8 and MAFB), 
scavenger receptors (MARCO and MRC1), components of the anti-
gen presentation machinery (HLA-DMA, HLA-DRA and CD74) 
and inflammatory cytokines (CCL2 and CXCL10) (Fig. 4a; mod-
ule 6). Notably, monocytes expressed a gene program (module 5) 
that was shared with stress-elicited LDNs and that included tran-
scripts encoding for regulators of RNA transcription (POLR1A and 
POLR2L), translation (EIF2A and EEF2) and ribosome biogenesis 
(RPL10A, RPS23 and BOP1) (Fig. 4a). LDNs displayed high levels 
of genes encoding for neutrophil granule proteins (MPO, DEFA4 
and ELANE), cell cycle regulators (TOP2A), transcription factors 
(CEBPE) and surface markers (CEACAM8) (Fig. 4a; modules 2 
and 4), and they tended to cluster together with developing neu-
trophils of the BM from healthy donors (Fig. 4a and Extended Data 
Fig. 4a–c). LDNs were also characterized by low basal expression 
of inflammatory response genes (GBP1, OASL, IL1B and TNF) that 
were instead transcribed in NDNs (Fig. 4a; modules 1 and 3), a find-
ing that was confirmed at the protein level for IL-1β (Extended Data  
Fig. 5a,b). Collectively, these data indicate that stress-elicited LDNs 
are characterized by a gene expression program distinct from that 
of monocytes or NDNs and largely comparable to that of developing 
neutrophils of the BM.

Transcriptional responses to stress in NDNs and monocytes. 
We next set out to define stress-induced transcriptional changes 
in NDNs and monocytes (due to their heterogeneity, cells cor-
responding to LDNs were studied at the single-cell level; see 
below). Analysis of differentially expressed genes (DEGs)  
(Fig. 4b and Supplementary Tables 10–12) and downstream vali-
dation (Extended Data Fig. 5c–g) uncovered a profound transcrip-
tome reprogramming of NDNs from G-CSF-treated donors or 
patients receiving HSC-T, whereas NDNs from patients with PDAC 
underwent comparatively small changes. There was a limited  

Fig. 3 | Functional analysis of G-CSF-elicited neutrophils. a, Schematic description of ex vivo experiments performed to evaluate ROS production, 

NETosis and cytokine release by neutrophils. b, Representative histogram plots showing rhodamine 123 signal in PMA-stimulated NDNs and LDNs 

from controls and G-CSF-treated donors. c, Line plot showing percentage of ROS+ cells in PMA-stimulated NDNs and LDNs from controls (n�=�2) and 

G-CSF-treated donors (n�=�5). d, Representative histogram plots showing rhodamine 123 signal in PMA-stimulated neutrophil precursors, immature 

and mature neutrophils from G-CSF-treated donors. e, Line plot showing percentage of ROS+ cells in PMA-stimulated neutrophil (neu) precursors, 

immature and mature neutrophils from G-CSF-treated donors (n�=�5). f, Line plots showing ROS levels in PMA-stimulated NDNs and LDNs from controls 

(n�=�3) or G-CSF-treated donors (n�=�3). g, Cumulative histogram plot showing PMA-induced NET release in NDNs and LDNs from controls (n�=�5) and 

G-CSF-treated donors (n�=�6). UT, untreated. h, Cumulative histogram plots showing the concentration of indicated cytokines released by R848-stimulated 

NDNs and LDNs from controls (n�=�6) or G-CSF-treated donors (n�=�8). Gating strategies for the indicated cell types are reported in Supplementary Table 

7. Bar plots and line charts report data as mean�±�s.e.m. Statistical analyses were a two-way analysis of variance plus Tukey’s multiple comparisons test 

(c,e–h). Asterisks (f) refer to the comparison between NDNs from controls versus G-CSF-treated donors, and hashtags refer to the comparison NDNs 

from controls versus LDNs from G-CSF-treated donors. * or # P�<�0.05; ** or ## P�<�0.01; *** or ### P�<�0.001; **** or #### P�<�0.0001; full P values are 

reported in source data.

Fig. 4 | Bulk RNA-seq of neutrophils and monocytes upon G-CSF, HSC-T, IPMN or PDAC. a, Heat map showing normalized expression levels (z score) of 

variable genes (n�=�1,684, Methods) in NDNs, LDNs and monocytes isolated from PB or BM of healthy controls (n�=�19), G-CSF-treated donors (n�=�17), 

patients receiving HSC-T (n�=�8), patients with PDAC (n�=�15) and patients with IPMN (n�=�14) as well as of developing BM neutrophils from healthy donors 

(n�=�3) and patients receiving HSC-T (n�=�7). The row dendrogram represents hierarchical clustering of gene modules identified by k-means, and the column 

dendrogram represents hierarchical clustering of RNA-seq samples. Legends and color bars at the top indicate sample identities by cell type and at the 

bottom by experimental condition. Numbers on the row dendrogram represent the identity and size of each gene module, with representative transcripts 

shown on the right. Gating strategies for cell sorting are reported in Extended Data Fig. 3a–f and Supplementary Table 7. Supplementary Table 8 provides 

the full list of samples (n�=�210). b, Volcano plots showing DEGs in NDNs from G-CSF-treated donors, patients receiving HSC-T (first and second follow-up) 

or patients with PDAC as compared to steady-state controls. The x and y axes indicate the expression fold change (FC) (log2) and the false discovery rate 

(FDR) (−log10) for each gene versus controls, respectively. Legends highlight upregulated (red) or downregulated (blue) transcripts, as well as genes not 

passing cutoff criteria for FC (black) and FDR (gray) (Methods). Selected representative genes are shown. c, Venn diagram showing the overlap between 

genes upregulated in NDNs isolated from G-CSF-treated donors or from patients receiving HSC-T. Genes in green are also induced in NDNs isolated from 

patients with PDAC (Supplementary Table 13). d, Bar plots showing the normalized enrichment score (NES) of selected GO categories enriched within 

genes upregulated (red) or downregulated (blue) in NDNs from the indicated experimental condition versus controls. e, Bar plot showing the number of 

genes induced (log2FC�>�1.5 and FDR�<�0.05) in NDNs and monocytes isolated from G-CSF-treated donors or from patients receiving HSC-T.
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overlap between DEGs in NDNs from the various experimental 
conditions, indicating that transcriptional responses of human 
neutrophils are largely stress-specific (Fig. 4c and Supplementary 

Table 13). In line with this notion, exposure to G-CSF led to 
induction in NDNs of genes belonging to Gene Ontology (GO) 
categories such as mitochondrial gene translation, oxidative 
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phosphorylation or leukocyte-mediated immunity and to repres-
sion of interferon (IFN) responses (Fig. 4d and Supplementary 
Tables 14–16). On the other hand, NDNs from patients receiving 
HSC-T showed a clear IFN signature, and they expressed genes 
of defense response and mitochondrial translation GOs (Fig. 4d 
and Supplementary Tables 14–16). Increased expression of IFN 
response genes and of transcripts controlling fatty acid metabolism 
was also measured in NDNs from patients with PDAC (Fig. 4d and 
Supplementary Table 14–16). Notably, we found that monocytes 
from G-CSF-treated donors or patients receiving HSC-T showed 
limited transcriptional changes as compared to what observed 
in NDNs from the same individuals (Fig. 4e and Supplementary  

Tables 17–22). These data highlight a remarkable plasticity of 
human neutrophils in vivo.

Analysis of plasma factors elicited by G-CSF, HSC-T or PDAC. To 
identify soluble factors underlying neutrophil dynamics upon stress, 
we quantified a panel of plasma cytokines, chemokines and growth 
factors in the PB of subjects enrolled in the study (Supplementary 
Table 23). G-CSF administration was associated to a drastic upregu-
lation of G-CSF and IL-1RA, as well as to a mild increase of inflam-
matory cytokines that included IFN-γ, IL-18 and CXCL10 (Fig. 5a,b 
and Extended Data Fig. 6a). G-CSF treatment also led to lower levels 
of CXCL12 (Fig. 5a,b), a key BM homing signal for CXCR4+ HSPCs 
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Fig. 5 | Plasma factors underlying stress myelopoiesis upon G-CSF, HSC-T, IPMN or PDAC. a, Bar plots showing FC of the mean concentration of the 

indicated factors in the plasma of G-CSF-treated donors, patients receiving HSC-T, patients with IPMN or patients with PDAC as compared to controls 

(steady state, n�=�19; G-CSF, n�=�13; HSC-T FU1, n�=�9; HSC-T FU2, n�=�9; IPMN n�=�15; and PDAC n�=�18). b,c, Concentration of selected factors in the plasma 

of controls and G-CSF-treated donors (b) or controls and patients receiving HSC-T at the indicated follow-ups (c) (steady state, n�=�19; G-CSF, n�=�13; HSC-T 

FU1, n�=�9; and HSC-T FU2, n�=�9). d,e, Correlation between plasma concentrations of the indicated factors and frequencies of neutrophil precursors in the 

PBMC fraction, combining all samples together (d) or excluding (e) G-CSF-treated donors. Spearman’s correlation and P values are shown for each plot 

(steady state, n�=�14; G-CSF, n�=�9; HSC-T FU1, n�=�7; HSC-T FU2, n�=�8; IPMN, n�=�14; and PDAC, n�=�16). Cumulative bar plots report data as mean�±�s.d. 

Statistical analyses were Wilcoxon signed-rank test followed by FDR calculation with two-stage step-up method of Benjamini, Krieger and Yekutieli (a); 
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**P�<�0.01; ***P�<�0.001; ****P�<�0.0001; full P values are reported in source data.
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and immature myeloid cells. We observed a marked inflammatory 
skewing of the plasma cytokine profile in patients receiving HSC-T 
sampled up to 1 month after transplant, with increased levels of fac-
tors controlling myeloid cell differentiation (G-CSF, M-CSF and 
IL-6), recruitment (IL-8, CCL7 and CCL3) and activation (IL-18, 
IL-12, IL-1α and IL-1β) (Fig. 5a,c). The most upregulated plasma 
molecules in patients receiving HSC-T were the IFN-stimulated 
chemokines CXCL9 and CXCL10, in line with a significant eleva-
tion of IFN-α2 and IFN-γ shortly after HSC-T (Fig. 5a,c). Patients 
with PDAC, but not with pre-malignant IPMN, also showed higher 
levels of proinflammatory cytokines, namely, IL-6, IL-8, CCL3 and 
M-CSF as well as CXCL9 and CXCL10 (Fig. 5a and Extended Data 
Fig. 6b). Our data indicate that G-CSF treatment, HSC-T or PDAC 
development are characterized by a systemic increase in PB con-
centration of inflammatory molecules known to drive stress myelo-
poiesis. In this context, plasma levels of G-CSF, IL-6 and IL-8 were 
positively associated with the frequencies of mobilized neutrophil 
precursors or LDNs when combining samples from all groups  
(Fig. 5d,e and Extended Data Fig. 6c–e). A correspondence between 
plasma cytokine profiles and transcriptional dynamics of neutro-
phils was evident, as exemplified by the increased levels of IFNs in 
PB and upregulation of IFN response genes in NDNs from patients 
receiving HSC-T.

Transcriptional diversity of human neutrophils upon stress. We 
next performed single-cell RNA-seq (scRNA-seq) on CD15+ cells 
isolated from PB or BM samples of healthy controls (PB n = 2, BM 
n = 2), G-CSF-treated donors (PB, n = 4), patients receiving HSC-T 
(PB n = 3, of which one received G-CSF post-transplant and BM 
n = 2), or patients with PDAC (PB, n = 5) (Supplementary Table 
24). This sorting strategy enabled us to recover the full spectrum 
of developing neutrophils, from precursors to terminally differen-
tiated cells (Extended Data Fig. 7a). After normalization and fil-
tering, our dataset included transcriptomes from 130,628 cells, of 
which 1,059 were classified as contaminants (Supplementary Table 
25). Graph-based clustering analysis revealed an extensive diversity 
of human neutrophils, with cells being distributed in the Uniform 
Manifold Approximation and Projection (UMAP) embedding 
according to their maturation stage, tissue location, exposure to 
stress signals and donor/patient identity (Fig. 6a,b, Extended Data 
Fig. 7b and Supplementary Table 25). We next employed curated 
gene signatures from developing human neutrophils24,25 to annotate 
UMAP clusters (Fig. 6a–c and Extended Data Fig. 7c,d). Cells in 
cluster 1 expressed the highest levels of a transcriptional module 
previously associated to neutrophil-committed progenitors25, which 
include genes encoding for azurophilic granules (MPO and ELANE) 
and cell cycle proteins (MKI67 and TOP2A); we annotated this clus-
ter as ‘precursors’. We then defined ‘early immature’ (cluster 2 and 
3) and ‘immature’ (cluster 4–14) neutrophils based on increasing 
expression of specific (CAMP, LTF and LCN2) or gelatinase (MMP9 
and CTSB) granule genes24, which are progressively transcribed 

along the transitions from promyelocytes to band cells25. Finally, 
‘mature’ neutrophils (cluster 15–24) were defined by expression 
of SELL, MME and CXCR4 in the BM or NAMPT, CXCR2 and 
SOD2 in PB (Fig. 6a–c and Extended Data Fig. 7c,d). Mapping of 
neutrophil gene modules, previously defined by bulk RNA-seq  
(Fig. 4a), onto single-cell transcriptome data confirmed that LDNs 
(gene modules 2, 4 and 5) span precursors, early immature, imma-
ture and mature neutrophils of the BM, whereas NDNs (module 1) 
correspond to mature PB neutrophils (Extended Data Fig. 7e). In 
line with the observed patterns of LDN mobilization, we found that 
scRNA-seq clusters of precursors, early immature and immature 
neutrophils were predominantly localized in the BM at steady state 
but became evident in the PB of G-CSF-treated donors, patients 
receiving HSC-T or patients with PDAC (Fig. 6a,b and Extended 
Data Fig. 7f,g). Neutrophils at various developmental stages showed 
differential patterns of inducible gene expression in response to 
stress. Mature cells from controls, G-CSF-treated donors, patients 
receiving HSC-T or patients with PDAC were segregated from each 
other in scRNA-seq, whereas precursors and immature neutro-
phils from all experimental conditions tended to cluster together 
(Fig. 6a,b, Extended Data Fig. 7f,g and Supplementary Table 25). In 
this context, distinct gene signatures were evident in stress-elicited 
mature neutrophils. G-CSF exposure was associated with higher 
expression of transcripts such as SERPINA1, CR1, CX3CR1, CD177, 
LAIR1 and CD14, whereas neutrophils from a set of patients with 
PDAC expressed IFN response genes (IRF1 and GBP1) (Fig. 6a–c 
and Supplementary Table 26). Mature neutrophils from patients 
receiving HSC-T sampled early after transplant expressed high lev-
els of genes, such as OAS2, CD274, AIM2 and GBP5 (Fig. 6a–c and 
Supplementary Table 26), which were associated with IFN responses 
(Fig. 6d). This signature became less evident at later time points 
(Fig. 6e,f and Supplementary Table 27), consistent with a progres-
sive return to steady state. Collectively, these data indicate that the 
combined mobilization and exposure to inflammatory factors drive 
divergent developmental trajectories in stress-elicited neutrophils, 
resulting in the acquisition of stimulus-specific gene expression 
programs (for example, IFN signature) in terminally differenti-
ated cells (Extended Data Fig. 7h). More generally, our scRNA-seq 
analyses uncover a high degree of transcriptional heterogeneity of 
circulating human neutrophils, dictated by factors such as the dif-
ferentiation state, their release in circulation and the immunological 
status of the host.

Dynamics of neutrophil differentiation during stress. We next 
set out to dissect how exposure to stress signals impacted on the 
continuum of neutrophil differentiation. We first applied cellHar-
mony26 on single-cell transcriptomes of PB and BM neutrophils 
from healthy controls to build a reference dataset of steady-state 
neutropoiesis and to define cell states corresponding to specific 
developmental intermediates (Supplementary Table 28). Next, 
we matched scRNA-seq data of neutrophils from PB and, when  

Fig. 6 | Single-cell RNA-seq analysis of human neutrophils at steady state and upon stress. a, UMAP plot showing scRNA-seq transcriptomes of 130,628 

cells, sorted as CD15+ neutrophils from whole PB or BM samples of healthy controls (PB, n�=�2; BM, n�=�2), G-CSF-treated donors (n�=�4), patients receiving 

HSC-T (PB, n�=�3; BM, n�=�2) and patients with PDAC (n�=�5). Colors and numbers indicate clusters at resolution 1.5. Representative marker genes are shown 

for selected clusters. Groups of clusters corresponding to developing neutrophil subsets are indicated on the right. Pie charts report the frequency of PB 

or BM cells and of cells from controls, G-CSF-treated donors, patients receiving HSC-T and patients with PDAC. Clusters 25, 26 and 27 were classified 

as contaminants. b, UMAP plots showing colored according to tissue of origin (PB/BM) and the stress condition. c, Heat map showing expression of up 

to 50 marker genes for each scRNA-seq cluster, with selected transcripts highlighted on the left or on the right. Color bars indicate cluster identities. 

Clusters of contaminants are not shown. d, Bar plots showing NES of selected GO categories enriched within combined marker genes of clusters 4 and 7 

(corresponding to mature PB neutrophils from patients receiving HSC-T at the first follow-up). e,f, Box plots showing the expression levels of combined 

marker genes of clusters 4 and 7 in neutrophil precursors, early immature, immature and mature neutrophils from PB (e) or BM (f) samples from 

steady-state controls and patients receiving HSC-T at the indicated follow-ups. Sample sizes are reported in Supplementary Table 27. FDR-adjusted P values 

were calculated by two-sided Wilcoxon rank-sum test. Box plots represent the median, interquartile range (IQR), minimum (25th percentile, 1.5�×�IQR) and 

maximum (75th percentile, 1.5�×�IQR).

NATURE IMMUNOLOGY | www.nature.com/natureimmunology



RESOURCENATURE IMMUNOLOGY

available, BM samples from G-CSF-treated donors, patients receiv-
ing HSC-T and patients with PDAC (termed query) to the pre-
viously defined cellHarmony clusters. This approach enables 
unbiased co-clustering of neutrophils at an equivalent maturation 
phase and precise quantification of stress-induced transcriptional 
changes (Fig. 7a,b, Extended Data Fig. 8a–c and Supplementary 

Tables 29–31). We observed clear differences in both the dynamics 
and the levels of expression of developmental genes in neutrophils 
from G-CSF-treated donors and patients receiving HSC-T, with 
supra-physiological and prolonged expression of marker genes of 
neutrophil precursors (MPO, DEFA4, ELANE, RNASE2 and PLAC8) 
(Fig. 7a–c, Extended Data Fig. 8c and Supplementary Tables 29 and 
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30). Analogously, genes such as TSPO, MMP8, HP, FCN1, FCER1G 
and S100A6 were hyper-expressed in immature neutrophils from 
G-CSF-treated donors and patients receiving HSC-T, and they 
were prematurely and/or persistently transcribed even at earlier or 
subsequent differentiation stages (Fig. 7a–c, Extended Data Fig. 8c 
and Supplementary Tables 29 and 30). A similar, although less pro-
nounced, behavior was observed in neutrophils from patients with 
PDAC (Extended Data Fig. 8a,b and Supplementary Table 31). Our 
data show that exposure to inflammatory factors leads to substantial 
changes in the dynamics of expression of neutrophil developmental 
genes, possibly supporting the enhanced cellular outputs of granu-
lopoiesis during stress.

Transcriptional changes of human neutrophils during stress. To 
determine how the pre-existing developmental state impacted on 
stimulus-induced reprogramming of neutrophils, we performed 
differential gene expression analyses between reference and query 
datasets in cellHarmony clusters. These studies uncovered sets of 
genes that were up- or downregulated upon stress in a develop-
mental state-specific manner (Fig. 7d,e, Extended Data Fig. 8d and 
Supplementary Tables 32–34). In patients receiving HSC-T, tran-
scripts upregulated in differentiated neutrophils (such as ISG15, 
IFI6 or STAT1) were poorly induced in precursors or in immature 
neutrophils (Fig. 7d,f and Supplementary Table 33). Conversely, 
genes induced in precursors were not induced in mature neutro-
phils (Fig. 7d,f and Supplementary Table 33). The latter behavior 
was also evident in cells from G-CSF-treated donors or patients 
with PDAC, with stress-inducible gene expression programs 
being largely distinct between neutrophils at various develop-
mental states (Fig. 7e,g and Supplementary Table 32). In line with 
this notion, GOs of cluster-specific genes were distinct. Mature 
neutrophils from patients receiving HSC-T upregulated genes 
belonging to IFN response and antiviral defense GOs, whereas 
precursors and immature cells from the same individuals upregu-
lated genes involved in RNA processing, translation and protein 
biosynthesis (Fig. 7h and Supplementary Table 35). On the other 
hand, mature neutrophils from G-CSF-treated donors displayed 
high expression of genes related to ATP and carbohydrate meta-
bolic process, macrophage activation and cell adhesion (Fig. 7i and 
Supplementary Table 36). We observed a limited overlap between 
G-CSF-, HSC-T or PDAC-induced genes in cellHarmony clusters 
(Extended Data Fig. 8e and Supplementary Table 37), reinforcing 
the notion that transcriptional responses of neutrophil subsets are 
stress-specific. We next set out to validate and extend our findings 
in patients infected with severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2), an occurrence associated with emergency  

granulopoiesis and aberrant neutrophil activation27,28. Publicly 
available scRNA-seq datasets of peripheral blood mononuclear cells 
(PBMCs) from patients with coronavirus disease 19 (COVID-19)27 
were integrated with single-cell transcriptomes generated in this 
study and subjected to cellHarmony and differential gene expres-
sion analyses (Extended Data Fig. 9a). In keeping with our previ-
ous observations, viral infection altered both the dynamics and the 
expression levels of developmental genes in neutrophil mobilized 
upon stress (Extended Data Fig. 9b and Supplementary Table 38). 
Genes induced in neutrophils from patients with COVID-19 dif-
fered for the various developmental intermediates (Extended Data 
Fig. 9c and Supplementary Table 39), and they were enriched in 
distinct GO categories (Extended Data Fig. 9d and Supplementary 
Table 40). Mature neutrophils from SARS-CoV-2-infected indi-
viduals displayed an antiviral response signature that was absent or 
much less evident in precursors or immature neutrophils (Extended 
Data Fig. 9d). Indeed, differentiated neutrophils from patients 
with COVID-19 (but not precursors or immature cells) upregu-
lated genes such as IFITM3, LY6E, GBP1, GBP5, IFI6, ISG15 and 
FECR1G (Extended Data Fig. 9e). Collectively, our data indicate 
that stress-elicited neutrophils undergo context-dependent tran-
scriptome reprogramming in vivo, in a manner that reflects both 
the developmental stage and the type of stimuli to which the latter 
cells are exposed.

Transcriptional responses to IFN by developing neutrophils. Bulk 
and scRNA-seq analyses highlighted a marked tendency of differ-
entiated human neutrophils to undergo transcriptome reprogram-
ming in response to IFN. These cells showed dynamic expression 
of IFN-stimulated genes in patients receiving HSC-T, to a degree 
that even surpassed that of monocytes from the same individuals  
(Fig. 4d,e and Supplementary Table 18). Furthermore, higher 
expression of IFN-stimulated genes was observed in mature neutro-
phils from patients receiving HSC-T (or patients with COVID-19) 
as compared to less-differentiated cells (Fig. 7b,d,f and Extended 
Data Fig. 9b–e). To determine how the differentiation stage of neu-
trophils correlated with their transcriptional responses to IFNs, we 
performed scRNA-seq on developing neutrophils treated ex vivo 
with IFN-β or IFN-γ. CD15+ cells from cord blood (CB) samples 
of healthy donors were isolated and pooled to capture the entire 
spectrum of neutrophil maturation (Extended Data Fig. 10a–e and 
Supplementary Table 41). We obtained single-cell transcriptomes 
from 22,440 neutrophils, which clustered in the t-distributed sto-
chastic neighbor embedding (t-SNE) plot according to their devel-
opmental stage and the type of treatment (Fig. 8a–d, Extended Data 
Fig. 10e and Supplementary Table 42). The neutrophil composition 

Fig. 7 | Transcriptome reprogramming of human neutrophils upon stress. a,b, Heat maps showing standardized average expression (computed on 

normalized expression levels) of developmental marker genes identified by cellHarmony and expressed in at least 20% of cells from reference datasets, 

for the indicated neutrophil subsets in controls (reference, white bars) and G-CSF-treated donors (a) or patients receiving HSC-T (b) (query, black 

bars). The following samples were included in the cellHarmony analysis: PB and BM for healthy controls; PB (all time points) and BM (day 30 and 

>180 after transplant) for patients receiving HSC-T; PB from G-CSF-treated donors; PB from patients with PDAC. Colored bars and numbers represent 

stages of neutrophil development (1, precursors; 2, proliferating; 3, early immature; 4, immature; 5, mature BM; and 6, mature PB) after alignment of 

scRNA-seq data with cellHarmony (Methods). The number of cells from reference and query datasets for each cluster is shown (top), and the number 

of developmental marker genes for each cluster is shown (left). Selected representative genes are highlighted (right). c, Filled area plots showing mean 

expression in scRNA-seq data of selected developmental marker genes in neutrophil subsets from controls (gray), G-CSF-treated donors (dark blue) 

or patients receiving HSC-T (light blue). Numbers on the x axis indicate the stages of neutrophil development identified by cellHarmony. d,e, Box plots 

showing standardized average expression of genes upregulated (Methods) in the indicated neutrophil subsets from patients receiving HSC-T (d) or 

G-CSF-treated donors (e) versus controls. Each plot refers to induced genes in query versus reference scRNA-seq datasets for neutrophils at each stage 

of development defined by cellHarmony. Box plots represent the median, IQR, minimum (25th percentile, 1.5�×�IQR) and maximum (75th percentile, 

1.5�×�IQR). Sample size corresponds to the number of cells indicated in the heat maps (a,b). f,g, Violin plots showing normalized expression levels of 

selected genes induced in mature neutrophils from patients receiving HSC-T (f) or G-CSF-treated donors (g) as compared to controls. Colors represent 

stages of neutrophil development defined by cellHarmony. h,i, Bar plots showing NES of selected GO categories enriched within genes expressed at higher 

levels in neutrophil subsets from patients receiving HSC-T (h) or G-CSF-treated donors (i) as compared to controls. Colors represent stages of neutrophil 

development defined by cellHarmony.
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of CB largely reflected that of BM and PB, with defined popula-
tions of precursors (cluster 1), immature (cluster 2) and mature 
neutrophils (cluster 3−6) (Fig. 8a,b and Extended Data Fig. 10e). 

Cluster 6 corresponded to a population of CB neutrophils express-
ing chemokine genes (CXCL2, CCL3 and CCL4) that was not clearly 
detectable in BM or PB samples (Extended Data Fig. 10f) and was 
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Fig. 8 | Maturation stage-dependent transcriptome dynamics in neutrophils stimulated with IFNs. a,b, t-SNE plots showing scRNA-seq transcriptomes 

of 22,240 cells, isolated as neutrophils (Methods and Extended Data Fig. 10a–d) from CB samples and stimulated ex vivo with IFN-β or IFN-γ for 4�hours. 

Colors and numbers represent clusters at resolution 0.3 (a) or the type of treatment (b). Representative marker genes are shown for selected clusters. 

Groups of clusters corresponding to developing neutrophil subsets (precursors, immature and mature) are indicated. Clusters 7 and 8 were classified as 

contaminants. c, Stacked bar plots showing the fraction of cells corresponding to control (blue), IFN-β (red) or IFN-γ (green) treatment conditions for the 

indicated scRNA-seq clusters. d, Stacked bar plots showing the fraction of cells belonging to scRNA-seq clusters for the indicated culture condition. e, Heat 

map showing normalized expression (z score) of up to 50 marker genes for each scRNA-seq cluster, with selected transcripts highlighted on the right. 

Cluster identities and corresponding classifications as precursors, immature or mature neutrophils are shown by color bars at the bottom. Color bars at the 

top indicate cells corresponding to control (blue), IFN-β (red) or IFN-γ (green) treatments. f,g, Violin plots showing mean standardized expression of top 25 

marker genes of cluster 4 (mature neutrophils, IFN-β-treated) (f) or cluster 5 (mature neutrophils, IFN-γ-treated) (g) in cells corresponding to neutrophil 

precursors, immature and mature neutrophils from controls or the indicated stimulation conditions; P values were calculated by two-sided Wilcoxon 

rank-sum test. h,i, Violin plots showing normalized expression of selected genes induced by IFN-β (h) or IFN-γ (i) in cells corresponding to neutrophil 

precursors, immature and mature neutrophils from controls or the indicated stimulation conditions. j,k, Violin plots showing normalized expression of the 

genes encoding for IFN receptors and signaling molecule STAT1 in cells corresponding to neutrophil precursors, immature and mature neutrophils from 

controls or the indicated stimulation conditions.
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not investigated further. Treatment of mature neutrophils with 
IFN-β (cluster 4) or IFN-γ (cluster 5) led to upregulation of antivi-
ral response genes (IFIT1, RSAD2, ISG15 and OASL) or of known 
IFN-γ target genes (GBP5, CD274, CD69 and SOCS1), respectively 
(Fig. 8e–g and Supplementary Table 43). On the other hand, pre-
cursors (cluster 1) or immature neutrophils (cluster 2) treated with 
IFNs did not segregate from controls in the scRNA-seq analyses at 
the clustering resolution used (Fig. 8a–e and Supplementary Table 
42). Developing neutrophils showed detectable but weaker induc-
tion of IFN-regulated genes than mature cells (Fig. 8f–i), suggest-
ing lower responsiveness to cytokine stimulation. In line with this 
notion, IFNAR1 and IFNGR1 (transcripts encoding for key IFN-β 
and IFN-γ receptor subunits, respectively) were highly expressed 
in mature neutrophils, but not in immature neutrophils or in pre-
cursors (Fig. 8j,k). Collectively, our data underscore the extensive 
transcriptional plasticity of differentiated human neutrophils upon 
stimulation with environmental agents.

Discussion
In this study, we combined multiparametric immunophenotyping, 
quantification of plasma factors, bulk and single-cell genomics and 
computational modeling to dissect cellular dynamics and molecu-
lar diversity of human neutrophils at homeostasis and upon stress. 
Our study extends previous analyses in mice14,16,29–31, and it uncov-
ers principles of neutrophil gene expression in relevant conditions 
of stress-induced myelopoiesis. Treatment with G-CSF of healthy 
individuals for HSC mobilization, HSC-T in chemotherapy-treated 
patients and development of pancreatic cancer elicited a common 
immunological response, namely, release in the blood of develop-
ing neutrophils and production of inflammatory cytokines driv-
ing neutrophil development and trafficking. The clinical outcomes 
of the above-described settings are profoundly influenced by the 
activities of neutrophils, as these cells were shown to control HSC 
mobilization in response to G-CSF or other agents such as GROβ 
and AMD310032, to enable immune protection of the host and vas-
cular repair33 upon HSC-T and to modulate cancer progression in a 
context-dependent manner4,34,35.

The properties of stress-elicited LDNs have been studied in vari-
ous settings, often by bulk comparison with mature neutrophils36. 
We report that LDNs are highly heterogeneous and span the entire 
spectrum of neutrophil differentiation, up to early precursors. In 
keeping with their immature phenotype, LDNs displayed limited 
effector properties ex vivo (respiratory burst and NETosis) as com-
pared to terminally differentiated cells. On the other hand, LDNs 
were particularly efficient at producing cytokines upon TLR liga-
tion, a capacity that was likely supported by the high expression 
level of transcript and protein biosynthesis genes. The functions of 
LDNs in vivo remain unclear and include immune modulation or 
tissue repair37. Our data support the hypothesis that LDNs regu-
late local and/or systemic inflammation via cytokine production. 
Furthermore, mobilized LDNs might give rise to mature neutrophils 
in the periphery and thus support increased cellular demands upon 
inflammation or damage. In the context of HSC-T, mobilized neutro-
phil precursors may thus sustain immune reconstitution, and thera-
peutic approaches that stimulate their production and release could 
boost recovery from neutropenia following preparative conditioning. 
Combining lineage tracing with single-cell genomics and functional 
analyses will elucidate the hierarchy and developmental connections 
between neutrophil precursors and their progeny, as well as highlight 
functional implications during homeostasis and disease.

Single-cell transcriptome analysis of mobilized neutrophils 
exposed to inflammatory stimuli in the blood allowed us to dis-
sect the complex interplay between differentiation and activation 
in vivo. Stress-elicited neutrophils underwent profound changes 
in the expression dynamics of developmental genes, and they con-
comitantly acquired stimulus-specific gene signatures. Notably, 

both the extent and the type of transcriptional responses to stimula-
tion were different for cells at various maturation stages, with the 
most evident transcriptome dynamics being observed in differenti-
ated neutrophils. These data support a model whereby combined 
mobilization and exposure to inflammatory factors elicit divergent 
neutrophil developmental trajectories that result in the acquisition 
of context-specific functional programs by terminally differentiated 
cells. We speculate that an integrated control of developmental and 
inducible gene expression in neutrophils enables persistent adapta-
tions38, such as those seen in the long-term setting of trained immu-
nity to infection or cancer39,40.

Transcriptional reprogramming of neutrophils closely mirrored 
changes of blood cytokine profiles in individuals with stress myelo-
poiesis. A metabolic and proliferative response underlined neutro-
phils from G-CSF-treated donors, in line with the known biological 
actions of the latter molecule. An acute IFN cytokine signature 
was instead detected in the blood of patients receiving HSC-T 
early after transplant, possibly reflecting chemotherapy-induced 
tissue damage, viral reactivation, exposure to pathogens or acute 
graft versus host disease (GvHD)41,42; this response was associated 
with a marked induction of IFN-stimulated genes in circulating 
neutrophils. Notably, monocytes from the same patients receiving 
HSC-T underwent minor transcriptional changes, as they upregu-
lated a relatively small set of inflammatory genes. The molecular 
bases of differential IFN responses by neutrophils and monocytes 
in vivo remain to be elucidated. A possibility is that lower thresh-
olds of IFN concentrations may be required to drive inducible gene 
expression in neutrophils; this behavior would be compatible with 
the existence of differential signal transduction pathways and chro-
matin dynamics at inflammatory response genes in the two cell 
types43,44. We propose that neutrophils act as powerful sensors of 
environmental stimuli and of IFNs in particular, with the potential 
to provide accurate transcriptome readouts of signaling networks 
occurring in the blood. The high responsiveness of neutrophils to 
IFNs may underlie the relevance of these cells as biomarkers for 
severe infectious diseases, in line with the reported predictive power 
of neutrophil gene expression in blood transcriptional signatures of 
patients with bacterial or viral infection45–47. Future studies will be 
aimed at determining whether neutrophil transcriptome features 
can be used as biomarkers of clinical parameters of HSC-T, such 
as hematopoietic reconstitution, viral reactivation, infections with 
pathogens or GvHD.

By extending previous efforts to characterize neutrophil prop-
erties at the steady state9,24,25 and in clinically relevant settings, 
including G-CSF administration18, lung or heart disease13,48, viral 
infection27,28,49 and cancer12,15,50, our study represents a step toward 
a mechanistic understanding of neutrophil diversity in humans. We 
anticipate that integration of current and future large-scale pheno-
typic, molecular and functional analyses will enable the develop-
ment of diagnostic and therapeutic strategies for diseases in which 
neutrophils are implicated.
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Methods
Experimental methods. Study participants and sample collection. Collection of 
biological samples was compliant with the Declaration of Helsinki and the General 
Data Protection Regulation, and the study was approved by Ospedale San Raffaele 
and Azienda Ospedaliera Universitaria Integrata di Verona ethics committee 
(protocols: TIGET09; MIELO-GEN; NEU-IPMN; and CMRI/55742). A total of 
149 participants were enrolled in the study between June 2017 and June 2022. 
Samples were collected in EDTA-containing sterile vacutainer tubes, stored at 25 °C 
and processed within 2 hours. Informed consent was obtained by all participants. 
Participants received no compensation. Age and sex, as well as anonymized clinical 
information of enrolled participants, are reported in Supplementary Tables 1–6.

Controls and G-CSF-treated donors. Healthy individuals were enrolled at Ospedale 
San Raffaele and Azienda Ospedaliera Universitaria Integrata di Verona. We 
collected PB from healthy donors before HSPC mobilization or BM aspiration 
procedures (n = 55). BM samples were collected from the posterior iliac crests 
under anesthesia as a standard HSPC donation procedure (n = 14). Mobilized PB 
was collected from HSPC donors (n = 49) after 5 days of treatment with G-CSF 
(filgastrim, 10 μg kg−1 per day). CB samples (n = 10) were collected after C-section 
deliveries at term of gestation of healthy volunteers donating placental tissue.

Patients receiving HSC-T. Patients (n = 16) with hematological malignancies 
in complete remission were enrolled at Ospedale San Raffaele. They received 
preparative myeloablative conditioning and underwent a post-transplant 
pharmacologic prophylaxis regimen to prevent acute and chronic 
GvHD and infections. Patients underwent allogeneic HSC-T from either 
haplotype-mismatched related donor (n = 12) or haplotype-matched related donor 
(n = 4). Fourteen patients received unmanipulated G-CSF-mobilized PB cells and 
two received unmanipulated BM cells. We collected samples at three time points 
after HSC-T: first follow-up, early after transplant when white blood cell count 
reached 500 cells μl−1 for 3 days (PB collected 16–27 days after HSC-T); second 
follow-up, at clinical recovery (PB and BM collected 28–40 days after HSC-T); and 
third follow-up, long-term after transplant (PB and BM collected >180 days after 
HSC-T). Two patients (UPN34 and UPN40) showed delayed or absent engraftment 
after HSC-T. Among patients receiving post-transplant G-CSF, we only retained 
UPN47 for scRNA-seq analysis.

Patients with PDAC and IPMN. We collected PB from patients with suspected 
or proven diagnosis of pre-malignant and malignant lesions of the pancreas at 
Ospedale San Raffaele. IPMN diagnosis was confirmed by MRI and/or cytological 
examination on specimens collected via endoscopic ultrasound fine needle 
aspiration or by histological examination after resection. PDAC diagnosis was 
confirmed by cytological examination. Samples were retained only for patients 
with confirmed IPMN (n = 15) or PDAC (n = 19) diagnosis. Exclusion criteria 
were chemotherapy and/or radiotherapy treatments and occurrence of acute 
pancreatitis, cholangitis and surgical or invasive endoscopic procedure within 1 
month before PB collection.

Cell isolation. Mononuclear cells and granulocytes were separated by density 
centrifugation over a Lymphoprep (Stemcell Technologies) gradient. PB and CB 
samples were diluted 1:1 with PBS, and BM and G-CSF-mobilized PB samples were 
diluted 1:4 with PBS and layered over Lymphoprep. Mononuclear cells were lysed 
with sterile ACK solution (0.15 M NH4Cl, 10 mM KHCO3 and 0.1 mM EDTA) 
for 5 min at 25 °C to remove residual erythrocytes and counted in the presence of 
Trypan blue (Sigma) to evaluate cell vitality. Monocytes and LDNs were isolated 
from the mononuclear cell fraction either by FACS (see below) or by magnetic 
beads with CD14 Microbeads or CD15 Microbeads (Miltenyi Biotec), respectively. 
The granulocyte-enriched fraction was further purified over a Hetasep (Stemcell 
Technologies) gradient followed by erythrocytes lysis and vital count with Trypan 
blue. NDNs were isolated from total granulocytes by magnetic bead sorting using 
the Neutrophil Isolation kit (Stemcell Technologies). Alternatively, mononuclear 
cells and granulocytes were isolated by Ficoll-Paque (GE Healthcare Life Sciences) 
gradient centrifugation and Dextran (Sigma) gradient, as previously described19. 
For Cytochrome C reduction assay and supernatant production, total CD66b+ 
neutrophils were isolated by magnetic bead selection by incubating mononuclear 
cells or granulocytes with fluorescence-conjugated anti-CD66b monoclonal 
antibody, followed by incubation with specific anti-fluorochrome microbeads 
(Miltenyi Biotec) according to the manufacturer’s protocol. Purity of bead-sorted 
cell subsets was evaluated by flow cytometry analysis. A detailed reagent list is 
reported in Supplementary Table 44.

Flow cytometry. Whole blood staining. Whole blood flow cytometry analysis was 
performed as described previously17. Briefly, 500 μl of PB or 100 μl of BM was 
incubated with 3 ml or 1 ml, respectively, of ACK solution for 10 min at 25 °C and 
washed twice with PBS. After a final wash in PBS 1% BSA, cells were resuspended 
in 100 μl of PBS 1% BSA and incubated with fluorochrome-conjugated antibody 
mix for 30 min at 25 °C in the dark. Cells were washed, resuspended in 100 μl of 
PBS 1% BSA and incubated for 15 min in the dark with PI at a final concentration 
of 0.25 μg ml−1. Samples were acquired at LSR-Fortessa or BD FACSymphony A5 

SORP Cytometer (BD Biosciences) using DIVA software v.8.0.2 (BD Biosciences). 
Data were analyzed using FlowJo software v.10.8.0 (TreeStar). Cell populations 
were gated as previously described17 with minor modifications, as reported in 
Supplementary Table 7 and Extended Data Fig. 1a.

Mononuclear cells and granulocyte staining. Cells were resuspended in PBS 
containing 1% BSA or 2% FBS and 2 mM EDTA and then incubated with FcR 
blocking reagent human (Miltenyi Biotec) or with 5% human serum at 25 °C for 
5 min. Finally, cells were incubated with fluorochrome-conjugated antibody mix 
for 20 min at 4 °C in the dark. Cell suspension was washed with PBS 1% BSA 
and acquired at Navios Flow Cytometer using NAVIOS software v.1.3 (Beckman 
Coulter), MACSQuant 10 or 16 Analyzers using MACSQuantify software 
v.2.13 (Miltenyi Biotec). For IL-1β intracellular staining, cells were fixed and 
permeabilized with IC Fixation Buffer (Thermo Fisher Scientific) and intracellular 
staining permeabilization buffer (BioLegend) according to manufacturer’s 
instruction and acquired at FACSCanto II using DIVA software v.8.0.2 (BD 
Biosciences). Data were analyzed with FlowJo v.10.6.2 (TreeStar).

Fluorescence activated cell sorting. PB monocytes, LDNs and BM developmental 
intermediates were sorted from the mononuclear cell fraction. Samples were 
stained as described above and sorted at MoFlo XDP (Beckman Coulter) or 
FACSAria Fusion (BD Biosciences) cell sorters using Summit software v.5.4 
(Beckman Coulter) and DIVA software v.8.0.2 (BD Biosciences), respectively. 
We sorted monocytes as CD3−CD56−CD19−CD34− (Lin−) CD33+CD15−CD14+ 
cells and LDNs as (Lin−) CD33+CD14−CD15+CD193− cells. BM neutrophils were 
identified as (Lin−) CD14−CD33+CD15+CD193− cells and further fractionated into 
BM1 CD11b−CD16− cells, BM2 CD11b+CD16− cells, BM3 CD11b+CD16int and 
BM4 CD11b+CD16hiCD10+ cells. For scRNA-seq experiments, neutrophils were 
isolated from whole blood after lysis with RBC lysis buffer (BioLegend) and sorted 
as (Lin−) CD14−CD33+CD15+ cells. See also Supplementary Table 7. A detailed 
reagent list is reported in Supplementary Table 44.

EdU incorporation. Mononuclear cells or total granulocytes were plated at 106 
cells ml−1 with RPMI + 10% FBS + 1% Gln + 1% pen/strep in the absence or in the 
presence of 10 μM EdU. After 18 hours of culture, cells were collected, washed with 
PBS + 1% BSA, incubated with Fc blocking reagents (Miltenyi Biotec) and stained. 
Cells were fixed, permeabilized and incubated with reaction cocktail according to 
Click-iT Plus EdU Flow Cytometry Assay kit (Thermo Fisher Scientific). Samples 
were acquired at Navios Flow Cytometer using NAVIOS software v.1.3 (Beckman 
Coulter) and analyzed with FlowJo v.10.6.2 (TreeStar). A detailed reagent list is 
reported in Supplementary Table 44.

ROS production. Cytochrome C reduction assays or neutrophil/monocyte 
respiratory burst assay kits (Cayman Chemical) were used. Freshly isolated CD66b+ 
LDNs and/or NDNs were washed and resuspended at 2 × 106 cells ml−1 in Hank’s 
Balanced Salt Solution (HBSS), pH 7.4, supplemented with 10% FBS, 0.5 mM CaCl2 
and 1 mg ml−1 glucose. O2

− production in response to 20 ng ml−1 PMA (Sigma) was 
assessed by the Cytochrome C reduction assay (Cayman), as previously described51. 
For flow cytometry analysis of ROS, 1 × 105 mononuclear cells or granulocytes were 
incubated with dihydrorhodamine-123 (Cayman Chemical) and left untreated 
or stimulated with PMA 20 ng ml−1 for 15 or 30 min. Cells were stained with 
fluorochrome-conjugated antibodies as described above, acquired at FACSCanto 
II using DIVA software v.8.0.2 (BD Biosciences) and analyzed with FlowJo v.10.6.2 
(TreeStar). LDNs and NDNs were identified after gating on Lin−CD15+ cells in the 
PBMC and granulocyte fraction, respectively. A detailed reagent list is reported in 
Supplementary Table 44.

NETosis. The NETosis assay kit (Cayman) was used. Bead-sorted NDNs and LDNs 
were resuspended at 1 × 106 cells ml−1 and left untreated or stimulated with PMA 
20 nM and incubated at 37 °C for 2 hours. Culture supernatants were removed, and 
wells were washed to remove soluble elastase. After treatment with S7 nuclease 
to induce the release of NET-associated elastase, supernatants were collected and 
elastase activity was evaluated according to manufacturer’s instructions. A detailed 
reagent list is reported in Supplementary Table 44.

Ex vivo stimulation of NDNs and LDNs. Purified LDNs and NDNs were plated at 
5 × 106 ml−1 in the presence of RPMI 1640 medium supplemented with 10% FBS 
and treated or not with 5 μM R848 (InvivoGen). After 20 hours of culture at 37 
°C, neutrophils were collected and spun at 300 g for 5 min. Cell-free supernatants 
were immediately frozen and stored at −80 °C until use. A detailed reagent list is 
reported in Supplementary Table 44.

Plasma collection. An aliquot of 300 μl of blood collected into EDTA tubes was 
centrifuged 5 min at 10,000 g. Plasma was transferred into a clean tube and 
re-centrifuged 5 min at 10,000 g. Plasma was frozen and stored at −20 °C until use.

ELISA. Cytokine and chemokine concentration in culture supernatants or plasma 
was measured using Bio-Plex Pro Human Cytokine Screening Panel, 48-Plex 
(Bio-Rad) according to the manufacturer’s instructions. Acquisition was performed 
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using Luminex instruments and analyzed with Bio-plex manager (Bio-Rad) 
software. A detailed reagent list is reported in Supplementary Table 44.

Cytospin and May-Grünwald Giemsa staining. We resuspended 100,000 cells in 
200 ml of PBS + 2% FBS and deposited on a slide with a Cytospin 4 centrifuge 
(Thermo Fisher Scientific). Slides were dried for 30 min at 25 °C and stained with 
May-Grünwald solution (Carlo Erba) for 5 min. After washing with water, slides 
were stained with Giemsa (Merck) working solution (Giemsa solution diluted 1:10) 
for 15 min and washed with water. Slides were dried in upright position at 25 °C. 
Images were acquired in bright field using an Eclipse (Nikon) microscope and 
NIS-Elements 4.0 software. A detailed reagent list is reported in  
Supplementary Table 44.

Real-time quantitative PCR. RNA was extracted using the ReliaPrep RNA Cell 
Miniprep System (Promega) and measured with Qubit RNA HS Assay kit using 
a Qubit 3.0. Then, 0.5 ng of RNA were retrotranscribed with SuperScript II and 
cDNA was PCR-amplified with KAPA HiFi HotStart. Target genes amplification 
was performed with Fast SYBR Green Master Mix on a ViiA 7 Real-Time PCR 
System. A detailed reagent list is reported in Supplementary Table 44.

Ex vivo stimulation of CB neutrophils. We isolated mononuclear cells and 
granulocytes, as reported above, from three different CB samples. From the 
mononuclear cell fraction, we isolated LDNs by performing a double round of 
magnetic bead sorting using a Neutrophil Isolation kit (Stemcell Technologies). 
From the granulocyte cell fraction, we isolated NDNs by performing a single round 
of magnetic bead sorting using Neutrophil Isolation kit (Stemcell Technologies). 
To ensure a sufficient representation of neutrophil precursors (less abundant cell 
population) and of NDNs (less efficiently detected by droplet-based scRNA-seq 
due to low RNA content), LDNs and NDNs from each CB sample were mixed in 
a ratio of 1:3. We plated a LDN–NDN mix at 106 cells ml−1 in RPMI 1640 + 10% 
FBS + 1% Gln + 1% pen/strep alone or with G-CSF, IFN-β or IFN-γ all used at 
10 ng ml−1. After 4 hours, cells were collected, washed and counted, and for each 
condition, we mixed cells from different CB in a ratio 1:1:1. The pooled samples 
were processed for scRNA-seq as described below. A detailed reagent list is 
reported in Supplementary Table 44.

Bulk RNA sequencing. We extracted total RNA using the ReliaPrep RNA Cell 
Miniprep System (Promega). RNA concentration was measured with Qubit RNA 
HS Assay kit using Qubit 3.0, and RNA integrity was evaluated with Agilent 
RNA 6000 Pico kit using Bionalyzer (Agilent). RNA-seq libraries were generated 
using the Smart-seq2 method52 starting from 0.5 ng of RNA. Retro-transcription 
was performed using SuperScript II Reverse Transcriptase, and complementary 
DNA was PCR-amplified (18 cycles) with KAPA HiFi HotStart and purified with 
AMPure XP beads. After purification, we determined cDNA concentration using 
Qubit dsDNA HS Assay kit at Qubit 3.0, and we assessed size distribution at 
Agilent 4200 TapeStation system. We performed the tagmentation reaction starting 
from 0.5 ng of cDNA for 30 min at 55 °C, and we performed enrichment PCR using 
12 cycles. Libraries were purified with AMPure XP beads, quantified using Qubit 
3.0 and assessed for fragment size distribution on an Agilent 4200 TapeStation 
system. Libraries were sequenced on an Illumina NextSeq500 or NovaSeq6000 
(single-end, 75-bp read length) according to the manufacturer’s instructions. A 
detailed reagent list is reported in Supplementary Table 44.

Single-cell RNA sequencing. We isolated total CD15+ cells and LDNs (from one 
G-CSF-stimulated donor) by cell sorting. We generated scRNA-seq libraries using 
the microfluidics-based approach of Chromium Single-Cell Controller (10x 
Genomics) using the Chromium Single Cell 3′ Reagent kit v.3.0 according to the 
manufacturers’ instructions. In each experiment, we loaded sample to obtain a 
target cell recovery of 10,000 cells. cDNA amplification was performed using 13 
PCR cycles. The concentration of the scRNA-seq libraries was determined using 
Qubit dsDNA HS Assay kit at Qubit 3.0, and size distribution was assessed using 
an Agilent 4200 TapeStation system. Libraries were sequenced on an Illumina 
NextSeq500 or NovaSeq6000 instruments (paired-end, 150-bp read length) 
according to the manufacturer’s instruction. A detailed reagent list is reported in 
Supplementary Table 44.

Computational methods. Bulk RNA-seq analyses on NDNs, LDNs and monocytes. 
Data processing. Single-end reads (75 bp) were mapped to the GRCh38 reference 
genome using STAR aligner (v.2.6.0a)53. The FeatureCounts function from 
Rsubread package (v.3.7)54 was then used to summarize the aligned reads to 
NCBI Homo sapiens RefSeq genes (hg38) while setting the minMQS option to 3. 
Downstream analyses on the count matrix of expressed genes (25,064 genes and 
210 samples) were performed in R environment (v.4.0.1) with edgeR R package 
(v.3.20.7)55. First, genes with more than one count-per-million (CPM) in at least 
15% of the total set of samples (NDNs, LDNs and monocytes) were retained for 
a total of 8,419 genes and 210 samples. Read counts of expressed genes were then 
normalized with the trimmed mean of m-values method56 using calcNormFactors 
function. The weighted likelihood empirical Bayes method57,58 was used to calculate 
the posterior dispersion estimates through the estimateDisp function. The 

ComBat_seq function59 from the sva package (v.3.38.0)60 was used to model and 
correct the batch effects between the sequencing runs. The PCA of the samples was 
performed based on the batch-corrected reads per count million.

Heat map of variable genes. Log2 (CPM + 1) were calculated from the 
batch-corrected counts and used to compute the gene-wise variance across all 
samples. The values above the 80th percentile of the resulting variance distribution 
were selected and the corresponding genes used to perform the unsupervised 
k-means cluster analysis on the standardized expression values with k equal to six. 
Hierarchical cluster analysis was then performed on the gene modules and samples 
using the Pearson correlation as distance method and the ward.D2 agglomerative 
algorithm as hierarchical clustering method.

Differential gene expression analysis. LDNs (82 samples) were removed from the 
raw count matrix generated with the FeatureCounts R function. The resulting 
matrix was composed by 25,064 genes and 128 samples: 70 NDNs and 58 
monocytes. Genes with more than one CPM in at least 15% of the NDNs or 
monocytes were selected. The resulting matrix was composed by 8,362 genes 
and 128 samples. Read counts were normalized and corrected for batch effects 
as above. Differential gene expression analysis of myeloid cells after stress with 
respect to the steady state was performed with edgeR for NDNs and monocytes 
independently starting from the adjusted count matrix containing both cell types. 
NDNs and monocytes were selected, and the two datasets were further divided into 
three stress-related/steady-state datasets, each composed by samples from one of 
the stress condition (G-CSF, HSC-T and PDAC) and samples at steady state. Only 
genes with CPM > 1 in at least 30% of the samples composing each sub-dataset 
were retained. The differential gene expression analysis for each stress and cell type 
was performed by fitting a negative binomial generalized linear model with robust 
hyperparameter estimation57,61 using the glmQLFit function and after computing 
the dispersion with estimateDisp function. A quasi-likelihood F-test62,63 was then 
performed using the glmQLFTest function. The sequencing run ID was included in 
the design matrix of each comparison as a covariate. Genes with abs(log2FC) ≥ 1.5 
and FDR < 0.05 were considered to be differentially expressed.

Principal-component analysis. PCA of NDNs, LDNs and monocytes was 
performed on expressed genes with CPM > 1 in at least 30% of the total samples 
of each cell type and with a variance greater than the 95th percentile of the 
distribution of gene-wise computed variances.

Gene set enrichment analyses. For each stress condition and cell type, DEGs 
were ranked by decreasing order of log2FC in stress versus steady state. Gene set 
enrichment analyses (GSEA) (v.4.0.3)64 was performed on ranked gene lists using 
GO Biological Process Ontology (c5.go.bp.v.7.4) as gene sets, with number of 
permutations equal to 1,000.

Single-cell RNA-seq analyses of PB and BM neutrophils. Data processing. Fastq 
files were generated from raw Illumina BCL files using CellRanger v.6.0.2 (10x 
Genomics) with CellRanger mkfastq and default parameters. CellRanger count 
was then used to align sequencing reads to the reference transcriptome GRCh38, 
to perform unique molecular identifier (UMI) filtering and barcode and UMI 
counting. Only confidently mapped reads with valid barcodes, UMIs and non-PCR 
duplicated were retained by the tool. The overall sequencing quality was evaluated 
by looking at the summary metrics of the web_summary.html file generated by 
the CellRanger pipeline for each sample. The Seurat v4.0.5R package (https://
satijalab.org/seurat/) was then used to perform all downstream analysis. First, 
we removed cells expressing fewer than 300 unique genes and genes expressed in 
fewer than three cells from the non-normalized UMI count matrix of each sample. 
Raw count matrices of all samples were then combined in a single Seurat object 
(17,625 genes and 143,485 cells) with the use of the merge function. A cell/gene 
quality control was then performed. We jointly examined the distribution of the 
count depth (number of counts per barcode) of the number of genes per barcode 
and of the fraction of counts from mitochondrial genes per barcode. Outlier 
peaks were then filtered out by thresholding. Cells with a total number of detected 
molecules <500, indicating low-quality cells or empty droplets, were discarded. 
We also removed cells with a percentage of reads that map to the mitochondrial 
genes greater than 10% and cells with a number of detected genes >4,000. The two 
filters were respectively used to remove low-quality/dying cells and cell doublets 
or multiplets with an aberrantly high gene count65. We also applied a gene-wise 
filter on the average counts to remove low-abundance genes62. The filter threshold 
was established looking at the distribution of the average counts. Genes with a 
value less than the 15th percentile of the distribution were removed. The final raw 
count matrix was composed of 15,020 genes and 130,628 cells. We then applied 
the sctransform normalization66 (SCTransform function) while adjusting for the 
following confounding sources of variation: the mitochondrial mapping percentage 
and the cell cycle scores computed with the CellCycleScoring function. Data were 
then scaled with ScaleData, and the top 1,000 variable features were selected with 
the ‘vst’ method of the FindVariableFeatures function. A shared nearest neighbor 
graph was constructed using the FindNeighbors function taking as input the first 
50 principal components, computed with the RunPCA function. Cell clusters were 
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defined using a resolution of 1.5, were calculated with the FindCluster function 
and were visualized in two dimensions using UMAP67. Cluster-specific marker 
genes were identified using the MAST method68 through the FindMarkers function 
with option only.pos = TRUE, min.pct = 0.1 and setting a cutoff of FDR < 0.05.

The scRNA-seq data of patients with COVID-19 generated by 
Schulte-Schrepping27 were downloaded from FASTGenomics database at https://
beta.fastgenomics.org/datasets/detail-dataset-7656cfe94fb14a01b787f4774e555036. 
The dataset used in our analysis was PBMC 10x from cohort2 (Bonn cohort) 
composed of 46,611 genes and 3,154 cells relative to 22 patients with COVID-19. 
From the pre-analyzed seurat_COVID19_Neutrophils_cohort1_10x_jonas_
FG_2020-08-19.rds file, we extracted the raw counts and re-analyzed the data by 
applying the quality control criteria used for our datasets to ensure methodological 
consistency however conditioned to the distribution and features of the data. We 
first removed the cells expressing fewer than 300 unique genes and genes expressed 
in fewer than three cells from the non-normalized UMI count matrix, resulting in 
13,957 genes across 3,138 cells. Based on the visual inspection of the distribution 
of the detected molecules across the retained cells, we removed cells with fewer 
than 500 detected transcripts indicating low-quality cells or empty droplets. We 
also removed cells with more than 10% mitochondrial reads and with >2,000 
detected genes, indicating putative doublets or multiplets. Genes with few counts 
(fewer than the 15th percentile based on the distribution of the average gene-wise 
counts across all cells) were considered uninformative and removed. According 
to the applied criteria for the quality control of cells and genes, the dataset was 
finally composed of 12,113 genes and 2,990 cells. On these data, we performed 
the normalization, the identification of the highly variable features, the scaling, 
the linear dimensionality reduction and the clustering as described above. A 
batch-effect correction on the normalized expression matrix was performed to 
run cellHarmony, using ComBat from the sva package to adjust for potential batch 
effects between donors.

Gene set enrichment analysis. The top 50 marker genes were ranked by decreasing 
order of log2FC > 0. GSEA (v.4.0.3)64 was performed on ranked gene lists using 
GO Biological Process Ontology (c5.go.bp.v.7.4) as gene sets, with number of 
permutations equal to 1,000.

cellHarmony analyses. scRNA-seq raw count matrices of G-CSF-treated donors, 
patients receiving HSC-T, patients with PDAC and PB or BM healthy donors 
(HDs) were merged for each condition and preprocessed and normalized with 
Seurat v.4.0.5 using the same criteria and methods as described above with the 
following exceptions: cells with a percent of mitochondrial genes greater than 25%, 
10%, 15% and 10% relative to G-CSF, HSC-T, PDAC and HDs, respectively, were 
removed. The threshold for putative doublets and multiplets was also changed and 
established to be 3,500 for G-CSF and 4,500 for PDAC after the joint visualization 
of the number of genes and counts. It remained unchanged for the HSC-T and 
HD datasets. A batch-effect correction was additionally applied to the normalized 
count matrix of each dataset using ComBat69,70 from the sva package (v.3.38.0) 
to adjust for potential batch effects between donors of the same condition. 
cellHarmony26 was then applied to match cells at the same differentiation stage 
between the healthy condition (the reference) and the stress (the query). First, 
the reference dataset (15,851 HD cells: 10,173 BM cells and 5,678 PB cells) was 
subjected to an unsupervised analysis with ICGS v.2 (AltAnalyze v.2.1.2) that 
identified eight distinct clusters corresponding to discrete differentiation stages 
of BM and blood neutrophils. Two of them were considered contaminants and 
removed. Options were accepted by default except for the number of ICGS cluster 
(k) that was set to 15 and the column clustering method that was ‘hopach’. Cells 
from each stress condition (G-CSF, 30,787 cells; HSC-T, 39,479 cells; PDAC, 
21,153 cells; and COVID-19, 2,990 cells) were then matched to the reference with 
cellHarmony to identify analogous differentiation stages. Pairwise differential gene 
expression analysis between the query cells and the reference cells was performed 
for each cluster and for each stress independently with FindMarkers function of 
Seurat v.4.0.5 R package using the MAST method on jointly preprocessed and 
SCT-normalized expression matrices (steady state + G-CSF; steady state + HSC-T; 
steady state + PDAC; and steady state + COVID-19). The minimum detection 
rate (min.pct) was set to 20%. Genes with log2FC ≥ 1 and FDR < 0.05 were further 
considered to be differentially expressed.

Gene set enrichment analysis. Due to the small gene set size of the gene lists 
generated by applying the log2FC ≥ 1 threshold, the full-length gene lists previously 
identified with FindMarkers by applying only the detection rate cutoff of 20% were 
used to run the GSEA. Genes were ranked by decreasing order of log2FC in stress 
versus healthy for each cluster of differentiation. GSEA was performed on ranked 
gene lists using GO Biological Process Ontology (c5.go.bp.v.7.4) as gene sets, with 
number of permutations equal to 1,000.

Single-cell RNA-seq analyses of CB neutrophils. Chromium scRNA-seq raw data 
were preprocessed with CellRanger v.6.0.2 (10x Genomics) as described above. 
Filtered UMI count matrices of CB neutrophils unstimulated (control), stimulated 
with IFN-β, IFN-γ and G-CSF were analyzed with Seurat v.4.0.5 R package. Data 
were first subjected to quality control and cells, and genes were selected/removed 

based on the same criteria described above (min.cells = 3; min.features = 300; 
percent.MT < 10; nFeature_RNA < 4,000; and nCount_RNA > 500). The 20th 
percentile of the overall distribution of gene expression levels was used as threshold 
to remove poorly expressed genes. Data (13,813 genes and 22,440 cells) were 
then SCT-normalized and scaled while adjusting for cell-cycle effects and the 
mitochondrial percentage. The top 1,000 variable features were selected with the 
‘vst’ method and used as input for PCA. A shared nearest neighbor graph was 
constructed using the FindNeighbors function taking as input the first 50 principal 
components, computed with RunPCA function. Cell clusters were defined using a 
resolution of 0.3, calculated with the FindCluster function and were visualized in 
two dimensions using t-SNE. Cluster-specific marker genes were identified using 
the MAST method through the FindMarkers function. Only genes expressed in at 
least 10% of either of the two groups were tested.

Statistics and reproducibility. No statistical method was used to predetermine 
sample size. No data were excluded from the analysis. Datasets used for the 
specific analyses are reported in Methods. Statistical assumptions, including data 
distribution, independence of observations and homogeneity of variance, were 
considered for each dataset, and statistical tests were performed accordingly. The 
experiments were not randomized. The investigators were not blinded to allocation 
during experiments and outcome assessment.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Bulk and scRNA-seq data generated in this study have been deposited in 
ArrayExpress under accession nos. E-MTAB-11190 and E-MTAB-11188. 
scRNA-seq data of patients with COVID-19 27 were downloaded from 
FASTGenomics database at https://beta.fastgenomics.org/datasets/detail-dataset-
7656cfe94fb14a01b787f4774e555036. Source data are provided with this paper.
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