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Abstract (Italian) 

Questo studio esplora aspetti cruciali di SARS-CoV-2 e Strongyloides stercoralis, concentrandosi su 

variazioni strutturali, scoperta di farmaci, sfide diagnostiche e strategie terapeutiche. Inizialmente, 

esamina l'emergere di un'inserzione ricorrente nel dominio N-terminale della glicoproteina spike di 

SARS-CoV-2, evidenziando le sue implicazioni per l'evoluzione virale e la progettazione dei vaccini. 

Un esame basato sull'interazione per la scoperta di farmaci chiarisce i meccanismi degli inibitori noti 

di SARS-CoV-2 e identifica nuovi potenziali scaffolds di composti, fornendo una base per futuri 

sviluppi terapeutici. Inoltre, lo studio affronta la ridotta sensibilità dei test antigenici per il rilevamento 

delle infezioni da variante Omicron di SARS-CoV-2 attraverso un'analisi approfondita dei dati reali, 

sottolineando la necessità di migliorare i metodi diagnostici. Basandosi su questi risultati, la ricerca 

integra approcci multidisciplinari per affrontare le sfide in corso nella gestione delle malattie infettive. 

L'inserzione ricorrente nel dominio N-terminale della proteina spike di SARS-CoV-2 è analizzata per 

il suo ruolo nell'elusione del sistema immunitario e il suo potenziale come bersaglio per nuovi 

antivirali. Il metodo di screening basato sull'interazione colma le lacune tra gli inibitori noti di SARS-

CoV-2 e i potenziali candidati farmacologici, dimostrando il potere dei modelli computazionali 

nell'accelerare la scoperta di farmaci. L'analisi della sensibilità dei test antigenici nel contesto delle 

infezioni da variante Omicron evidenzia le carenze critiche nelle tecnologie diagnostiche attuali e 

sottolinea la necessità di un continuo adattamento dei protocolli di test. Nel campo della 

parassitologia, il profilo proteomico dettagliato delle larve infettive di terzo stadio di Strongyloides 

stercoralis fornisce una preziosa risorsa per identificare nuovi bersagli molecolari e comprendere i 

meccanismi adattativi del parassita. L'esplorazione del targeting del recettore GluCl illustra il 

potenziale del riposizionamento dei farmaci, offrendo soluzioni pratiche per accelerare la disponibilità 

di trattamenti efficaci per l'infezione da Strongyloides stercoralis. Questo approccio integrato non 

solo avanza la conoscenza scientifica, ma propone anche strategie concrete per migliorare il controllo 

delle malattie e i risultati per i pazienti. 
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Abstract (English) 

This study explores critical aspects of SARS-CoV-2 and Strongyloides stercoralis, focusing on 

structural variations, drug discovery, diagnostic challenges, and therapeutic strategies. Initially, it 

examines the emergence of a recurrent insertion in the N-terminal domain of the SARS-CoV-2 spike 

glycoprotein, highlighting its implications for viral evolution and vaccine design. An interaction-based 

drug discovery screen elucidates the mechanisms of known SARS-CoV-2 inhibitors and identifies 

potential novel compound scaffolds, providing a foundation for future therapeutic developments. 

Additionally, the study addresses the reduced sensitivity of antigen tests for detecting Omicron SARS-

CoV-2 infections through extensive real-life data analysis, underscoring the need for improved 

diagnostic methods. Building on these findings, the research integrates multi-disciplinary approaches 

to tackle ongoing challenges in infectious disease management. The recurrent insertion in the SARS-

CoV-2 spike protein N-terminal domain is analyzed for its role in immune evasion and its potential 

as a target for novel antivirals. The interaction-based screening method bridges gaps between known 

SARS-CoV-2 inhibitors and prospective drug candidates, demonstrating the power of computational 

models in expediting drug discovery. The analysis of antigen test sensitivity in the context of Omicron 

variant infections highlights critical shortcomings in current diagnostic technologies and emphasizes 

the necessity for continuous adaptation of testing protocols. In parasitology, the detailed proteomic 

profiling of Strongyloides stercoralis infective larvae provides a valuable resource for identifying new 

molecular targets and understanding the parasite’s adaptive mechanisms. The exploration of GluCl 

receptor targeting illustrates the potential of drug repurposing pipeline, offering practical solutions to 

accelerate the availability of effective treatments for Strongyloides stercoralis infection. This 

integrated approach not only advances scientific knowledge but also proposes tangible strategies for 

enhancing disease control and improving patient outcomes. 
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General introduction 
Emerging infectious diseases pose a significant and growing challenge to global public health [1]. 

These conditions arise from newly recognized pathogens in a population or involve familiar agents 

affecting new or larger populations or geographic regions. They are caused by various organisms, 

including bacteria, viruses, fungi, or parasites, and can spread rapidly and unpredictably [2]. 

Understanding transmission dynamics in the early stages of an outbreak is crucial for an effective 

public health response [3]. Estimating changes in transmission over time reveals the speed of spread 

and identifies infection hotspots, which is essential for evaluating control measures such as social 

distancing, lockdowns, and vaccination campaigns [4]. By analyzing how interventions influence 

transmission, alternative strategies can be designed to manage outbreaks more effectively. This 

comprehensive approach ensures that public health responses are data-driven, timely, and adaptable 

to evolving circumstances. 

Figure 1.1: Workflow demonstrating the use of patient samples for sequencing and proteomics analysis to inform 
diagnosis and treatment strategies. Insights from hospitalized patients and population outbreaks are integrated to guide 
interventions, creating a feedback loop for improving public and individual health outcomes. 

As the global impact of the COVID-19 pandemic, driven by SARS-CoV-2, has highlighted an urgent 

need for rapid advancements in viral diagnostics, therapeutic strategies, and a deeper understanding 

of viral evolution. This thesis contributes to this expanding field of research, exploring multiple 

dimensions of SARS-CoV-2 and related pathogens through computational, structural, and proteomic 

approaches. 

In late December 2019, an unexpected outbreak of respiratory illness emerged in Wuhan, Hubei 

Province, China. The symptoms, including fever, sore throat, and respiratory difficulties, initially 
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resembled viral pneumonia [5]. However, genomic analysis of respiratory specimens identified the 

causative agent as a novel coronavirus, initially named 2019-nCoV. Subsequently, the International 

Committee on Taxonomy of Viruses (ICTV) reclassified it as SARS-CoV-2 due to its close genetic 

relationship to the SARS-CoV virus [6]. The disease caused by this virus was officially named 

Coronavirus Disease 2019 (COVID-19). On March 11, 2020, the World Health Organization (WHO) 

declared COVID-19 a pandemic in light of its rapid global spread. By March 30, 2021, the virus had 

resulted in approximately 128 million confirmed cases and over 2.8 million deaths worldwide. 

Coronaviruses belong to a broad family potentially fatal diseases such as acute respiratory distress 

syndrome (ARDS) and organ failure [7]. 

SARS-CoV-2 is classified under the order Nidovirales, subfamily Orthocoronavirinae, and has four 

genera: Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus [8]. Viruses 

within the Nidovirales order share several structural features, including a conserved genomic 

organization, replicase gene located downstream of the 5'-UTR, and a unique mechanism of gene 

expression involving ribosomal frameshifting [8]. Seven coronaviruses are known to infect humans, 

including 229E, NL63, OC43, HKU1, MERS-CoV, SARS-CoV, and SARS-CoV-2. Of these, 229E, 

NL63, HKU1, and OC43 typically cause mild to moderate upper respiratory illnesses, while MERS-

CoV, SARS-CoV, and SARS-CoV-2 are more severe, potentially causing fatal lower respiratory tract 

infections [9]. SARS-CoV-2 shares 88% of its genetic sequence with bat-SL-CoVZC45 and bat-SL-

CoVZXC21, 79% with SARS-CoV, and around 50% with MERS-CoV, suggesting it likely originated 

in bats [6], [10]. Understanding these genetic similarities and differences can help develop effective 

treatment strategies for the pandemic. MERS-CoV was first identified in Jordan, Saudi Arabia, in 

2012 and has since led to over 24,000 cases across 27 countries, predominantly in Saudi Arabia [11]. 

SARS-CoV was identified in China in 2003 and is also believed to have originated in bats, with an 

animal intermediary. The SARS outbreak was contained in mid-2003 through isolation and quarantine 

[12]. However, a few cases since then have occurred due to laboratory accidents and related 

exposures. SARS-CoV-2 is a novel strain that has not previously infected humans.  

The SARS-CoV-2 genome is approximately 26-32 kb in length and includes various open reading 

frames (ORFs), sharing structural similarities with other human coronaviruses (HCoVs) [13]. These 

viruses are enveloped and display surface projections in the form of spike proteins. Their genome is 

an unsegmented, single-stranded positive-sense RNA with a 5' cap and a 3' poly(A) tail, which serves 

as functional mRNA for translation of the replicase polyproteins. Two-thirds of the genome, near 

the 5' end, encodes the replicase gene known as Open Reading Frame 1a and 1ab (ORF1ab), which 

produces nonstructural proteins (nsps) called pp1a and pp1ab polyproteins. The two polyproteins 

are cleaved by viral proteases, a papain-like protease (PLpro) and a 3C-like protease (3CLpro), to 
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generate 16 NSPs and to form the replication and transcription machinery. The pp1a non-structural 

protein corresponds to NSP1 to NSP11 and pp1ab non-structural protein comprises of NSP12 to 

NSP16. These nsps, such as the RNA-dependent RNA polymerase (nsp12) and helicase (nsp13), are 

essential components of the viral replication-transcription complex (RTC) responsible for 

synthesizing viral RNA and subgenomic RNAs required for structural protein production. The 

cleavage specificity of Mpro (Leu-Gln↓(Ser, Ala, Gly)) is unique to coronaviruses, ensuring minimal 

overlap with human proteases and making it a highly specific and conserved drug target. Without 

Mpro, the polyproteins remain unprocessed, preventing the formation of a functional RTC and halting 

viral replication. The pivotal role that Mpro plays in regulating viral replication and transcription makes 

it an attractive drug target, as its inhibition can effectively disrupt the SARS-CoV-2 life cycle and 

prevent the spread of infection. The remaining 10 kb, located near the 3' end, encodes structural 

proteins (S, E, M, and N) and nine accessory proteins encoded by ORF3a, ORF3d, ORF6, ORF7a, 

ORF7b, ORF8, ORF9b, ORF14, and ORF10 genes [14]. 

 

  

Figure 1.2: SARS-CoV-2 structure and genomic organization. The illustration depicts the structural proteins (S, 
E, M, N) of SARS-CoV-2 surrounding its +ssRNA genome. The genome map outlines ORF1a/1b encoding non-
structural proteins, along with structural and accessory proteins. Key features include the Spike protein's receptor-binding 
domain, Nucleocapsid domains (NTD, CTD), and the Main Protease (Mpro), a potential drug target. 

Given the critical role of Mpro in viral replication and transcription, advancing drug discovery for 

SARS-CoV-2, particularly targeting the main protease (Mpro), has emerged as a key focus.  

  

  ro
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In this context, my research, titled “An interaction-based drug discovery study to identify potential 

inhibitors of Mpro,” contributes significantly to this field by employing an interaction-based drug 

discovery approach that identified 692 potential inhibitors targeting Mpro. By screening protein-ligand 

complexes from the Protein Data Bank (PDB), the investigation successfully predicted both known 

inhibitors, such as Dasatinib and Amodiaquine, and novel compound scaffolds, expanding the 

chemical diversity of potential therapeutic candidates. Notably, 17% of the top 100 predictions were 

validated using existing data, including four FDA-approved drugs, underscoring the method’s utility 

in drug repurposing. Additionally, this work revealed a triplet hydrogen bond motif in the Mpro active 

site involving Gly143, Ser144, and Cys145, which is critical for ligand binding and protease inhibition. 

This discovery provides a deeper understanding of Mpro’s interaction dynamics and can guide the 

design of more effective inhibitors. While computational in nature, the findings highlight the need 

for rigorous experimental validation to confirm the efficacy and safety of these predictions, offering 

a robust framework for accelerating the development of targeted therapies against SARS-CoV-2.In 

addition to epidemiological data, structural and computational biology play an essential role in 

managing infectious diseases.  

Mapping mutations onto 3D structures of proteins helps us understand the structure-function 

relationship in detail [5], which is critical for managing infectious diseases. At the atomic level, this 

adds information regarding protein stability and dynamics, offering better predictions about structural 

impacts. Recent progress in structural genomic consortiums has brought molecular docking and 

molecular dynamics (MD) simulation to the forefront, reducing reliance on labor-intensive 

experimental techniques. Computational MD analysis, using force fields for atoms in a 

macromolecule, helps us understand molecular motion and elucidates small differences caused by 

variations. Therefore, describing a molecule at the atomic level becomes an indispensable method, 

potentially bypassing experimental difficulties. MD can explain significant changes in the binding 

affinity of a macromolecule upon mutation and drug response. Integrating molecular insights with 

epidemiological data enhances the development of targeted treatments and intervention strategies, 

ultimately leading to more effective control and mitigation of infectious disease outbreaks. 

In this perspective, the combined insights from my research “Emergence of a recurrent insertion in 

the N-terminal domain of the SARS-CoV-2 spike glycoprotein” and “Wide Real-Life Data Support 

Reduced Sensitivity of Antigen Tests for Omicron SARS-CoV-2 Infections” I performed on SARS-

CoV-2 highlight the role of the SARS-CoV-2 N (nucleocapsid) protein and its significant impact on 

diagnostic efficacy and viral behavior. 
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The study “Emergence of a Recurrent Insertion in the N-terminal Domain of the SARS-CoV-2 Spike 

Glycoprotein” investigates a unique recurrent insertion region (RIR1) in the spike protein’s N-

terminal domain (NTD), located between codons 213–216, observed in at least 49 independent 

instances across multiple SARS-CoV-2 lineages. These insertions, reflecting convergent evolution, 

do not directly overlap with major antibody epitopes but may indirectly influence the structure of the 

spike protein and its interaction with the ACE2 receptor, impacting infectivity and immune escape. 

Found in Variants of Concern (VOCs) such as Alpha, Delta, and Omicron, RIR1 pairs with other 

mutations to enhance transmissibility and immune evasion, exemplified by Omicron’s insertion 

(S:ins214EPE), which is accompanied by numerous spike mutations conferring significant immune 

escape and altered tropism. Molecular dynamics simulations played a critical role in assessing the 

structural and functional consequences of these insertions, using coarse-grained models to explore 

their impact on the spike protein’s stability, flexibility, and interactions. The findings suggest that 

RIR1 insertions, likely arising from recombination events or replication errors, are maintained by 

structural constraints and evolutionary advantages. This work underscores the importance of 

genomic surveillance and structural analysis in understanding SARS-CoV-2 adaptation and informing 

vaccine and therapeutic strategies. 

On the other hand, the work “Wide Real-Life Data Support Reduced Sensitivity of Antigen Tests for 

Omicron SARS-CoV-2 Infections” explores the diagnostic challenges posed by SARS-CoV-2 

variants, focusing on antigen diagnostic tests (ADTs) during the transition from the Delta to the 

Omicron variant. The N protein, a core structural component of SARS-CoV-2, serves as a critical 

target for many ADTs. However, it is prone to mutations, particularly in variants like Delta and 

Omicron. These mutations may alter the protein's structure, which can influence the accuracy of 

rapid antigen tests and contribute to immune escape mechanisms. The study on the N protein 

specifically shows that Omicron has developed unique mutations in this protein, affecting ADT 

performance due to potential changes in antigen recognition. For instance, mutations like P80R and 

D343G in Omicron’s N protein were identified as causing structural and dynamic shifts, potentially 

leading to a decrease in ADT sensitivity due to less efficient antibody binding. The decrease in ADT 

sensitivity from Delta to Omicron (63% to 33%) underscores the influence of these mutations on 

diagnostic accuracy, as newer variants present increased viral loads yet evade detection through 

altered N protein structures. 

By integrating computational and structural biology methods, the research investigates how 

mutations in both the spike and N proteins can affect the virus’s immune evasion and diagnostic 

detectability, with computational models elucidating the implications of each mutation. The presence 

of intrinsically disordered regions (IDRs) in the N protein further complicates this, as mutations in 
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these areas could impact the protein’s stability, RNA binding affinity, and overall infectivity. This 

underscores the need for diagnostic tools that can account for these mutations to maintain accurate 

detection across emerging SARS-CoV-2 variants. 

Beyond SARS-CoV-2, this thesis also expands to the neglected tropical disease strongyloidiasis, 

detailing novel proteomic insights into Strongyloides stercoralis (S. stercoralis) infective larvae.  

There are about fifty species of parasitic nematodes in the genus Strongyloides, and they infect 

everything from humans to frogs. The majority of these species only have one or a small number of 

host species. Human infection by S. stercoralis, known as strongyloidiasis, is often referred to as a 

“disease of disadvantage” due to its prevalence in low-resource areas with inadequate sanitation [15]. 

Current estimates suggest that over 600 million people worldwide are infected, primarily in tropical 

and subtropical regions [16]. However, the actual prevalence is likely underestimated due to 

diagnostic difficulties, including low larval counts in stool samples and generally low parasite loads. 

Its life-cycle is complex, alternating between cycles of free-living and parasitic stages. Humans acquire 

the infection through the penetration of the intact skin by infective filariform larvae (iL3) present in 

contaminated soil which, once in the host, migrate through different organs. During migration, the 

larvae moult until they become adult worms, which ultimately settle in the small intestine. Once there, 

the parthenogenetic females deposit eggs that hatch in rhabditiform larvae (L1), which are then 

excreted in stools and initiate the free-living cycle. However, some L1 undergo an auto-infective cycle, 

i.e. mature into invasive filariform larvae, in the large intestine and penetrate the intestinal mucosa or 

the perianal skin to continue the parasitic life-cycle. This peculiar life-cycle allows S. stercoralis to 

perpetuate the infection, in the absence of treatment, potentially indefinitely [17]. 

Diagnosing and treating S. stercoralis infection remains challenging due to limitations in existing 

diagnostic methods and therapeutic strategies. Stool-based techniques, including microscopy and 

culture methods, lack sensitivity in chronic infections with low larval output, while serologic tests like 

ELISA and NIE-LIPS are more sensitive but prone to cross-reactivity [18]. Molecular diagnostics, 

such as PCR, offer improved detection but still face technical constraints. To enhance accuracy, a 

composite diagnostic approach combining fecal, serologic, and molecular methods is recommended. 

Ivermectin is the first-line treatment due to its high efficacy and tolerability, though repeated or 

alternative administration routes may be necessary for severe cases or immunocompromised patients 

[19]. Albendazole is a secondary option, and moxidectin shows potential as a new therapy with 

advantages like resistance mitigation and dose-independent efficacy [19]. Continued research such as 

advanced proteomic characterization to identify immunogenic proteins as potential diagnostic 
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markers.is critical to refine diagnostics, optimize treatments, and address the unique needs of 

vulnerable populations, ensuring effective management of this neglected disease. 

The understanding of protein functions is fundamental in drug discovery, with computational tools 

and methodologies playing an increasingly crucial role in this field [20]. Proteins are essential 

components of biological systems, involved in virtually all cellular processes. They are the primary 

targets for most therapeutic drugs, underscoring the need to understand their activities and functions 

in drug discovery. Analytical methods that accurately determine protein activities and functions are, 

therefore, critical for developing new treatments. While mass spectrometry-based proteomics 

provides detailed data on protein dynamics and interactions, the integration of computational analysis 

is what truly amplifies the potential of this technology [20]. This synergy between proteomics and 

computational analysis is exemplified in the study of the “Somatic proteome of S. stercoralis infective 

third-stage larvae”, which combines these methodologies to uncover crucial insights into protein 

functions, addressing challenges in diagnosis and treatment. 

The study leverages mass spectrometry-based proteomics and computational methodologies to 

advance the understanding of S. stercoralis protein functions, crucial for addressing challenges in 

diagnosis and treatment. 

The integration of molecular insights with computational approaches drives advancements in 

understanding S. stercoralis biology and facilitates the development of diagnostic and therapeutic 

strategies. Using high-throughput tandem mass spectrometry (LC-MS/MS), the study generated a 

comprehensive dataset of the proteome of S. stercoralis infective larvae (iL3), identifying 430 proteins, 

187 of which were previously uncharacterized. To interpret this wealth of molecular data, 

computational tools were employed alongside manual annotation, which played a crucial role in 

refining and validating the automated analyses. Functional annotation through Gene Ontology (GO) 

and InterPro databases enabled the classification of proteins based on their molecular functions, 

biological processes, and cellular components, shedding light on the biological roles of key proteins 

involved in parasite survival, host interaction, and pathogenesis. 

Immunoinformatics tools such as BepiPred-2.0 were used to predict linear B-cell epitopes, identifying 

immunogenic proteins capable of eliciting an immune response. Manual annotation was instrumental 

in verifying these predictions, ensuring the selection of relevant targets. Homology analysis further 

prioritized S. stercoralis-specific proteins by comparing them to human and pathogen proteomes, 

reducing the likelihood of cross-reactivity and enhancing the specificity of diagnostic markers. 

Additionally, by structural modeling was able to map the predicted epitopes onto protein structures, 
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validating their accessibility for antibody binding and confirming their potential as vaccine candidates 

or diagnostic markers. 

By integrating experimental proteomics with computational methodologies and manual annotation, 

the study provided a dynamic understanding of the S. stercoralis proteome, emphasizing critical protein 

functions such as oxidoreductase and peptidase activities, which are essential for the parasite’s 

survival and infectivity. This comprehensive approach not only identified novel diagnostic and 

therapeutic targets but also demonstrated the value of combining automated computational tools 

with manual annotation for accurate and meaningful data interpretation. It underscores the 

importance of such integrative methods in advancing parasitic disease research, paving the way for 

more precise diagnostics and effective treatments. This is particularly important in combating 

emerging infectious diseases and pandemics, where rapid and accurate diagnosis, along with effective 

treatment options, is essential. Additionally, computational tools help identify new proteins at 

different stages of infectious diseases, providing a dynamic understanding of how infections progress 

and how the body’s response changes over time [21]. This insight is crucial for developing stage-

specific diagnostics and treatments, ensuring timely and targeted interventions. 

This need for rapid drug development was starkly highlighted during the COVID-19 pandemic. The 

emergence of COVID-19 in late 2019 and its rapid global spread highlighted the urgent need for 

effective treatments and vaccines [22]. The traditional drug discovery process, spanning several years 

and extensive laboratory testing, was insufficient for the immediate demand. This scenario 

underscored the critical role of virtual screening in accelerating drug discovery and repurposing 

efforts. Similarly, strongyloidiasis, caused by the parasitic worm S. stercoralis, presents a pressing need 

for new therapies due to the growing risk of resistance to the most used drugs, like ivermectin. As 

the primary treatment for strongyloidiasis, ivermectin's potential resistance necessitates the 

identification of alternative compounds. 

The drug development process extensively uses virtual screening for scaffold hopping, lead 

optimization, and lead identification, offering a quick and low-cost alternative to high-throughput 

screening for novel pharmaceuticals.  

Virtual screening approaches fall into two main categories: ligand-based (e.g., ligand similarity) and 

structure-based (e.g., ligand docking). Protein-ligand docking uses the three-dimensional structure of 

the target protein to predict binding modes and affinities of ligands, while ligand similarity methods 

capitalize on the likelihood that similar ligands will exhibit similar activity. The exponential growth in 

computational biology and experimental protein structure determination has significantly increased 

novel drug identification [21]. This process saves time and money by determining a drug's stability, 
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safety, and efficacy through computational study alongside experimental work. Consequently, the 

computational approach has become a key component for integrating and analyzing all available 

knowledge. 

In my study “Targeting GluCl Receptor: Drug Repurposing Strategies for Strongyloides stercoralis 

Infection”, virtual screening was employed to identify potential therapeutic compounds targeting the 

S. stercoralis GLUCL protein, a crucial receptor in the parasite's neurobiology. By leveraging structure-

based approaches such as protein-ligand docking, we explored the three-dimensional structure of the 

GLUCL protein to predict binding modes and affinities of various ligands. This method allowed us 

to identify several promising compounds that demonstrated strong binding potential, highlighting 

their viability as candidates for alternative therapies to ivermectin. However, as with any virtual 

screening effort, these findings require rigorous experimental validation to confirm their efficacy, 

safety, and stability. This step is essential to ensure the reliability of these compounds as potential 

treatments for strongyloidiasis and to address the growing concern of drug resistance. The integration 

of computational methods and experimental follow-up provides a robust framework for advancing 

therapeutic solutions for this neglected tropical disease. 

Together, these studies provide a comprehensive view of viral evolution, therapeutic discovery, and 

diagnostic precision, with applications spanning pandemic preparedness and tropical disease 

management. My thesis aims to bridge gaps in SARS-CoV-2 research and contribute to broader 

virology and bioinformatics fields, supporting future response strategies for infectious diseases 
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About this thesis 
This thesis is divided into two main parts. In Part I - Com rehensive Insights into SARS-CoV-2 

 utations, Thera eutic Targets, and Diagnostic Challenges, I present three distinct studies 

that together build a coherent picture of the ongoing challenges and advancements in the fight against 

COVID-19.  

The ongoing evolution of SARS-CoV-2 poses significant challenges and offers critical opportunities 

for understanding and combating the virus. Recent research has delved into various facets of the 

virus's behavior, including genetic mutations, drug discovery, and diagnostic accuracy. These studies 

provide valuable insights into the emergence of specific spike glycoprotein mutations, innovative 

methods for identifying effective inhibitors, and the efficacy of diagnostic tests against new variants 

like Omicron. Collectively, they highlight the necessity of continuous research and adaptive strategies 

in the global effort to manage and mitigate the impact of COVID-19. 

Firstly, in Chapter ‘Emergence of a Recurrent Insertion in the N-terminal Domain of the 

SARS-CoV-2 S ike Glyco rotein’ the study examines the emergence of a recurrent insertion in the 

N-terminal domain (NTD) of the SARS-CoV-2 spike glycoprotein. The insertion, identified in 

various SARS-CoV-2 variants, suggests potential impacts on viral behavior, including changes in 

transmissibility, immune evasion, and vaccine effectiveness. By analyzing the genetic sequences of 

these variants, the study provides insights into how such mutations could influence the pandemic's 

trajectory and underscores the need for continuous genomic surveillance. 

Then, in Chapter ‘An Interaction-Based Drug Discovery Screen Ex lains Known SARS-CoV-

2 Inhibitors and Predicts New Com ound Scaffolds’ I present a building on the understanding 

of viral mutations, this research focuses on a drug discovery approach that utilizes interaction-based 

screening to identify compounds that inhibit the function of Mpro protein in the genome of SARS-

CoV-2. The study validates known inhibitors and discovers new potential drug scaffolds by mapping 

interactions between viral proteins and small molecules. This method enhances the understanding of 

how these compounds interfere with the virus's replication process, offering a strategic framework 

for developing effective antiviral therapies against COVID-19. 

Finally, in Chapter ‘Wide Real-Life Data Su  ort Reduced Sensitivity of Antigen Tests for 

Omicron SARS-CoV-2’ in light of the evolving virus and efforts to control its spread, this study 

evaluates the performance of antigen tests in detecting the Omicron variant of SARS-CoV-2 using 

extensive real-life data. The findings indicate a reduced sensitivity of these tests when identifying 

Omicron infections compared to previous variants. The study highlights the implications for public 
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health strategies, emphasizing the necessity for updated testing protocols and technologies to ensure 

accurate and timely diagnosis in the context of evolving viral mutations. 

These interconnected studies underscore the dynamic nature of SARS-CoV-2 and the multifaceted 

approach required to address its challenges. From understanding mutations to discovering new 

therapeutic agents and refining diagnostic tools, this research collectively advances our capability to 

manage and mitigate the impact of COVID-19. 

 

In Part II - Proteomic Analysis and Drug Re ur osing Strategies for Strongyloides stercoralis: 

Novel Insights and Thera eutic A  roaches, I delve into the proteomic analysis of Strongyloides 

stercoralis (S. stercoralis) to uncover new information about the proteins expressed by infective third-

stage larvae. This part of the thesis explores the somatic proteome of these parasitic nematodes, 

aiming to enhance our understanding of their biology, host interaction mechanisms, and potential 

vulnerabilities. Such insights are crucial for developing new strategies to combat strongyloidiasis, a 

parasitic disease with significant global health implications. 

By characterizing the proteomic landscape of S. stercoralis infective third-stage larvae, this research 

identifies key proteins that may play essential roles in the parasite's survival, infectivity, and adaptation 

to host environments. This proteomic profiling not only broadens our knowledge of S. stercoralis 

biology but also opens up new avenues for targeted therapeutic interventions and diagnostic tool 

development to improve the management and treatment of strongyloidiasis. 

The chapter Targeting GluCl Receptor: Drug Repurposing Strategies for Strongyloides 

stercoralis Infection focuses on identifying new therapeutic strategies by repurposing existing drugs 

that target the glutamate-gated chloride channel (GluCl) receptor, a critical component in the 

neurobiology of S. stercoralis. This research explores how known drugs can be repurposed to inhibit 

the GluCl receptor, offering a cost-effective and expedited pathway to new treatments. By leveraging 

existing pharmacological knowledge and drugs, this approach aims to accelerate the development of 

effective therapies for strongyloidiasis, thereby improving patient outcomes and addressing a 

significant public health concern. 

Together, these studies in Part II provide novel insights and practical strategies for understanding 

and combating S. stercoralis infections, contributing to the broader effort to control parasitic diseases 

globally. 
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PART I 

Comprehensive Insights into SARS-CoV-2 Mutations, 
Therapeutic Targets, and Diagnostic Challenges 

 

Emergence of a recurrent insertion in the N-
terminal domain of the SARS-CoV-2 spike 
glycoprotein 
 

This chapter describes my contribution to: Gerdol M, Dishnica K, Giorgetti A. Emergence of a recurrent insertion 

in the N-terminal domain of the SARS-CoV-2 spike glycoprotein. Virus Res. 2022 Mar;310:198674. doi: 

10.1016/j.virusres.2022.198674. Epub 2022 Jan 10. PMID: 35021068; PMCID: PMC8743576. [23] 

Introduction 
Coronaviruses generally accumulate mutations at a much lower rate than other RNA viruses, thanks 

to the efficient proofreading exonuclease activity exerted by nsp14, in complex the activator protein 

nsp10 [24] [25]. As a result, the rate of molecular evolution of SARS-CoV-2 is currently estimated (as 

of January 5th, 2022, based on GISAID data [26]), to be close to 25 substitutions/year per genome, 

i.e. 8.36×10−4 substitutions/site/year, which is slightly higher than previous estimates for human 

endemic coronaviruses [27]. Consistently with comparative genomics data obtained from other 

members of the Sarbecovirus subgenus, such mutations are not evenly distributed across the genome, 

but they are disproportionally located in the S gene, which encodes the spike glycoprotein. It is also 

worth noting that the S gene undergoes frequent recombination events, likely as a result of naturally 

occurring co-infections in the animal viral reservoirs [28], and that these events are also theoretically 

possible among different SARS-CoV-2 lineages [29]. The encoded transmembrane protein forms a 

homotrimer and plays a fundamental role in the interaction between the virus and host cells, 

promoting viral entry though the interaction with different membrane receptors [30]. In the case of 
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SARS-CoV-2 and of the closely related SARS-CoV responsible of the 2002–2004 outbreak, such 

receptor is represented by the angiotensin converting enzyme 2 (ACE2) [31], [32]. 

While most of these mutations have little or no phenotypic impact at all, some may significantly 

influence viral transmissibility and the ability of the virus to escape host immune response. The causes 

underpinning such phenotypic effects may either lie in an increased viral shedding, in the alteration 

of the binding affinity between the spike receptor binding domain (RBD) and the host ACE2 

receptor, or in the modification of key antibody epitopes. The most striking example of a non-

synonymous mutation which had a dramatic impact on the dynamics of the pandemics is most 

certainly represented by S:D614G. This mutation, which was not present in the ancestral lineage that 

caused the Wuhan outbreak, emerged in the very early phases of the pandemics, quickly becoming 

dominant worldwide [33], most likely due to an increased packing of functional spike protein into the 

virion [34]. 

 

Even though the mutation rate of the SARS-CoV-2 genome remained relatively stable throughout 

2020, growing evidence soon started to point out the presence of shared mutations across multiple 

independent lineages, suggesting ongoing convergent evolution and possible signatures of host 

adaptation [35]. While early investigations failed to identify evidence of increased transmissibility 

associated with such recurrent mutations [36], the nearly contemporary independent emergence of 

three variants sharing the non-synonymous substitution N501Y in the spike protein started to raise 

serious concerns about the possible involvement of this mutation in increasing viral infectivity. While 

the functional role of N501Y still remains to be fully elucidated, structural modeling points towards 

a possible function in the stabilization of the spike protein in the open conformation, which may 

increase ACE2 binding, especially in combination with other mutations targeting the RBD [37], [38], 

[39]. 

 

B.1.1.7 (the alpha variant, according to WHO labeling), one of the emerging lineages carrying 

S:N501Y, spread in southeastern England in early 2020 and quickly became dominant in Europe. 

Despite being significantly more transmissible than wild-type genotypes [40], alpha was not associated 

with significant immune escape from the neutralizing activity of convalescent or vaccinated sera [41], 

[42], [43], [44]. On the other hand, some point mutations present in the spike NTD, i.e. the deletion 

of a codon in position 144, led to full escape from the activity of a few NTD-directed monoclonal 

antibodies [45]. 

Two other major lineages carrying N501Y, designated as variants of concerns (VOCs) in early 2021, 

i.e. B.1.351 (beta) and P.1 (gamma), were linked with major outbreaks in geographical regions with 
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very high estimated seroprevalence, i.e. in the Eastern Cape region (South Africa) [46] and in Manaus 

(Amazonas, Brazil) [47], respectively. Both variants were characterized by a constellation of non-

synonymous mutations and accelerated rates of evolution, which suggested that their selection might 

have occurred in immunocompromised patients with persistent viral infection [48]. Among the many 

features shared by beta and gamma, the most remarkable one was the presence of two additional 

RBD mutations, i.e. E484K and K417N/K417T. The former one has been identified as a key player 

in antibody escape, due to its presence in a major epitope recognized by class II RBD-directed 

antibodies [49], [50], [51]. On the other hand, mutations of K417, located in an epitope recognized 

by class I antibodies, are thought to provide a minor contribution to polyclonal antibody response 

escape [49] and to possibly stabilize, together with E484K and N501Y, the interaction between the 

RBD and the ACE2 receptor [39]. Due to the possible negative impacts of these emerging variants 

on ongoing vaccination campaigns [52], [53], the focus placed on molecular surveillance significantly 

increased throughout 2021. 

 

In the spring of 2021, the lineage B.1.617.2 (delta) was internationally recognized as the fourth VOC. 

Like the three previously mentioned variants, delta carried several non-synonymous mutations in the 

S gene, including L452R, which is located in a major class III RBD-directed antibody epitope [53] 

and allows to completely escape the neutralizing activity of several monoclonal antibodies (mAbs) 

[51]. Following its initial association with the surge of infections that occurred in India in early 2021 

[54], this variant rapidly spread worldwide and replaced alpha, which strongly suggested a higher 

intrinsic transmissibility [55], possibly due to a more efficient cleavage site between the S1 and S2 

subunits [56]. At the same time, delta was also found to be endowed with significant immune escape 

properties, which resulted in reduced sensitivity towards the sera of convalescent and vaccinated 

individuals [57] and in reduced vaccine effectiveness, in particular after the first dose [58]. Although 

delta became dominant worldwide in the second half of 2021, a novel variant, designed as B.1.1.529, 

started to quickly spread in the Gauteng province (South Africa) in November 2021, outcompeting 

delta. This fitness advantage has been tentatively linked with a substantial ability to evade immunity 

from previous infection [59], which might be consistent with the high number of non-synonymous 

mutations and indels observed in the S gene compared with the reference SARS-CoV-2 genome. 

These include a number of previously described RBD mutations associated with the aforementioned 

VOC, such as T478K and N501Y, plus E484A, which suggested significant immune evasion 

properties, later confirmed by a number of in vitro studies [60], [61], [62], [63]. Based on early 

epidemiological data and on the growing number of imported cases reported abroad, on December 

1st, 2021 WHO included B.1.1.529 in the list of VOCs under the “omicron” designation. 
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Several VOCs and VOIs (including alpha, beta, delta and omicron) carry spike deletions in the NTD. 

Such deletions were previously shown to often occur in distinct NTD sites, named Recurrent 

Deletion Regions (RDR), arising in different geographical backgrounds, in independent viral lineages. 

Some RDR sites display a significant overlap with known immune epitopes, suggesting that they may 

drive antibody escape [64]. Comparatively, prior to the emergence of omicron, which carries a three 

amino acids-long insertion (S:ins214EPE) in the NTD of the spike protein, very little attention had 

been directed towards insertions. Nevertheless, such events are known to have played a fundamental 

role in the past evolution of SARS-CoV-2 spike protein by allowing, among the other things, the 

acquisition of a furin-like cleavage site, which is an uncommon feature in bat coronaviruses. This 

short motif, which is thought to be a key pathogenicity determinant [65], is indeed completely absent 

in the closely related Sarbecovirus RaTG13 [66] and only partly present in the recently described 

RmYN02 [67], [68] and RacCS203 [69]. 

 

The present work reports the independent occurrence of at least 49 distinct insertion events at the 

very same NTD site, located between Val213 and Leu216, which will be hereafter referred to as 

Recurrent Insertion Region 1 (RIR1). The transient international spread of the RIR1 insertion-

carrying lineages A.2.5 and B.1.214.2, the presence of S:ins214EPE in omicron and the identification 

of several insertions at this site in the alpha and delta lineages point out that more attention should 

be put towards the functional characterization of these codon acquisitions in the near future. 

Materials and methods 

Sequence data analysis 

The global frequency of insertion and deletion mutations mapped on the SARS-CoV-2 S gene was 

retrieved, based on GISAID data [26], from https://mendel.bii.a-star.edu.sg/ (last accessed on 

January 5th, 2022; credit to Raphael Tze Chuen Lee). Disruptive insertion and deletion mutations 

(i.e. those that interrupted the open reading frame of the S gene) and insertions carrying undetermined 

amino acids were discarded. Genomes carrying insertions at any position between codons 213 and 

216 were grouped based on the inserted nucleotide sequence. Each group was assigned a code based 

on progressive Roman numerals, following their chronological order of identification; variants of the 

same insertion including SNPs, which were detected for insertion III, IV and XLI, were disregarded. 

The nucleotide sequences of representative entries for each of the identified insertions were aligned 

with the Wuhan-Hu-1 isolate SARS-CoV-2 reference sequence (GenBank ID: NC_045512.2) using 

MUSCLE [70] in the MEGA X environment [71], initially preserving codon boundaries. The multiple 

sequence alignment was then manually refined to reflect the most probable location of the insertion 

https://mendel.bii.a-star.edu.sg/
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within each codon. Each event was consequently classified as a phase 0, phase I or phase II insertion, 

annotating insertions with ambiguous placement. 

All SARS-CoV-2 genome data used for phylogenetic inference in this study were retrieved from 

GISAID [26]. In detail, all available sequenced genomes belonging to the lineage A.2.5, to the related 

sublineages A.2.5.1, A.2.5.2 and A.2.5.3, and to the sister lineage A.2.4 were downloaded, along with 

associated metadata. While all available GISAID entries were considered for reporting observation 

frequencies, only high quality genomes (i.e. those listed as “complete” and “high coverage”) 

associated with a sampling date were taken into account for further analysis. Genomes containing 

long stretches of Ns (i.e. comprising more than 25 consecutive undetermined nucleotides) were 

discarded. The reference isolate Wuhan-Hu-1 was also included for tree rooting purposes. Note that 

several genome sequences from Panama with sampling date anterior to November 2021 were 

disregarded due to the unreliability of associated metadata (i.e. the sampling dates appeared to be 

inconsistent with the very small genetic distances with recent isolates belonging to the same lineage). 

Overall, the A.2.5-focused datasets included 1283 sequences. 

SARS-CoV-2 genomes were analyzed with the nextstrain augur pipeline 

(https://github.com/nextstrain/augur). Briefly, nucleotide sequences were aligned with MAFFT [72] 

and the resulting multiple sequence alignment was used as an input for a maximum likelihood 

phylogenetic inference analysis, carried out with FastTree [73] under a generalized time reversible 

model of molecular evolution. The resulting tree was further refined in the augur environment with 

treetime v.0.8.1 [74] using sampling date metadata, generating a time-calibrated tree. The phylogenetic 

tree was rooted based on the oldest available genotype, which in this case was Wuhan-Hu-1, and 

graphically rendered using FigTree v.1.1.4. 

A root-to-tip genetic distance analysis was performed by plotting the sampling dates against the total 

number of nucleotide substitutions (excluding insertions and deletions) observed in genomes 

belonging to the A.2.5 lineage and related sublineages. These were calculated with MEGA X [71], 

compared with the reference genotype Wuhan-Hu-1. The global average genome-wide mutation rate 

of SARS-CoV-2, roughly equivalent to 25 substitutions per year, was retrieved from GISAID (as of 

January 5th, 2022). 

 

System setup of coarse-grained models 

The simulations on the wild-type spike protein were carried out considering the crystallographic 

structure deposited in PDB (accession ID: 6XR8) [75]. A few missing portions were modeled with 

Swiss Model [76] in order not to compromise the molecular dynamic properties of the protein. 

Homology modeling was performed to obtain the 3D structure of the spike protein of A.2.5 with 

https://github.com/nextstrain/augur
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Swiss Model [76], using the EPI_ISL_1,502,836 GISAID entry as a reference. The protein structure 

was converted to a coarse-grained Martini representation using the martinize.py script [77]. The 

coarse-grained protein coordinates were then positioned in the center of a simulation box of size 

23×23×23 nm3. 

The Martini coarse-grained force field with an Elastic Network (CG-ElNeDyn) [77] was used for 

running the molecular dynamics simulations through the Gromacs 2019.3 package [78]. The analyses 

were run using isothermal-isobaric NPT ensemble equilibrium simulations. The temperature for each 

group (protein, water and ions) was kept constant at 315 K using V-rescale thermostat [79] with a 

coupling constant of 1.0 ps. The pressure was isotropically controlled by a Parrinello-Rahman 

barostat [80] at a reference of 1 bar with a coupling constant of 12.0 ps and compressibility of 

3 × 10−4. Non-bonded interactions were used in their shifted form with electrostatic interactions 

shifted to zero in the range of 0–1.1 nm. A time step of 20 fs was used with neighbor lists updated 

every 20 steps. Periodic boundary conditions were used in the x, y and z axes. ∼4μs were collected 

for the simulations of the wild type and mutant (i.e. A.2.5) spike proteins, respectively. The root mean 

square deviation (RMSD) of backbone beads, the root mean square fluctuations (RMSF) and the 

radius of gyration (RGYR) were calculated using the gmx rms, rmsf and gyrate modules from the 

Gromacs package [78]. Principal component analysis (PCA), computed with MDAnalysis, was 

restricted to backbone beads, as it is less perturbed by statistical noise and provides significant 

characterization of the essential space motions [81].  

To visualize the direction and extent of the principal motions of the simulated systems, a porcupine 

plot analysis was performed using the modevectors.py script in Pymol [82]. 

 

Results and discussion 

Presence of a recurrent insertion region (RIR1) in the N-terminal domain of 

SARS-CoV-2 spike protein 

The analysis of the genomic data deposited in GISAID revealed that, before the emergence of 

omicron in November 2021, S gene insertions (excluding those that disrupted the open reading 

frame) were present in just a minor fraction of all sequenced SARS-CoV-2 genomes, i.e. roughly 0.3% 

of the total. Overall, the frequency of observation of spike deletions was more than 500 folds higher 

than spike insertions, even though this ratio is now rapidly changing due to the spread of omicron. 

As previously reported by other authors, most deletions occur in specific sites of the N-terminal 

domain, including the four previously identified Recurrent Deletion Regions (RDR) 1, 2, 3 and 4, 

associated with several widespread VOCs and VOIs (Figure 3.1) [64], and the deletion which 
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characterizes the delta variant, occurring at positions 157/158. This is consistent with the higher rate 

of mutation observed for the S1 region (which includes the NTD and RBD) in human coronaviruses 

compared with the more slowly evolving S2 subunit. 

Despite their lower frequency of observation, insertions do not occur randomly in the S gene. In fact, 

the overwhelming majority of the insertion mutations mapped so far in SARS-CoV-2 S gene target 

the NTD, being in most cases identified at a specific site, located between codons 213 and 216 

(Figure 3.1). However, this figure might be an underestimate due to the frequent use of reference-

based insertion-unaware algorithms for SARS-CoV-2 genome assembly, especially during the early 

phases  

of the pandemics. Due to the convergent finding of such insertions in independent viral lineages (see 

below), this region will be hereafter named Recurrent Insertion Region 1 (RIR1). 

Even though insertions were observed at several other spike sites, RIR1 was the only one where 

multiple insertions have independently occurred in different lineages. The only other spike insertions 

site with more than 1000 occurrences among the sequenced SARS-CoV-2 genomes (as of January 

5th, 2022) is ins145T, found in the VOI mu [83] (Figure 3.1). 
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Figure 3.1: Schematic representation of the SARS-CoV-2 protein, with indication of the two functional S1 and S2 
subunits, which are separated by a furin-like proteolytic cleavage site, the N-terminal domain (NTD), the receptor 
binding domain (RBD) and receptor binding motif (RBM), the SD1 and SD2 subdomains. The absolute number of 
observed deletion mutations along the S-gene are reported (https://mendel.bii.a-star.edu.sg/ was last accessed on 
January 5th, 2022). Bars were truncated at 2000 observed genomes; in such cases, the approximate absolute number 
of observations is reported above the truncated bars, together with the main VOCs and VOIs associated with each 
indel, indicated with a Greek alphabet letter. The position of RDR1-RDR4 from a previous study [64], as well as 
the deletion 157/158 characterizing the delta variant and the ins145T insertion characterizing the mu variant, are 
reported. 

 

RIR1 insertions independently emerged in multiple viral lineages 

As of January 5th, 2022 RIR1 insertions could be documented as the result of at least 49 independent 

events that occurred in different branches of the SARS-CoV-2 phylogenetic tree, which strongly 

suggests convergent evolution. Even though the length of the insertion spanned from one to eight 
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codons (Figure 3.2), the overwhelming majority of the genomes with RIR1 insertions only included 

three codons (Table 3.1). 

The most prominent viral variant carrying an insertion at RIR1 (the XLI 215:EPE insertion, 

see Table 3.1) is undoubtedly the emerging VOC omicron (which includes the lineages B.1.1.529, 

BA.1, BA.2 and BA.3), which, as of January 5th, 2022, is rapidly outcompeting delta worldwide. 

Although omicron was first detected on November 8th, 2021, time-calibrated Bayesian phylogenetic 

analyses suggest that it might have been spreading undetected in Southern Africa since early October 

[84]. The XLI insertion is paired with three small deletions in the spike NTD: (i) Δ69/70 at RDR1, 

which has been previously suggested to act as a “permissive” mutation to compensate otherwise 

slightly deleterious immune escape mutations [85]); (ii) Δ143/144/145 at RDR2, known to fall within 

a relevant antibody epitope [64]; 

 

Figure 3.2: Multiple sequence alignment of the nucleotide sequences of the SARS-CoV-2 S gene of the viral lineages 
characterized by an insertion at RIR1, compared with the reference sequence Wuhan Hu-1. The multiple sequence 
alignment only displays a small portion of the S gene and of the encoded spike protein, zoomed-in and centered on RIR1 
(i.e. codons 212–217). Red vertical bars indicate codon boundaries, with the encoded amino acids (in the Wuhan Hu-
1 reference sequence) indicated below. The number of observed GISAID entries for each insertion as well as the encoded 
amino acid sequences are shown near the insertion name. Please note that the exact position of all insertion could not 
be unambiguously detected in all cases; those with ambiguous placement are marked with an asterisk (see Table 3.1 
for details). 

(iii) Δ212, with unknown functional significance, located close to the RIR1 site. In addition, omicron 

carries an unprecedented number of non-synonymous mutations in the S1 subunit, some of which 



22 

 

had been previously described in other VOCs and VOIs and linked either with antibody escape, 

improved ACE2 binding or proteolytic cleavage. For example, these mutations include E484A, 

N501Y and P681H: the first one involves a residue also mutated in beta, gamma and mu (E484K), 

which plays a major role in polyclonal sera escape [86]. The second one is shared by alpha, beta, 

gamma and mu, and may increase ACE2 binding [37], [38], [39]. The third one, shared with alpha 

and mu, involves a residue mutated also in delta, where the substitution of proline with arginine 

dramatically enhances spike cleavage and viral fusogenicity [56]. 

This unusual pattern of mutations results in significant immune escape in vitro and in an enhanced 

reinfection potential in vivo [60], [61], [62], [63]. Moreover, omicron displays an altered cellular 

tropism and cell entry mechanism, which depend on the acquisition of an enhanced ability to rely on 

the TMPRSS2-independent endosomal route [63], [87]. It is presently unclear whether and to which 

extent the XLI insertion provides a contribution to the unique biological properties of this variant. 

Unlike omicron, most RIR1 insertions were associated with very small local clusters that did not lead 

to further spread. However, the lineages A.2.5 (insertion III) and B.1.214.2 (insertion IV) were 

associated with a significant community spread (Table 3.1), reaching high prevalence in some 

geographical regions during 2021. While A.2.5 will be discussed in detail as a case study in the 

following section, it is worth briefly reporting here the transient spread of B.1.214.2. Following an 

initial importation from central Africa to Europe in late 2020, this lineage accounted for a non-

negligible fraction of the covid-19 cases recorded in Belgium and Switzerland between March and 

April 2021. The spread of B.1.214.2, which led to over 1000 documented infections worldwide, was 

followed by a significant drop in its frequency of observation, which occurred in parallel with the rise 

of alpha, and further declined when delta became dominant. This lineage has not been detected since 

early July 2021 and can be thus provisionally considered as extinct. Insertion IV, which results in the 

addition of the TDR tripeptide between R214 and D215, was associated with the presence of two 

other non-synonymous spike mutations located on the RBD (i.e. Q414K and N450K). These have 

been previously linked with a moderate increase in RBD stability [88] and with immune escape both 

towards a few mAbs and towards convalescent sera [89], respectively. Due to the lack of functional 

data, it is presently unknown whether insertion IV and the other aforementioned mutations endowed 

this lineage with improved transmissibility or with increased potential for reinfection. 

 

Several other insertion events at RIR1 occurred in lineages identified as VOCs or VOIs by WHO, 

CDC, ECDC or PHE, including some that have been recently de-escalated to the status of variants 

under monitoring. In detail, insertion V was found in twelve viral genomes belonging to the gamma 

lineage, sequenced in different Brazilian states and Guyana between December 2020 and April 2021, 
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indicating the presence of community transmission in the region. As reported in a previous work 

[90], these genomes belong to a monophyletic P.1-like clade that appears to be basal to P.1. The 

highly transmissible alpha lineage, which became dominant in Europe and quickly spread worldwide 

in early 2021 [91], before the rise of delta, was associated with at least six independent insertions at 

RIR1 (insertion XII, XIII, XIV, XVI, XXI and XLII) between February and November 2021 (Table 

3.1, Figure 3.2). A single RIR1 insertion (XXXI) was recorded in August 2021 in the lineage B.1.525 

(eta) in the United Kingdom [92] and two genomes characterized by the presence of insertion VII 

belonging to B.1.429 (epsilon) [93] were sequenced in California in January 2021. Several recently 

identified insertions at RIR1 are associated with delta (i.e. insertion XXIV, XXVI, XXVII, XXVIII, 

XXIX, XXX, XXXIII, XXXIV, XXXV, XXXVI, XXVII, XXXVIII, XXXIX, XL, XLIII, XLIV, 

XLV, XLVI, XLVII, XLVIII and XLIX). None of these have led to significant community spread 

to date, even though some were linked to small clusters of infections in England (Table 3.1, Figure 

3.2). Albeit not directly linked with variants designated as VOCs or VOIs, other RIR1 insertions were 

associated with the presence of immunologically relevant spike mutations. This is the case of insertion 

IX (lineage B.1.639), which is characterized by the contemporary presence of E484K, T478K and by 

the deletions Δ69/70 (found in RDR1) and Δ144 (found in RDR2), which are shared by several 

VOCs and VOIs. Curiously, like the omicron insertion XLI, insertions XV, XXI, XXXI, XXXII and 

XLII also targeted viral genomes carrying both non-synonymous spike mutations at E484 and 

deletions at RDR1, suggesting a possible role of RIR1 insertions in compensating otherwise slightly 

deleterious mutations, like previously hypothesized for RDR1 itself [85].  

Taking into account the limited efforts carried out by several countries in genomic surveillance 

throughout 2020 and 2021, the insertions reported in Table 3.1 and Figure 3.2 may just represent 

a fraction of those that emerged at RIR1 during the course of the pandemics. Although it was possible 

to unambiguously ascertain the exact placement of just 34 RIR1 insertions (see Table 3.1), most of 

them were in-frame, occurring at phase 0 between codons 214 and 215 (17 out of 34 cases, i.e. 50%), 

between codons 213 and 214 or between codons 215 and 216 (one case each) with no effect on 

neighboring codons. However, others were out-of-frame, occurring either at phase I (i.e. between the 

first and the second nucleotide of a codon) or at phase II (i.e. between the second and the third 

nucleotide of codon) (Figure 3.2). In detail, three insertions were observed at phase II within codon 

213, two at phase II within codon 214, five and four at phase I and II, respectively, within codon 

215, and a single one at phase I within codon 216. In such cases, the placement of the insertion often 

determined a non-synonymous mutation of the residues flanking RIR1 either at the N- or at the C-

terminal side (Table 3.1). It is also worth noting that the omicron insertion XLI was associated with 

a three nucleotides-long, out-of-frame proximal deletion, which affected codons 211 and 212, 
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resulting in the deletion of a single amino acid. Similar deletions are uncommon in other lineages 

carrying RIR1 insertions, as they have been previously observed in a single other case, i.e. insertion 

XXII, which displays a Δ210 deletion. 

Although the origins of the 49 RIR1 insertions was not investigated in the present study, other 

authors have previously suggested that they may result from the incorporation either of other regions 

of the SARS-CoV-2 genome itself, of host mRNAs [87], or of portions of genomic RNA of other 

endemic coronaviruses co-infecting the host [94].  

Table 3.1: Summary of the 49 independent RIR1 insertions found in the SARS-CoV-2 genome, ordered by the 
earliest date of detection, as of January 5th, 2022. 

 

 

These events would be most likely explained by poorly understood copy-choice recombination 

processes occurring during viral genome replication [95], [96]. Nevertheless, we caution that the short 

length of RIR1 insertions (usually nine nucleotides) is in most cases not sufficient to unequivocally 

establish the origins of the inserted nucleotide sequence, since several randomly occurring identical 
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sequence matches are expected to be found in a broad range of living organisms. On the other hand, 

when RIR1 insertions are relatively long, such as in the case of the S:ins214GLTSKRN insertion, 

seemingly acquired in vitro though repeated passages in Vero cell cultures, the robustness of such 

inferences might be significantly higher [87], [97]. 

 

Mutational pattern of A.2.5 lineage 

As mentioned above, the only two lineages carrying insertions at RIR1 with solid evidence of 

widespread community transmission before the global emergence of omicron were A.2.5 and 

B.1.214.2. The inserted amino acid sequence found in A.2.5 is AAG, as the result of the phase I out-

of-frame insertion of the nucleotide sequence CGTCAGGCTA within codon 215, which determines 

the non-synonymous substitution of Asp215 to Tyr (as a result of a GAT->TAT codon replacement) 

(Table 3.1, Figure 3.2). 

 

Besides the insertion at RIR1, A.2.5 also displays the deletion of three codons (Δ141–143) in RDR2 

(Table 3.1), sometimes extending to codon 144. This region has been previously implicated in 

antibody escape [64] and shows deletions in some relevant VOCs and VOIs, including alpha, omicron 

and eta. In particular, Δ144 appears to largely explain the resistance towards several NTD-directed 

mAbs displayed by alpha in vitro [45]. Moreover, the insertion at RIR1 is also combined with L452R, 

a key mutation that confers resistance towards class III RDB-directed antibodies [49], including LY-

CoV555, the basis for the formulation of the commercial mAb bamlanivimab developed by Eli Lilly 

[51]. Among the lineages currently or previously designated as VOCs and VOIs, L452R is also found 

in delta, kappa and epsilon. Like the overwhelming majority of the variants circulating in 2021, A.2.5 

is characterized by the presence of the prevalent mutation D614G. Although no other spike 

mutations are widespread in A.2.5, the A.2.5.3 sublineage acquired S477N, shared with omicron and 

known to strengthen the binding with the ACE2 receptor [98]. Overall, this mutation is associated 

with ∼2% of all A.2.5 genomes (Figure 3.3A). Other relevant spike non-synonymous mutations, 

known to significantly alter either ACE2 binding or antibody recognition, were only seldom detected: 

K417T, N501Y and E484K (which are the hallmark spike mutations of gamma) were simultaneously 

found in a single genome (EPI_ISL_2,305,075, see Figure 3.3A) sequenced in Texas in May 2021. 

E484K was found in three additional cases (two in the United States, one in Canada) in April 2021, 

and N501Y was detected in nine additional cases (eight in the United States, one in Canada) between 

March and May 2021. Interestingly, in one such cases N501Y was paired with E484Q, which is found 

in kappa and determines reduced antibody sensitivity, even though not synergistically with L452R 

[99]. The acquisition of the mutation P681H, known to increase the efficiency of the furin-like 
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cleavage site was documented in 8 cases, 6 of which also displayed N501Y. Such insertions occurred 

independently in different branches of the A.2.5 evolutionary tree, indicating convergent evolution 

(see Figure 3.3a). Other lineage-defining non-synonymous mutations of A.2.5 are placed in other 

genomic locations. These included K1657E, F3071Y, T3255I (shared with delta and mu) and 

H3580Q in ORF1a; P1000L in ORF1b; S74F and G196V in ORF3a; S197L and M234I (shared with 

iota) in N (see Figure 3.3b). The functional consequences of these point mutations are presently 

unknown. 

 

Figure 3.3: Panel A: circular time tree exemplifying the phylogeny of the A.2.5 lineage related sublineages. Only 
high quality, complete genomes have been included. The Wuhan-Hu-1 strain was used to root the tree; the sister lineage 
A.2.4 is also indicated. The acquisition of relevant spike mutations placed in the receptor binding domain (i.e. S477N, 
K417T, E484K and N501Y) is marked with arrows. Please note that the monophyletic clade linked with the 
acquisition of S477N corresponds to the A.2.5.3 sublineage. Panel B: key mutations associated with the A.2. 
lineages. Genes associated with mutations (compared with the reference strain Wuhan-Hu-1) are indicated; only 
mutations detected in > 50% of the genomes belonging to this lineage and associated sublineages are shown. Modified 
from https://outbreak.info/. Panel C: root-to-tip genetic distance (number of nucleotide substitutions) of the genomes 
belonging to the A.2.5 lineage and related sublineages, compared with the reference genome Wuhan-Hu-1. The black 
dashed line represents the average rate of mutation of all SARS-CoV-2 sequenced genomes, according to GISAID 
(i.e. 25 substitutions per genome per year, as of January 5th, 2022). The red dashed line represent the rate of mutation 
computed for A.2.5. Note that insertions and deletions were excluded from this calculation. 
 

Root-to-tip genetic distance analysis revealed that the overall nucleotide substitution rate observed in 

the A.2.5 lineage (and related sublineages) was significantly lower than the average substitution rate 

computed for SARS-CoV-2 (based on GISAID data), as evidenced by the markedly different slope 

of the regression line (see Figure 3.3c). This was consistent with a substitution rate equal to 

4.00×10−4 substitutions/site/year, i.e. roughly 12 substitutions/genome/year. Nevertheless, the 

A.2.5 SARS-CoV-2 genomes detected in the earliest phases of the spread of this lineage (i.e. 
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December 2020) were linked with a number of substitutions significantly higher than the average 

number of substitutions found in the same period in other SARS-CoV-2 lineages (i.e. ∼33 vs ∼25). 

Emergence and international spread of A.2.5 

A.2.5 belongs to one of the very few surviving children lineages of the ancestral lineage A, which, 

after several months of limited global spread, has led to a few major clusters of infections in 2021, 

such as the one which involved A.23.1 in Uganda [100]. A.2.5 stems from A.2.4, the dominant lineage 

in the Panama pandemics during the first half of 2020 [101]. The first documented cases can be traced 

back to late November 2020, all within a 100 km2 area around the capital city Panamá. However, the 

precise timing of the emergence of A.2.5, along with the acquisition of insertion III at RIR1 and of 

the other associated mutations described in the previous section, is presently unclear due to the 

insufficient molecular surveillance carried out in Central America. To date, less than 1300 out of 

nearly 500 K covid-19 cases reported in Panama have been selected for viral characterization by 

sequencing, i.e. less than 0.3% of the total, far below of the threshold that would be sufficient to 

track emerging variants [102]. The presence of a number of genomes sampled in El Salvador and 

Guatemala, two countries where genomic surveillance has been virtually non-existing in 2020, in the 

earliest-branching clade belonging to A.2.5 (Figure 3.3a), leaves the precise geographical origins of 

this lineage unclear. 

 

Nevertheless, A.2.5 undoubtedly underwent expansion in Panama between December 2020 and 

February 2021, as revealed by the increase in estimated prevalence from ∼60 to ∼95%. Interestingly, 

A.2.5 has been linked with clinically documented reinfections in individuals previously infected by 

the A.2.4 lineage, which is consistent with the presence of the constellation of non-synonymous spike 

mutations reported in the previous section, some of which may have immune escape properties [103]. 

The A.2.5 lineage likely spread very early also in the neighboring countries: while investigations 

carried out in August 2020 failed to identify A.2.5 in Costa Rica [104], the prevalence of this lineage 

in the country reached 30% between March and June 2021, with the establishment of large clusters 

of community transmission (Figure 3.4). A.2.5 may have undergone a similar spread in other 

countries in central America, including Belize, Honduras, El Salvador, Guatemala and Mexico, where 

multiple cases have been detected, starting from the spring of 2021 (Figure 3.4).  

The remarkable spread of SARS-CoV-2 in Central America was connected with a significant number 

of exported cases, which have sometimes led to clusters of infection abroad. The first evidence of 

the detection of A.2.5 in southern America dates to December 1st 2020, in Ecuador. In this country, 

the acquisition of the spike mutation S477N, mentioned in the previous section, later led to the 
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establishment of the A.2.5.3 sublineage (Figure 3.3 and Figure 3.4). Reports in other Latin American 

countries remain sporadic, but it is worth noting that A.2.5 genomes have been so far sequenced in 

Argentina, Suriname, Guyana, Grenada, Dominican Republic, Sint Marteen, Cayman Islands, Chile, 

Colombia, Venezuela, Brazil and Paraguay (Figure 3.4). The earliest cases exported in other 

continents were reported with similar timing in UAE (December 27th, 2020), Philippines (December 

30th, 2020) and Australia (January 11th, 2021), which is consistent with the period with the highest 

incidence of covid-19 infections documented in Panama. 

 

Figure 3.4: U  er  anel: global spread of A.2.5 and related sublineages. Lower  anel: detailed timing of the 
detection of sequenced genomes belonging to A.2.5 and related sublineages in different countries. Only countries with 
>= 10 unique days of detection are reported, whereas the others were collapsed in geographic macroareas (i.e. 
Asia + Oceania, Europe, South America and Central America). The reported dates refer to the dates of sampling 
reported in GISAID. gray boxes indicate periods of time with no sequencing data available for a given country. 
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Cases linked with A.2.5 in Europe were identified in Luxembourg, Portugal, Germany, Italy United 

Kingdom, Czech Republic, France, Belgium, Ireland, Switzerland, Denmark, Netherlands and Spain. 

In most cases these did not lead to significant community transmission, with the exception of the 

cluster of cases linked with the A.2.5.2 sublineage recorded in Campania (central Italy) in February-

March 2021 (Figure 3.4). Similarly, imported cases have most certainly led to local cluster of 

infections in different areas of the United States and Canada, starting from late 2020 (Figure 3.3). 

Nevertheless, the prevalence of A.2.5 in Northern America never exceeded 0.5%). No SARS-CoV-2 

infections linked with A.2.5 have been identified to date in the African continent. 

 

The global frequency of observation of A.2.5 and related sublineages underwent a rapid decline in 

the second half of 2021, in parallel with the global spread of delta. Just four genomes belonging to 

this lineage have been sequenced after October 1st, 2021, with the most recent GISAID entry 

(EPI_ISL_6960593) sampled in Brazil on November 8th, 2021 (Figure 3.4). The lack of recent 

sequencing data from Panama and other countries from Central and Southern America presently 

does not allow ascertaining whether A.2.5 disappeared in a similar fashion to what occurred for 

B.1.214.2 during the summer of 2021. 

 

Impact of RIR1 insertions on the structure of the spike glycoprotein 

RIR1 is located in a loop which connects the spike NTD β strands 15 and 16, a region which, unlike 

most RDRs, does not show any overlap with any known major NTD antigenic sites [105], [106]. 

Hence, the involvement of the insertions reported in this manuscript in antibody escape is unlikely, 

even though the possibility that this modification may lead to paired structural alterations at distantly 

related sites, leading to a reduced surface accessibility of canonical antibody epitopes cannot be ruled 

out. Moreover, the possibility that RIR1 insertions might significantly affect T-cell epitopes remains 

to be investigated, considering that the majority of T-cell response appears to be directed towards 

the spike NTD and the S2 subunit [107]. Comparative genomics investigations carried out on other 

viruses belonging to the Sarbecovirus subgenus revealed that the RIR1 has been previously prone to 

structural alterations during the radiation of bat coronaviruses [108]. In fact, in comparison with the 

spike proteins of other bat coronaviruses, RmYN02, RacCS203, BANAL-116 and BANAL-247 [67], 

[68], [109], which are among the closest known relatives to SARS-CoV-2 when genomic 

recombination is taken into account [110], comprise an insertion of four codons in a position close 

to RIR1. 
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Most certainly, the spread of the A.2.5 and B.1.214.2 lineages in different geographical contexts 

between late 2020 and early 2021, as well as the recent rapid global spread of omicron, indicate that 

RIR1 insertions are unlikely to have a detrimental impact on the three-dimensional structure of the 

spike protein or to significantly reduce the infectivity of these variants. At the same time, the well-

defined length of the insertions (in the overwhelming majority of cases 3 or 4 codons) suggests that 

some critical structural constraints, that may prevent the selection of shorter/longer insertions or 

limit their associated evolutionary benefits, might exist. Several spike mutations located in the NTD 

can affect the structural organization of the spike protein, altering the stability of the interaction 

between the RBD and the ACE2 receptor, or its accessibility to antibody recognition. For instance, 

the NTD Δ69/70 deletion, which, like RIR1, is found in multiple independent lineages, does not 

determine a significant antibody escape in vitro [45]. However, it is thought to have an important 

impact on the structure of the spike protein, by compensating otherwise deleterious escape mutations 

[85]. In light of these observations, some NTD indels apparently not related with immune escape 

may act as permissive mutations, by compensating small infectivity deficits associated with other 

RBD mutations (i.e. L452R in A.2.5, Q414K and N450K in B.1.214.2, N440K, G446S, S477N, 

T478K, E484A, Q493R, Q498R, N501Y and Y505H in omicron). 

Interestingly, the insertion of a seven amino-acid long peptide at RIR1 in SARS-CoV-2 through 

passages in Vero cell cultures has been recently implicated in enhanced in vitro infectivity, which may 

be linked with an increase in the positive charge of NTD surface [97]. According to the authors, this 

insertion (which is not reported in Table 3.1 due to its laboratory origin) might have increased the 

affinity of the spike NTD to heparin, bringing viral particles in close proximity with host cells, thereby 

favoring the interaction with ACE2. While RIR1 insertions rarely share significant pairwise similarity 

both at the nucleotide and at the amino acid level (Figure 3.2, Table 3.1), we tested whether the 

amino acids found in the 49 RIR1 insertions were over-represented compared to expectations 

(assuming no codon usage bias). As shown in Su  lementary Figure S3.1, the basic amino acids 

arginine and lysine were the most abundant ones (accounting for over 20% of total observations), 

followed by alanine, glycine and glutamic acid. Overall, lysine was the amino acid characterized by 

the highest observed/expected ratio (i.e. close to 3) and also arginine showed a moderate increase in 

frequency compared to expectations, supporting the conclusions by Shiliaev and colleagues about the 

benefits of acquiring basic residues at RIR1 for viral infectivity. Nevertheless, the two negatively 

charged residues (i.e. glutamic acid, found in the omicron 214:EPE XLI insertion, and aspartic acid) 

also had a positive observed/expected ratio, raising the question as to whether such benefits may 

apply to all charged residues. On the other hand, several amino acids with hydrophobic side chains 

(e.g. I, M, T, V and Y in particular) were strongly under-represented. 
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To preliminarily investigate the impact of RIR1 insertions on the structure of the spike protein, we 

applied molecular dynamics simulations, a well-known technique able to capture and study the 

dynamical properties of proteins and to assess the effects of mutations, deletions and insertions [111]. 

In this case, we have used a coarse-grained force-field to compare the structural and/or dynamical 

differences between the spike proteins from the wild-type virus and from the A.2.5 lineage. After 2μs 

of simulations, the RMSD of the backbone atoms relative to the equivalent initial structures (which 

represents a global measure of protein fluctuations) was calculated as a function of time to evaluate 

the stability of MD simulations equilibrium in the two systems. No significant global displacement 

was detected for any of the two protein models compared with the initial structure, as most of the 

RMSD values only displayed fluctuations in a range between 0.35 Å and 0.45 Å. Similarly, the 

presence of a few spike mutations in A.2.5 only led to minor changes in the compactness of the 

protein, as suggested by the differences of about 1 Å found in the average RYGR values among the 

two models (Su  lementary Figure S3.2). On the other hand, some fluctuations were visible in the 

RMSF of the A.2.5 spike protein model, in particular in the regions which harbored non-synonymous 

mutations compared with the wild-type protein. 

To understand changes in the direction of motions of the two systems under analysis, PCA was 

performed on the last 2μs of the simulations, the time after which the systems reached the 

equilibration state. The analysis was then restricted to the backbone beads, as they are less perturbed 

by statistical noise, providing at the same time a significant characterization of the essential space 

motions [81]. The diagonalization of the covariance matrix of fluctuations of the residues belonging 

to the backbone resulted in a set of eigenvalues, which were plotted in decreasing order against the 

corresponding eigenvector indices. The first few eigenvectors corresponded to concerted motions 

that quickly decreased in amplitude to reach some constrained and more localized fluctuations. Here 

we present the principal modes along the first eigenvector (Figure 3.5a), which covers about 25% 

of the motions of the protein. Consistently with the placement of non-synonymous mutations 

(Figure 3.3b), this analysis revealed that A.2.5 exhibited some changes in the fluctuations in regions 

belonging to the NTD and RBD, which are shown in red in Figure 3.5b. This indicates that the 

presence of the mutations and of the insertion at RIR1 may induce local structural and dynamical 

changes on the spike protein, highlighting the usefulness of performing studies on the dynamical 

properties of insertions upon their emergence in variants with widespread circulation. 
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Figure 3.5: Panel A: RMSF plot for the models of the wild-type and A.2.5 SARS-CoV-2 spike proteins, with 
indication of the point and insertion mutations present in the two viral lineages target of his study, compared with the 
wild type virus. Panel B: Three-dimensional structural models obtained for the wild type and A.2.5 spike proteins. 
The location of the NTD and RBD (within the S1 subunit) and of the S2 subunit in the spike trimer are shown at 
the left-hand side. The regions where the most significant fluctuations are marked in red. 

Conclusions 
The SARS-CoV-2 genome continues to accumulate mutations at a relatively constant rate, 

occasionally originating new VOCs and VOIs as a result of continued high viral circulation and 

natural selection. Prior to November 2021, the insertions at RIR1 documented in this work had only 

led to the emergence of two viral lineages with widespread transient distribution, i.e. B.1.214.2 and 

A.2.5, which now appear to be extinct. However, the presence of a RIR1 insertion in the emerging 

VOC omicron, together with the recurrent independent occurrence of this phenomenon by 

convergent evolution in multiple viral lineages (including alpha delta), suggests that RIR1 insertions 

may be linked with an evolutionary advantage, whose magnitude is presently unclear. 

In absence of functional data, the role of RIR1 insertions can be only speculated. Based on the lack 

of overlap with known immune epitopes their involvement in immune escape phenomena appears 

unlikely, even though their impact on T-cell response remains to be investigated. Similarly, the 

previously hypothesized role of NTD insertions in enhancing viral infectivity by promoting the 
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interaction with host cell membranes is only partly supported by the over-representation of lysine 

and arginine residues in RIR1 inserts. On the other hand, we observe a correlation between the 

presence of RIR1 insertions, RDR deletions and several non-synonymous mutations found in the 

RBD with known impact on immune evasion, enhanced ACE2 binding and transmissibility. This, 

together with the predicted impact of RIR1 on the structure of the spike protein, may suggest a 

possible role as a permissive mutation in compensating otherwise slightly disadvantageous non-

synonymous spike RBD mutations. Undoubtedly, our observations strongly suggest that the 

functional and structural impact of these insertions, with particular focus on omicron, should be the 

subject of in-depth studies. 
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An interaction-based drug discovery screen explains 
known SARS-CoV-2 inhibitors and predicts new 
compound scaffolds 
 

This chapter describes my contribution to: Schake, P., Dishnica, K., Kaiser, F., Leberecht, C., Haupt, V. J., & 

Schroeder, M. (2023). An interaction-based drug discovery screen explains known SARS-CoV-2 inhibitors and 

predicts new compound scaffolds. Scientific Reports, 13(1), 9204. https://doi.org/10.1038/s41598-023-35671-x 

[112] 

 

Introduction 
The COVID-19 pandemic, which started in Wuhan (China) and then spread worldwide, has caused 

almost 609 million infections and more than 6 million deaths as of September 2022 (World Health 

Organization). Its causative agent the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2) belongs to the Coronaviridae family of single-stranded positive-sense RNA viruse [113], 

[114]. Other viruses of the same family, namely the Severe Acute Respiratory Syndrome Coronavirus 

(SARS-CoV) and the Middle East Respiratory Syndrome coronavirus (MERS-CoV) [115] already led 

to epidemics in 2002/3 and 2012 respectively [116]. Due to the severity of the current outbreak, the 

scientific community has undergone huge efforts to experimentally determine SARS-CoV-2 genome 

sequences and three-dimensional structures as fast as possible. The unseen amount of publicly 

available data on a single virus is the groundwork for developing virus-specific drugs that could end 

the current pandemic. The SARS-CoV-2 genome encodes for structural proteins and non-structural 

proteins such as 3CLpro, PLpro, helicase, and RNA-dependent RNA polymerase [117]. The four non-

structural proteins mentioned above are key enzymes in the viral cycle [118]. 

https://doi.org/10.1038/s41598-023-35671-x
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The Main protease (Mpro) is being studied a lot in terms of structural and functional properties because 

of its high similarity, with significant conservation in the cleavage site, shared with SARS-CoV [119]. 

It is an enzyme involved in the processing of polyprotein which is translated from viral RNA [120]. 

Therefore, the inhibition of Mpro would ultimately suppress viral replication. Furthermore, there are 

no human proteases with a similar cleavage specificity as Mpro, making it very unlikely for 

Mpro inhibitors to be toxic [121]. Considering this evidence, we will put the main effort into the SARS-

CoV-2 target Mpro. 

In general, there are two main groups of methods that aim to identify new drugs for a given target, 

such as Mpro, which are computational and experimental approaches [122]. 

The wide range of in vitro experimental approaches performed to manage the pandemic includes 

studies aiming to determine appropriate drug targets [123], newly developed experimental methods 

to validate predicted drugs [124], [125], [126], experiments to uncover drug mechanisms [127], [128], 

[129], and high throughput drug repurposing experiments [130]. One of the most important 

outcomes of experimental approaches is the development of the by-now-approved drug Paxlovid, a 

combination of nirmatrelvir [131] and ritonavir, for treating COVID-19 patients with a very high risk 

of severe illness [132]. Furthermore, Boceprevir and GC-376 are identified as potent SARS-CoV-2 

main protease inhibitors [133]. Nevertheless, experimental approaches in drug discovery require a 

high level of training, are expensive, and are generally less suited to perform large throughput studies 

to evaluate extensive compound libraries [134]. The above-mentioned drug Paxlovid for example is 

a derivative of a drug that was already developed as a potential SARS-CoV-1 inhibitor[131]. 

Besides in vitro approaches aiming to identify potential new drugs, others are aiming to detect three-

dimensional active site structures and compound binding modes. Structures obtained and published 

in the protein database (PDB) early on showed compound fragments in complex with Mpro. They 

revealed the importance of the residues His41 and Cys145 that comprise the catalytic dyad similar to 

Mpro of SARS-CoV-1 [135], [136]. Further work disclosed that in Mpro an oxyanion hole is composed 

of Gly143, partly Ser144, and Cys145 [121], [137] implying that a promising drug candidate should 

be able to interact covalently or noncovalently with at least one of these residues. However, these 

structures should be used with caution. It was shown that especially the Mpro structures generated 

with high-throughput methods are often lacking the representation of a possible important water 

molecule that could serve as a third catalytic residue and that the models are not on par with other 

structures in the PDB [138]. In addition, most structures are generated at temperatures of 100 K and 

thus are representing an active site configuration that is non-physiological, leading to errors such as 

the previously mentioned missing water molecule [139]. Nonetheless, structural approaches are 
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extremely important to get insights into protein function and have already uncovered the mechanism 

of the FDA-approved SARS-CoV-2 inhibitor Remdesivir [140]. 

To cope with the problems of experimental approaches and to make use of the available data, 

computer-aided approaches in drug discovery are becoming more and more popular and important 

[122]. Interestingly, the most prominent examples of in silico drug screenings against COVID-19 

seem to be based on molecular docking or molecular dynamic algorithms. Benefitting from the 

increased computational power, molecular docking algorithms are now suitable to screen giga-sized 

compound libraries against a single protein target. Such studies are testing tens of billions of 

compounds and are predicting a wide range of chemically diverse compounds [141], [142]. Most 

screened libraries are focused on known drugs and their relatives, but other recent approaches are 

screening against libraries of natural compounds to increase the search space [134], [143], [144]. 

Still, the major drawback of most in silico screenings is the lack of proper prediction validation 

resulting in only modest outcomes of huge screenings and no fast and global solution for the 

current pandemic [145]. 

By using a large amount of available data on the main protease of SARS-CoV-2, we want to address 

the above-mentioned problems. First, available Mpro compound complexes are extracted from the 

PDB and their binding patterns get analyzed by the Protein–Ligand Interaction Profiler (PLIP) [146]. 

Second, all protein–ligand complexes in the PDB are screened to detect similar binding patterns and 

predict potential inhibitors. Since we noted a drastic increase in publicly available data after the screen 

was done we decided to use this information for a further validation step. The data available in the 

PDB, before and after the screen, is depicted as a timeline in Figure 4.1. Using this data and 

Mpro binding affinity values from ChEMBL we were able to semi-automatically validate the 

predictions. Following these steps, the predictions are not dependent on pure chemical properties 

and therefore expected to be very diverse, leading to potential interesting and never considered 

findings. The automated part of the validation does not require any wet lab work and only depends 

on publicly available data. The pipeline is summarized in Figure 4.2. 

https://www.nature.com/articles/s41598-023-35671-x#Fig1
https://www.nature.com/articles/s41598-023-35671-x#Fig2
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Figure 4.1: Unique compounds released in complex with Mpro in the PDB. Structures are searched by the UniProt 
ID P0DTD1 and filtered for interactions with Mpro. Horizontal lines mark the days of Mpro inhibitor prediction and 
validation by data available in the PDB and ChEMBL. 

 

 

Figure 4.2: Graphical abstract. The pipeline consists of three major steps. First (left panel) 48 query complexes of 
Mpro with co-crystallized ligands are extracted from the PDB. Second (middle panel) the interaction patterns are 
transformed into one-dimensional fingerprints and screened against the full PDB database resulting in 692 predicted 
compounds. Third (right panel) these predictions are validated with publicly available data leading to 99 validated 
compounds that are associated with SARS-CoV-2. The validation implicates a hit rate of at least 15%. 

 

This way, we were able to predict 692 unique potential Mpro inhibitors and validated 17% of the top 

100 predictions retrospectively by publicly available data. The predictions cover a large chemical space 

and have great potential as lead compounds targeting Mpro. Within the top 100 predictions, we 

identified 4 already FDA-approved drugs that are currently under investigation for the treatment of 

the COVID-19 disease. The analysis of specific binding patterns within all available Mpro compound 

complexes in the PDB confirmed the importance of potential drugs interacting with the catalytic 

dyad of Mpro’s active site. We furthermore detected an interesting pattern of three almost 

perpendicular hydrogen bonds interacting with hydrogen donors of an oxyanion hole within the 

active side. Our work contributes to the scientific community's efforts to detect potential lead 

compounds for a given protein target in a fast and reliable way. 
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Methods 

Data extraction and prefiltering 

A search of the PDB for Mpro on 21 March 2020 returned a set of 140 compounds found in complex 

with the protein. Those were filtered in two major steps. First generic and promiscuous compounds 

were filtered out using an in-house blacklist. Second, only those that bound the catalytic binding site 

of Mpro were considered, leaving only 48 compound- Mpro complexes. These 48 complexes served as 

input for an interaction-based screening using the PharmAI DiscoveryEngine (Version 2021.03, date 

21 March 2021, https://www.pharm.ai). The small molecules in the PDB were set as target library 

for the predictions of the DiscoveryEngine. 

Interaction based screening 

In these screening approaches the way a given ligand is interacting with a protein is extracted using 

software, such as the Protein–Ligand Interaction Profiler (PLIP) [147] from three-dimensional 

complex data as provided by the protein database (PDB) [148] as well as geometric matches of ligand 

and binding site. The interactions are afterward converted into one-dimensional vectors (interaction 

fingerprints). Such interaction fingerprints can be compared with others using comparison schemes, 

such as the Tanimoto similarity index or comparable techniques, to screen large databases. The screen 

returned 740 unique compounds. Similar screening strategies have been used in [149], [150], [151]. 

Prediction evaluation and visualization 

48 predicted compounds, which were already in complex with Mpro, were removed, resulting in 692 

compounds. For these compounds, chemical fingerprints were computed using the Morgan 

fingerprint radius 2 and 512 bits [152]. The similarity of compounds was computed with the 

Tanimoto score, i.e. |A⋂B|/|A⋃B| where A and B are two vectors. A random set of 400 

compounds was created to determine a cut-off for dissimilar compounds. 200 were selected from the 

total of all 35.153 compounds in PDB and 200 from the total of 2.157.379 compounds in ChEMBL 

(March 2022). There was no overlap between the two groups. Pairwise Tanimoto scores were 

computed, and their distribution indicated that 99% of pairs have a Tanimoto score of less than 0.25. 

Thus, 0.25 was used as a cut-off for dissimilar compounds. Compounds were clustered using 

hierarchical clustering with single linkage from scipy [153]. They were visualized as a heatmap (Figure 

4.3) with the cut-off of 0.25 to indicate dissimilar compounds. The multiple correspondence analysis 

and empirical cumulative density functions (Figure 4.4 and Figure 4.5) were computed using scipy 

[153]. Interactions of compounds to Mpro were extracted from PDB files using PLIP 2.2.0 [147] and 

https://www.pharm.ai/
https://www.nature.com/articles/s41598-023-35671-x#Fig3
https://www.nature.com/articles/s41598-023-35671-x#Fig4
https://www.nature.com/articles/s41598-023-35671-x#Fig5
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visualized in Pymol [82]. The hydrogen bond triple motif was flagged if PLIP identified a hydrogen 

bond in Mpro residue 143, 144, and 145. 

To validate the results, we searched PDB and ChEMBL for compounds known to interact with 

Mpro to compare those with our predictions. PDB and ChEMBL were searched for the Mpro Uniprot 

ID P0DTD1 on 9 March 2022 and 22 March 2022, respectively. PDB returned 471 unique 

compounds and ChEMBL 7.221. All considered PDB structures are generated by X-Ray Diffraction 

with a resolution of at least 2.4 Å (see Su  l A  endix Table 4.1). All interactions in ChEMBL are 

from the same screen (CHEMBL4495582) and results are reported as Mpro inhibition percentage at 

20 µM by FRET kind of response from peptide substrate [154]. Inhibitory activity was normalized 

to the one of Zn-Pyrithione as the positive control (100%) and DMSO as the negative control (0%). 

For the confirmation of valid hits, we assumed that reported compounds with values above 

0% inhibition are at least weakly active. 

Results 

Structure-based drug screening for Mpro reveals 692 potential inhibitors 

To identify repositioning candidates for the inhibition of Mpro, predictions were provided by 

PharmAI (Dresden, Germany) as a result of an interaction-based screening. The screening revealed 

692 potential Mpro inhibitors within the PDB. The predictions are further evaluated in three steps. 

First, their chemical properties are analyzed in terms of similarity to each other and known 

Mpro inhibitors. Here, we aim to find a heterogeneous set of predictions that cover chemical scaffolds 

beyond the already known ones with the potential of inhibiting Mpro. Such novel predictions may 

function as the basis for further evaluation and drug design. Our analysis revealed that the predictions 

are indeed very heterogeneous and do cover a large chemical space. Second, the predictions are 

searched for already known binders that are found in the PDB or ChEMBL to get a first idea of the 

predictive performance of the screen and to include publicly available data. Furthermore, predictions 

of high importance as already FDA-approved drugs are checked for an association as a Mpro inhibitor 

or COVID-19 drug in general. By that, we can confirm that 17% of our top 100 predictions have 

evidence of binding Mpro. Furthermore, 12 compounds are known to interact with other viral proteins 

of the replicase polyprotein 1ab, and we identify multiple FDA-approved drugs that are potential 

COVID-19 drug candidates. Third, we analyzed compound-Mpro binding patterns to detect 

potentially important binding modes and recognized a potentially important tripled hydrogen bond 

pattern. 

https://www.nature.com/articles/s41598-023-35671-x#MOESM1
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Predicted compounds are heterogeneous 

The chemical properties of 692 predicted compounds were evaluated. To get a first impression of 

the chemical relations in the large prediction set, we created a heatmap of their pairwise chemical 

similarities. All similarities are calculated as the Tanimoto similarity score of Morgan chemical 

fingerprints which is a 2D descriptor (see “Methods”). Such an analysis gives insights into how 

chemically diverse a set of compounds is. For example, similar compounds would form one or a few 

big clusters in such a heatmap while dissimilar ones would form none or multiple very small clusters. 

Ideally, the predicted compounds consist of new scaffolds covering a large chemical space. An 

outcome like this can give new insights into chemical species that should be considered as the 

groundwork for further drug design approaches. 

Comparing chemical species is a challenging task and is usually done by transferring string 

representations of the compound into vector representations that can be compared by metrics such 

as the Tanimoto similarity index. Since all of such approaches come with their own benefits and 

drawbacks, we benchmarked the used combination of the Morgan fingerprint with radius 2 and 512-

bit representation combined with the Tanimoto similarity index. Evaluating the similarity of 400 

randomly selected compounds (Figure 4.4) revealed that 99% have a similarity of less than 25% 

suggesting that this is a meaningful cut-off to consider compounds related/unrelated. 

The heatmap analysis (Figure 4.3) revealed that in all but one case only small clusters are formed. 

Similarities below 25% are whited out since those compounds can be treated as unrelated. The big 

cluster (118 out of 692 compounds) consists primarily of deoxyadenosine monophosphate 

derivatives. This result is not surprising since the already FDA-tested drug Remdesivir and its active 

metabolite GS-441524 are adenosine derivatives as well. These types of inhibitors are already shown 

to successfully inhibit viral replication. Other derivatives e.g. Cordycepin yield Mpro binding affinity 

[155], [156], [157]. This gives further support for the predicted compounds. Nonetheless, the majority 

of compounds are unrelated, suggesting that the predictions are indeed chemically diverse. 

https://www.nature.com/articles/s41598-023-35671-x#Fig4
https://www.nature.com/articles/s41598-023-35671-x#Fig3
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Figure 4.3: Chemical similarity heatmap of the 692 predicted compounds. Since the underlying matrix is symmetric, 
the upper triangle is not shown explicitly. The analysis reveals little redundancy and a broad spectrum of scaffolds. The 
big cluster (middle) consists of compounds similar to deoxyadenosine monophosphate which is a group known to bind 
Mpro. 

How do the predictions relate to known inhibitors? 

In general, predictions that cover a large chemical space are more likely to reveal interesting and novel 

scaffolds that can even be more important than a high hit rate [158]. Figure 4.5 shows the multiple 

correspondence analysis (MCA) applied to the chemical Morgan fingerprints of our predictions and 

all compounds with structures available in the PDB where they are in complex with Mpro. Given in 

blue is the kernel density estimate (KDE), i.e. the probability distribution, of the PDB Mpro binders, 

orange dots mark the predictions, green dots mark query compounds, and magenta dots mark 

validated predictions. The analysis implies that the predictions fill a larger chemical space compared 

to the known binders and query compounds. Most of them are found in high-density regions of the 

known binders, which supports the overall approach since they do not form a whole new chemical 

space. The same holds true for validated predictions. However, we indeed identified compounds that 

are beyond the chemical space of known binders. 

To access the heterogeneity of the predicted compounds even further we computed the pairwise 

similarity of 400 randomly selected compounds (200 ChEMBL, 200 PDB). The result is shown in 

the top panel of Figure 4.4. Only the set of query compounds seems to show some degree of 

https://www.nature.com/articles/s41598-023-35671-x#Fig5
https://www.nature.com/articles/s41598-023-35671-x#Fig4
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homogeneity with a mean chemical similarity of 0.23, which is still below our prior defined threshold. 

The randomly selected compounds, predictions, and known Mpro PDB binders have 

mean similarities around 0.125. 

In summary, the predicted compounds seem to be as heterogeneous as known and tested 

Mpro binders while containing new scaffolds that may contribute to future efforts in developing a 

Mpro-specific anti-COVID-19 drug. 

 

 

Figure 4.4: Pairwise chemical similarity of predicted, random, latest PDB, and query compounds. To : violine plot. 
Bottom: empirical cumulative density function (ECDF) of similarities. Query compounds are more similar to each 
other than predictions, which are as similar to each other as a random set of compounds. This indicates that predictions 
substantially expand from the queries and cover a vast chemical space. 99% of random compounds have a similarity of 
less than 0.25 suggesting that 0.25 is a meaningful cut-off to consider compounds unrelated. 
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Figure 4.5: Multiple correspondence analysis (MCA) of predicted- (orange dots), validated- (magenta dots), query- 
(green dots), and known- (blue surface) Mpro binders. The axes of the MCA plot represent the dimensions of the data 
with the highest amount of explained variance. The analysis reveals that the predictions do cover a bigger chemical space 
than the known Mpro binders with structures available in the PDB. 

The validation with publicly available data revealed a hit rate of 17% 

After evaluating the predictions based on their chemical features, we aimed to validate them. Doing 

this for more than 600 compounds in vitro is a huge effort and we, therefore, make use of the 

astonishing amount of publicly available data on SARS-CoV-2. Here we have three principal 

approaches: first we extracted all compounds that are found co-crystallized with SARS-CoV-2 viral 

proteins in the PDB. Figure 4.1 gives an overview of structures published with the UniProt ID 

P0DTD1 that are co-crystallized with Mpro. Second, we searched ChEMBL for released affinity values 

of experiments with the target Mpro (CHEMBL4523582). For this section of the analysis, ChEMBL 

was selected due to its accessibility and the thorough curation of the provided data. Lastly, we 

evaluated FDA-approved predicted drugs by literature search. 

Compounds are considered to be validated in PDB if a structure is available with a predicted 

compound in complex with the protein target Mpro. In addition to these four compounds, we 

identified another 12 which are found in complex with other proteins of the replicase polyprotein 

1ab (see Su  l A  endix Table 1). After the screening was performed in 2020, 420 new structures 

of Mpro were released, which serve as a basis for this part of the validation. 

Since PDB is very limited due to its small number of available compounds (34,204) we investigated 

our results against ChEMBL as well. ChEMBL was searched for activity evidence on the reported 

https://www.nature.com/articles/s41598-023-35671-x#Fig1
https://www.nature.com/articles/s41598-023-35671-x#MOESM1
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predictions and Mpro. Interestingly, to date, there is only data of a single high throughput screening 

on Mpro available in ChEMBL. For a total of 100 compounds, there is activity evidence, however only 

inhibition percentage values at 20 µM compound concentration are provided. Out of those 100 

compounds, 76 show relative inhibition of > 10%, 30 more than 20%, and 11 more than 30%. It is 

therefore hard to judge if those are strong (nanomolar binders) or compounds that are only weakly 

interacting with Mpro. Detailed information on the predictions and validation data can be found in 

Su  l A  endix Table 1. 

Nonetheless, the compounds are active which gives evidence beyond estimated interaction patterns, 

and even non-nanomolar binders are potential foundations for further drug optimization. Strangely, 

there is hardly any overlap between compounds found in ChEMBL and PDB even though Mpro is 

currently one of the most studied proteins. Among all 99 validated compounds, only 7 are found to 

have activity values reported in ChEMBL and a structure in complex with an viral protein available 

in the PDB. The lack of more activity data in ChEMBL can be attributed to the fact that ChEMBL 

has a very strict and standardized review procedure. 

In summary, the performed in silico screening has an in vitro hit rate of 15% within all 692 predicted 

compounds and a hit rate of 17% within the top 100 predictions, ranked by p-values (Table 4.1). 

Thus, there is substantial evidence that the predictions are indeed valid drug candidates against SARS-

CoV-2. 

 

Table 4.1: The top predictions are highly enriched in independently validated Mpro binders. Validation is done by 
evaluating with identical compounds that show inhibitory activity in ChEMBL or found in complex with Mpro in the 
PDB. Given values for PDB and ChEMBL validation do not consider any overlap. 

 

 

Further evaluation supports prior findings on four FDA-approved drugs 

Next, we want to get a deeper understanding of these predictions. We assess them by the interaction 

motifs present in the query structures and predictions, by highlighting the two most strongly validated 

 PDB ChE BL Both 

To  100 2 (2%) 15 (15%) 17 (17%) 

All 692 4 (0.5%) 100 (14%) 99 (15%) 

https://www.nature.com/articles/s41598-023-35671-x#MOESM1
https://www.nature.com/articles/s41598-023-35671-x#Tab1
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predictions with evidence in both ChEMBL and PDB, and third by evaluating predictions of FDA-

approved drugs with literature or clinical trial evidence as anti-COVID drugs. 

Among the top 100 predictions, four are approved for use in humans by the U.S. food and drug 

administration (FDA), which are Flavin mononucleotide, Amodiaquine, Dasatinib, and Adenosine 

(Figure 4.6). Flavin mononucleotide (FMN) is an orange-red food color additive and is predicted in 

complex with UbiX from the psychrophilic bacterium colwellia psychrerythraea (PDB:4REH) [159]. 

In [160] authors gave evidence about the usage of riboflavin supplementation to decrease 

inflammation in COVID-19 patients. The malaria drug Amodiaquine is predicted in complex with 

human histamine N-methyltransferase (HNMT), which is a histamine-inactivating enzyme 

(PDB:2AOU) [161]. Amodiaquine was found to block SARS-CoV-2 infection with an EC50 value 

of 0.13 μM and was already proposed as a potential candidate against the early phases of the infection 

[162]. It was furthermore predicted to be a fruitful inhibitor of Mpro in a molecular docking study 

performed in [163]. Dasatinib is a known tyrosine kinase inhibiting drug approved for use in patients 

with chronic myelogenous leukemia and is predicted in complex with the human SH2-kinase domain 

(PDB:4XEY) [164]. In a clinical case, Dasatinib (100 mg/day) reduced fever, and a duplicate swab 

test came out negative two weeks later [165].  

 

Figure 4.6: Structures of four FDA-approved predictions with evidence on COVID-19. All are part of the top 
100 predictions. 

 

However, it was unclear with which protein target the drug was interacting [166]. Furthermore, 

Dasatinib in combination with Quercetin reduces lung inflammation in SARS-CoV-2 infected 

hamsters and mice [137] and is now in phase two of clinical trials as an anti-inflammatory drug in 

patients with moderate and severe COVID-19 (https://clinicaltrials.gov/ct2/show/NCT04830735). 

Adenosine is an organic body-own compound and showed promising anti-inflammatory effects in 

COVID-19 patients when inhaled [167], [168]. In addition, the adenosine analog cordycepin was 

found to potently inhibit viral replication of resistant SARS-CoV-2 strains with an in vitro EC50 

value of only 2 µM. Despite the existing evidence of viral inhibition, the specific mechanisms of 

https://www.nature.com/articles/s41598-023-35671-x#Fig6
https://clinicaltrials.gov/ct2/show/NCT04830735
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action for all four molecules remain unclear, necessitating the need for an in vitro demonstration of 

Mpro inhibition. 

The evaluation of recently released PDB Mpro structures reveals a common 

interaction pattern 

In addition to using recently published data on Mpro to validate inhibitor predictions, the data was 

used to get supplemental insights on the binding mode. Starting from the most high-level perspective 

on the interactions we calculated the frequency of each main interaction type. It was previously shown 

that the most frequent interaction type in the PDB are hydrophobic interactions [169]. As depicted 

in Figure 4.7, the most frequent interaction types among Mpro binders are hydrogen bonds followed 

by hydrophobic interactions and water bridges. There is some specificity in the compound 

Mpro interactions compared to what is generally present in the PDB. 

 

Figure 4.7: Interaction types present in 48 query compounds. 

Not surprisingly, a total of 121 out of 471 unique compounds are interacting with one or both amino 

acids composing the catalytic dyad. Notably, the His41 residue exhibited a diverse range of 

interactions, with 39 pi-stacking interactions, and 23 hydrophobic interactions dominating the scene. 

Additionally, hydrogen bonds (8), pi-cation interactions (7), water bridges (4), salt bridges (2), and 

even halogen bonds (1) were also detected, providing a complex and intriguing picture of the binding 

interactions at play. Interestingly, Cys145 displayed a clear preference for hydrogen bonding 

interactions, with a remarkable 73 compounds interacting via this mode. Other interaction types, such 

https://www.nature.com/articles/s41598-023-35671-x#Fig7
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as water bridges (2) and hydrophobic interactions (1), were also observed, hinting at the complexity 

and diversity of the catalytic dyad's interactions with ligands. 

Further investigation on Mpro binding modes results in the identification of a potentially interesting 

triplet hydrogen bond pattern present in 35 out of 471 structures. 

In Figure 4.8, we showcased six examples that were used as input for the compound predictions. 

The compounds form three hydrogen bonds with the residues Gly143, Ser144, and Cys145. This 

finding is in agreement with what is reported in [136]. Here they found, that co-crystallized 

electrophilic ligands tend to form either two or three hydrogen bonds with Gly 143, Ser 144, or Cys 

145. A similar pattern was previously reported by in [121] and is an addition to the importance of 

interactions with the catalytic dyad composed of His41 and Cys145. This triplet interaction is of major 

importance for the protease function since Gly143, Ser144, or Cys145 do function as hydrogen 

bonding donors of the oxyanion hole present in Mpro’s active side [170]. Therefore, we expect 

compounds that are able to dive deeply into the pocket and form interactions with those residues will 

efficiently inhibit the protease. 

 

Figure 4.8: Protein (blue) compound (orange) interactions of selected compounds. Blue lines mark hydrogen bonds, 
orange dashed lines mark pi-cation interactions, and dashed grey lines mark hydrophobic interactions. The three-letter 
codes refer to PDB chemical ids. Residues are indicated in red. A specific motif of three nearly perpendicular hydrogen 
bonds is present in six of the 48 query compounds. 

Turning the attention to our drug candidates, we identified a very similar pattern in three predicted 

structures (Figure 4.9), all of which are complexes with FDA-approved drugs. These cherry-picked 

examples show the opportunity of detecting similar patterns in different proteins by interaction-

based prediction methods. 

https://www.nature.com/articles/s41598-023-35671-x#Fig8
https://www.nature.com/articles/s41598-023-35671-x#Fig9
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Figure 4.9: Protein (blue) compound (orange) interactions of selected compounds. Blue lines mark hydrogen bonds, 
dashed orange lines mark pi-cation interactions, dashed yellow lines mark salt bridges, and dashed grey lines mark 
hydrophobic interactions. Residues are indicated in red. The three-letter codes refer to PDB chemical ids. Interacting 
proteins from left to right are: SET domain lysine methyltransferases (UniProt: Q43088), aspartokinase (UniProt: 
P9WPX3), and acetylcholinesterase (UniProt: P04052). The triple hydrogen motif is present in multiple predictions 
as well as in 35 out of 471 Mpro complexes in PDB. 

Discussion 
The current COVID-19 pandemic exemplifies that fast-spreading diseases are a serious threat to 

modern society. By structure-based drug repurposing, we can predict a chemically diverse set of 

potential lead compounds against the main protease of SARS-CoV-2 with a success rate of 17%. 

Within the set of validated compounds, we identified several FDA-approved drugs, of which some 

are currently tested in clinical trials against SARS-CoV-2. Furthermore, we exploited the binding 

mode of known Mpro inhibitors and revealed the potential importance of a triplet hydrogen bond 

pattern for the protein–compound interaction. 

Performing in silico drug screenings is a challenging task and comes with its own benefits and 

drawbacks. In contrast to wet lab studies, they are rather inexpensive, safe, and cheap. However, the 

result is only a prediction that requires experimental validation. Several researchers took the challenge 

of the COVID-19 pandemic and applied their very own algorithms aiming to predict fruitful drug 

candidates for multiple viral targets. Nonetheless, several of these studies do lack any kind of 

validation leaving the reader of such articles to judge themselves on how trustworthy the results in 

general are. Others created a full pipeline starting from in silico predictions which are then 

meticulously experimentally tested on important parameters, such as binding, cytotoxicity, 

metabolic stability, or oral receptivity. 

Drug repurposing already led to some successes in the context of the COVID-19 pandemic. In [131], 

authors proved that by chemically modifying and improving a predicted lead compound an efficient 

drug against a given disease can be developed. Their drug Nirmatrelvir is now conditionally approved 
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in the EU and US. Even though this is a great success, their lead compound was already predicted as 

a potential drug against the SARS-CoV-1 outbreak in 2002. Still, it shows that experts in the field can 

rapidly develop potent drugs in a relatively short period of time when starting from an appropriate 

lead molecule. Following this assumption, we aimed to predict a chemically diverse set of potential 

Mpro inhibitors with our interaction-based approach. In doing so, the chances to detect so far 

unknown but potentially very important compound scaffolds are increased, giving more value to the 

predictions. We are able to show that the predictions are not only little redundant but furthermore 

cover a large chemical space including so far untested scaffolds. This is especially important 

considering that the query compounds used as the input for the prediction are far more homogeneous 

compared to the predictions and validated predictions. The same holds true for validated predictions, 

suggesting, that the scientific community is already heavily increasing the diversity of tested small 

molecules against COVID-19. Moreover, it is a proof of concept, that chemically diverse small 

molecules can still be effective as inhibitors for the same protein target. 

This opens the gates for further developments based on our predictions. The most limiting factor is 

the availability of compounds in the PDB that are the only ones considered in the screen due to the 

requirement of protein–compound complexes as input for the algorithm. 

Furthermore, the herein presented method aims to predict small molecules targeting a specific active 

site and does not allow for reliable predictions on molecules targeting e.g. allosteric binding sites. 

However, these can be included in a screen if interaction data is available in the PDB. By using 

publicly available data, we have created an intermediate approach that yields more trustworthy results 

than comparable in silico approaches but is not as powerful as those who considered experimental 

validation. With a hit rate of at least 17% within the top 100 predictions and 15% overall, the 

algorithm performance is substantial compared to similar approaches [142]. 

The evaluation of FDA-approved drugs within the predictions revealed the potential of the method 

to generate new hypotheses on drug mechanisms. All compounds are predicted to inhibit the main 

proteases of the Sars-CoV-2 virus and should therefore prevent viral replication. Through literature 

research, we identified articles on four FDA-approved drugs, showing beneficial effects in COVID-

19 patients, that are within our top 100 predictions, and none of those reported any drug mechanism. 

The drugs Riboflavin, Amodiaquine, Dasatinib, and Adenosine have shown anti-inflammatory effects 

in COVID-19 patients or in-cell antiviral activity [160], [162], [166], [167], [168]. This raises the 

question of whether reduced viral replication mediated by the inhibition of Mpro as predicted by us is 

responsible for the reduced inflammation. 
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Ascorbic acid on the other hand is one of our validated and FDA-approved predictions but there is 

evidence that it is not applicable as a COVID-19 drug due to its inefficiency in infected patients [171], 

[172]. This exemplifies the limitations of the approach. Even if a drug does bind and eventually 

inhibits a target protein, there is no guarantee that it could function as a drug. Factors such as cell 

permeability, half-time, or other mechanisms can counteract the inhibitory properties of a compound. 

That can not be tested in a pure in silico fashion and does require wet lab work. 

Anyway, the elephant in the room here is the other 82% of the predictions without validation. So far, 

there is no evidence of these compounds interacting with Mpro found in the PDB or ChEMBL. 

Therefore, this set of compounds may contain fruitful new lead scaffolds and their identification does 

require further experimental validation and evaluation. 

Supplementary analysis on interaction patterns of recently released Mpro-compound complexes 

reveals a triplet hydrogen bond that could explain stable interactions and efficient inhibition. 

Compounds with such a binding mode do interact with all neighboring residues of the oxyanion hole 

(Gly143, Ser144, Cys145) and are therefore blocking its catalytic function. Since only 13% of the 

Mpro complexes in the PDB do show such a pattern, further investigations are required to test if those 

do have lower binding energy as we expect. Still, similar patterns are reported by different research 

groups highlighting the importance of further investigations regarding its importance on 

Mpro inhibition. 

Conclusions 
With our work on SARS-CoV-2, we can show that our interaction-based prediction method has great 

potential to predict a diverse set of potential lead compounds for a given protein target. Starting from 

a relatively homogeneous and small set of compound fragments bound to the main proteases of 

SARS-CoV-2, we predicted a chemically diverse set of potential inhibitors. Overall, we produced lead 

compound predictions at a very high hit rate by our interaction-based approach and were able to 

perform a first validation without the requirement of additional wet-lab work. 

In this work, we benefited from the data-rich situation, but the method is applicable as long as there 

are complexes of the target protein bound to a compound available in the PDB. That way, we can 

provide a foundation for further lead optimization for lots of disease-associated proteins 

enhancing the drug development process. 

Data availability 
The interaction data used as input for the predictions can be found in Su  lementary Table S4.1 

column “Query PDB ID:Chemical ID”. The corresponding PDB files are publicly available from the 
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PDB (https://www.rcsb.org). All resulting predictions can be found in Su  l A  endix Table 1 

column “Hit PDB ID:Chemical ID”. 
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Wide Real-Life Data Support Reduced Sensitivity of 
Antigen Tests for Omicron SARS-CoV-2 Infections 
 

This chapter describes my contribution to: Piubelli, C., Treggiari, D., Lavezzari, D., Deiana, M., Dishnica, K., 

Tosato, E. M. S., ... & Castilletti, C. (2024). Wide Real-Life Data Support Reduced Sensitivity of Antigen Tests 

for Omicron SARS-CoV-2 Infections. Viruses, 16(5), 657. [173] 

Introduction 
As of 31 February 2024, over 775 million confirmed cases of the novel coronavirus disease (COVID-

19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and over 7 million 

deaths have been reported globally [174]. Although on 5 May 2023, the World Health Organization 

(WHO) declared the end of the COVID-19 global public health emergency, WHO still recommends 

governments to maintain a monitoring system, in case new variants emerge and cause another surge. 

Moreover, the accurate identification of people infected with SARS-CoV-2 is an essential prerequisite 

for facilitating the early initiation of therapy to reduce disease progression and for limiting the 

community spread of the infection [175]. 

The appearance and evolution of new variants with novel mutations require the monitoring of the 

available diagnostic methods for the detection of SARS-CoV-2 infection, based on both molecular 

and antigen testing. With the emergence of Omicron in particular, the effectiveness of antigen 

diagnostic tests (ADTs) was questioned. Diagnostic test sensitivity is a major criterion for detecting 

individuals infected with SARS-CoV-2 as fast as possible [176]. Most commercially available ADTs 

are based on the detection of the Nucleocapsid (N) protein, one of the four major structural proteins 

of SARS-CoV-2 [177], which has proven to be a good diagnostic target due to its high conservation 

rate [178], [179], [180], [181]. However, mutations also affect this gene. In fact, ADTs were developed 
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for the original SARS-CoV-2 N protein, and since the initial phases of the pandemic, new viral 

variants have been identified with specific patterns of mutations that could affect their detection due 

to epitope modification. 

In October 2021, the Omicron variant (B.1.1.529) emerged in South Africa and started to be the 

dominant SARS-CoV-2 variant worldwide [84], [182], [183]. Omicron and its descendent sub-variants 

drew particular attention due to the high number of mutations. Their higher transmissibility and 

immune escape ability were assessed compared to the Delta (B.1.617.2) variant [59]. But how 

alteration in the N protein could influence antigen recognition by diagnostic tests has never been 

clarified. Omicron sub-variants have extensive mutations in its spike (S) and N proteins [184]. 

Mutations in the Nucleocapsid gene may lead to protein conformational changes that affect the target 

binding site of the ADT. This could, theoretically, alter the performance of the ADT in detecting this 

variant [185], [186], [187], [188]. The rapid global emergence and dominance of the Omicron variant 

highlighted the importance of understanding the performance of ADTs in real-world settings. Some 

in vitro studies suggested that the performance of rapid ADTs did not differ between the Delta and 

Omicron variants [189], [190], while studies using clinical specimens suggested a possible decrease in 

antigen tests’ sensitivity for the Omicron variant [191], [192], [193], [194]. 

In addition to the variability of the N protein, in the early months of 2022, some studies hypothesized 

that Omicron variant infection could present a higher level of detectable viral RNA in the mouth 

than in the nose, with a positive predictive value of 100% in the saliva compared with 86% in mid-

turbinate swabs [195]. These findings were supported by data from other labs, describing altered 

tissue tropism for the Omicron variant [196]. Another study did not support a preferred sample type 

for Omicron detection, but suggested a heterogeneous distribution of viral RNA in the nose and 

mouth [197], indicating that the choice of the sampling site still remains a controversial issue. 

Based on the above considerations, further studies are needed to monitor the performance of these 

diagnostic tests in order to maintain accurate diagnoses throughout the evolution of the Omicron 

variant. Therefore, the aim of our study was to directly compare the results of ADTs with those of 

corresponding molecular tests in the same subjects, in a cohort of about 5000 patients attending our 

hospital during two epidemic waves, dominated by the Delta and Omicron variants, respectively. 

Moreover, we compared the viral loads present in the nasal nostrils and in the anterior oral cavity of 

Omicron-infected patients in order to assess whether nasal swab collection, which is generally the 

preferred practice for ADT testing, could still be suitable for Omicron descending variants, or 

whether it should be switched to a mouth swab, a sample type that could also reduce patient 

discomfort. Finally, an in silico study was performed to evaluate the effect of mutations on the 
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conformation of the N protein in the Omicron and Delta variants and their possible impact on 

molecular recognition by ADTs. 

Materials and methods 
This paper refers to the STARD 2015 guidelines [198] for the evaluation and reporting of diagnostic 

test accuracy. 

Study Population 

The test performance assessment included samples from 5175 subjects, either symptomatic or 

asymptomatic, who were referred to the IRCCS Sacro Cuore Don Calabria Hospital (Italy) between 

1 October 2021 and 15 July 2022 for SARS-CoV-2 testing, most of whom were tested prior to 

hospital procedures or were contacts of infected persons. The enrolled subjects were assigned to 

either the Delta (1 October 2021 to 15 January 2022; n = 2726) or Omicron (from 16 January 2022 

to 15 July 2022; n = 2449) wave, according to the viral variant dominating in the Veneto Region in 

the corresponding period. No information on the presence of symptoms was available. The inclusion 

criterion was the availability of results from both a SARS-CoV-2 ADT and RT-PCR on two parallel 

samples collected on the same day. According to the hospital’s procedures, for each person, two 

different nasal/nasopharyngeal swab samples were concomitantly collected by trained healthcare 

personnel, one for ADT, according to the manufacturer’s instructions, and the other for routine 

SARS-CoV-2 RT-PCR using eSwab® (COPAN Diagnostics Inc., Murrieta, CA, USA). Both samples 

were processed in the laboratory of the IRCCS Sacro Cuore Don Calabria Hospital within two hours 

of sample collection. Data were retrieved from the database of the internal Laboratory Information 

Management System (LIMS), including the date of collection, study patient code, age, sex, type of 

test assay, and result for SARS-CoV-2 testing. 

For the comparison of the nose vs. mouth swabs, 61 subjects verified as positive for SARS-CoV-2, 

according to either a molecular or antigen test, were recruited during the Omicron period. For each 

subject, one mouth (buccal, internal cheeks, MS) and one nasal (anterior nares, NS) swab were 

collected in parallel by healthcare staff with eSwab® (Copan, Brescia, Italy). Both samples were 

analysed by RT-PCR for SARS-CoV-2 detection. 

Ethics 

The study was conducted in accordance with the ethical principles of the Declaration of Helsinki. 

Subjects or their legal representatives provided written informed consent. The study was approved 

by the local Ethics Committee (Comitato Etico per la Sperimentazione Clinica delle Province di 

Verona e Rovigo), protocol n° 17058/2022. 
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SARS-CoV-2 Antigen Diagnostic Tests 

During the study, different ADTs were used for diagnostic purposes. Their main characteristics are 

summarized in Table 5.1. Each ADT test was applied by a nasal or nasopharyngeal swab according 

to the manufacturer’s instructions, as indicated in Table 5.1. For the comparison among the different 

types of assays, the 6 tests used were grouped as follows: 
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• Group 1 ADT: Lateral Flow Immunochromatography rapid assay 

• Group 2 ADT: Microfluidic-based rapid assay 

• Group 3 ADT: Chemiluminescence-based assay 

 

 
All the different ADTs mentioned were used without preference during the study period, according 

to the working needs of the laboratory. 
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SARS-CoV-2 RT-PCR Analysis 

The swab specimens were analysed by routine SARS-CoV-2 RT-PCR. Briefly, RNA was extracted 

from 200µL of eSwabs medium using the automated Microlab Nimbus workstation (Hamilton, Reno, 

NV, USA) coupled to a Kingfisher Presto system (Thermo Fisher Scientific, Waltham, MA, USA) or 

using the EZ1 Advanced XL instrument with EZ1 DSP Virus Kit (Qiagen, Hilden, Germany) 

according to the manufacturer’s instructions. 

RT-PCR was performed using the Bosphore SARS-CoV-2/Flu/RSV IVD panel (Anatolia 

geneworks, Sultanbeyli/İstanbul, Turkey), targeting the Orf 1a/b and N genes, using a CFX96 Touch 

Real-Time PCR Detection System (Bio-Rad Laboratories S.r.l., Segrate/Mi, Italy). The amplification 

cycle threshold (Ct) was determined using CFX Maestro (Bio-Rad). Alternatively, the Real-Time PCR 

SARS-CoV-2 Panel Kit using NeuMoDx istrument (Qiagen Italia, Milan, Italy) was employed, 

targeting the N and Nsp2 genes. The Ct value for the N target was used as a proxy of the viral load 

in the corresponding sample. Cellular RnaseP mRNA was used as am endogenous control for the 

RT-PCR. 

SARS-CoV-2 Genome Sequencing 

Genomic sequencing for SARS-CoV-2 variant or lineage identification was applied to RT-PCR-

positive samples from 168 patients from the Delta and Omicron waves. Reverse-transcription was 

performed with the SuperScript™ VILO™ Master Mix (Thermo Fisher Scientific, Waltham, MA, 

USA) in 20 μL of reaction volume, as per the user manual. The SARS-CoV-2 genome was amplified, 

according to the manufacturer’s instructions, with the Ion AmpliSeq™ SARS-CoV-2 Insight 

Research Panel (Thermo Fisher Scientific, Waltham, MA, USA), with two primer pools protocol 

covering the whole SARS-CoV-2 genome. Amplified fragments were used to prepare barcoded 

libraries for massive parallel sequencing using the Ion AmpliSeq™ Library Kit Plus (Thermo Fisher 

Scientific, MA, USA), as reported in the user guide. The barcoded libraries were purified with 

Agencourt™ AMPure™ XP Reagent (Beckman Coulter), eluted in 50 µL of TE buffer, analysed on 

the 4150 TapeStation System (Agilent, Santa Clara, CA, USA) (average size 250–400 bp), and 

quantified by a Qubit™ Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA). Each of the 

prepared libraries was diluted to 100 pM and pooled together; 30 pM of the library’s pool was loaded 

on the Ion Chef™ Instrument (Thermo Fisher Scientific, Waltham, MA, USA) for clonal 

amplification and chip loading. The clonally amplified libraries were, shortly afterwards, subjected to 

next-generation sequencing on the Ion GeneStudio™ S5 System (Thermo Fisher Scientific, Waltham, 

MA, USA), on the Ion 520 or 530 chips. 
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Bioinformatic Analysis of Genome Sequences 

The sequencing results were analysed in the Torrent Suite™ Software (v 5.14.1) using the SARS-

CoV-2 plugins [i.e., generateConsensus, SARS-CoV_2_annotateSnpEff, SARS-

CoV_2_variantCaller, SARS-CoV_2_coverageAnalysis (Thermo Fisher Scientific, Waltham, MA, 

USA)] with standard configuration. BAM files were visualized in the Integrative Genomic Viewer 

(IGV). FASTA consensus files were used for a lineage analysis with the Pangolin COVID-19 Lineage 

Assigner htt s:// angolin.cog-uk.io (accessed on 30 December 2023); sequences that passed the 

QC during Nextclade v2.8.1 analysis htt s://clades.nextstrain.org/ (accessed on 30 December 

2023) were further submitted to GISAID htt s://gisaid.org/ (accessed on 30 December 2023). 

Specific sample mutations of the N gene were obtained from the CoV-GLUE database htt ://cov-

glue.cvr.gla.ac.uk/#/home (accessed on 30 December 2023), and their frequency of occurrence 

was determined. 

 

Nucleocapsid (N) Protein Mutation Analysis 
The N-terminal domain (NTD) and C-terminal domain (CTD) X-ray structures were retrieved from 

the Protein Data Bank (PDB), with the accession IDs 6VYO and 6WZO, respectively [177]. The 

mutations in the proteins were mapped using the PyMOL software (v2.4.1) [82]. For the intermediate 

linker region (LKR), we used AlphaFold2 [199] for modelling the full-length protein 

(Su  lementary Figures S5.1 and S5.2). After the mutation mapping, we ran the 

InterfaceResidues.py script to identify if they belonged to the dimerization interface. Using the 

Mutagenesis Wizard function in PyMOL, we changed residue S310 from Serine to Cysteine (S310C) 

(Su  lementary Figures S5.3 and S5.4). The rotamer chosen for the substitution also did not cause 

any conflicts. This process was repeated for both chains in the dimer. We estimated the variation in 

protein folding free energy (ΔΔG) brought on by mutations, carrying out a qualitative evaluation of 

the N protein stability by using the webservers DynaMut [200] and DynaMut2 [201]. Additionally, 

using the DynaMut2 tool to compute the changes in vibrational entropy (ΔΔSVibENCoM), we 

investigated the potential impact on the monomer’s flexibility. Due to the uncertainties in the 

modelling of the intrinsically disordered regions present in the LKR, this analysis was performed on 

the solved domains of the protein, i.e., the RNA-binding domain (i.e., NTD) and the N dimerization 

domain (i.e., CTD) of the N protein structures (PDB IDs 6wzo and 6vyo, respectively). 

Statistical Analysis 

Continuous variables were summarized with means, standard deviations (SD), and ranges (confidence 

interval, CI), while count variables were summarized with absolute and percentage frequencies. The 

https://pangolin.cog-uk.io/
https://clades.nextstrain.org/
https://gisaid.org/
http://cov-glue.cvr.gla.ac.uk/#/home
http://cov-glue.cvr.gla.ac.uk/#/home


59 

 

normality distribution of the data was assessed using the Shapiro–Wilk test. A comparison of the N 

gene Ct values between groups was performed using the Wilcoxon test. A comparison of the 

sensitivity and specificity of ADTs between the Delta and Omicron periods was performed using the 

two-sample Z-test for proportions. A comparison of the Ct values across time and sampling sites 

was performed, stratifying the analyses accordingly. R v. 4.2.3 [202], Graphpad Prism v. 10.1.0(316) 

(GraphPad Software, Boston, MA, USA) and SAS (SAS 9.4 Software, USA) were used to perform 

statistical analyses. 

Results 

Evaluation of ADT Performance in Delta versus Omicron VOCs Period 

In order to analyse the performance of the ADTs during the Delta and Omicron waves, we 

retrospectively evaluated data collected from 5175 patients subjected to both ADTs and RT-PCR 

tests for SARS-CoV-2 infection in the period from 1 October 2021 to 15 July 2022. The demographic 

characteristics of the patients are summarized in Table 5.2. According to the data on the prevalence 

of viral variants in our region (Veneto, Italy) [203], we divided our study into two periods: the first, 

from 1 October 2021 to 15 January 2022, when Delta was predominant (Delta wave), and the second, 

from 16 January 2022 to 15 July 2022, when Omicron was predominant (Omicron wave). Taking 

into account the samples with an RT-PCR positive result, we evaluated the Ct values of the N gene 

and compared the results from ADT positive (+) and negative (−) specimens in the two periods. As 

expected, significant differences in the Ct values were observed between the ADT+ and ADT− 

samples, with a significantly lower median Ct value in the first group for both periods (p < 0.0001, 

for both Delta and Omicron periods, Figure 5.1a, Figure 5.1b). When comparing the two waves, 

significant differences were observed in the median Ct values detected for RT-PCR+/RADT+ (p = 

0.0009) between the Delta and Omicron periods, indicating a generally higher viral load during the 

Omicron wave, detected at the RNA level for samples with a positive ADT, whereas no differences 

were found for RT-PCR+/RADT− (Figure 5.1c). 

Table 5.2: Descriptive statistics of the ADT study population. A total of 5175 subjects were considered. Subjects 
were divided according to Delta and Omicron waves. 

Demogra hics 
Delta Wave Omicron Wave 

Count (n) Value (%) Count (n) Value (%) 

Po ulation 2726 
 

2449 
 

Female 1319 48.38 1216 49.65 

 ale 1407 51.61 1233 50.34 

 

Age (years) Female  ale Female  ale 
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Lower 95% CI 46.71 46.81 39.01 41.20 

U  er 95% CI 49.68 49.71 42.02 44.33 

 edian 48.00 52.00 37.00 41.00 

 

 

Figure 5.1: Comparison of Ct values of SARS-CoV-2 RT-PCR according to ADT results. (a) Panel shows results 
during Delta and (b) panel during Omicron waves, respectively. (c) Comparison of Ct values of ADT-positive and -
negative results for Delta and Omicron waves. Each dot plot represents an individual Ct value, error bars represent 
median with interquartile range (IQR). Wilcoxon test was applied to compare the difference of Ct values between the 
two groups. p < 0.05 was accepted as significant difference. 

We then compared the diagnostic performances of the ADTs between the two SARS-CoV-2 variant 

periods, using RT-PCR as a reference, and the results are reported in Table 5.3. During the Delta 

wave, 122 out of 2726 swabs (4.4%) tested positive by ADT and RT-PCR, and 2512 (92.1%) tested 

negative by both assays (overall concordance: 96.6%). We found 92 discordant samples (3.4%): 70 

(2.5%) that tested negative by ADT and positive by RT-PCR, whereas 22 samples (0.8%) tested 

positive by ADT and negative by RT-PCR (Table 5.3). The sensitivity and specificity of ADTs during 

the Delta wave were 64% (95% CI, 56 to 70) and 99% (95% CI, 99 to 99), respectively (Table 5.3). 

Throughout the Omicron wave, 65 out of 2449 swabs (2.6%) were positive by ADT and RT-PCR, 

and 2253 (91.9%) tested negative by both assays (overall concordance: 94.6%). We found 131 
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discordant samples (5.3%), of which 130 (5.3%) tested negative by ADT and positive by RT-PCR, 

and 1 positive by ADT and negative by RT-PCR. ADTs carried out during the Omicron wave 

achieved an overall sensitivity and specificity of 33.3% (95% CI, 26.8 to 44) and 100% (95% CI, 99.8 

to 100), respectively (Table 5.3). 
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For both sensitivity and specificity, the differences between the overall performances of the two tests 

during the Omicron and Delta periods were found to be statistically significant (both p-value < 

0.001).The Positive and Negative Predictive values (PPVs and NPVs) of the ADTs for the two 

variants were calculated, considering the prevalence of SARS-CoV-2 infections during the two waves 

according to the GIMBE foundation, Italy, “htt s://www.gimbe.org/ (accessed on 30 December 

2023)”, i.e., 2.6% during the Delta and 2.2% during the Omicron wave. The PPVs and NPVs resulted 

in being 65% (95% CI, 57 to 73) and 99% (95% CI, 98 to 99) for the Delta wave and 94% (95% CI, 

85 to 98) and 98% (95% CI, 97 to 98) for the Omicron wave, respectively. 

https://www.gimbe.org/
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We compared the sensitivity and specificity of the Delta and Omicron periods in more detail by 

stratifying the different rapid antigen tests according to three types of assay. Specifically, Group 1 

included all ADTs based on lateral flow immunochromatography rapid assays, Group 2 referred to 

microfluidic-based ADTs, and Group 3 included all chemiluminescence-based ADTs. As shown 

in Table 5.3, the results showed reduced sensitivities for each group of ADT during the Omicron 

period. Due to the small number of samples in split groups, statistical significance was only achieved 

for the overall analysis. 

Evaluation of Nucleocapsid Protein Mutations in Delta and Omicron 

Variants 

In order to assess whether specific mutations in the Delta and/or Omicron variants may affect the 

structure and function of the N protein, we analysed the amino acid sequence variations translated 

from the SARS-CoV-2 whole genome data, available from positive swabs in our study. Data were 

collected from 168 patients at the IRCCS Sacro Cuore Don Calabria Hospital in both the Delta and 

Omicron waves and were submitted to GISAID database. The protein is structured into three 

principal regions crucial for its activity: an N-terminal domain (NTD) responsible for RNA binding, 

a C-terminal domain (CTD) involved in dimerization, and an intermediate linker region (LKR) with 

a serine- and arginine-rich (SR-rich) motif [204], which, when phosphorylated, can regulate 

discontinuous transcription during the early stages of replication [205]. 

In the analysed sequences, a total of 33 different mutations were detected in the N protein sequence 

of the Delta and Omicron samples with respect to the original Wuhan sequence, and the LKR turned 

out to be the most affected region (Figure 5.2a). The frequency of each mutation is shown in Figure 

5.2b. We observed that both Delta and Omicron VOCs showed exclusive mutations, e.g., D343G, 

P80R, and others among the most frequent ones are exclusive to the Omicron variant. Although the 

structure of the NTD and CTD domains of the N protein were solved, the full-length structure 

remains difficult to obtain due to protein stability issues and the presence of intrinsically disordered 

regions (IDRs) [206].  

We performed in silico modelling of the full-length protein (Su  lementary Figures S5.1) to evaluate 

the structural locations of mutations in the Delta and Omicron variants. Due to the uncertainties in 

the modelling of the IDRs, we focused on the experimentally solved 3D structures of the NTD and 

CTD (Figure 5.3a. and Figure 5.3b., respectively). We predicted the differences in folding free 

energy (ΔΔG) and vibrational entropy (ΔΔSVibENCoM) between the wild type and mutants in order 

to better understand how mutations may affect the protein stability (Su  lementary Table S5.1). A 

positive ΔΔG indicates an increased stability, whereas a negative ΔΔG indicates a decreased stability. 
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A negative ΔΔSVibENCoM indicates an increase in protein rigidification, while a positive 

ΔΔSVibENCoM implies an increase in protein structure flexibility. An increase in terms of protein 

folding energy was predicted for P80R and H300Y and a decrease for D343G and S310C. The 

D343G mutation was shown to have the most negative ΔΔG, while P80R had the highest positive 

ΔΔG. These two mutations, both exclusive to the Omicron VOC, were connected with the largest 

increase (D343G) and decrease (P80R) in vibrational entropy, indicating an effect of these mutations 

on the Omicron VOC’s structural/dynamic properties, which could lead to different recognitions by 

antibody-based detection systems. 

 

Mouth versus Nose Viral Load in Omicron-Infected Patients 

In order to assess the SARS-CoV-2 viral load at different sites (nose and mouth) during the Omicron 

wave, a total of 61 symptomatic patients (30 female, 31 male; mean ages of 43 and 44 years, 

respectively) were tested by RT-PCR in both the mouth and nose. Fifty-one subjects reported mild 

symptoms. In 49 out of the 61 patients (80% of the total population), the samples were collected less 

than 4 days after the infection diagnosis, and in 27 (44%) of these, the samples were collected at the 

onset of symptoms or the following day. Fifty-seven out of the sixty-one patients were positive for 

at least one of the two swabs (nasal or oral). In particular, 43 of them were RT-PCR positive on both 

sites, 12 patients were positive only in the nose, and 2 only in the mouth. 

Four patients resulted in being negative in both sites, but all of them were sampled more than 6 days 

after symptoms onset. So, the number of RT-PCR-positive NS was higher than that of positive BS. 

In line with these results, when analyzing the samples’ Ct, we found that the nose site presented lower 

Ct values, corresponding to a higher viral load compared to the mouth (Wilcoxon test, p < 0.001) 

(Figure 5.4a.). Possible changes in the viral load during the year were also investigated. We found 

that the nose was the site where the virus was more likely to be detected [significant results for the 

months of March (p = 0.004) and April (p < 0.001), Figure 5.4b.]. When performing a breakdown 

of the data according to days after symptoms onset, a higher viral load was always detected in the 

nose with respect to the mouth [significance at 1 day (p = 0.006), 2 days (p = 0.016), 4 days or more 

(p = 0.002), Figure 5.4c.]. After day 5 from symptoms onset, few samples showed a positive signal. 

Moreover, we analysed the Ct trend after symptoms onset at the two sampling sites based on the 

different identified Omicron subvariants (AY.4, BA.1, BA.1.1, BA.2, BA.2.9, BA.2.18, BA.5.1, and 

BA.5.2, with BA.2 being the most frequent). Su  lementary Figure S5.5 shows that none of the 

subvariants showed a higher presence in one of the two collections sites. 
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Figure 5.2: Mutation in N protein of Delta and Omicron sequences identified in infected subjects included in the 
study. (a) Panel represents the modular structure of the SARS-CoV-2 N protein with mutations identified for Delta 
(in red) and Omicron (in blue) variants. (b) Panel shows mutation frequencies in Delta (in red) and Omicron (in blue) 
variants. 
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Figure 5.3: Spatial representation of Delta and Omicron mutations within the N protein. The 3D structure of the 
NTD (a) and CTD (b) are reported. NTD and CTD structures are associated with the PDB IDs 6vyo and 6wzo, 
respectively. Mutations in red are characteristic of the Delta variant, whereas the blue ones belong to the Omicron 
variant. 

 

Figure 5.4: Viral load during the Omicron wave in different upper respiratory tract sampling sites. (a) Shows the 
Ct values detected in the nose (left) and in the mouth (right). Viral load dynamics in mouth and nose. (b) Shows the 
median Ct values and the IQR detected in the mouth (triangle) and in the nose (circle) across the year. (c) Shows the 
median Ct values and the IQR detected in the mouth (circle) and in the nose (triangle) based on days after symptoms. 

Discussion 
The genome of Omicron subvariants contains more than 50 mutations [207], many of which have 

been associated with an increased transmissibility, variable disease severity, and the potential to evade 

immune responses acquired after SARS-CoV-2 vaccination or infection with a previous variant. Few 

studies have attempted to investigate the impact of mutations in the N protein on the diagnostic 

performance of ADTs, with conflicting results [181], [189], [190], [191], [192], [193], [194]. Due to a 

possible change in the tropism, it has been suggested that the detection of the Omicron variant could 

be favoured in oral swabs compared to nasal swabs [195]. In the present study, we monitored the 

performance of the ADTs in a real-world scenario, studying a cohort of more than 5000 subjects 

across the Delta and Omicron waves. We also assessed the viral load of Omicron at different sites 

(specifically, the nose and mouth). Moreover, an in silico study at the amino acid level was performed 

to investigate the possible effect of mutations on conformational changes in the Omicron and Delta 

variants’ N protein, which may affect its recognition by antigen tests. 
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Our results indicate that, as expected, for both the Delta and Omicron waves, the ADTs could only 

detect samples with a relatively higher viral load compared to the molecular test based on RT-PCR 

(Figure 5.1a and Figure 5.1b). All the used ADTs targeted the N protein, and the Ct values analysis 

was performed focusing on the N gene. Significant differences were observed in the Ct values 

detected for antigenic-positive samples (RT-PCR+/RADT+) between the Delta and Omicron 

periods, indicating even a higher viral loads at the RNA level in ADT-positive samples for the 

Omicron period compared to the Delta period (Figure 5.1c). No differences were found in the viral 

load of the antigenic-negative samples (RT-PCR+/RADT−). 

Importantly, when evaluating the diagnostic performance of the ADTs between the two SARS-CoV-

2 variant periods (Table 5.3), the ADTs showed a decrease of about 30% in sensitivity during the 

Omicron compared to the Delta period, accompanied by a slight but significant increase in specificity 

(Table 5.3). As the Ct values of ADT-negative samples were similar in the Delta and Omicron waves 

and ADT-positive samples presented even lower Ct in Omicron compared to Delta, we can conclude 

that the decrease in ADT sensitivity for Omicron was not due to a lower viral load, but was more 

likely due to a change in the N protein. A possible theory is that this reduced sensitivity was due to a 

reduced recognition of N antigen by the ADT; this hypothesis is supported by the analysis of the N 

protein structure in silico. In fact, to investigate the possible effect of mutations present in the N 

protein on the ADTs’ performances [208], we evaluated the SARS-CoV-2 whole genome data 

obtained from positive swabs of 168 patients from both the Delta and Omicron waves. Focusing the 

mutation analysis on the N protein amino acid sequence, i.e., the target of ADTs, we observed 

mutations localized in the NTD, the LKR, and the CTD (Figure 5.2). Our results confirmed the 

literature data, showing that mutations in the SARS-CoV-2 N protein mainly accumulate within 

intrinsically disordered regions, probably due to the functional importance of the NTD and CTD 

[204], [206], [209]. In the Omicron LKR region, the co-occurring mutations R203K and G204R are 

the most common mutations, with a frequency of >60% across all sequences [194], [206], [207]. 

Within the NTD and CTD domains, the folding free energy and vibrational entropy analysis indicated 

that P80R and D343G, both exclusively present in the Omicron variant, were shown to putatively 

alter the dynamic properties of the protein (Su  lementary Table S5.1), strongly suggesting that 

these mutations may affect the N-protein stability and dynamicity and reduce the performance of 

antigenic assays. Moreover, from the literature data, the P13L and E378Q mutations also present in 

the N and C arms of Omicron variants, respectively, were predicted to destabilize the N protein [208]. 

An additional hypothesis that could explain the observed variations in the ADT sensitivity is the 

different amounts of nucleocapsid protein that could be shed during infections with different virus 
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variants. Rao et al. showed that Omicron samples had lower ratios of antigen to RNA compared to 

Delta, which leads to a possible explanation for this result when using Ct values as a reference [191]. 

To establish whether a reduced sensitivity of ADTs could be due to a shift in viral tropism with a 

preferential location in the mouth compared to the nose, we evaluated the viral load in nasal nostrils 

and buccal swabs in Omicron-infected patients. The choice of NS and MS was performed in order 

to reduce the patients’ discomfort. For this purpose, 61 patients from the Omicron wave underwent 

RT-PCR testing on swabs collected from both sites. We found that the nasal site had significantly 

lower Ct values and, therefore, a higher viral load than the oral site. Furthermore, when the viral load 

was examined according to the different periods in which SARS-CoV-2 Omicron subvariants were 

prevalent, the nose was always confirmed as the sample type in which the virus was more detectable, 

especially during the first 3 days after symptoms onset (Figure 5.3). Molecular characterization 

showed that the preferred virus localization in the nose vs mouth was independent from the specific 

Omicron subvariant. 

Overall, our results indicate that the nose is the best sampling site to maximize virus detection for a 

diagnosis of Omicron infection. Nasal mid-turbinate swabs can be used for both ADTs and 

molecular assays to provide safe and reliable results as an alternative to nasopharyngeal swabs, in an 

effort to reduce patient discomfort [210], [211]. 

This study has several limitations. First, the lack of clinical characteristics of the patients included in 

the comparison of ADTs’ sensitivity in Omicron vs. Delta infections. In fact, previous studies have 

shown a very low sensitivity of rapid antigen tests in asymptomatic patients, and only a moderate 

decrease in sensitivity for symptomatic Omicron infections [191], [192], [193], [194], [212]. Second, 

6.8% of the analysed samples derived from multiple hospital accesses were from individuals who 

participated more than once in the study, so this could be a possible confounder. Third, the use of 

different ADTs throughout the study may have introduced some bias into the analysis, due to 

possible heterogeneous results from the different ADTs. However, the stratification analysis 

according to the type of assay and the high number of participants provided confidence in the 

reliability of the results and their interpretation, indicating a substantially reduced sensitivity of ADTs 

for Omicron infections. 

Conclusions 
In conclusion, real-life data from a large number of subjects strongly support the evidence of a 

substantially reduced detection rate of Omicron infections by ADTs, confirming and extending 

circumstantial evidence from previous studies. 
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This drop in sensitivity should be taken into consideration in establishing testing strategies and 

monitoring infection prevalence. The emergence of new variants, as well as new mutations affecting 

the N protein structure, might further affect ADTs’ diagnostic performance, which could require 

assay revalidation to maintain efficient and reliable screening and diagnostic strategy programs. Our 

study suggests that ADTs should be adapted to better detect Omicron-descending variants. 
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PART II 

Proteomic Analysis and Drug Repurposing Strategies for 
Strongyloides stercoralis: Novel Insights and Therapeutic 
Approaches  

 

Novel insights into the somatic proteome 
of Strongyloides stercoralis infective third-stage 
larvae 
This chapter describes my contribution to: Dishnica, K., Piubelli, C., Manfredi, M., Kondaveeti, R. T., Longoni, S. 

S., Degani, M., ... & Tiberti, N. (2023). Novel insights into the somatic proteome of Strongyloides stercoralis infective 

third-stage larvae. Parasites & Vectors, 16(1), 45. [213] 

Introduction 
 

Human strongyloidiasis caused by Strongyloides stercoralis (S. stercoralis) is a soil-transmitted helminthiasis 

that has recently been listed by the WHO among the tropical neglected diseases requiring control 

actions in endemic areas [214]. Strongyloidiasis is estimated to affect about 600 million people 

worldwide [16], mostly in tropical and subtropical regions. However, foci of autochthonous 

strongyloidiasis have also been reported in temperate areas, including Italy, Spain, Japan, Australia 

and USA [215]. S. stercoralis belongs to the phylum Nematoda, clade IV [216]. Its life-cycle is complex, 

alternating between cycles of free-living and parasitic stages. Humans acquire the infection through 

the penetration of the intact skin by infective filariform larvae (iL3) present in contaminated soil 

which, once in the host, migrate through different organs. During migration, the larvae moult until 

they become adult worms, which ultimately settle in the small intestine. Once there, the 

parthenogenetic females deposit eggs that hatch in rhabditiform larvae (L1), which are then excreted 

in stools and initiate the free-living cycle. However, some L1 undergo an auto-infective cycle, i.e. 

https://link.springer.com/content/pdf/10.1186/s13071-023-05675-7.pdf
https://link.springer.com/content/pdf/10.1186/s13071-023-05675-7.pdf
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mature into invasive filariform larvae, in the large intestine and penetrate the intestinal mucosa or the 

perianal skin to continue the parasitic life-cycle. This peculiar life-cycle allows S. stercoralis to 

perpetuate the infection, in the absence of treatment, potentially indefinitely [217]. 

In immunocompetent subjects, the infection mostly leads to a chronic indolent condition; however, 

changes in the host immune status can cause a dramatic increase in parasite burden, known as hyper-

infection or dissemination, which can be life-threatening [217]. 

The diagnosis of strongyloidiasis is challenging, with most available methods presenting variable 

sensitivity [217], [218]. The most sensitive diagnostic tools are serological immunoassays [219], [220]]. 

Most commercial assays are based on crude larval antigens, which reduce their specificity and result 

in a high batch-to-batch variability. The development of assays based on recombinant antigens 

represents a very promising strategy to avoid the need of constant supply of parasites, to overcome 

the variability of the antigenic source and to reduce cross reactions with other helminths, factors that 

affect the performance of current serological tests [217]. Indeed, a novel commercial enzyme-linked 

immunosorbent assay (ELISA) based on the detection of two recombinant antigens, Ss-NIE and Ss-

IR, has recently been developed and evaluated on cryopreserved samples. The test has shown variable 

accuracy in two different studies, probably due to the lack of a diagnostic gold standard, and has yet 

to be tested prospectively. Nonetheless, at present it is among the most sensitive and specific 

serological tests for strongyloidiasis, further highlighting the potential of recombinant antigens for 

serodiagnosis [221], [222]. 

To date, only a few proteomics studies have been conducted to elucidate the molecular mechanisms 

associated with Strongyloides parasitism or to highlight novel immunological markers [17], [223], [224], 

[225], [226], [227], [228]. Consequently, our knowledge of S. stercoralis proteome is still limited. In 

order to highlight novel targets to improve current serodiagnosis and treatment, it is fundamental to 

expand the molecular understanding derived from ‘omics studies beyond the current state of the art. 

Indeed, an in depth characterization of the S. stercoralis infective larvae proteome might reveal on one 

hand novel players in the mechanisms of host–pathogen interaction and on the other hand potentially 

immunogenic proteins to be used for the development of novel diagnostic serological tests, as well 

as target proteins for new therapeutics. 

The aim of this study was to expand the characterization of S. stercoralis iL3 proteome as established 

by high-throughput proteomics, combining automatic search strategies and manual annotation. 
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Graphical Abstract 

 

Figure 6.1: This workflow illustrates the analysis of S. stercoralis infective larvae through proteomics, followed by 
dataset annotation using Gene Ontology and InterPro, homology exclusion via BLASTp against H. sapiens and other 
pathogens, and culminating in B-cell epitope prediction and mapping for identifying potential antigenic targets. 

 

Methods 

Larvae isolation, protein extraction and digestion 

S. stercoralis larvae were obtained from a human subject. Fresh stools mixed with charcoal and saline 

were cultivated using the agar plate culture method . iL3 larvae were harvested after 3 days of culture 

[229], concentrated by centrifugation and incubated with phosphate buffered saline (PBS) 

supplemented with 100 U/ml penicillin, 100 µg/ml streptomycin and 0.625 µg/ml amphotericin B 

(all from Gibco, Thermo Fisher Scientific, Waltham, MA, USA) for 2 h at 4 °C. Larvae were then 

washed twice with cold PBS, counted under the microscope and stored at − 80 °C for future use. 

A pellet of 10,000 iL3 was re-suspended in 0.1% RapiGest SF (Waters Corporation, Milford, MA, 

USA) in 0.1 M triethylammonium bicarbonate buffer (TEAB) pH 8.0, sonicated with breaks on ice 

and incubated for 10 min at 80 °C, following a protocol reported in [230]. The sample was then 
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centrifuged at 14,000 g for 10 min at 4 °C and the supernatant recovered. Protein concentration was 

determined by the Qubit protein assay (Life Technologies, Thermo Fisher Scientific). A 75-µg sample 

of proteins was reduced with 50 mM Tris-(2-carboxyethyl)phosphine hydrochloride (TCEP), 

alkylated with 15 mM iodoacetamide and digested with 0.25 μg/μl sequencing grade-modified trypsin 

(Roche, Basel, Switzerland; 1:25 protease to protein ratio). The sample was incubated with 1% 

trifluoroacetic acid for 45 min at 37 °C to cleave the RapiGest SF surfactant, cleaned with C18 spin 

columns (Pierce™, Thermo Fisher Scientific) and dried under vacuum prior to liquid 

chromatography-tandem mass spectrometry (LC–MS/MS) analyses. 

Protein identification by LC–MS/MS 

Trypsin-digested protein samples were analysed with a micro-LC system (Eksigent Technologies, 

Dublin, CA, USA) coupled with the TripleTOF 5600+ system (Sciex, Concord, ON, Canada) 

equipped with a DuoSpray ion source (Sciex). The stationary phase was a Halo C18 column 

(0.5 × 100 mm, 2.7 µm; Eksigent Technologies). The mobile phase was a mixture of 0.1% (v/v) 

formic acid in water (phase A) and 0.1% (v/v) formic acid in acetonitrile (phase B), eluting at a flow 

rate of 15.0 µl/min at an increasing concentration of solvent B from 2% to 40% in 30 min. Samples 

were also analysed with nano liquid chromatography using an Acclaim PepMap C18 column 2 μm, 

75 µm × 150 mm (Thermo Fisher Scientific) and injection volume of 2 μl. The flow rate was 300 

nl/min, phase A was 0.1% formic acid/water and phase B was 80% acetonitrile/0.1% formic 

acid/20% water. A 2-h gradient was used (3–45%). Identification was performed using a data-

dependent acquisition (DDA) method: the MS analysis was carried out using a mass range of 100–

1500 Da (time-of-flight scan with an accumulation time of 0.25 s), followed by a MS/MS product 

ion scan from 200 to 1250 Da (accumulation time of 5.0 ms) with the abundance threshold set at 30 

cps (35 candidate ions can be monitored during each cycle) [231]. The MS data were acquired with 

Analyst TF 1.7 (Sciex). The DDA files were searched using Protein Pilot software v. 4.2 (Sciex) and 

Mascot v. 2.4 (Matrix Science Inc., Boston, MA, USA) using trypsin as the enzyme, with two missed 

cleavages, a search tolerance of 50 ppm for the peptide mass tolerance and 0.1 Da for the MS/MS 

tolerance [232]. Searches were performed using the UniProt Swiss-Prot database for S. 

stercoralis (version 01/02/2020, taxon: 6248, proteome ID: UP000035681, protein count: 12,978), 

with a false discovery rate (FDR) fixed at 1%. The MS proteomics data have been deposited in the 

ProteomeXchange Consortium via the PRIDE [233] partner repository with the dataset identifier 

PXD037243. 
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Bioinformatic Analyses 

The bioinformatics analyses were carried out by automatizing a standard protocol for the annotation. 

The protocol included: (i) a BLASTp [234] search using default parameters against Uniprot 2022 

[235]; (ii) each protein identifier was then connected with its associated GO terms [236] via UniProt 

and GO terms were then organized using QuickGO tool [237]; and (iii) proteins were then classified 

into families or domains, and important sites were predicted, retrieving this information by InterPro 

[238]. In order to identify possible candidates for immunogenic epitope prediction, the annotated 

dataset of proteins was then investigated using BLASTp for homology with the human protein 

database and with a list encompassing 29 clinically relevant pathogens (24 helminths and 

5 Plasmodium spp.) that might co-infect individuals with strongyloidiasis (Figure 6.1). The threshold 

for considering an S. stercoralis protein as having low homology with proteins of human or with those 

of other pathogens' origin was empirically established based on the BLASTp e-value obtained for the 

L3NieAg.01 (AC: Q9UA16), which is known to have a good specificity when used in serodiagnosis 

[221]. Thus, a BLASTp e-value threshold of 4E-25 and 2E-30 was applied for the comparison with H. 

sapiens or with other pathogens, respectively. 

Linear B-cell epitopes were predicted from protein sequences using the different web-based tools 

available via the Immune Epitope Database Analysis Resource (IEDB; available 

at http://tools.iedb.org/main/). The following physicochemical properties of individual residues 

were explored and scored: beta-turn, surface accessibility, antigenicity and hydrophilicity, as already 

reported in the literature [239]. All residues having an individual score equal or higher than the average 

protein score were highlighted. In parallel, prediction was also performed using BepiPred-2.0, which 

combines a hidden Markov model (HMM) with an amino acid propensity scale [240]. Proteins of 

potential interest for bearing B-cell epitopes were then manually analysed and selected based on the 

following parameters: (i) sequences of at least 8 amino acids; (ii) a BepiPred-2.0 score > 0.5 (range 0–

1); and (iii) at least three physicochemical properties above their thresholds (calculated as the mean 

of the scores of all individual residues). The specific sequences of interest were highlighted and 

visualized in the proteins three-dimensional model using Pymol v2.4.1 [82]. Due to the lack of 

structural characterization of S. stercoralis proteins on Protein Data Bank (PDB) [241], selected 

proteins of interest containing predicted epitopes were structurally predicted using AlphaFold [199]. 

http://tools.iedb.org/main/
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Results and discussion 
In the present study, we analysed the proteome of S. stercoralis infective larvae by LC-MS/MS and 

performed a semi-automated annotation of the dataset to achieve a more in depth characterization 

of larval proteome and to predict potential immunogenic proteins of interest for the development of 

new sero-diagnostic tools. The study flowchart is reported in Figure 6.1. Our high-throughput MS 

analysis identified 430 proteins (2 unique peptides, 1% FDR), which to the best of our knowledge is 

the largest experimental proteome of S. stercoralis iL3 reported to date (Su  lementary Table S6.1). 

Indeed, only one study had previously employed untargeted proteomics to investigate the S. 

stercoralis iL3 proteome; however, due to the lack of a reference genome at that time, only 26 proteins 

were identified [223]. 

 

Figure 6.1: Study flowchart. Pipeline followed in the present study. GO, Gene ontology; iL3, infective filariform 
larvae; LC-MS/MS, Liquid chromatography-tandem mass spectrometry. Other pathogens include: Ancylostoma 
duodenale; Ancylostoma ceylanicum; Necator americanus; Ascaris lumbricoides; Trichuris trichiura; Toxocara canis; 
Loa loa; Mansonella perstans; Mansonella ozzardi; Wuchereria bancrofti; Onchocerca volvulus; Brugia malayi; Brugia 
timori; Dirofilaria immitis; Dirofilaria repens; Trichinella spiralis; Taenia saginata; Taenia solium; Echinococcus 
granulosus; Hymenolepis nana; Schistosoma mansoni; Schistosoma haematobium; Schistosoma japonicum; Fasciola 
hepatica; Plasmodium falciparum; Plasmodium vivax; Plasmodium ovale; Plasmodium malariae; Plasmodium 
knowlesi. 
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A high-quality draft genome of S. stercoralis was assembled in 2016 (42.6 Mb) and predicted to contain 

13,098 protein-coding genes [17], facilitating the annotation of ‘omics data, although a reference 

genome has yet to be assembled. Hunt et al. performed an in depth investigation of the genomic 

bases of parasitism in the Strongyloides clade by comparing distinct life stages of 

different Strongyloides species, the closely related Parastrogyloides trichosuri and the free-

living Rhabditophanes at the genome, transcriptome and proteome level [17]. This comparison has 

allowed researchers to propose protein categories with a putative role in parasitism that are expanded 

in the S. stercoralis genome or abundantly transcribed in iL3. These include proteinases (astacins—

metallopeptidases, aspartic proteases, prolyl oligopeptidase), protease inhibitors, SCP/TAPS 

proteins, transthyretin-like proteins and acetylcholinesterases [17], [242]. Interestingly, the same 

protein families were also identified in Strongyloides venezuelensis iL3 [226]. Similarly, next generation 

RNA sequencing was employed to evaluate the association between larval development in an S. 

stercoralis laboratory strain (i.e. PV001) and the expression of specific genes homologous 

of Caenorhabditis elegans, in which they were reported to be involved in dauer arrest or activation [243]. 

In our dataset, 43% of the identified protein sequences (i.e. 187 protein matches) corresponded to 

uncharacterized proteins according to UniProt database 2022 for S. stercoralis. In order to achieve a 

better characterization of the dataset we performed a semi-automated annotation through GO and 

InterPro functional analyses (Su  lementary Table S6.1). The cellular component (CC) GO 

analysis highlighted a prevalence of membrane and mitochondrial proteins, which together accounted 

for > 40% of the annotated terms (Figure 6.2a). Almost half (47%) of the molecular function (MF) 

GO terms had binding activities, with nucleic acid and nucleotide binding being the most represented 

sub-categories, while 40% were associated with enzymatic activities (Figure 6.2b). Intriguingly, 

within this latter group, the most represented term corresponded to oxidoreductase activity, 

accounting for 33% of all GO terms associated with catalytic activities. It could be speculated that 

infective larvae might need to counteract the oxidative stress either derived from their particularly 

active cellular metabolism or as a defence mechanism against the host immune response [244], [245]. 

Interestingly, we identified three of the four major antioxidant enzyme families involved in the 

response against reactive oxygen species (ROS), namely glutathione peroxidase, superoxide dismutase 

and peroxiredoxin/thioredoxin. Antioxidant enzymes are known to be important in nematodes, and 

an evolutionary analysis has been recently published [244], [245]. Antioxidative enzymes were also 

identified in the excretory-secretory products (ESPs) from the different life stages of Strongyloides 

ratti [225] and S. venezuelensis iL3 [228]; it would be interesting to evaluate whether the expression of 

these proteins is modulated during parasite development. The biological process (BP) GO analysis 

also highlighted that S. stercoralis iL3 larvae express a high number of proteins involved in metabolic 

https://link.springer.com/article/10.1186/s13071-023-05675-7#Fig2
https://link.springer.com/article/10.1186/s13071-023-05675-7#Fig2
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(42%) and cellular processes (44%) (Figure 6.2c). Notably, the most represented cellular processes 

were translation and cellular respiration, which is in agreement with the high number of nucleic 

acid/nucleotide binding proteins and mitochondrial proteins and further supports the observation of 

a highly active metabolic state of infective larvae. The InterPro analysis allowed a further classification 

of the identified proteins, including those uncharacterized, either into families or on the basis of the 

presence of specific domains within their amino acid sequence. The most frequent InterPro domain 

and family entries are reported in Figure 6.3, while the entire annotation is available as 

Su  lementary Table S6.1. The CAP domain, SCP domain and thioredoxin domain were the most 

commonly represented protein domains, while several proteins were annotated as belonging to 

cysteine-rich secretory, transthyretin-like or peptidase protein families, making them the most 

represented protein families in the iL3 proteome. Overall, our functional analysis provides 

experimental evidence that confirms previous data on the most represented proteins associated 

with S. stercoralis parasitism, as inferred from genomic and transcriptomic data [17], [242], [246], [247], 

as well as with proteomics analyses of S. ratti and S. venezuelensis iL3 ESP [225], [228]. In particular, in 

our dataset we identified a high proportion of proteins with peptidase activity; such proteins have 

already been highlighted as potentially involved in parasitism as they are upregulated in the adult 

parasitic female stage of S. ratti and S. stercoralis [17]. Indeed, these proteins, including 

metalloproteases and metallopeptidases (such as astacin-like proteins), are involved in tissue 

degradation. This is a fundamental process in the initial phases of the infection for the penetration 

of host tissues and in parasite migration through the host body—even though peptidases could also 

contribute to immune evasion [248]. Other protein categories known to be associated with S. 

stercoralis parasitism and identified in our study include: (i) galectins, involved in pathogen adhesion 

to the host cells and activation of host innate and adaptive immunity [249]; (ii) transthyretin-like 

proteins; and (iii) SCP/TAPS-/CAP-domain containing proteins, with putative immunomodulatory 

properties in parasitic nematodes [250]. The expansion of SCP/TAPS coding genes 

in Strongyloides and Parasitrongyloides compared to Rabditophanes suggests that their gene products might 

be associated with human parasitism [17]. In our study, we identified 11 proteins either as SCP 

domain-containing proteins (n = 7) or as uncharacterized proteins containing the SCP-domain 

according to the InterPro analysis (IPR034113). Most of the protein categories that had already been 

proposed as associated with iL3 parasitism were thus experimentally confirmed in our proteomics 

study of S. stercoralis iL3 with 43 protein matches (Su  lementary Table S6.2). It is worth noting 

that almost 50% of these proteins were uncharacterized and were assigned to those categories only 

following the GO and InterPro semi-automated annotation. The importance of focussing ‘omics 

studies not only on known and characterized genes and proteins, but especially on those “novel” or 

https://link.springer.com/article/10.1186/s13071-023-05675-7#Fig2
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uncharacterized ones was already highlighted more than 10 years ago. Such an approach can achieve 

a more in depth knowledge of the molecular mechanisms associated with pathology but also with 

pathogen development [251], especially for organisms whose genome and proteome are not fully 

annotated, such as S. stercoralis. 

 

Figure 6.2: Gene ontology results. Frequency of the GO terms for the three categories cellular component (A), 
molecular function (B) and biological process (C) across identified proteins. ER, Endoplasmic reticulum 
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Figure 6.3: InterPro annotation results. The top 10 most frequent InterPro terms for the categories domain and 

family represented among all identified proteins (n = 430), as established by InterPro annotation. For each term, the 
number of uncharacterized and characterized proteins is represented in different color shades. The complete annotation 
is reported in Supplementary Table S6.1 

The objective of our study was not only to improve our knowledge of the iL3 proteome with novel 

experimental evidence, but also to predict—among those identified from a clinical isolate—potential 

immunogenic proteins that could be useful for the development of novel serological tests for the 

accurate diagnosis of human strongyloidiasis or as vaccine candidates, as potentially recognized by 

antibodies present in patients’ serum. 

A few studies dating back to the 1990s reported the investigation of the humoral immune response 

associated with the intensity of infection and the detection of immunoreactive iL3 polypeptides [252], 

[253], [254]. However, only a couple of studies applied immuno-proteomics MS/MS-based 

approaches to also identify the immunogenic proteins recognized by antibodies from infected 

subjects [224], [255]. Indeed, Rodpai and colleagues confirmed by immunoblotting the high 

frequency of some protein bands that had previously been reported as immunoreactive [252], [253], 

[254], [256], but also identified them by tandem MS based on protein homology with S. ratti [255]. In 

particular, they identified a 26-kDa band corresponding to 14–3-3 protein and a 29-kDa band 
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corresponding to ADP/ATP translocase 4. Additional antigenic proteins were further identified by 

the same group after they had improved sample separation through two-dimensional gel 

electrophoresis prior to immunoblotting [224]; the majority of these proteins were also identified in 

the present study. 

In silico approaches can be used as an alternative, or a complement, to the experimental identification 

of immuno-reactive proteins. The advent of immunoinformatics has actually led to the development 

of a number of tools that can assist researchers in B-cell epitope prediction. Moreover, it has been 

shown that using multiple prediction methods results in a more accurate epitope prediction than 

using individual tools [239], [257]. In agreement with this, in the present study we combined the use 

of a machine learning-based algorithm (i.e. BepiPred-2.0 [240]) and the evaluation of several 

physicochemical residue properties to predict linear B-cell epitopes. In order to avoid the selection 

of proteins highly conserved across helminths or similar to human ones, we first excluded all those 

having high homology, as established by our BLASTp analysis (Supplementary Table S6.3). Among 

the 29 proteins showing limited homology with Homo sapiens or other pathogens of clinical relevance, 

we selected 10 for use in the prediction of the presence of B-cell epitopes (Table 6.1). This selection 

was based on the following criteria: (i) proteins already highlighted as potentially associated with S. 

stercoralis parasitism [17], [242] or as immunogenic [224]; (ii) extracellular or plasma membrane 

proteins as per CC GO terms; (iii) proteins with peptidase activity according to the MF GO terms; 

and (iv) proteins associated with relevant InterPro domain, family or homologous superfamily 

(namely transthyretin-like domain, CAP domain, galectin, cysteine-rich, peptidase, protease 

inhibitors). According to UniProt, 60% of the selected proteins are already characterized, while the 

remaining 40% are still uncharacterized (Table 6.1). The six characterized proteins included three 

SCP domain-containing proteins (ACs: A0A0K0E6J0, A0A0K0EG68, A0A0K0DTP5), galectin 

(AC: A0A0K0ECK4), NTR domain-containing protein (AC: A0A0K0EMX1) and L3NieAg.01 (AC: 

Q9UA16 also known as Ss-NIE). It is worth noting that galectins have already been reported to be 

involved in host–pathogen interaction and to display immuno-regulatory properties in S. ratti [258]. 

Also, several commercial and in-house assays already use the recombinant Ss-NIE for S. 

stercoralis serodiagnosis [18], [221], [259], [260], [261]. Ss-NIE is also included in a commercial research 

use only (RUO) serological test, together with Ss-IR, which was not identified in our dataset [221]. 

The presence of Ss-NIE within our selection further supports the validity of our approach. In our 

study we also identified most of the proteins already highlighted as potentially immunogenic by 

Rodpai and colleagues [224], [255]. However, since these proteins displayed high homology with 

https://link.springer.com/article/10.1186/s13071-023-05675-7#Tab1
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either human or other related pathogen proteins, their analysis for epitope prediction was not 

pursued (Supplementary Table S6.2 and Supplementary Table S6.3). 

Table 6.1: List of potentially immunogenic proteins and the predicted B-cell epitopes 
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 The B-cell epitope prediction highlighted that nine out of the 10 selected proteins contained epitopes 

with high consensus across the different tools employed (Table 6.1; Figure 6.4; Su  lementary 

Figures S6.1–S6.8); these were therefore considered as potentially immunogenic. The remaining 

protein (AC A0A0K0E132, uncharacterized protein) did not display potentially immunogenic 

epitopes as per our analysis. The structural models, together with a confidence estimation as per 

AlphaFold, are reported in Figure 6.4 and Su  lementary Figures S6.1–S6.8. In agreement with 

the results obtained from different web-based prediction tools, all epitopes were exposed to the 

external environment, thus potentially accessible for antibody binding. However, some epitopes fell 

within regions of the structure which was modelled with low confidence. This could be explained by 

https://link.springer.com/article/10.1186/s13071-023-05675-7#Tab1
https://link.springer.com/article/10.1186/s13071-023-05675-7#Fig4
https://link.springer.com/article/10.1186/s13071-023-05675-7#Fig4
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the fact that immunogenic epitopes often fall within highly variable regions, and there is a lower 

confidence in the structure as predicted by AlphaFold. 

 

Figure 6.4: B-cell epitope prediction results. The results for the protein A0A0K0ECK4—galectin are reported as 
an example. a) FASTA sequence showing the results obtained with each tool (Chou & Fasman Beta-Turn 
Prediction; Emini Surface Accessibility Prediction; Kolaskar & Tongaonkar Antigenicity; Parker Hydrophilicity 
Prediction, BepiPred2.0; all available via http://tools.iedb.org/bcell/). All residues having a score above their 
threshold are highlighted in grey. The purple squares indicate the sequences highlighted as being potentially immunogenic 
as reported in the Methods section. b) Protein structures as predicted by AlphaFold showing the model 
confidence. c) Mapping of the potentially immunogenic epitopes on the protein structure. The same images for all other 
selected proteins are reported in Su  lementary Figures S6.1–S6.8 

 

A recent work employed a reverse in silico approach to predict immunogenic proteins from the S. 

stercoralis proteome available in UniProt [262]. However, none of the proteins proposed as potentially 

http://tools.iedb.org/bcell/
https://link.springer.com/article/10.1186/s13071-023-05675-7#Sec2
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immunogenic was identified in our dataset, probably because the analysis was performed on the 

entire S. stercoralis proteome, without taking into account the parasite developmental stage. 

In the present study we did not perform a comparison of protein expression between larval 

developmental stages, as has been done at the transcriptomic level or for other Strongyloides species 

[17], [225], [242], [243], [247], thus we cannot speculate on the role of iL3 proteins in larval 

development. However, a comparison using quantitative proteomics of different larval stages might 

contribute to corroborate these transcriptomics data and might identify novel proteins potentially 

involved in parasitism and/or in parasite development that could be of interest for the development 

of novel disease control strategies. Similarly, investigations should be extended to the study of ESPs 

released from S. stercoralis iL3, as has already done for S. ratti [225] and S. venezuelensis [228], as these 

could highlight additional candidates for serodiagnosis. Proteomics data on S. stercoralis are still 

limited, and the reference database and proteome are in continuous evolution. Therefore, some 

proteins ID here reported might change in the future. 

Conclusions 
In conclusion, we provide the largest experimental dataset of the S. stercoralis iL3 proteome. By 

presenting, for the first time, an extensive proteomics dataset from the analysis of iL3 isolated from 

a clinical sample, our study brings knowledge on the S. stercoralis proteome to a level comparable to 

our knowledge on its close relatives S. ratti and S. venezuelensis [263]. These data may be useful for 

future studies as they represent a step towards filling the current gap in experimental proteomics data. 

Indeed, a broader expertise about protein expression in S. stercoralis larvae, as well as their modulation 

during different developmental stages, will be essential for identifying novel therapeutic and vaccine 

targets. 

Our semi-automated annotation allowed us to confirm the presence—at the proteome level—of 

protein categories potentially involved in parasitism that to date were only inferred from genomics 

and transcriptomics data. Moreover, additional protein groups deserving further investigation, such 

as oxidoreductases, were also highlighted. Finally, we also propose a number of immunogenic protein 

candidates that, if experimentally confirmed, might be considered in the future for the development 

of novel serological diagnostic tests that could make the diagnosis of this neglected tropical disease 

more reliable and accurate. 
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Availability of data and materials 
The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium 

via the PRIDE partner repository with the dataset identifier PXD037243. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



85 

 

 

 

 

 

 

 

Targeting GluCl Receptor: Drug Repurposing 

Strategies for Strongyloides stercoralis Infection 
 

Introduction 
Strongyloides stercoralis (S. stercoralis), also known as threadworm, is a soil-transmitted human parasite 

that belongs to the nematode group called roundworms[]. It is found nearly worldwide, excluding 

only the extreme north and south and poses significant health risks, particularly in 

immunocompromised individuals. However, the true global burden of this infection is often 

underestimated due to a lack of precise data from endemic regions. Consequently, S. stercoralis remains 

one of the most overlooked parasitic infections among the "neglected tropical diseases" (NTDs)[]. 

Soil-transmitted helminth (STH) infections are among the most common infections worldwide and 

affect the poorest and most deprived communities. They are transmitted by eggs present in human 

faeces which in turn contaminate soil in areas where sanitation is poor[]. The infection with S. 

stercoralis is challenging to diagnose due to its often- asymptomatic nature and can persist for years, 

leading to severe complications if untreated. To treat STHs, including Strongyloides, a variety of 

anthelmintic medications are available. Ivermectin is the current treatment recommended by the US 

Centers for Disease Control and Prevention for Strongyloides infection, with albendazole serving as 

a backup [264]. Strongyloidiasis infections frequently result in secondary infections with other STHs, 

hence in these situations a broad-spectrum anthelmintic is preferable; this also holds true in veterinary 
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contexts. Given the relative rarity of disseminated infections, it is difficult to see how controlled trials 

of various therapies can be established. Human Strongyloides infections can spread, and in these 

cases, therapy other than anthelmintic treatment is required. However, what is ideal and optimum is 

not well established [265].The question of when and where drug resistance will develop is the same 

as it is with any anti-parasitic medication treatment. Ivermectin targets the GluCl receptor in parasitic 

nematodes. It binds to GluCls, causing an influx of chloride ions into the cells, leading to 

hyperpolarization and subsequent paralysis of the parasite. This paralysis prevents the parasite from 

moving and feeding, ultimately leading to its death [266], [267], [268], [269]. 

Developing novel treatments for S. stercoralis is a demanding, time-consuming, and costly process with 

low success rates. To address these challenges, computational approaches such as drug repositioning 

are increasingly utilized. Drug repositioning involves identifying new therapeutic uses for both FDA-

approved drugs and those under preclinical investigation, thereby reducing the cost and time required 

for drug development due to their known safety profiles and therapeutic potentials in other diseases. 

In this study, we propose a computational approach to screen both FDA-approved drugs and drugs 

under preclinical investigation for other disease but maybe potentially effective also against S. 

stercoralis. Our target protein, the glutamate-gated chloride channel (GluCl), was modeled by 

homology modeling. Drugs with promising binding affinities underwent further studies to validate 

their potential as effective treatments. This methodology not only aims to identify new treatment 

options for S. stercoralis but also exemplifies the broader utility of drug repositioning in addressing 

parasitic diseases. 

Methodology 

  

Figure 7.1: The research flow chart illustrates the structured hierarchy and sequence of steps in our newly 
conceptualized project. It outlines the pipeline from initial stages to final outcomes. 
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Structural Modeling of the Glutamate Chloride Channel in Strongyloides 

Modeling the glutamate chloride channel is a crucial step in our drug repurposing strategy, as it allows 

us to explore how existing drugs might interact with this receptor in Strongyloides. By understanding 

the structural details of this channel, we can better evaluate potential therapeutic agents and optimize 

drug repurposing efforts to address parasitic infections. 

We employed the Swiss-Model server [76], [270], a tool for generating high-quality structural models 

based on sequence similarity. For our modeling efforts, we used the crystal structure of the glutamate 

chloride channel from Caenorhabditis elegans, represented by PDB id 3RIA, as the template. This 

template was selected due to its high resolution and relevance, as the glutamate chloride channel in 

C. elegans shares approximately 51% sequence identity with the corresponding protein in 

Strongyloides.  

Ligand Screening 

Ivermectin is commonly known as an inhibitor of glutamate-gated chloride channels and is used as a 

standard drug in the treatment of strongyloidiasis [264]. The SMILES format and chemical structure 

of ivermectin were retrieved from the FDA (https://www.fda.gov/). SwissSimilarity, an online 

platform that allows the identification of chemical hits from FDA and other libraries based on a 

reference structure [271], [272], was utilized in this study. Ivermectin served as the standard template 

to screen not only FDA-approved drugs but also compounds from other chemical libraries, like 

Chembl active compounds and Zinc, for potential treatment of strongyloidiasis. All screened drugs 

were ranked according to their predicted score values.  

Molecular docking 

Before conducting our docking experiments, all the screened drugs were sketched using the RDKit 

library (https://www.rdkit.org/). A crucial preliminary step involved selecting the most promising 

drugs to dock against the GluCl receptor, given the extensive number of molecules generated by the 

screening process. Our selection was not solely based on the similarity scores calculated by Swiss 

Similarity; we also computed Tanimoto similarity [273] based on Morgan [152] and RDKit 

fingerprints to ensure a thorough evaluation. Our assumption is that the Similarity Score calculated 

by Swiss Similarity provides a low score to molecules that however could have favorable interactions 

with the target (protein of interest), at least from a structural point of view. Additionally, Smina [274] 

was employed for energy minimization of each ligand using default settings. The docking experiments 

were then performed on all selected compounds against the GluCl receptor. The binding pocket of 

the target protein (GluCl) was identified utilizing Plip [147]. For the docking experiments, the grid 

box dimensions were set to X = 10.31, Y = 91.36, and Z = 20.81, with the default exhaustiveness 

https://www.rdkit.org/
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value of 8. The grid box size was adequately adjusted around the binding pocket residues to allow the 

ligands sufficient freedom of movement within the search space. Each screened drug was docked 

separately against the target protein. The resulting complexes were analyzed to observe their binding 

conformational poses against the target protein, aiming to identify the best docking results. The 

generated docked complexes were evaluated based on the lowest binding energy (kcal/mol) values 

and the binding interaction patterns between the ligands and the receptor. The graphical depictions 

of all the docked complexes were created using PyMOL [82]. 

Results and discussion  

Structural characterization of GluCl-IVM complex 

We have characterized the interactions between ivermectin (IVM) and the GluCl receptor, providing 

detailed insights into the binding mechanisms. The left panel of Figure 7.2 presents the overall 

structure of the GluCl receptor, with IVM prominently bound within its active site. An inset offers a 

closer view of the binding pocket, highlighting specific residues involved in the interaction. The right 

panel features a detailed table of hydrophobic interactions and hydrogen bonds between IVM and 

the GluCl receptor. Key residues such as LEU, ILE, and PHE are noted for their participation in 

hydrophobic interactions, while hydrogen bonds involve residues like ASN and ASP. This thorough 

visualization underscores the critical interactions that contribute to the ligand's binding affinity and 

stability within the receptor's active site, providing valuable insights for future drug design and 

development efforts. 

 

Figure 7.2: Binding Interactions of Ligands within the GluCl Receptor. 
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Superimposition of screened drugs within active region of Glucl 

With the aim of verifying the drug binding configurations within GluCl's active binding site, all 

docked structures were overlaid. According to the binding pocket analysis, all of the molecules that 

were screened were narrowed down in the binding pocket of GluCl and bound with residues that 

were comparable but had different conformational poses. The docking reliability and expected 

outcomes were further validated by the binding of all molecules at the same position (Figure 7.3).  

 

Figure 7.3: Superimposition of all screened drugs. 

Selection Criteria Based on Affinity Scores 

After docking the molecules, the criterion we utilized to select a subset of molecules for further in 

vitro investigation was the affinity score of the ivermectin (IVM)-GluCl complex, which is the drug 

currently in use. We selected only those molecules that exhibited an affinity score higher than that of 

IVM. The bar chart (Figure 7.4) presents the minimized affinity values for the screened compounds 

against the target protein. The x-axis represents the minimized affinity in kcal/mol, with more 

negative values indicating stronger binding affinities. The y-axis lists the identifiers of the compounds, 

including both CHEMBL IDs and other identifiers. From the chart, it is evident that all compounds 

exhibit varying degrees of binding affinities, with several compounds showing stronger interactions 

than IVM (e.g., CHEMBL4279943 and CHEMBL3289640). These higher affinity scores suggest a 

potential for greater efficacy in binding to the target protein, thereby guiding the selection of 

promising candidates for further experimental validation. The consistent measurement of minimized 

affinities provides a comparative basis for evaluating the potential of each compound in the docking 

experiments. 
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Figure 7.4: Affinity score of all screened drugs against GluCl receptor. 

 

 

Conclusions 
Through a combination of molecular docking, virtual screening, and interaction analysis, we have 

identified several promising candidates that exhibit strong binding affinities and favorable interaction 

profiles with the target protein. The predicted hit compounds warrant further investigation through 

in vitro and in vivo studies to confirm their efficacy and safety profiles. By identifying these alternative 

compounds, we aim to expand the therapeutic options available for diseases where ivermectin is 

currently used, potentially overcoming limitations associated with resistance or side effects.  
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General Conclusions 
The results of this research provide significant insights into various aspects of infectious diseases and 

their treatment strategies. The studies encompassed in this thesis have advanced our understanding 

of SARS-CoV-2, particularly in the context of drug discovery and the impact of viral mutations on 

diagnostic efficacy, as well as provided novel perspectives on parasitic infections such as S. stercoralis. 

The investigation using interaction-based drug discovery screens has highlighted the utility of this 

approach in identifying and explaining known inhibitors of SARS-CoV-2, while also predicting new 

compound scaffolds, thereby showcasing its potential in the rapid identification of therapeutic 

candidates. This method has proven essential in mapping the interactions between viral proteins and 

potential inhibitors, laying a foundation for targeted drug development that could lead to more 

effective treatments for COVID-19. Furthermore, the emergence of a recurrent insertion in the N-

terminal domain of the SARS-CoV-2 spike glycoprotein has significant implications for the virus's 

transmissibility and immune evasion capabilities. This discovery sheds light on the adaptive 

mechanisms of SARS-CoV-2, illustrating how genetic variations can influence viral behavior and 

impact the efficacy of vaccines and therapeutic antibodies. Understanding these mutations is crucial 

for anticipating potential changes in the virus that could affect public health measures and treatment 

strategies. Additionally, novel insights into the somatic proteome of S. stercoralis infective third-stage 

larvae have provided a deeper understanding of the molecular underpinnings of parasitic infection, 

revealing critical information about the proteins involved in the infective process and the parasite's 

survival mechanisms within the host. This knowledge is pivotal for developing new therapeutic 

interventions and diagnostic tools for strongyloidiasis. Moreover, real-life data supporting the 

reduced sensitivity of antigen tests for detecting Omicron SARS-CoV-2 infections highlight the 

challenges posed by the continuous evolution of the virus, emphasizing the need for ongoing 

evaluation and adaptation of diagnostic tools to ensure their effectiveness against new variants. This 

finding underscores the importance of robust and flexible testing strategies in managing the 

pandemic. Lastly, the exploration of drug repurposing strategies targeting the GluCl receptor for S. 

stercoralis infection offers promising avenues for treatment by leveraging the known safety profiles 

and mechanisms of action of existing drugs. This approach demonstrates the potential of repurposing 

in addressing neglected tropical diseases, where the development of new drugs may be economically 

and logistically challenging. Collectively, the findings of these studies underscore the importance of 

a multifaceted approach to infectious disease research, combining computational, molecular, and real-

world data analyses. The insights gained from these investigations enhance our understanding of 

pathogens and inform the development of more effective diagnostic, therapeutic, and preventive 

measures. Future research should continue to focus on the dynamic interactions between pathogens 
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and hosts, the impact of genetic variations on disease progression, and the potential of innovative 

strategies like drug repurposing to address emerging and neglected infections. This thesis highlights 

the critical need for continued vigilance and adaptability in the face of evolving infectious diseases 

and underscores the importance of interdisciplinary collaboration in tackling these complex 

challenges. 
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3CL ro: 3C-like Protease 

ACE2: Angiotensin Converting Enzyme 2 

ADT: Antigen Diagnostic Tests 

ARDS: Acute Respiratory Distress Syndrome 

ASN: Asparagine 

ASP: Aspartic Acid 

BP: Biological Process 

CC: Cellular Component 

CTD: C-Terminal Domain 

ECDF: Empirical Cumulative Density Function 

ESP: Excretory-Secretory Product 

FDA: Food And Drug Administration 

GluCl: Glutammate gated chloride channel 

GO: Gene Ontology 

HN T: Human Histamine N-Methyltransferase 

ICTV: International Committee On Taxonomy of Viruses 

IDRs: Intrinsically Disordered Regions 

iL3: Infective Filariform Larvae 

ILE: Isoleucine 

IQR: Interquartile Range 

IV : Ivermectin 

KDE: Kernel Density Estimate 

L1: Rhabditiform Larva 

LC– S/ S: Liquid Chromatography-tandem Mass Spectrometry 

LEU: Leucine 

mAbs: Monoclonal Antibodies  

 CA: Multiple Correspondence Analysis 

 D: Molecular Dynamics 

 ERS-CoV: Middle East Respiratory Syndrome CoronaVirus 
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  ro: Main protease 

NTD: N-terminal Domain 

ORFs: Open Reading Frames 

PBS: Phosphate Buffered Saline 

PCA: Principal Component Analysis 

PDB: Protein Data Bank 
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PLIP: Protein–Ligand Interaction Profiler 
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RBD: Receptor Binding Domain 
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RIR1: Recurrent Insertion Region 1 

R SD: Root Mean Square Deviation of Backbone Beads 

R SF: Root Mean Square Fluctuations 

ROS: Reactive Oxygen Species 

RTC: Replication-Transcription Complex 

SARS-CoV: Severe Acute Respiratory Syndrome Coronavirus 

SD: Standard Deviations 

STH: Soil-Transmitted Helminth 
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VOI: Variant of Interest 
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Supplementary materials 

Supplementary material Chapter 3: Emergence of a recurrent 

insertion in the N-terminal domain of the SARS-CoV-2 spike 

glycoprotein 

 

Su  lementary Figure S3.1: Panel A: observed frequency of each amino acid in the 49 RIR1 insertions. 
Panel B: observed/expected ratios for each amino acid, calculated based under the assumption that no codon usage 
bias was present. Amino acids showing a ratio > 1 were over-represented compared with expectations, whereas those 
showing a ratio < 1 were under-represented. 
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Su  lementary Figure S3.2: Panel A: RMSD plot of the three models of the SARS-CoV-2 spike protein 
(wild-type and A.2.5), as a function of simulated time. The systems reach equilibrium after 1.5 μs. Panel B: variation 
of RGYR observed over time for the three models of the SARS-CoV-2 spike protein (wild-type and A.2.5) during 
the MD simulation. 

 

Supplementary material Chapter 4: An interaction-based drug 

discovery screen explains known SARS-CoV-2 inhibitors and 

predicts new compound scaffolds 
Su  lementary Table S4.1: Link to online material 

 

https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-023-35671-x/MediaObjects/41598_2023_35671_MOESM1_ESM.xlsx


115 

 

Supplementary material Chapter 5: Wide Real-Life Data Support 

Reduced Sensitivity of Antigen Tests for Omicron SARS-CoV-2 

Infections 

 

Su  lementary Figure S5.1: Model of the full-length dimer N protein using AlphaFold2 

 

Su  lementary Figure S5.2: Mutations mapped in the N monomer protein structure predicted by AlphaFold. 
The mutations are color-coded with blue representing those exclusive to the Delta variant, red representing those exclusive 
to the Omicron variant. 
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Su  lementary Figure S5.3: CTD domain dimer of the N protein structure. Light pink: residues belonging to 
the dark blue chain (A). Light purple: residues belonging to the dark purple chain (B). CTD domain PDB ID: 6wzo. 

 

 

 

 

 

 

Su  lementary Figure S5.4: Zoom in showing the S310 mutated into Cysteine (S310C) and re-evaluation of 
the interactions after the substitution. On the left side, interactions occur involving the residue positioned at Ser310 with 
Gln 260, Lys 261, and Arg 262. On the right, there is a representation of amino acid substitution. We observed only 
minor difference of one less bond between Arginine 262 and Cysteine. 
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Su  lementary Figure S5.5: Mean Ct values and Standard Deviation for each SARS-CoV2 lineage detected 
in the nose (A) and in the mouth (B) based on days after symptoms onset. 

 

 utant PDB id 
ΔΔG (kcal/mol ) 

Dyna ut2 
ΔΔG (kcal/mol ) 

Dyna ut 
ΔΔSvibENCo  (kcal.mol-1.K-1) 

P80R 6vyo 0,41 kcal/mol 1,460 kcal/mol -0.522 kcal.mol-1.K-1 

H300Y 6wzo 1,16 kcal/mol 0.895 kcal/mol -0,131 kcal.mol-1.K-1 

S310C 6wzo -0,43 kcal/mol -0.217 kcal/mol 0.113 kcal.mol-1.K-1 

D343G 6wzo -0,28 kcal/mol -0.958 kcal/mol 0.130 kcal.mol-1.K-1 

 

Su  lementary Table S5.1: MΔΔG and ΔΔSvibENCoM calculations using DynaMut and DynaMut2 
webservers. The positive ΔΔG indicates increased stability, while negative ΔΔG indicates decreased stability. A 
negative ΔΔSVibENCoM implies an increase in protein rigidification, while a positive ΔΔSVibENCoM implies 
an increase in the flexibility of protein structure. 
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Supplementary material Chapter 6: Novel insights into the somatic 

proteome of Strongyloides stercoralis infective third-stage larvae 

Su  lementary Table S6.1: Annotated dataset. The dataset includes peptide list, protein identification, gene 
ontology annotation and InterPro annotation. Link to online material 

Su  lementary Table S6.2: Proteins identified in the present study and already reported in the literature as: (i) 
associated with Strongyloides parasitism; (ii) part of iL3 proteome; (iii) potentially immunogenic. Link to online 
material 

Su  lementary Table S6.3: Homology with Homo sapiens and other pathogens of clinical importance as 
potentially responsible for co-infections with S. stercoralis. Link to online material 

Su  lementary Figures S6.1-S6.8: B-cell epitope prediction results. For each figure: A) FASTA sequence 
showing the results obtained with each tool (Chou &Fasman Beta-Turn Prediction; Emini Surface Accessibility 
Prediction; Kolaskar & Tongaonkar Antigenicity; Parker Hydrophilicity Prediction, BepiPred2.0; all available via 
http://tools.iedb.org/bcell/); all residues having a score above their threshold are highlighted in grey. The purple squares 
indicate the sequences highlighted as potentially immunogenic as reported in the methods section. B) Protein structures 
as predicted by AlphaFold showing the model confidence. C) Mapping of the potentially immunogenic epitopes on the 
protein structure. Figure S1. B-cell epitope prediction resultsfor the protein A0A0K0E6J0 - SCP domain-containing 
protein. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://static-content.springer.com/esm/art%3A10.1186%2Fs13071-023-05675-7/MediaObjects/13071_2023_5675_MOESM1_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1186%2Fs13071-023-05675-7/MediaObjects/13071_2023_5675_MOESM2_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1186%2Fs13071-023-05675-7/MediaObjects/13071_2023_5675_MOESM2_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1186%2Fs13071-023-05675-7/MediaObjects/13071_2023_5675_MOESM3_ESM.xlsx
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Su  lementary Figures S6.1: B-cell epitope prediction results for the protein A0A0K0E6J0 - SCP domain-
containing protein. 
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Su  lementary Figures S6.2: B-cell epitope prediction results for the protein A0A0K0DY51 - 
Uncharacterized protein. 

 

 

 

 



121 

 

 

Su  lementary Figures S6.3: B-cell epitope prediction results for the protein A0A0K0EG68 - SCP domain-
containing protein. 
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Su  lementary Figures S6.4: B-cell epitope prediction results for the protein A0A0K0EMX1 - NTR domain-
containing protein. 
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Su  lementary Figures S6.5: B-cell epitope prediction results for the protein Q9UA16 - L3NieAg.01. 
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Su  lementary Figures S6.6: B-cell epitope prediction results for the protein A0A0K0E2F4 - Uncharacterized 
protein. 
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Su  lementary Figures S6.7: B-cell epitope prediction results for the protein A0A0K0DTP5 - SCP domain-
containing protein. 
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Su  lementary Figures S6.8: B-cell epitope prediction results for the protein A0A0K0ELA9 - 
Uncharacterized protein. 
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