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Abstract

Autonomous surface vessels are becoming increasingly important for water
monitoring. Their aim is to navigate rivers and lakes with limited interven-
tion of human operators, to collect real-time data about water parameters.
To reach this goal, these intelligent systems must interact with the envi-
ronment and act according to the situations they face. In this work we
propose a framework based on the integration of recent time-series cluster-
ing/segmentation methods and cluster validity indices, for detecting, model-
ing and evaluating aquatic drone states. The approach is completely data-
driven and unsupervised. It takes unlabeled multivariate time series of sensor
traces and returns both a set of statistically significant state-models (gener-
ated by different mathematical approaches) and a related segmentation of
the dataset. We test the approach on a real dataset containing data of six
campaigns, two in rivers and four in lakes, in different countries for about 5.6
hours of navigation. Results show that the methodology is able to recognize
known states and to discover unknown states, enabling novelty detection.
The approach is therefore an easy-to-use tool for discovering and interpret-
ing significant states in sensor data, that enables improved data analysis and
drone autonomy.

Keywords: Time series segmentation, situation assessment, state-model
generation, autonomous surface vessels, activity recognition, water
monitoring, model interpretation/explanation, sensor data analysis
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1. Introduction1

Autonomous robots have recently had a strong impact in the transition2

from manual (passive) to autonomous (active) water monitoring. These in-3

telligent systems, used also in several other application domains, such as4

surveillance and monitoring (Farinelli et al. (2012)), are able to autonomously5

collect large amounts of data, providing crucial support to human operations.6

Aquatic drones involved in autonomous monitoring of catchments navigate7

rivers and lakes acquiring real-time data about water parameters, such as8

pH and dissolved oxygen. While human operators are usually involved in9

such data collection activities, direct tele-operation of the drones is often not10

an option for an entire mission, hence autonomous navigation is required.11

Navigation strategies usually aim at maximizing the information content of12

acquired data (Bottarelli et al. (2016, 2019)), while adapting to the con-13

ditions of the environment. Although data are very noisy in this context,14

applications require minimal number of sensors to reduce the costs.15

A key factor for the success of autonomous data acquisition campaigns16

is mission awareness (Endsley (1995)), which is composed of three main el-17

ements: knowledge of mission objectives, internal self-situational awareness,18

and external self-situational awareness. In this work we specifically focus19

on the problem of detecting, modeling and interpreting aquatic drone states20

with data-driven methods, an aspect of self-situational awareness. By state21

we mean an abstract, compact and informative descriptor of key properties22

of the drone-environment system. In particular, we aim at developing inter-23

pretable models of drone states from traces of sensor data acquired during24

water-monitoring campaigns, by means of machine learning and artificial in-25

telligence methods (Hastie et al. (2001); Bishop (2006); Russell and Norvig26

(2009)). Generating such a set of drone state-models is important for two27

reasons, namely, it supports offline data analysis by improving the extraction28

of knowledge from large sensor traces, and it enhances the autonomy of the29

drone by providing key information for online decision making (Kaelbling30

and Lozano-Perez (2013); Asperti et al. (2019)).31

Automatic detection of aquatic drone states from sensor data can be per-32

formed by supervised or unsupervised methods. Supervised methods are33

typically more accurate than unsupervised methods but they need labeled34

datasets, usually hard, expensive and sometimes impossible to collect in real35

monitoring campaigns. Ad-hoc experiments could be performed to gener-36

ate labelings, but they usually consider only subsets of situations that the37
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drone faces during real campaigns. On the other hand, many data is usually38

available from past campaigns that can be mined by unsupervised methods.39

This work focuses on unsupervised approaches, namely clustering and40

time series segmentation, able to split multivariate time series into groups41

of observations corresponding to system states and having common proper-42

ties that can be compactly represented by mathematical models. The goal is43

to discover these states (and models) using data-driven methods from sensor44

data of past campaigns. The literature (see Section 2) proposes several meth-45

ods for this purpose, characterized by different assumptions and extracting46

different types of patterns. The main difference between the works in the47

literature and our work is that we propose a systematic framework for gener-48

ating and evaluating statistically significant state-models for aquatic drones,49

while the literature mainly proposes novel clustering methods or it compares50

standard methods in different application domains.51

We first investigated clustering and subspace clustering methods for de-52

tecting aquatic drone states in (Castellini et al. (2018b, 2019c)). Here, we ex-53

tend those works using both classic (Bishop (2006)) and very recent methods,54

including SubCMedians (Peignier et al. (2018)), Toeplitz Inverse Covariance-55

based Clustering (TICC) (Hallac et al. (2017)) and Inertial Hidden Markov56

Models (IHMM) (Montanez et al. (2015)). The proposed framework is tested57

on a large datasets with observations from many campaigns. State-models58

are analyzed and interpreted in terms of situations faced by the drones. The59

statistical significance of state-models is computed by comparing their prop-60

erties with those of random clusters. Since different aspects of state-model61

performance must be evaluated, we select a set of validity indices (Arbelaitz62

et al. (2013)) satisfying the requirements of our domain.63

The main contributions of this paper are summarized in the following:64

• we propose an easy-to-use framework for systematically generating and65

evaluating significant state-models in multivariate time series;66

• we successfully apply the proposed framework to a real dataset of sensor67

data collected by aquatic drones involved in water monitoring;68

• we present, analyze and interpret, with high level of detail, both the dis-69

covered state-models and the application procedures used to generate70

these models, which makes this manuscript a valuable reference also71

for practitioners interested in analyzing similar data and performing72

extensive cross-comparison of methodologies;73
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• we present and make available the dataset used in this analysis1.74

The rest of the manuscript is organized as follows. Section 2 provides an75

overview of the state-of-the-art on this research topic. Section 3 introduces76

the aquatic drone architecture and the proposed framework for state-model77

generation. In Section 4 we describe the dataset and the labelings. Section 578

introduces clustering and segmentation methods, and the procedures for the79

generation of random clusterings and segmentations. Section 6 defines some80

clustering validity indices and performance measures. Section 7 illustrates81

the results and some state-models generated by the proposed framework.82

Conclusions and future directions are drawn in Section 8.83

2. Related work84

From the application point of view, strong similarities are present with85

sensor-based human activity recognition (Chen et al. (2012); Dhiman and86

Vishwakarma (2019)), where sensors are used to acquire data about human87

movements and machine learning methods are employed to generate activity88

models and to predict human activities in novel contexts. The main difference89

between our problem and human activity recognition is that data collected90

by aquatic drones are very noisy, since they come from several sources (not91

only accelerometers as in applications of human activity recognition) and92

are strongly influenced by unstructured and diversified environments (e.g.,93

rivers and lakes in different parts of the world have disparate environmental94

properties). Moreover, aquatic drones collect two kinds of data, some relating95

to movement, others to water properties, and both sources of information can96

be used to assess the drone state.97

From a methodological viewpoint, the main theoretical connections with98

our work concern clustering (Bishop (2006)) and time series segmentation (Fu99

(2011); Castellini et al. (2015)). K-means, Gaussian mixture models (GMM)100

and hierarchical clustering, have been recently used to identify activities of101

both humans (Abdallah et al. (2012); Trabelsi et al. (2013); Kwon et al.102

(2014); Barták and Vomlelová (2017)) and flying drones (Barták and Vom-103

lelová (2017)) from sensor data. Hidden Markov models (HMMs) have been104

applied (Kim et al. (2010); Trabelsi et al. (2013); Barták and Vomlelová105

(2017)) and also extended (Fox et al. (2008); Montanez et al. (2015)) in106

1The dataset will be submitted to Data in Brief upon acceptance of this manuscript.
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the same context. Time series segmentation (Hallac et al. (2016a, 2017);107

Chiu et al. (2003)), change point detection (Barnett and Onnela (2016)) and108

motif discovery methods, have been employed to identify homogeneous in-109

tervals in sequential time-dependent data. The last techniques have been110

very recently applied also to problems related to driver identification (Hal-111

lac et al. (2016b)) and state representation of modern automobiles (Hallac112

et al. (2018)).113

In previous works we tested standard clustering methods on single cam-114

paigns (Castellini et al. (2018a,b)) and introduced the usage of subspace clus-115

tering for generating sparse state-models (Castellini et al. (2019c,a)). What116

differentiates this paper from our previous work and the approaches in the lit-117

erature mentioned above is that here we propose a systematic framework for118

generating statistically significant state-models using very recent techniques119

and, most important, for evaluating them by several internal and external120

validity indices. Moreover, we test the proposed framework on a large real121

dataset in the application domain of autonomous water monitoring and we122

analyze the statistical properties of detected states. Furthermore, we select123

some validity indices (Arbelaitz et al. (2013); Moshtaghi et al. (2019)) and124

used them to evaluate and rank the state-models generated by five clustering125

techniques.126

3. System overview127

In this section we describe the two main elements of our system, namely128

the aquatic drone architecture and the framework for state-model generation.129

3.1. Data acquisition system: autonomous aquatic drones130

Data acquisition campaigns are performed by Lutra mono hull boats (see131

Figure 1) produced by Platypus2 and customized in the EU Horizon 2020132

INTCATCH project3 to accomplish water monitoring of catchments. Lo-133

calization and orientation are provided by an on-board smartphone which134

gathers information from GPS, compass and gyroscope. Sensor manage-135

ment and sensor data transmission to the cloud is performed by a Go-Sys136

2http://senseplatypus.com
3http://www.intcatch.eu
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BlueBox4 control unit connected to an arduino e-board. Operators can de-137

fine desired paths by setting waypoints in a map on a tablet, to perform138

autonomous navigation, or they can manually drive the drone using an RC139

controller. Drones are equipped with sensors for GPS position, water temper-140

ature, dissolved oxygen and electrical conductivity, commands to propellers141

and battery voltage. Sensor traces are stored in log files on the smartphone142

or transmitted to the cloud by a Go-Sys BlueBox. Log files are preprocessed143

using Platypus Python libraries to obtain a matrix of time series having one144

sensor signal in each row and time instants in columns. Since different sen-145

sors have different sampling frequencies the alignment of sensor traces was146

obtained via interpolation and re-sampling, with sampling frequency of 1Hz.147

Figure 1: Overview of the drone architecture.

4https://www.go-sys.de/en/bluebox/
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3.2. Framework for state-model generation and evaluation148

The framework proposed in this work is outlined in Figure 2. The input149

dataset is a matrix of multivariate time series with engineered features (see150

Section 4), which contains sensor readings from multiple campaigns. Data151

are processed by five clustering and segmentation methods, namely, k-means152

(KM), Toeplitz Inverse Covariance-based Clustering (TICC), Hidden Markov153

Models (HMM), Inertial Hidden Markov Models (IHMM), and SubCMedians154

(SCM). They generate clusterings depending on parameter settings. Multiple155

instances of random clustering (RC) and random segmentation (RS) are also156

generated. They are used as baselines to evaluate the significance of the157

state-models generated by real clustering algorithms (see Section 5).158

Figure 2: Overview of the proposed framework for state-model generation and evaluation.

Clusterings and related clusters are then evaluated by means of perfor-159

mance measures (see Section 6). They have different semantics and can160

favour different kinds of patterns (i.e., states) in the data (e.g., the silhouette161

is maximized if clusters are both compact and distant from each other, while162
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spread considers only the cluster compactness). Performance measures en-163

able to rank clusterings and clusters, and to identify the best state-models.164

After computing performance, we also determine cluster (clustering) p-values165

using random partitioning as baselines. Only clusters (clusterings) with low166

p-values are considered statistically significant. The last step of the proposed167

framework involves the analysis and interpretation of significant state-models168

(performed in Section 7). Since each state-model is generated by a cluster-169

ing method, evaluated by some performance measures, and interpreted as a170

situation, the framework enables different kinds of analyses involving combi-171

nations of these properties. For instance, we analyze the statistical properties172

of significant state-models, compare the capability of different methods to dis-173

cover specific situations, and compare the capability of different performance174

measures to rank situations. State-model analysis is supported by a Python175

tool called eXplainable Modeling5 (Castellini et al. (2019d)) that integrates176

several data visualization and statistical tools.177

4. Dataset178

We analyze sensor traces generated in six independent campaigns (also179

called experiments in the following). Table 1 shows the name, number of sam-180

ples, duration and type of catchment (i.e., river or lake) of each campaign.181

Since our goal is to generate a unique set of state-models, we concatenated182

the traces of all the campaigns, obtaining a single dataset (called CON-183

CAT ) with 20187 observations and about 5.6 hours of navigation, since the184

sampling frequency is 1Hz. Variables available in the raw dataset are time,185

latitude, longitude, altitude, speed, electrical conductivity, dissolved oxygen,186

temperature, battery voltage, heading, acceleration, command to propeller187

0 and command to propeller 1 (the boat has two propellers). Using only188

these variables we obtain experiment-dependent state-models because of the189

strong differences in environmental parameters among different campaigns.190

To avoid this problem we generate new variables by feature extraction. In191

particular, we compute moving means and standard deviations over a slid-192

ing windows of 10 seconds, and variations between couples of consecutive193

observations. The list of 27 variables in the final dataset is reported in Ta-194

ble 2. Z-score standardization was performed on each variable to improve195

the performance of clustering and segmentation methods.196

5https://github.com/XModeling/XM
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Mathematical notation. In the following, we use notationX = {x1, x2,197

. . . xn} to represent the dataset, where n is the number of observations (i.e.,198

n = 20187 in our dataset), each observation xi ∈ X has D variables (i.e.,199

D = 27 in our dataset). Each variable is represented by a number ranging200

from 1 to D, and the set of all variables is denoted D = {1, . . . , D}.201

Id Campaign name Samples Duration Lake/River

1 ESP2 2814 47’ R
2 ESP5 3601 60’ R
3 ESP4 2374 39’ L
4 GARDA3 2451 40’ L
5 ITA1 7243 121’ L
6 ITA6 1704 28’ L

- CONCAT 20187 335’ -

Table 1: List of data acquisition campaigns in the dataset.

Symbol Description

s, v, a Instantaneous speed, voltage, acceleration
m0,m1 Instantaneous signal to propeller 0 and 1
s̄, v̄, ā Moving average mean of speed, voltage, acceleration
m̄0, m̄1 Moving average mean of signal to propeller 0 and 1
ŝ, v̂, â Moving average std of speed, voltage, acceleration

êc, d̂o, T̂
Moving average std of electrical conductivity,
dissolved oxygen, temperature

m̂0, m̂1 Moving average std of signal to propeller 0 and 1

ĥ Moving average std of heading
�s,�a, �v Variation of speed, voltage, acceleration
�m0, �m1 Variation of signal to propeller 0 and 1

�ec,�do,�h Variation of electrical conductivity,
dissolved oxygen, temperature

Table 2: List of variables extracted from the dataset and used for clustering/segmentation.

4.1. Known drone states202

Some drone states are easy to identify by observing the drone paths in203

geographical maps but hard to detect from sensor traces, hence recognizing204

9



Figure 3: Geo-localization of monitoring campaigns and manual labelling of situations
“drone into the water” (blue) and “drone out of the water” (red) (best viewed in color).

them is not a trivial task for clustering methods. We use these states to test205

the ability of different methods to detect real situations. The states that we206

manually label are: drone into the water (IW), drone out of the water (OW),207

upstream navigation (US), downstream navigation (DS), no water stream208

(NS), manual drive (MD), autonomous drive (AD), and turning (T). Figure209

3 shows the labelled paths of states IW (cyan) and OW (red).210

Figure 4: t-SNE projections. Points represent data observations and colors correspond to
known situations (best viewed in color).
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4.2. Dimensionality reduction analysis211

We use t-Distributed Stochastic Neighbor Embedding (t-SNE) (van der212

Maaten and Hinton (2008)) to see if known situations correspond to implicit213

structures in the data. t-SNE allows the implicit structure in the data to214

influence the way in which subset of data points are gathered, hence it reveals215

structures at different scales. In Figure 4.a, for instance, colors represent216

experiments (e.g., ESP2) and in Figure 4.c they represent situations in/out217

water. Projections are informative, they show grouping of observations and218

correspondence between groups and situations (colors). For instance, the219

coloring related to in/out water (Figure 4.c) identifies well separated clusters,220

as expected, although more than one dense region is present for each label.221

5. Clustering and time series segmentation methods222

We generate our state-models by five clustering or time series segmenta-223

tion methods, namely, k-means, SubCMedians, TICC, HMMs and IHMMs.224

The main difference between clustering and time series segmentation is that225

clustering does not consider time proximity between observations, while time226

series segmentation considers it, generating groups of adjacent observations227

(called segments) having common properties. Here we briefly introduce the228

methodologies and their peculiarities. The sets of parameters used in the229

training phase, for each method, are also described (see Table 3). Since all230

methods are unsupervised, the real number of clusters is unknown, hence we231

test several combinations of methods and parameters and leave the selection232

of the best state-models to subsequent statistical analysis. Finally, we de-233

scribe the procedures for generating random clusterings and segmentations.234

5.1. K-means (KM)235

K-means6 is an iterative descent clustering method (Bishop (2006)) which236

aims at minimizing the objective function J =
�n

i=1

�k
c=1 ric � xi − µc �2,237

where ric ∈ {0, 1} is a binary indicator of point-cluster membership, xi is a238

data point, µc is the centroid of cluster c, n is the number of data points and k239

the number of clusters. Each clustering is a set of centroids that minimizes J .240

We use Euclidean distance � · �2, number of clusters k listed in Table 3, and241

for each clustering, we re-initialized the algorithm 100 times and selected the242

6https://scikit-learn.org/
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Method Parameter Values

KM
k {5, 10, 15, 20, 25, 30}

# repeats 50

SCM
NbExtClust {2, 3, 4, 5, 6, 10, 15, 20, 25, 30}
# repeats 10

TICC

k {5, 10, 15, 20, 25, 30}
λ {0.1, 0.5, 0.7, 1.0}
β {0, 50, 100, 150, 200}
w { 1, 3 }

# repeats 1

HMM
k {5, 10, 15, 20, 25}

# repeats 50

IHMM
k {2, 4, 6, . . . , 38, 40}
ζ {0, 5, 10, . . . , 65, 70}

# repeats 1

RC
k {5, 10, 15, 20, 25, 30}

# repeats 200

RS
k {5, 10, 15, 20, 25, 30}

# repeats 200

Table 3: Learning parameters of all clustering methods tested.

best clustering, since initial conditions influence the solution. We compute243

50 clusterings (# repeats in Table 3) for each k.244

5.2. SubCMedians (SCM)245

SubCMedians is a recent center-based subspace clustering technique (Peignier246

et al. (2018)). This algorithm is based on a K-medians paradigm and it aims247

at clustering data points around suitable candidate centers mi ∈ M, where248

centers are defined in different subspaces (i.e., subsets of variables) Di ⊆ D.249

In our work, each subspace cluster represents a putative state of the aquatic250

drone. Formally, the goal of SCM is to build a set of centers M, so as to251

minimize the Sum of Absolute Errors between the dataset and the centers252

SAE(X,M) =
�

x∈X AE(x,M), and such that Size(M) ≤ SDmax, where253

Size(M) =
�

i |Di|, and SDmax is a parameter denoting the maximum Sum254

of Dimensions used in M to describe all its centers. The Absolute Error255

AE(x,M) represents the distance between each point x ∈ X and its closest256

center mi ∈ M, and it is computed as AE(x,M) = minmi∈Mdist(x,mi),257
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where dist(x,mi) =
�

d∈Di
|xd −mi,d|+

�
d∈D\Di

|xd − µd| is an extension of258

the Manhattan distance, with mi,d the coordinate of mi along variable d, and259

µd the mean of the coordinates of all points in X along d.260

The algorithm7 has three main parameters, namely SDmax (described261

above), the sample size N (the algorithm considers only N randomly chosen262

observations at each iteration) and the number of iterations NbIter of the263

training process. The number of centers is not fixed in advance. In (Peignier264

et al. (2018)), guidelines are provided to compute all parameters from a single265

meta-parameter called NbExpClust and representing the expected number266

of clusters. The actual number of clusters is then computed during training.267

Table 3 shows the values of NbExpClust that we test and the number of268

repetitions of each test. The algorithm needs less than one minute to compute269

a clustering on an Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz with 8GB270

of RAM.271

5.3. Toeplitz Inverse Covariance-Based Clustering (TICC)272

TICC clusters are modeled as sparse Gaussian inverse covariance (Toeplitz)273

matrices representing dependencies between variables. In particular, off-274

diagonal elements represent partial correlations and on-diagonal elements the275

inverse of variable variances (i.e., variable compactness) inside the cluster.276

Formally, TICC computes a set of k Toeplitz matrices Θ = {Θ1, . . . ,Θk} and277

a clustering (i.e., assignment of observations to clusters) P = {P1, . . . , Pk}278

that solve the following optimization problem (Hallac et al. (2017)):279

argmin
Θ∈T ,P

k�

j=1

� sparsity� �� �
�λ ◦Θj�1 +

�

Yi∈Pj

� log likelihood� �� �
−��(Yi,Θj)+

temporal consistency� �� �
β1{Yi−1 �∈ Pj}

��

where T is the set of symmetric block Toeplitz matrices, �λ ◦Θj�1 is an280

�1-norm penalty of the Hadamard product aiming to sparsify the inverse281

covariance matrices, λ is a matrix of regularization parameters that we set282

to a single value λ ∈ R to simplify parameter setting, Yi is a concatenation283

of observations xi−w+1, . . . , xi, w ∈ R, ��(Yi,Θj) is the log-likelihood that284

observation Yi belongs to cluster Θj, β is a regularization parameter for285

temporal consistency, and 1{Yi−1 �∈ Pj} is an indicator function checking if286

neighbouring observations are assigned to same cluster.287

7https://sergiopeignier.github.io/
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The algorithm8 uses four parameters, namely, λ that controls Toeplitz288

matrix sparsity, β that controls temporal consistency in clusters, the windows289

size w used to generate matrix Y from the dataset X, and the number of290

clusters k. The parameter values and the number of repetitions we test are291

displayed in Table 3. We set the maximum number of iterations to 100. For292

time reasons, tests using w = 3 are performed only with λ = 1.0 and β = 0.0.293

On an Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz with 8GB of RAM294

the algorithm takes from 1 to 30 minutes to compute a clustering with w = 1295

(longer time is taken with smaller λs and βs) and between 40 minutes and296

1.5 hours with w = 3.297

5.4. Hidden Markov Models (HMM)298

Hidden Markov models (Rabiner (1989); Bishop (2006)) are probabilistic299

models which describe Markovian stochastic processes. Observation models300

are set to single component multivariate Gaussian distributions (with one301

dimension for each observed variable). The initial state distribution is set302

to uniform over the set of hidden states, the initial transition matrix is set303

to a random stochastic matrix, initial means are computed by k-means and304

initial covariance matrices are set according to the obtained k-means clusters.305

The maximum number of iterations for the EM algorithm9 is set to 100.306

The Viterbi algorithm (Bishop (2006)) is used to generate the most likely307

sequence of hidden states (i.e., drone states) given the observed sequence of308

sensor readings. We generated models having number of hidden states (i.e.,309

clusters) listed in Table 3. The learning algorithm was not able to generate310

clusterings with 30 or more clusters which are instead available for all other311

methods.312

5.5. Inertial Hidden Markov Models (IHMM)313

IHMMs (Montanez et al. (2015)) are a regularization-based extension of314

HMMs in which the transition matrix is biased towards the inertial property,315

namely, it has increased self-transition (i.e., on-diagonal) values to better316

adapt to naturally “long lasting” activities observed in several contexts, such317

as human activity recognition. The basic idea is to introduce prior knowledge,318

in the form of a supplementary learning parameter ζ, related to the expected319

8https://github.com/davidhallac/TICC
9https://scikit-learn.org/
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duration of activities, so that the HMM tends to reduce state transitions and,320

consequently, to generate long segments along the time axis instead of frag-321

menting adjacent observations in several states. The observation model of322

each state is represented by the parameters of a multivariate Gaussian distri-323

bution. IHMMs are trained by standard EM algorithm, where the transition324

matrix update is modified to consider parameter ζ. In our tests we set pa-325

rameters k and ζ as shown in Table 3. The algorithm10 needs between 30326

seconds and 100 minutes (longer time is needed when more hidden states are327

used) to compute a single clustering on an Intel(R) Core(TM) i7-6700 CPU328

@ 3.40GHz with 16GB of RAM.329

5.6. Random clustering (RC)330

Random clusterings are generated by assigning to each observation in the331

dataset a uniformly random number from 1 to k (the number of clusters). The332

obtained vector of labels (i.e., numbers from 1 to k) is used as a clustering,333

hence observations assigned to the same label are put together in the same334

group. We generate 200 random clusterings for each k ∈ {5, 10, 15, 20, 25, 30}335

(see Table 3) and use them to compute the statistical significance of cluster-336

ings and clusters generated by standard methods.337

5.7. Random segmentation (RS)338

Random segmentations are generated by selecting k− 1 different random339

splitting points between 2 and n − 1, and then assigning label 1 to the340

observations before the first splitting point, label 2 to observations between341

the first and the second splitting point, and so on, until the last interval of342

observations (between the last splitting point and the last observation) which343

was assigned to label k. In this way we generate k segments of random length,344

in which each segment is related to a single cluster. As for RC we generate345

200 random segmentations for each k ∈ {5, 10, 15, 20, 25, 30} (see Table 3).346

6. Performance measures347

A key element for evaluating state-models generated by different clus-348

tering methods are performance measures. Since different aspects of the349

performance must be evaluated, here we propose an ensemble of indices that350

10https://github.com/george-montanez/InertialRegularizedHMM
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satisfy the requirements of our and possibly other application domains. Se-351

lected indices can be split into three categories, namely, measures for eval-352

uating clusterings, measures for evaluating single clusters (i.e., state-models353

in our context), and measures for evaluating state-model variables. The first354

and second categories can be further divided into external and internal. The355

former uses a ground truth to evaluate the clustering/cluster, while the lat-356

ter does not require any labeling. Since the goal of the proposed framework357

is to provide quality state-models from unlabeled data, we focus our analy-358

sis on internal performance measures, however, some external measures are359

presented to assess the capability of clustering methods to detect known situ-360

ations. For each internal and external measure we specify if it can be applied361

at clustering level, at cluster level or both. The measures are then used in362

Section 7 to evaluate, rank, select and interpret state-models generated by363

different methods. Symbol ↑ (↓) is used to identify measures that must be364

maximized (minimized). In all indices below the notation de(xi, xj) is used365

to represent the Euclidean distance between observations xi and xj. We no-366

tice that the performance indices here used focus on cluster and clustering367

goodness, not on their prediction capabilities. We do not split our dataset in368

training and test set, compute models on training set and evaluate them on369

test set (a way to evaluate prediction capabilities of state-models). The prob-370

lem we tackle here comes before the prediction problem, in fact we generate371

state-models that could be eventually processed to learn prediction models.372

An advantage of this approach is a lower time complexity (computing predic-373

tion performance on test sets needs time consuming cross-validation) which374

allows us to select optimal state-model among a large set of clusters generated375

by several combinations of clustering methods and parameter settings.376

6.1. Internal measures377

Silhouette (S, ↑). The silhouette (Rousseeuw (1987); Arbelaitz et al.378

(2013)) is an internal measure that contrasts the average distance to elements379

in the same cluster with the average distance to elements in other clusters.380

Cluster cohesion is measured based on the distance between all the points381

in the same cluster, the separation between clusters is based on the nearest382

neighbour distance. The silhouette of a single observation xi assigned to a383

cluster zc is defined as:384

S(xc
i) =

b(xi, zc)− a(xi, zc)

max{a(xi, zc), b(xi, zc)}
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where a(xi, zc) is the average distance of xi from the other observations in385

cluster zc and b(xi, zc) is the minimum average distance between xi and the386

observations in clusters zl �= zc. Silhouette can be computed for a specific387

cluster zc, as S(zc) = 1/|zc|
�

xi∈zc S(xi), or for an entire clustering Z, as388

S(Z) = 1/n
�

zc∈Z
�

xi∈zc S(xi). Its values range from -1 to 1 where high389

values indicate points belonging to perfectly compact and separated clusters390

and low values indicate clustering with mixed clusters.391

Davies-Bouldin index (DB, ↓). Davies-Bouldin index (Davies and392

Bouldin (1979); Arbelaitz et al. (2013)) estimates the cohesion as the distance393

from the observations in a cluster to its centroid (computationally faster than394

computing distances between all pairs of observations in the cluster, as in sil-395

houette) and the separation based on the distance between centroids (also396

faster than silhouette). The cohesion is divided by the separation, hence the397

index must be minimized. The index formula is398

DB(Z) = 1/k
�

zc∈Z
maxzl �=zc{

C(zc) + C(zl)

de(z̄c, z̄l)
},

where z̄c is the centroid of cluster zc and C(zc) is the estimated cohesion of399

cluster zc, C(zc) = 1/|zc| ·
�

xi∈zc de(xi, z̄c).400

Calinski-Harabasz index (CH, ↑). Calinski-Harabasz index (Caliński
and Harabasz (1974); Arbelaitz et al. (2013)) estimates cluster cohesion from
the distances between cluster points and related cluster centroids. The sep-
aration is estimated from the distance between the centroids and the global
centroid of the dataset X̄. The separation term is finally divided by the cohe-
sion term, hence this index is ratio-based and must be maximized. Formally,

CH(Z) =
n− k

k − 1

�
zc∈Z |zc|de(z̄c, X̄)�

zc∈Z
�

xi∈zc de(xi, z̄c)

where z̄c is the number of observations in cluster zc, z̄c is the centroid of zc.401

Spread (Q, ↓). The spread of a cluster is a measure of cluster cohesion
(Kelley et al. (1996)). Given a cluster zc containing |zc| observations the
spread is given by

Q(zc) =
(
�

xi∈zc
�

xj∈zc,j>i de(xi, xj))

|zc|(|zc|− 1)/2
.

The measure can be extended to clusterings by averaging cluster spreads as402

Q(Z) =
�k

c=1 Q(zc)

k
.403
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Weighted spread (R, ↓). Since clusters with small number of observa-
tions are more likely to be more compact, and consequently to have smaller
spread than large clusters, we computed a weighted version of the cluster
spread, in which the spread is divided by the percentage of observations in
the cluster, namely,

R(zc) = (Q(zc)/|zc|) · n.
The extension to clusterings is obtained as a sum of weighted cluster spread,404

that is R(Z) =
�

zc∈Z R(zc).405

NMRCLUST penalty (P , ↓). In (Kelley et al. (1996)) an internal mea-
sure is proposed to compare clusterings having different number of clusters
and possibly being generated by different methods. The index is computed
for a clustering Z as P(Z) = NQ(Z) + k, where the first term is the sum of
the normalized average spread of the clustering

NQ(Z) = (
n− 2

maxi(Q(Zi))−mini(Q(Zi))
)(Q(Z)−mini(Q(Zi)) + 1,

where maxi(Q(Zi)) and mini(Q(Zi)) are the maximum and minimum values406

of the average spread of all available clusterings, and the second term is407

the number of clusters in Z, which is used to compensate the change of408

normalized average spread among clusterings having different numbers of409

clusters.410

6.2. External measures411

Purity (U , ↑). The purity of a clustering Z with respect to a labeling412

L is a measure of the extent to which clusters contain a single class. It is413

computed by the formula U(Z) = 1
n

�k
c=1 max

l∈L
|zc∩l|, where Z is a clustering,414

n is the total number of observations, k is the number of clusters, zc is the415

c-th cluster, L is the set of classes (i.e., observations with specific labels).416

Purity close to 1/|L| represents fragmented clusterings, while purities close417

to 1 identify clusterings with almost only one label for each cluster.418

Precision (P , ↑). The precision of a cluster zc with respect to a label419

class l is a measure of the extent to which the cluster contains the label class.420

It is computed as Pl(zc) =
|zc∩l|
|zc| , where |zc ∩ l| is the number of observations421

in the intersection between cluster zc and label class l, and |zc| is the number422

of observations in the cluster zc. Values close to 1 are obtained when all the423

observations in the cluster correspond to label class l, values close to 0 are424

obtained when no observation in zc corresponds to class label l. We use this425
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measure to find clusters having good match with known states. For instance,426

to find clusters corresponding to drone turning we search clusters zc having427

PT (zc) ≥ 0.5, where PT is the precision for drone turning.428

6.3. Measures for model variables429

Symmetrical uncertainty (SU , ↑). Symmetrical uncertainty (Hong430

et al. (2008)) is a measure of relevance of a variable vd, d ∈ {1, . . . , D} with431

respect to a clustering Z and can be computed as432

SU(vd, Z) = 2(
IG(vd | Z)

H(vd) +H(Z)
)

where H(Z) is the entropy of the clustering labels and IG(vd | Z) is the433

information gain that is computed as IG(vd | Z) = H(vd) − H(vd | Z),434

and H(vd) is the entropy of variable vd and H(vd | Z) is the conditional435

entropy of vd given Z. A value 1 of SU indicates that the variable vd is436

completely related to clustering Z while a value 0 means that the variable vd437

is absolutely irrelevant since it does not share any information with clustering438

Z. It happens for instance, if vd is a uniformly distributed random variable.439

6.4. Statistical significance of clusterings and clusters440

For each internal and external measure defined above it is possible to441

compute the statistical significance, based on p-value, of a clustering Z with442

respect to the random clustering RC and the random segmentation RS de-443

scribed in Subsections 5.6 and 5.7, respectively. The p-value of a clustering444

Z with respect to a performance measure I is computed as the percentage of445

random clusterings (random segmentations) that outperform clustering Z in446

terms performance measure I. The same approach can be used to compute447

the statistical significance of single clusters. Only clusters/clusterings with448

percentage less than 0.05 are considered statistically significant.449

7. Results and discussion450

We generate 1076 clusterings of our dataset using the five clustering meth-451

ods described in Section 5 with different parameter settings for each method452

(see Table 3): 126 clusterings are generated by TICC, 300 by IHMM, 100 by453

SCM, 300 by KM and 250 by HMM. The total number of clusters generated454

in this way is 19320 (i.e., 2205 clusters produced by TICC, 5739 by IHMM,455

2376 by SCM, 5250 by KM and 3750 by HMM). To evaluate the statistical456
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significance of clusterings and clusters we compute 200 random clusterings457

(RC) and 200 random segmentations (RS) for each k ∈ {10, 15, 20, 25, 30},458

a total of 1200 random segmentations (21000 random segments) and 1200459

random clusterings (21000 random clusters), and we use them to compute460

clustering and cluster p-values with respect to different performance mea-461

sures. We rank both single clusters and entire clusterings according to their462

performance, and compute their statistical significance with respect to the463

random clusterings/segmentations. In this way, we select a subset of cluster-464

ings and clusters having clear evidence of being non-random and to represent465

drone states. In the following, we first perform an analysis of single cluster466

and then of entire clusterings. We always compare clusters (clusterings)467

having the same parameter k since all performance measures considered are468

influenced by this parameter. Specific focus is put on k = 10 and k = 20,469

two levels of granularity (i.e., abstraction) of interest to discover macroscopic470

states (e.g., in water) and microscopic states (e.g., turning). We notice that471

the extraction of statistically significant state-models is often better achieved472

using cluster validity indices than clustering performance indices, because473

good (e.g., compact and separated) clusters are sometimes present also in474

clusterings having average/low performance, which would not be selected us-475

ing only clustering performance indices. This happens, for instance, when476

a high number of clusters is used, which favours the identification of small477

patterns but also generates non-significant clusters that reduce the overall478

performance of the clustering, even in the presence of good clusters. This479

motivates our choice to analyze deeper single clusters than complete cluster-480

ings, although the analysis of clusterings is an important tool for identifying,481

for instance, the number of clusters in the dataset.482

7.1. Analysis of single clusters483

Clusters are first ranked according to performance measures of Section 6.484

We consider only statistically significant clusters, having p-value less than485

0.05 for at least one performance measure. A summary of properties and486

performance of investigated clusters is reported in Table 4. Figure 5 shows487

the results for two internal measures, i.e., silhouette (S) and weighted spread488

(R), and one external measure, i.e., precision in detecting drone turns (PT ).489

For each performance measure, we show on the left a scatter plot displaying490

all the 61320 clusters (19320 generated by clustering methods, 21000 by RC491

and 21000 by RS) where each point is a cluster, the x-axis is the number of492

states k in the clustering, and the y-axis is the performance of the cluster.493
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On the right, we display clusters having a specific range of k and p-value494

less than 0.05 for RS. Below, we propose an analysis of few of these clus-495

ters, showing that they have a clear interpretation in terms of drone states.496

Further analysis is reported in supplementary material.497

Ranking by cluster silhouette. Figure 5.a shows cluster silhouette498

and the ranking by silhouette of clusters with k between 9 and 11. The499

cyan and yellow dashed lines, on the left, characterize the 5th and the 95th500

percentile with respect to RS and RC, respectively. Clusters located above501

these lines are statistically significant. Focusing on k between 9 and 11 (see502

the blue box on the left of Figure 5.a) we find 249 clusters, of which 27503

generated by TICC, 21 by IHMM, 9 by SCM, 100 by KM and 92 by HMM.504

These clusters are ranked by silhouette on the right of Figure 5.a where the505

point color depends on clustering techniques and point size on cluster size.506

Clusters C1 and C2 have the highest silhouette, respectively 0.76 and 0.68,507

and are generated by IHMM. As displayed in Table 4, they have a very small508

number of observations, namely three per cluster (see column O), they do not509

correspond to a turn (PT = 0.00), but they correspond to locations in which510

the drone was into the water (PIW = 1.00), manually driven (PMD = 1.00)511

and navigating outside strong streams (PNS = 0.00). Note that information512

about precision comes from manual labeling. It is used for result validation513

and not provided to the (unsupervised) clustering learning process.514

We discovered that these clusters identify a real pattern in experiment515

ESP4 which can be traced back to a specific (possibly anomalous) situation.516

The boxplot of variable êc in Figure 6.a shows that clusters C1 and C2 have517

much higher standard deviation of electrical conductivity than other clusters.518

Then, the boxplot of variable �ec, in the same figure, points out that in C1 the519

variation of ec is positive (increment) and in C2 it is negative (decrement).520

The third and fourth boxplots instead say the two clusters have also high521

standard deviation of temperature and voltage. The geolocalization in Figure522

6.b shows that cluster C2 precedes cluster C1. All these information, together,523

suggest that this pair of clusters could be associated to a location where the524

drone was suddenly extracted from and put back into the water. The location525

of the clusters is in the middle of a lake, hence the situation could be due to526

manual intervention of an operator from a boat, anomalous conditions (e.g.,527

obstacles or waves), or sensor faults. It is important to detect such situations528

to improve data analysis and avoid misinterpretations of sensor readings.529

Other key information about this state is provided by the parameters of530

the IHMM representing the state-models. Figure 6.c shows the heatmaps of531
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Figure 5: Performance of single clusters (best viewed in colors). Left: X-axes are number
of states k in the clustering, y-axes are values of cluster performance, colors are clustering
methods, light blue dashed lines represent 5-th and 95-th percentiles for RS, yellow dashed
lines 5-th and 95-th percentiles for RC. Right: statistically significant clusters sorted by
performance. (a) Cluster silhouette: significant if above the upper dashed lines. (b)
Cluster weighted spread: significant if below the lower dashed lines; only the 5-th percentile
line is visible for RS because the figure is zoomed on the lower part of the y-axis. (c) Cluster
precision for drone turns: significant if above the upper dashed lines.
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Figure 6: Clusters C1 and C2. (a) Box plots of variables êc, �ec, T̂ , v̂. (b) Maps of cluster
locations. (c) State-model parameters (variable means and transition matrix).

variable means for each cluster (on the left) and the transition matrix (on the532

right). Cluster C1 has strongly positive means for êc and �ec (see dark green533

cells in the first column of the means matrix) and cluster C2 has strongly534

positive mean for êc and strongly negative mean for �ec (second column of535

the means matrix). Moreover, the switch between cluster C2 and cluster C1536

is represented by the high parameter in the highlighted cell of the transition537
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matrix (on the right). We reported other analysis on clusters C3 to C6 in the538

supplementary material.539

Ranking by cluster weighted spread. This ranking of clusters is dis-540

played in Figure 5.b. On the right we show the significant clusters with k541

between 19 and 21. We found 199 significant clusters, of which 42 generated542

by TICC, 29 by IHMM, 3 by SCM, 75 by KM and 50 by HMM. Cluster C7543

has almost the best performance in the ranking (two other clusters perform544

better but they contain only one observation). It was generated by TICC,545

contains 8111 observations, has weighted spread 5.32 and silhouette 0.35.546

This cluster corresponds to observations in which the drone was into the wa-547

ter (i.e., PIW = 0.98), autonomously driven (i.e., PMD = 0.16), not in strong548

streams (i.e., PNS = 0.97) and not turning (i.e., PT = 0.02). Interestingly549

enough, this cluster contains almost the same points of cluster C5, which was550

generated by SubCMedians and selected from the silhouette ranking. This551

shows that different clustering methods (i.e., SubCMedians and TICC in this552

case) were able to discover the same state of the drone although using differ-553

ent state representations (i.e., centroids and Toeplitz matrices). Cluster C8554

is analyzed in the supplementary material.555

Ranking by cluster precision for drone turning. The third ranking556

we analyze is based on the precision to detect drone turns. A scatter plot557

of clusters arranged by k (x-axis) and precision to detect drone turns PT558

(y-axis) is displayed on the left of Figure 5.c. We focus, in particular, on k559

between 19 and 21. These clusters are 609 in total, of which 101 generated560

by TICC, 36 by IHMM, 17 by SCM, 212 by KM and 243 by HMM. The best561

15 clusters, having PT ≥ 0.69, are all generated by TICC or IHMM that562

seem to have the best capability to detect drone turns.563

Cluster C9 is the first “large” cluster in the ranking (317 observations) and564

it is generated by TICC. Its precision on drone turns PT is 0.75, meaning that565

the 75% of its observations in the cluster correspond to real turn, according566

to our manual labeling. According to Table 4 this cluster corresponds to567

observations taken into the water (i.e., PIW = 1.00) during manual drive (i.e.,568

PMD = 1.00), partially in upstream navigation and partially with no stream569

(i.e., PUS = 0.41 and PNS = 0.59). Among the main statistical properties570

of variables characterizing this clusters there are high standard deviation of571

signal to propellers m̂0 (and m̂1), and high standard deviation of voltage572

v̂, as shown in the two boxplots of Figure 7.a. The geolocalization of this573

cluster confirms its correspondence to curves in the drone path, as shown574

in Figure 7.b that displays five locations belonging to three campaigns (i.e.,575
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Figure 7: Clusters C9. (a) Box plot of variables m̂0, v̂. (b) Maps showing cluster locations.
(c) State-model parameters (on-diagonal and off-diagonal elements of Toeplitz matrices).

ESP2, ESP5 and ITA6). We observe that the cluster really characterizes576

the turning pattern in the data. Figure 7.c shows the on-diagonal elements577

(on the left) and the off-diagonal elements (on the right) of the Toeplitz578

matrix representing this state. Cluster C10 is analyzed in the supplementary579

material.580

7.2. Analysis of clusterings581

Here we perform a second kind of analysis based on clustering significance582

(the previous one was on cluster significance). We evaluate our clusterings,583

computed by different methods and different parameter settings, according584

to four internal measures, namely silhouette (S), Davis-Bouldin index (DB),585
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weighted spread (R), and Calinski-Harabaz index (CH). Results are sum-586

marized in Figure 8, which has a similar structure to Figure 5. Scatter plots,587

on the left, contain one point for each clustering. The x-axis represents the588

number of clusters k in the clustering and the y-axis the performance mea-589

sure of interest. Point colors correspond to different clustering methods. On590

the right hand side some selections of significant clusterings, with specific k591

and p-value less than or equal to 0.05, are displayed by ascending/descending592

performance.593

Clustering silhouette is displayed in Figure 8.a. As expected the best sil-594

houette is achieved by clustering with small number of clusters (e.g., k = 2 for595

IHMM, k = 5 for k-means and TICC, k = 6 for SCM). The average clustering596

silhouette however increases from k = 10 to k = 25 and then it decreases for597

k > 25, showing a peak around k = 25 for all methodologies. This is interest-598

ing because it suggests a best number of clusters (around 25) for this dataset.599

Moreover, silhouette of SCM and IHMM with k > 30 sharply degrades to600

zero or less than zero. Surprisingly, the best silhouette is achieved by k-means601

for all k (see pink points in the chart). Then TICC reaches the second best602

silhouette performance, followed by SubCMedians and IHMM that has sim-603

ilar average performance to HMM but better performance considering the604

best parameter settings. The silhouette of non-random clusterings is almost605

always higher than silhouette of random segmentations. This behavior is606

very different from that observed for clusters, wherein several superpositions607

were present. Ranking by silhouette of clusterings with k between 9 and 11608

(on the right of Figure 8.a) show that the best clustering was generated by609

SCM and has a silhouette of 0.17. It is followed by k-means (about 0.15)610

and TICC (about 0.14), then there is a big jump to reach the best IHMM611

clustering, having silhouette 0.08, and HMM with silhouette 0.07.612

The Davis-Bouldin index, in Figure 8.b, is again dominated by k-means613

(see the pink points in the chart) that shows, as for silhouette, an optimum614

(i.e., a minimum for Davis-Bouldin index) in k between 20 and 25. The615

performance of the other methods (considering the best models for each616

technique while k varies between 5 and 30) are quite constants over k, with617

best performance achieved mainly by TICC, SCM and IHMM depending on618

k. Not considering small k, TICC has its best performance in k = 25, IHMM619

and HMM in k = 20, SCM in k = 39 (with small differences with other620

k). All points are below the cyan and yellow points of RS and RC (yellow621

points are not displayed because of too high values). Weighted spread and622

Calinski-Harabaz indices are analyzed in supplementary material.623
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Figure 8: Performance of clusterings. Left: x-axis is the number of states k, y-axis is
the performance value, colors are clustering methods. Each point is a clustering. Right:
significant clusterings sorted by performance. (a) silhouette, (b) Davis-Bouldin index.

A final comment is focused on clustering p-values. Differently from clus-624

ters, clusterings are almost all statistically significant with respect to RC625

and RS. This holds for all the four internal performance measures analyzed626

in this section, as displayed in Figure 8, where the points related to non-627

random clusterings are almost always out of the areas delimited by the 5th628

and 95th percentile lines (yellow and cyan dashed lines). This is possibly629

due to the fact that randomly generate clusterings with performance similar630

to that of state-of-the-art clustering algorithms is more difficult than ran-631

domly generate single clusters with performance similar to that generated by632

state-of-the-art methods.633

8. Conclusions and future work634

The framework proposed in this work allows to identify significant states635

of aquatic drones involved in water monitoring by means of diverse unsu-636

pervised clustering and segmentation methodologies. The analysis of the637

models of these states, namely, centroids, Toeplitz matrices, and multivari-638
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ate Gaussian distributions (depending on the methodology that generated639

them), allows us to discover the statistical properties that characterize some640

of these states and, consequently, to provide interpretations for the related641

models. This result has direct consequences on the analysis of the data ac-642

quired by the drones since we can now label the dataset by discovered states,643

obtaining a compact semantic-based way to represent each campaign. This644

could have strong impact on water monitoring projects involving the citi-645

zenship in collecting evidence about water healthiness (following the citizen646

science approach), since unskilled people need support in data interpretation.647

From a more general point of view, the proposed framework represents an648

easy-to-use tool for discovering significant states in multivariate time series649

datasets and for comparing the capabilities of different clustering techniques.650

It only needs a dataset and a set of parameter settings for each methodology,651

and produces several rankings of clusterings/clusters with associated signif-652

icance levels, allowing to compare the performance of different methods to653

identify states in specific application domains (and related datasets). The654

choice of a clustering/segmentation method for real datasets is a challenging655

activity and our approach could provide valuable support in this direction.656

Future activities will aim to release an easy-to-use software for supporting657

the proposed framework. Then we want to merge the clusters discovered658

by different methods using different levels of granularity (i.e., parameter k)659

into a hierarchical (voting) structure, so that each observation could be part660

of several clusters of different abstraction levels (e.g., drone into the water,661

turning and moving upstream). Another goal is to focus on specific situations662

of interest, such as anomalies and dangerous states (e.g., high waves). We are663

planning specific field tests to this purpose. Finally, we want to integrate our664

state recognition method into online sequential decision making algorithms,665

such as those based on Partially Observed Markov Decision Processes (known666

as POMDPs) that we started to develop in (Castellini et al. (2019b)). This667

direction could improve drone autonomy by supporting the generation of668

policies based on improved system states.669
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Caliński, T., Harabasz, J., 1974. A dendrite method for cluster analysis.698

Communications in Statistics-Simulation and Computation 3 (1), 1–27.699

Castellini, A., Beltrame, G., Bicego, M., Bloisi, D., Blum, J., Denitto, M.,700

Farinelli, A., 2018a. Activity recognition for autonomous water drones701

based on unsupervised learning methods. In: Proc. 4th Italian Workshop702

on Artificial Intelligence and Robotics (AI*IA 2017). Vol. 2054. pp. 16–21.703

30



Castellini, A., Beltrame, G., Bicego, M., Blum, J., Denitto, M., Farinelli, A.,704

2018b. Unsupervised activity recognition for autonomous water drones. In:705

Proc. Symposium on Applied Computing, SAC 2018. ACM, pp. 840–842.706

Castellini, A., Bicego, M., Bloisi, D., Blum, J., Masillo, F., Peignier, S.,707

Farinelli, A., 2019a. Subspace clustering for situation assessment in aquatic708

drones: A sensitivity analysis for state-model improvement. Cybernetics709

and Systems 50 (8), 658–671.710

Castellini, A., Chalkiadakis, G., Farinelli, A., 2019b. Influence of State-711

Variable Constraints on Partially Observable Monte Carlo Planning. In:712

Proc. 28th International Joint Conference on Artificial Intelligence (IJCAI713

2019). pp. 5540–5546.714

Castellini, A., Masillo, F., Bicego, M., Bloisi, D., Blum, J., Farinelli, A.,715

Peigner, S., 2019c. Subspace clustering for situation assessment in aquatic716

drones. In: Proc. Symposium on Applied Computing, SAC 2019. ACM,717

pp. 930–937.718

Castellini, A., Masillo, F., Sartea, R., Farinelli, A., 2019d. eXplainable Mod-719

eling (XM): Data Analysis for Intelligent Agents. In: Proceedings of the720

18th International Conference on Autonomous Agents and Multiagent Sys-721

tems (AAMAS 2019). IFAAMAS, pp. 2342–2344.722

Castellini, A., Paltrinieri, D., Manca, V., 2015. MP-GeneticSynth: inferring723

biological network regulations from time series. Bioinformatics 31, 785–87.724

Chen, L., Hoey, J., Nugent, C. D., Cook, D. J., Yu, Z., 2012. Sensor-based ac-725

tivity recognition. IEEE Transactions on Systems, Man, and Cybernetics,726

Part C (Applications and Reviews) 42 (6), 790–808.727

Chiu, B., Keogh, E., Lonardi, S., 2003. Probabilistic discovery of time series728

motifs. In: Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery729

and Data Mining. KDD ’03. ACM, New York, USA, pp. 493–498.730

Davies, D. L., Bouldin, D. W., Feb. 1979. A cluster separation measure. IEEE731

Trans. Pattern Analysis Machine Intelligence 1 (2), 224–227.732

Dhiman, C., Vishwakarma, D. K., 2019. A review of state-of-the-art tech-733

niques for abnormal human activity recognition. Engineering Applications734

of Artificial Intelligence 77, 21 – 45.735

31



Endsley, M. R., 1995. Toward a theory of situation awareness in dynamic736

systems. Human Factors 37 (1), 32–64.737

Farinelli, A., Nardi, D., Pigliacampo, R., Rossi, M., Settembre, G. P., 2012.738

Cooperative situation assessment in a maritime scenario. International739

Journal of Intelligent Systems 27 (5), 477–501.740

Fox, E. B., Sudderth, E. B., Jordan, M. I., Willsky, A. S., 2008. An HDP-741

HMM for systems with state persistence. In: Proceedings of the 25th Inter-742

national Conference on Machine Learning. ICML ’08. ACM, pp. 312–319.743

Fu, T.-c., 2011. A review on time series data mining. Engineering Applica-744

tions of Artificial Intelligence 24 (1), 164 – 181.745

Hallac, D., Bhooshan, S., Chen, M., Abida, K., Sosic, R., Leskovec, J., 2018.746

Drive2vec: Multiscale state-space embedding of vehicular sensor data. In:747

Int. Conf. Intelligent Transportation Systems. IEEE, pp. 3233–3238.748

Hallac, D., Nystrup, P., Boyd, S., 2016a. Greedy gaussian segmentation749

of multivariate time series. Advances in Data Analysis and Classification750

13 (3), 727–751.751

Hallac, D., Sharang, A., Stahlmann, R., Lamprecht, A., Huber, M., Roehder,752

M., Sosic, R., Leskovec, J., 2016b. Driver identification using automobile753

sensor data from a single turn. In: 19th Int. Conf. Intelligent Transporta-754

tion Systems. IEEE, pp. 953–958.755

Hallac, D., Vare, S., Boyd, S., Leskovec, J., 2017. Toeplitz inverse covariance-756

based clustering of multivariate time series data. In: Proc. 23rd ACM757

SIGKDD. KDD ’17. ACM, pp. 215–223.758

Hastie, T., Tibshirani, R., Friedman, J., 2001. The elements of statistical759

learning. Springer Series in Statistics. Springer, New York, USA.760

Hong, Y., Kwong, S., Chang, Y., Ren, Q., 2008. Consensus unsupervised761

feature ranking from multiple views. Pattern Rec. Let. 29 (5), 595 – 602.762

Kaelbling, L. P., Lozano-Perez, T., 2013. Integrated task and motion plan-763

ning in belief space. International Journal of Robotics Research 32 (9-10).764

32



Kelley, L. A., Gardner, S. P., Sutcliffe, M. J., 11 1996. An automated ap-765

proach for clustering an ensemble of NMR-derived protein structures into766

conformationally related subfamilies. Protein Engineering, Design and Se-767

lection 9 (11), 1063–1065.768

Kim, E., Helal, S., Cook, D., 2010. Human activity recognition and pattern769

discovery. IEEE Pervasive Computing 9 (1), 48–53.770

Kwon, Y., Kang, K., Bae, C., 2014. Unsupervised learning for human activity771

recognition using smartphone sensors. Expert Systems with Applications772

41 (14), 6067 – 6074.773

Montanez, G., Amizadeh, S., Laptev, N., 2015. Inertial Hidden Markov Mod-774

els: Modeling change in multivariate time series. In: Proc. AAAI Conf.775

Artificial Intelligence. AAAI ’15. pp. 911–916.776

Moshtaghi, M., Bezdek, J. C., Erfani, S. M., Leckie, C., Bailey, J., 2019.777

Online cluster validity indices for performance monitoring of streaming778

data clustering. Int. Journal of Intelligent Systems 34 (4), 541–563.779

Peignier, S., Rigotti, C., Rossi, A., Beslon, G., 2018. Weight-based search to780

find clusters around medians in subspaces. In: Proceedings of the Sympo-781

sium on Applied Computing, SAC 2018. ACM, pp. 471–480.782

Rabiner, L. R., Feb 1989. A tutorial on hidden markov models and selected783

applications in speech recognition. Proc. of the IEEE 77 (2), 257–286.784

Rousseeuw, P. J., 1987. Silhouettes: A graphical aid to the interpretation785

and validation of cluster analysis. Journal of Computational and Applied786

Mathematics 20, 53 – 65.787

Russell, S., Norvig, P., 2009. Artificial Intelligence: A Modern Approach, 3rd788

Edition. Prentice Hall Press, Upper Saddle River, NJ, USA.789

Trabelsi, D., Mohammed, S., Chamroukhi, F., Oukhellou, L., Amirat, Y.,790

2013. An unsupervised approach for automatic activity recognition based791

on hidden markov model regression. IEEE Trans. Automation Science and792

Engineering 10 (3), 829–835.793

van der Maaten, L., Hinton, G., 2008. Visualizing data using t-SNE. Journal794

of Machine Learning Research 9, 2579–2605.795

33

View publication stats


