
International Journal on Software Tools for Technology Transfer (2024) 26:431–444
https://doi.org/10.1007/s10009-024-00758-x

GENERAL

Special Section: Challenges of Software Verification

Software verification challenges in the blockchain
ecosystem

Luca Olivieri1 · Fausto Spoto2

Accepted: 27 June 2024 / Published online: 12 July 2024
© The Author(s) 2024

Abstract
Blockchain technology has created a new software development context, with its own peculiarities, mainly due to the
guarantees that the technology must satisfy, that is, immutability, distributability, and decentralization of data. Its rapid
evolution over the last decade implied a lack of adequate verification tools, exposing developers and users to critical
vulnerabilities and bugs. This paper clarifies the extent of block chain-oriented software (BoS), that goes well beyond smart
contracts. Moreover, it provides an overview of the challenges related to software verification in the blockchain context,
encompassing smart contracts, blockchain layers, cross-chain applications, and, more generally, BoS. This study aims to
highlight the shortcomings of the state-of-art and of the state-of-practice of software verification in that context and identify,
at the same time, new research directions.

Keywords Blockchain · Smart contracts · Blockchain-oriented software · Software verification · Program analysis ·
Automatic verification

1 Introduction

The first killer application of blockchain has been Bitcoin [1],
in 2008. Since then, the technology evolved beyond its initial
financial purposes and has been applied in heterogeneous
ways and in different industrial and academic fields [2–6].
On one side, this rapid evolution facilitated the adoption
of blockchain in various contexts. On the other side, de-
velopment tools have not evolved as quickly, leaving open
challenges, pitfalls, and space for improvement.

Software verification is among the top challenges for
blockchain technology. Not surprisingly, it is highly needed
and desired by blockchain developers [7, 8]. Namely, the
history of blockchain is full of critical incidents, such as the
DAO attack [9] (that allowed hackers to steal more than 50M
USD) and the Parity wallet bugs [10] (that allowed hackers to
freeze about 150M USD). These events have increased the
awareness about software security in the blockchain com-
munity. Consequently, the latter is increasingly looking for

precise and reliable tools and software layers to verify the
software of the blockchain ecosystem in an automatic way.

This paper clarifies the extent of blockchain software,
which encompasses much more than simply smart contracts,
and provides an overview of the open challenges related to
the verification of that software. It highlights problems and
shortcomings of the state of the art and of the state of practice
and proposes new directions for research.

Paper structure Section 2 provides an overview of
blockchain technology. Section 3 discusses the kind of soft-
ware involved in the blockchain ecosystem. Section 4 reports
the issues related to bug fixing and patch management in the
blockchain software context. Section 5 discusses the state
of the art of verification tools for blockchain. Section 6 de-
scribes shortcomings and challenges of current blockchain
verification. Section 7 discusses related work. Section 8 con-
cludes.

2 Blockchain overview

A blockchain is an abstract shared data structure composed
of a chain of blocks (see Fig. 1). Blocks contain a certain
bounded amount of data records. When a new block is added,
it is concatenated to the previous one, thus creating a chain
of linked blocks. Typically, each block contains three fields:

� F. Spoto
fausto.spoto@univr.it

L. Olivieri
luca.olivieri@unive.it

1 Ca’Foscari University of Venice, Venice, Italy
2 University of Verona, Verona, Italy

Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-024-00758-x&domain=pdf
http://orcid.org/0000-0001-8074-8980
http://orcid.org/0000-0003-2973-0384
mailto:fausto.spoto@univr.it
mailto:luca.olivieri@unive.it


432 L. Olivieri, F. Spoto

Fig. 1 High-level structure of a
blockchain. It may contain forks,
as shown here after block N + 1

1. The hash code of the block: an alphanumeric value with
a fixed length that uniquely identifies the block. If any of
the data related to the block is changed, then the block’s
hash code also changes.

2. The previous hash code: the hash code of the previous
block.

3. A timestamp: a field that specifies when the block has been
created and helps to maintain the chronological order of
the chain.

These three components make the blockchain structure
tamper-proof, that is, a modification of a block changes the
hash and timestamp of that block. As a result, this leads
to a mismatch with the hash codes stored in the blocks to
which it is linked, making it immediately clear that the chain
has been altered. The data structure is typically shared in a
peer-to-peer network, the blockchain network, to achieve the
following data properties [11]:

• Distributability: each peer of the network keeps a copy (full
or partial) of the blockchain data and approves transaction
requests to add new data through a consensus mechanism.

• Decentralization: the network peers are located in different
geographic areas, avoiding single points of failure.

• Immutability: the antitampering properties, together with
distributability and decentralization, make the data im-
mutable (or hardly tamperable).

2.1 Blockchain network

Blockchain networks can be mainly classified into two dif-
ferent kinds:

1. Permissionless blockchains (or public blockchains) pro-
vide open networks, have no reference property or actor,

and are designed not to be controlled and managed. The
peers can join the network without previous authoriza-
tions and can be directly involved in the consensus and
data validation process. Typically, the characterization of
these networks is to have a high decentralization, full
transparency of transactions, and no central authorities.
This implies that these networks provide greater security
in terms of points of failure and of consensus as it is
difficult to corrupt most of the networks as they grow.
Notable examples are Bitcoin [1, 12], Ethereum [13, 14],
and Tezos [15, 16] blockchains.

2. Permissioned blockchains (or corporate or private
blockchains) provide closed networks composed of
known peers, such as members of a consortium, that
interact and participate together or partially in consensus
and data validation. Typically, decentralization is lim-
ited in the sense that it is distributed across a restricted
number of parties, rather than across an unknown and
potentially unlimited number of participants, as in per-
missionless blockchains. Also, in this case, there is no
central authority, although there is a private decentralized
group of users with network administration privileges.
Notable examples are Hyperledger Fabric [17, 18] and
Tendermint [19, 20].

Both network paradigms allow for similar value proposi-
tions, i.e., create a network of peers where it is possible to
interact with the blockchain through transactions and with
a certain degree of guarantees. However, their differences
make them more suitable for some use cases and less suit-
able for others. Permissionless blockchains tend to be used
in the contexts with a strong financial component or that
require high degrees of decentralization, such as cryptocur-

Springer



Software verification challenges in the blockchain ecosystem 433

rency exchanges, digital assets, crowdfunding, donations,
and decentralized autonomous organizations. Instead, per-
missioned blockchains are favored for applications that de-
pend on confidential data such as supply chain provenance
tracking, claims settlement, and identity verification. As de-
scribed in Sect. 4, the choice of the type of blockchain net-
work has also implications on bug fixing and code patching.

2.2 Consensus mechanisms

In distributed contexts, it is common to find cryptographic
infrastructure algorithms such as PKIs (Public Key Infras-
tructures) used for the secure exchange of information. In
addition, for distributed data, it is fundamental to achieve
consensus among network peers to avoid inconsistency and
to decide which data can be validly added and which cannot
be stored among peers. The main technological innovation
brought by blockchain networks is the introduction of an in-
centive system that allows peers to act collectively to guar-
antee the integrity and security of the network. Blockchain is
based on the principle of trustless, in which no one must nec-
essarily trust third parties or individual peers. Trustless does
not mean complete removal of trust, but rather its distribu-
tion in a type of economy that encourages certain behaviors
and punishes others [21]. In this way, it adds a social com-
ponent (i.e., unrelated to a computer algorithm but bound to
human perception) that allows us to solve stalemates and con-
flicts related to trust. The consensus mechanism with rewards
and disincentives is the backbone of blockchain technology
because it ensures the validity and authenticity of the data
stored in a blockchain. There are several fault-tolerant mech-
anisms [22, Ch. 11] that can be exploited by consensus-based
systems, to reach a consensus on a single state of a network of
distributed peers. Currently, the most popular paradigms for
the blockchain context are Proof-of-Work (PoW) and Proof-
of-Stake (PoS). Specifically, PoW requires actors called min-
ers to solve computationally expensive puzzles to validate
transactions and create new blocks. The action to solve the
puzzle is called mining. The first miner that solves the puz-
zle gets the right to add a next block to the blockchain and
receives a reward. The main disadvantage is that PoW con-
sumes a lot of energy due to the computing power required
for mining.

PoS, on the other hand, does not involve miners but rather
actors called block validators. PoS selects validators based on
the amount of stake they reserved as collateral. The amount
of stake is typically composed of economic assets such as
cryptocurrency. If a validator behaves unfairly, then part or all
of the amount will be deducted. PoS is more energy-efficient
than PoW since it does not require extensive computational
power, but relies instead on the economic incentives for val-
idators, to maintain network fairness.

3 Software in the blockchain ecosystem

Before dealing with software verification, it is important to
understand the type of software present in the blockchain
ecosystem and its extent. Blockchain can be thought of as an
abstract data structure shared in a complex ecosystem, where
software allows us to build the system and implement interac-
tions with the components that make up the ecosystem. The
term blockchain software is widely used, but it has different
meanings. The first that comes to mind is smart contracts,
i.e., programmable executable code within the blockchain.
However, this is only a small part of what might correctly be
named as blockchain software. For this reason, it is neces-
sary to define from the very beginning the various types of
software involved in blockchain technology.

Figure 2 provides an overview of the blockchain ecosys-
tem. In this context, the software can be categorized
into blockchain software and blockchain-oriented software
(BoS). As expressed by their names, both categories involve
blockchain technology, but they differ on where the software
is located and executed, and they have different purposes.

3.1 Blockchain software

The definition of blockchain software includes all code
present within the blockchain and its network, i.e., the im-
plementation code of the blockchain itself and that contained
in the database of blocks. According to Marijan et al. [23],
even though there is not always a clear distinction, the code
related to the blockchain implementation can generally be
divided into software layers (see Table 1). It is similar to the
ISO/OSI model [24], but it contains some domain-specific
layers such as the Consensus and Data layers, which handle
and implement the consensus mechanism and data storage
and management, respectively.

Smart contracts are also considered as part of the
blockchain software. They are programs that can be im-
mutably deployed and executed within the blockchain, whose
codes are stored in the data layer, and whose execution is per-
formed by a smart contract framework located in the appli-
cation layer. Their original meaning of agreement between
parties [14, Ch. 7] is nowadays blurred, given the genericity
of the software that runs within modern blockchains, espe-
cially after the adoption of Turing-complete languages for
smart contracts, as in Ethereum [14].

Cross-chain communications allow us to perform trans-
actions across different blockchain networks seamlessly and
without centralized intermediaries. Cross-chain communi-
cation protocols are part of blockchain software as they must
be integrated within the blockchain. However, since there are
no standards but only limited solutions [25], it is not always
clear at which layer they are typically implemented.

Springer



434 L. Olivieri, F. Spoto

Fig. 2 Software classification in the blockchain ecosystem

Table 1 Layer division of blockchain software

Layer Description

Application It contains the code that manages the content of transactions, proposes updates to the database of blocks with new data, and
performs additional operations.

Consensus It implements the logic of the chosen consensus mechanism to validate or reject the data to store in a blockchain in
agreement with the blockchain network.

Network It deals with communication in the blockchain network, such as P2P protocols. It allows us to connect the various peers,
handle transactions, and propagate information across the network.

Data It contains the implementation of a database of blocks with its primitives. It defines the data and block structure, how data
gets added, and any additional information included in the data.

Hardware It contains the software to work at low level within the hardware of the devices. The blockchain network consists of different
devices supported by heterogeneous hardware. Typically, the code of this layer can be involved to virtualize the hardware
and make the blockchain software platform-independent. Otherwise, it is exploited to optimize the performance of an ad
hoc hardware architecture such as in Internet-of-Things devices.

3.2 Blockchain-oriented software

The definition of blockchain-oriented software (or block-
chain-based software), according to Porru et al. [7], in-
cludes all software working with a blockchain implemen-
tation, that is, software that interacts, directly or indirectly,
with the blockchain but is located and executed outside the
blockchain. Typically, blockchain-oriented software sepa-
rates the application logic from the blockchain communi-
cation logic that is handled by middleware frameworks (e.g.,

Web3j, Infura, Truffle, . . . ). Here, for example, the appli-
cation logic can range from generic applications that use
blockchain only as tamper-proof data storage (such as supply
chains and IoT applications) to applications that actively in-
teract with smart contracts (such as wallets, crypto-currency,
and asset exchangers).

Finally, Decentralized Applications (DApps) are applica-
tions executed by multiple users over a decentralized net-
work, such as a blockchain network. This definition broadly
includes both blockchain software and the BoS definitions.

Springer



Software verification challenges in the blockchain ecosystem 435

Indeed, users are not necessarily peers of the blockchain net-
work. In general, decentralized applications have an external
interface that can be used to communicate and receive in-
formation. For instance, in blockchains, popular DApps are
decentralized autonomous organizations [26] and decentral-
ized games [27, 28].

4 Bug detection, fixing, and patch
management in blockchains

Developers of traditional software apply techniques such as
continuous integration [29], where they integrate code fre-
quently. Each integration is checked by an automated ar-
chitecture that detects bugs and vulnerabilities as early as
possible. This leads to a significant reduction of issues in
production and allows the development team to build co-
hesive software more rapidly. This is true for blockchain
software as well, with the limitation that blockchains are by
nature distributed and decentralized [30, 31]. Consequently,
the continuous integration tool cannot simulate a distributed
execution context and all the problems that might arise in a
real decentralized scenario, which will remain untested.

For permissionless blockchains, bug fixing and code in-
tegrations are rather hard. Namely, there are no network ad-
ministrators in this scenario, participants do not trust each
other and are often not even required to be authenticated.
In general, any change has to be made on-chain through the
consensus mechanism, that is, only after reaching an agree-
ment of the network majority. This mechanism has several
drawbacks. For instance, bugs affect smart contracts, which
are typically immutable data within the blockchain and can-
not consequently be fixed. The network majority would agree
on rolling back to a previous safe state to apply the patch,
effectively rewriting the history of the blockchain, which is
against the idea of blockchain. However, the more the pop-
ularity of a blockchain network increases, the trickier it is
to undertake such a turnaround. Part of the network peers
may decide to ignore the change and continue as if nothing
happened, leading to a new, independent blockchain, also
known as a hard fork. Note that the rollbacks of changes
and hard forks are incredibly rare events in the blockchain.
For instance, currenly, that happened only once in a popular
blockchain Ethereum because of the DAO attack [9], which
had large-scale effects.

Instead, if bugs affect vital blockchain components such
as the consensus layer of the blockchain, then they can lead to
critical consequences such as the partial or full denial of ser-
vice of the network, for instance, because of the introduction
of nondeterminism [32, 33]. In this worst-case scenario, that
compromises the consensus layer, no decision can be made
on-chain, and nobody can use the blockchain properly be-
cause all transactions fail or the blockchain splits as in a hard

fork. Therefore it is inevitably necessary to make off-chain
decisions that increase the time and cost of bug fixing.

For permissioned blockchains, it is possible to patch
buggy code through network governance. Typically, a lim-
ited subset of peers has the power to propose a plan for halt-
ing, modifying, and restarting the blockchain with updated
software, carefully migrating the state to the previous ver-
sion. This kind of solution is often adopted in the industrial
field, especially for enterprise or consortium blockchains.
However, enforcing an update requires to stop all services
and data management. For instance, a blockchain such as
Cosmos [34] offers an automatic process to deal with these
problems and applies blockchain upgrades, improving the
synergy between the on-chain module upgrade, responsible
for halting the chain, and the off-chain daemon that installs
a new binary of the node software at the right time and au-
tonomously restarts the node. In this way, it is possible to
achieve greater control of the network, improve blockchain
performance, and apply patches and fixes quicker than in a
permissionless blockchain.

For BoS, the software runs off the blockchain, so it can
generally be patched as it is done for traditional software.
However, the fact that it is patchable does not mean that
it cannot send wrong or corrupted data to the blockchain,
which stores it immutably, leading to subsequent problems
during data retrieval or blockchain software execution. A
typical example of BoS is a supply chain management sys-
tem that records data on a blockchain. In this scenario the
application/bussiness logic is often developed according to
traditional programming paradigms as it is not located within
the blockchain, whereas only the data produced by it or small
portions of code are recorded within the blockchain. In this
way, it is possible to improve and extend the software out-
side the blockchain. However, if it is affected by bugs or it
inserts incorrect, wrong, or corrupted data, then it would be
necessary not only patch the code outside, but also to fix the
data within the blockchain with the issues of the case.

For cross-chain communication, developers must account
for the issues of each connected blockchain networks, each
falling into one of the previous scenarios. This makes bug
fixing even more difficult in case of multiple permissionless
blockchains.

5 State of the art of blockchain software
verification tools

Several surveys [23, 35–37] show the state of the art and
practice related to blockchain software verification tools.
Blockchain and smart contract verification is more similar
to that of critical software [38] than to the verification of
traditional, desktop software. The main reason is that the

Springer



436 L. Olivieri, F. Spoto

blockchain, beyond its unique data properties (antitamper-
ing, decentralization, distribution), operates in a trustless
environment, where peers do not trust each other. Conse-
quently, code fixing may not be always possible or might be
difficult to apply. Therefore verification tools must also high-
light properties traditionally associated with quality rather
than with safety, as these can have critical implications. In
short, quality also means security in the blockchain context.

Automatic verification techniques can be divided into dy-
namic and static.

According to Chakraborty et al. [39], the most used dy-
namic technique is testing. In general, it executes the soft-
ware and checks whether the execution specifically meets
the expected results. In this way, although it does not exactly
indicate the cause of the issue, it is possible to detect the
presence of bugs, highlighted by wrong results. Most pro-
gramming languages for smart contracts have explicit prim-
itives for dynamic verification of invariants, although there
is still a lack of general frameworks for testing smart con-
tracts. In the case of other blockchain software, the testing
frameworks for general purpose languages are actively used,
such as JUnit for Java. However, according to Destefanis
et al. [10], testing is challenging in the blockchain context.
Namely, its application to a real-world blockchain network
such as main-nets and public test-nets takes relatively long
to run and deploy the code, exposes the code to possible
malicious users, and can be financially expensive in terms of
transaction fees and/or currency consumptions for execution
and deployment of contracts. Instead, testing on local and
private blockchain networks is generally fast and cheap in
terms of fees and real currency used but has limited inter-
action and is not necessarily a realistic scenario. Moreover,
testing has other drawbacks, not strictly related to blockchain
technology: the creation and maintenance of test cases is not
trivial and may require a big effort to define the requirements
that must be covered and to compute the expected results for
each input case. In addition, testing can only show the pres-
ence of bugs but never their absence [40, Ch. 3] because it
can only observe a finite set of finite program executions [41,
Ch.1.4.1].

Static techniques analyze program behaviors and program
components before they are run. Typically, static verification
tools trigger alerts to highlight program components of in-
terest such as instructions with potential errors, bugs, and
known security vulnerabilities. In addition, static verifica-
tion reduces the cost of bug fixing for developers and gives
them the chance to fix bugs and code smells at an earlier
stage [41]. Furthermore, static analysis can be combined with
formal methods to analyze software by exploiting mathemat-
ical theories and by ensuring the presence or absence of cer-
tain code properties, bugs, and vulnerabilities. Notable ex-
amples are abstract interpretation [40], model checking [42],
and theorem proving [43].

Deductive verification techniques can also be applied to
prove the correctness of the system [44]. However, this ap-
proach is not fully automated and typically requires the initial
construction of the proof rules by hand.

Currently, the scenario of verification tools for blockchain
software is mainly focused on smart contracts. In recent
years, smart contract verification has seen a rapid growth:
it started as mainly syntactic checks and evolved into model-
ing and checking program behaviors by using formal meth-
ods [45]. Moreover, several tools [46–48] use formal ways to
represent verification conditions such as Constrained Horn
Clauses (CHCs) [49]. In particular, the popularity of CHCs
is due to the possibility of solving clauses efficiently by us-
ing Satisfiability Modulo Theories (SMT) [50] solvers and of
quickly ascertaining the security of the smart contract, i.e.,
whether the CHCs are satisfiable and the property under ver-
ification is held. However, the main pitfall of this approach
is that, in general, CHC satisfiability is undecidable. There-
fore the analysis execution may not produce a result in some
cases.

Regarding the other part of the blockchain software, i.e.,
the one not strictly related to smart contract frameworks, it
lacks adequate tools [32], in general. Hence it is necessary
to expand the range of tools that identify nontrivial errors
with semantical analysis of the programming languages and
with a formal guarantee that all errors of some category are
found (soundness). However, as stated by Ferrara et al. [51],
the development of formal verification tools based on formal
methods requires a significant theoretical background and
programming skills, even to design and implement a toy tool,
making it difficult for traditional developers and blockchain
practitioners.

6 Challenges, opportunities, and new
directions

The evolution and progress of blockchain technology go
toward a progressive increase in the complexity of the
blockchain ecosystem. As a consequence, ensuring the high
quality and security of software becomes more challenging
every day: it is essential to design automatic verification sys-
tems and use appropriate tools. However, the rapid evolution
of technology does not always allow for the development
of adequate architecture and tools. Moreover, according to
Marijan et al. [23], blockchain-based software development
is still an emerging research discipline; therefore the best
practices and tools for software verification are still under-
developed. In the following, we discuss several topics in the
blockchain verification context.

Springer



Software verification challenges in the blockchain ecosystem 437

Fig. 3 Schema of the proxy
upgrade pattern

6.1 Automatic verification architectures

Software verification of a blockchain ecosystem is nontrivial.
It has all the difficulties of distributed and decentralized sys-
tems, with the typical addition of code immutability. Given
these issues, it is of utmost importance to apply automatic
software verification in the development process to identify
critical bugs that can be exploited by malicious actors and
compromise the blockchain network.

According to Mahdi et al. [30], traditional software
paradigms, such as Software Development Life Cycle
(SDLC), are inadequate for blockchain software develop-
ment due to the problems related to bug fixing and patch
management (see Sect. 4), leading some industrial compa-
nies to adopt inadequate architectures and tools [32]. This
leads to two critical consequences: developers may spend
time investigating bugs that do not exist, losing their faith
in the tool suite, with the risk of removing safe code due
to false positive results; moreover, the verification tools that
do not properly model or support the code can lead to false
negatives, leaving bugs and vulnerability in production and
giving developers a false sense of safety and exposing the
blockchain to high risks.

For this reason, new paradigms and solutions are emerg-
ing. For instance, Marchesini et al. [52] describe a software
development process called Agile Block Chain Dapp Engi-
neering (ABCDE) to gather the requirements and to analyze,
design, develop, test, and deploy blockchain-oriented soft-
ware. ABCDE complements the incremental and iterative
development through boxed iterations, typical of agility, with
more formal tools. Besides modeling interactions among
blockchain-oriented software using UML, it also provides
practices, patterns, and checklists to promote and evaluate
the security of a DApp written in Solidity [53]. Furthermore,
ABCDE was also applied in DApp development for enter-
prise purposes using Hyperledger Fabric [54]. These tech-
niques are related to continuous integration, which allows us
to build and deploy code only if it passes all compilation and
testing requirements.

6.2 Smart contract bug fixing

A key point of blockchain-based software is that data in
blockchain are immutable. Even though smart contracts are
typically immutable data within the blockchain, new bugs
and vulnerabilities are discovered every day. To overcome
this issue, new research and design directions are being ex-
plored. However, they are still in an early stage, and like all
new solutions, they have several drawbacks.

For instance, in permissionless blockchains, such as
Ethereum, ERC-2535 [55] and the Proxy Upgrade Pat-
tern [56] provide a way to extend and upgrade smart contracts
after deployment. The basic idea is that the code of a sin-
gle contract is typically immutable over time, whereas this
is not the case about its state, which can change each time
it is executed. By exploiting this idea it is possible to cre-
ate contracts that dynamically target other contracts through
cross-contract invocations. In this way, target contracts can
be patched over time with the possibility of fully replacing
their code (see Fig. 3). These solutions allow us to patch the
code but have some drawbacks:

• Higher costs. Splitting a single contract into multiple sub-
contracts is more expensive in terms of gas [14], transac-
tion, and deployment fees.

• Trust in a third party. To replace a buggy contract with a
new version, we need to change the target. This operation
cannot be done by anyone, since an attacker could other-
wise target a malicious contract, leading to catastrophic
consequences. For this reason, it is necessary to program-
matically create an admin user contract that manages these
changes. However, this means trusting a third party, which
is not always possible in the blockchain, and which in
some ways goes also against the trustless principle of the
blockchain.

• Unavoidable attacks. While it is possible to apply post-
deploy remediation patches by leveraging these paradigms,
bugs, and vulnerabilities must first be detected. Conse-
quently, although patchable, the contracts are exposed to
attackers without timely detection.

Springer



438 L. Olivieri, F. Spoto

• Unexpected Behaviors. The changes after the code update
can have a significant impact on contract behaviors. If
users do not notice these changes, then they may incur into
critical compatibility issues.

Instead, in some permissioned blockchains, such as Hy-
perledger Fabric, smart contracts are not always immutable,
but only the transactions that interact with them are. Hence
these blockchains provide a process for upgrading smart con-
tract code [57]. In this way, target contracts and blockchain
global state can be patched over time, while the transaction
and event log remains immutable. However, this presents the
same problems as in the previous case and also typically re-
quires governance to manage permission policies to execute
the upgrate process.

Finally, [58] investigates an example of automatic verifi-
cation over time. It proposes an on-chain code verification
approach, where the blockchain verifies the code upon de-
ployment. In this way, it is possible to make software verifica-
tion mandatory, being performed directly by the blockchain,
and avoid untrusted smart contract executions. This architec-
ture allows the same blockchain to reject the code that does
not pass a set of checks. Therefore verification becomes part
of the consensus mechanism to ensure that all network nodes
have reached the same verification result. A lazy reverifica-
tion approach is also proposed to recheck the code already de-
ployed before its execution, whenever the verification checks
are updated, to provide an automatic verification over time.
However, this kind of solution suffers from some issues:

• Resource consumption. Performing verification directly on
the blockchain can slow down the blockchain network and
burn computational resources. Typically, verification tools
that apply formal methods to detect semantic properties
may be computationally expensive, sometimes without af-
fecting the precision of the analysis [59]. Therefore they
must be adequately designed and optimized for efficiency
to be applied in an on-chain verification architecture.

• Freezing of smart contracts. Reverification might deny
the execution of bugged, already deployed contracts. This
leads to freezing smart contracts, which requires some
unblocking and patching mechanisms. Moreover, freez-
ing smart contracts also freezes the funds held in those
contracts. Hence it is also necessary to create nontrivial
withdrawal strategies.

• Denial of network service. A lazy approach relies on on-
demand reverification for scaling. However, this might not
be the best choice. Theoretically, an attacker can send many
requests to unverified contracts and create a denial of ser-
vice of the network due to too many verification requests
that degrade the network performance.

6.3 Verification tools

In addition to ensuring automatic verification, it is also nec-
essary to design suitable verification tools to guarantee the
quality and security of the code. This is not easy, since
blockchain technology increases in complexity over time
and the adoption of Turing-complete languages introduces
the risk of all sorts of bugs [9, 60, 61].

In the following, we highlight several shortcomings of the
state-of-the-art verification tools.

6.3.1 Cross-component issues

In the latest years, there has been significant development
of verification tools for verifying smart contracts [62]. Cur-
rently, the majority of verification tools for smart contracts
target individual contracts only. However, the most critical
and challenging issues to detect are those that occur through
the interaction of multiple contracts. Notorious and harmful
attacks on smart contracts are related to cross-contract invo-
cations such as reentrancy, parity wallet bug, and untrusted
cross-contract invocations. Specifically, the reentrancy at-
tack [60] happens because a smart contract calls a method
in other smart contracts, assuming a specific, standard im-
plementation of that method. However, malicious users can
redefine the method to execute sensitive code on behalf of the
caller, leading in this specific case to the repeated (reentrant)
execution of money transfers. The parity wallet bug [10] im-
plies the accidental alteration of smart contract libraries de-
ployed in blockchain, making the funds of smart contracts
inaccessible, depending on that library. The first case of par-
ity wallet bug was accidentally triggered by an Ethereum user
who deleted a smart contract library, resulting in the freezing
of approximately $150 million worth of Ethereum cryptocur-
rency. Instead, untrusted cross-contract invocations [63, 64]
occur when a contract can invoke a function from another
contract, but in the code the target contract to be called is not
hardcoded and can be modified by user inputs. In this case, a
malicious user could change the target by redirecting the call
to a malicious contract that can improperly retain economic
assets or execute arbitrary code and returning arbitrary val-
ues. It is a more general scenario than reentrancy, which can
be seen as a particular case of this problem.

In general, all these problems arise because smart con-
tracts installed in a blockchain are exposed to an open envi-
ronment, where users can dynamically install new smart con-
tracts and make them interact. Therefore programmers must
write very defensive code, since very little can be assumed
about the context where their code will be executed. This
is completely different from the case of traditional applica-
tions, which are meant to be complete software components
and can be analyzed as such. The situation is similar to the

Springer



Software verification challenges in the blockchain ecosystem 439

development of a library that must integrate inside still un-
known environments with the difference that smart contracts
carry money and their failure might imply the lost of those
funds.

As reported in Sect. 3, smart contracts are just the tip
of the iceberg of the blockchain ecosystem. Therefore it is
also necessary to consider problems that arise from the in-
teractions of other components. For instance, if we consider
a cross-layer, then an interesting issue is that of nondeter-
minism [32, 33]. Typically, issues of nondeterminism affect
the consensus layer and happen when despite executing the
same transactions, the result of the operations is different in
the actors involved in the validation, leading to failed con-
sensus and the consequent failure of the transactions. This
may be due to various factors, including the execution of
smart contracts at the application level containing functions
that can return different values depending on who executes
the code (such as random value generators or system calls)
and that therefore lead to different blockchain states. In the
worst cases, this can lead to the loss of money due to the
failure of transactions in the case of transaction fees or to the
denial of service of contracts or parts of them due to failure
to reach consensus.

Other cross-component issues, such as numerical over-
flows, concern the whole ecosystem, spanning from the
BoS [65] up to smart contracts [66, 67] and cross-chain
applications [68].

6.3.2 Multilanguage issues

The blockchain ecosystem is heterogeneous in terms of soft-
ware. Various components can be implemented in different
programming languages, ranging from general-purpose lan-
guages (such as C++, Go, and Java) to domain-specific lan-
guages (such as Solidity, BitcoinScript, and Michelson). Ac-
cording to Negrini et al. [69], the software of the blockchain
ecosystem is increasingly divided into separate subprograms,
interacting with each other and choosing the best language
for the task at hand. In terms of verification, this adds another
layer of complexity to the analysis.

Namely, from a program analysis perspective, the use of
many languages is challenging because there is a lack of
techniques that work with different languages at the same
time [70]. Moreover, the adoption of general-purpose lan-
guages implies extensive use of third-party libraries and
frameworks, representing a challenge for verification, since
customers expect the analysis to be aware of such libraries,
whereas the effort of modeling even a single framework is
high [71].

In general, although it is nontrivial to manage the verifi-
cation of multilanguage code as regards the development
of smart contracts, the problem of multilanguage within
a single blockchain is often mitigated. Indeed, there are

several blockchains that support frameworks for the de-
velopment of smart contracts exploiting the metaprogram-
ming paradigm [72]. Metaprogramming means developing
smart contracts in different high-level languages that all
compile to a single, normally low-level target language.
In this way, it is possible to switch among popular high-
level languages based on the programmer’s preference and
project requirements, keeping the low-level code compat-
ible. Some notable examples are the languages Solidity
and Vyper, which can be compiled into EVM bytecode for
Ethereum [14] and IoTA [73, 74]; Pythonic and TypeScript-
like languages provided by Archetype [75], LIGO [76], and
SmartPy [77], which compile into Michelson [78] for Tezos;
and other high-level general-purpose languages supporting
WebAssembly [79] compilation for blockchains such as Cos-
mos [80], Polkadot [81, 82], and IoTA [83].

In terms of verification, this implies that it is sufficient
to analyze the low-level code only, rather than necessarily
supporting all high-level language variants. According to
Olivieri et al. [64], smart contract verification at low level
provides different advantages, compared with high-level lan-
guages: (i) it is more faithful, as it analyzes the code actually
executed (or closer to), (ii) it enables the analysis of code
when source code is not available (for instance, for smart
contracts already deployed in blockchain), (iii) it avoids re-
dundant work that the compiler has already performed, such
as name resolution, type checking, template/generics instan-
tiation, and (iv) it leverages the transformation of high-level
constructs into low-level code, already performed by the
compiler.

However, the verification of low-level languages carries
several pitfalls with it, mainly due to the loss of information,
making it difficult to understand, reverse engineer, analyze,
and inspect the code. Typically, high-level languages feature
compact instructions, types, and annotations. Instead, low-
level languages have a restricted instruction set and make all
operations performed during the execution explicit, losing
expressiveness and increasing code verbosity. In addition,
compilation problems may occur when the semantics of some
high-level instruction may not be easily expressed in terms
of low-level instructions (see Olivieri et al. [64] for examples
in Tezos).

6.3.3 Lack of formal definitions, notions, and proofs

Formalization allows us to rigorously define the problems
and vulnerabilities of the blockchain. This allows tools that
use formal methods to automatically identify them in pro-
grams, helping developers to avoid any error or inconsistency
that can lead to critical problems. However, verifying correct-
ness is a nontrivial task, and sometimes properties are taken
for granted without thorough verification and formal proofs.
Consider, for instance, the idea of gas for smart contracts,

Springer



440 L. Olivieri, F. Spoto

as introduced by Ethereum [14]. When a smart contract is
executed, it starts with an amount of gas consumed during
execution. Depending on the gas cost model, the execution
of some instructions burns gas. If gas is over before the end
of the execution, then the latter will be aborted. The concept
of gas is extremely important in smart contract execution
because it copes with the risk of nontermination. However,
it took some time before in-depth studies proved the correct-
ness of the most popular gas models. According to Genet et
al. [84], a gas model works only if it is formally guaranteed
that the gas is consumed in every situation where nontermi-
nation may occur. As reported by the authors, this was not
immediately established from the specification given by the
Ethereum Yellow Paper [85], and only later it was proved
that no program can execute indefinitely without consuming
gas in the Ethereum execution model.

6.3.4 Lack of coverage in the layers

Currently, tools and studies regarding blockchain verification
are mainly focused on the application layer. However, also
the other blockchain layers contain software that is required
to be verified and whose properties must be proven. Regard-
ing these, the state-of-the-art presents a strong deficiency, not
to mention the verification of interlayer interactions which
is almost nonexistent. For instance, the consensus layer is
of primary importance. It is one of the pillars of blockchain
because it allows us to have networks where participants do
not necessarily have to trust each other. However, vulner-
abilities or bugs in their code could critically compromise
the entire stability of the blockchain ecosystem. As far as
we know, only a few works regarding consensus protocols
are present in the scientific literature. Specifically, Kiayias
et al. [86] provides a noninteractive theorem prover for PoW
consensus like Bitcoin and Ethereum blockchains. Maung et
al. [87] describe a formal approach based on model check-
ing for the verification of the PoS consensus of Tendermint.
Also, Yoo et al. [88] deal with the verification of the consen-
sus protocol of Stellar [89] through model checking. Finally,
Kawahara [90] describes a solution based on an SMT solver
for the consensus protocols of Hyperledger Fabric.

Every day new blockchains are created, and potentially
each of them can implement consensus protocols in a dif-
ferent way, which requires careful verification. The same
principle can be applied to the other layers that manage data
and information with different data structures, algorithms,
and code implementations.

6.3.5 Compliance with laws and regulations

A rapid evolution of technological innovation does not al-
ways go hand to hand with legislation and regulations pro-
vided by various governments and countries. In this regard,

blockchain technology is no exception. Although its first ap-
pearance with Bitcoin dates back to more than a decade ago,
only recently are steps taken to regulate these technologies
in countries such as those of the European Union (EU) de-
spite that to apply blockchain technology in certain contexts,
implementations must comply with laws and regulations.

For instance, the recent EU Data Act [91] forces to provide
details on how nonpersonal data, metadata, and personal data
are managed (including GDPR principles [92]) and speci-
fies how smart contracts must be regulated for data shar-
ing agreements. In particular, it sets essential requirements
that smart contracts must comply with, whose satisfaction
poses nontrivial challenges [93]. Haque et al. [94] provide a
systematic literature review regarding blockchain and solu-
tions compliant with personal data regulations. Their finding
indicates that studies about these topics have increased in
number. In particular, data deletion and modification seems
to be blockchain’s most discussed compliance issue, also
highlighting that IoT and healthcare domains are the most
discussed research areas. Instead, Molina et al. [95] design
principles for GDPR-compliant blockchain solutions, identi-
fying and discussing the challenges of GDPR requirements.

To the best of our knowledge, only Tauqeer et al. [96]
dealt with program verification of such issues, proposing a
solution based on knowledge graphs and semantically mod-
eled informed consent [97] for GDPR compliance of smart
contracts. However, other existing tools and techniques based
on abstract interpretation for traditional software are present
in the literature and could be adapted to the blockchain con-
text [98–100].

7 Related work

Most of the literature about challenges and new research
directions for the blockchain ecosystem is about smart con-
tracts [101–106]. In these works, discussions related to soft-
ware verification are often marginal or absent in favor of
other design and development aspects.

Regarding software verification challenges, the literature
is poor and presents only a few papers. Singh et al. [107] and
Krichen et al. [108] propose reviews, where they present and
analyze the state of the art concerning the formalization of
smart contracts. However, they aim to highlighting the pop-
ularity, pros, and cons of each kind of formal methods. Dif-
ferently, Marijan et al. [109] provide a more detailed and ex-
haustive analysis, including the different layers of blockchain
software. Li et al. [110] and Islam et al. [111] describe
common blockchain security issues but without highlighting
challenges concerning verification tools and architectures.
Magazzeni et al. [112] explore validation and verification
challenges, focusing on legal smart contracts and natural
languages. Koul [113] proposes an overview of challenges,

Springer



Software verification challenges in the blockchain ecosystem 441

strictly related to blockchain testing but without describing
implementations based on formal methods.

8 Conclusions

Blockchain technology has created a new programming con-
text, which encompasses several technologies such as cryp-
tography, distributed systems, and programming languages.
Although formal verification of software has a long history
in computer science, its application to the blockchain context
leads to new research and implementation challenges due to
the lack of fundamental theory, immature verification archi-
tectures and tools, and missing standards. However, these
issues have attracted the attention of academia, companies,
and governments, which keep investing in their investiga-
tion. The evolution of blockchain technology in the coming
years will inevitably affect the information sector, which is
bound to bring new changes to our lives. For this reason, it
is necessary to work in different directions, seeking the best
solutions to ensure safety of this technology.

Funding Open access funding provided by Università degli Studi
di Verona within the CRUI-CARE Agreement. Work partially sup-
ported by SERICS (PE00000014 – CUP H73C2200089001) and iN-
EST (ECS00000043 – CUP H43C22000540006) funded by PNRR Next
Generation EU.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system.
https://bitcoin.org/bitcoin.pdf (2008). Accessed: 06/2023

2. Bonnici, V., Arceri, V., Diana, A., Bertini, F., Iotti, E., Levante,
A., Bernini, V., Neviani, E., Dal Palù, A.: Biochain: towards a
platform for securely sharing microbiological data. In: Proceed-
ings of the 27th International Database Engineered Applications
Symposium. IDEAS ’23, pp. 59–63. Association for Computing
Machinery, New York (2023). https://doi.org/10.1145/3589462.
3589501

3. Kar, A.K., Navin, L.: Diffusion of blockchain in insurance in-
dustry: an analysis through the review of academic and trade
literature. Telemat. Inform. 58, 101532 (2021). https://doi.org/
10.1016/j.tele.2020.101532

4. Mühle, A., Grüner, A., Gayvoronskaya, T., Meinel, C.: A survey
on essential components of a self-sovereign identity. Comput. Sci.
Rev. 30, 80–86 (2018). https://doi.org/10.1016/j.cosrev.2018.10.
002

5. Saberi, S., Kouhizadeh, M., Sarkis, J., Shen, L.: Blockchain tech-
nology and its relationships to sustainable supply chain manage-
ment. Int. J. Prod. Res. 57(7), 2117–2135 (2019). https://doi.org/
10.1080/00207543.2018.1533261

6. Al-Jaroodi, J., Mohamed, N.: Blockchain in industries: a survey.
IEEE Access 7, 36500–36515 (2019). https://doi.org/10.1109/
ACCESS.2019.2903554

7. Porru, S., Pinna, A., Marchesi, M., Tonelli, R.: Blockchain-
oriented software engineering: challenges and new directions.
In: 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C), pp. 169–171 (2017). https://
doi.org/10.1109/icse-c.2017.142

8. Bosu, A., Iqbal, A., Shahriyar, R., Chakraborty, P.: Understanding
the motivations, challenges and needs of blockchain software de-
velopers: a survey. Empir. Softw. Eng. 24(4), 2636–2673 (2019).
https://doi.org/10.1007/s10664-019-09708-7

9. Popper, N.: A hacking of more than $50 million dashes hopes in
the world of virtual currency. The New York Times. June 17th
(2016)

10. Destefanis, G., Marchesi, M., Ortu, M., Tonelli, R., Brac-
ciali, A., Hierons, R.: Smart contracts vulnerabilities: a call
for blockchain software engineering? In: 2018 International
Workshop on Blockchain Oriented Software Engineering (IW-
BOSE), pp. 19–25 (2018). https://doi.org/10.1109/IWBOSE.
2018.8327567

11. Lantz, L., Cawrey, D.: Mastering Blockchain: Unlocking the
Power of Cryptocurrencies, Smart Contracts, and Decentralized
Applications. O’Reilly (2020)

12. Antonopoulos, A.M.: Mastering Bitcoin: Programming the Open
Blockchain, 2nd edn. O’Reilly, Sebastopol (2017)

13. Buterin, V.: Ethereum whitepaper. https://ethereum.org/en/
whitepaper/ (2013). Accessed: 06/2023

14. Antonopoulos, A.M., Wood, G.: Mastering Ethereum: Building
Smart Contracts and Dapps. O’Reilly, Sebastopol (2018)

15. Goodman, L.M.: Tezos whitepaper (2014). https://tezos.com/
whitepaper.pdf

16. Allombert, V., Bourgoin, M., Tesson, J.: Introduction to the Tezos
blockchain. In: 2019 International Conference on High Perfor-
mance Computing and Simulation (HPCS), pp. 1–10 (2019).
https://doi.org/10.1109/hpcs48598.2019.9188227

17. Hyperledger: Hyperledger fabric documentation. https://
hyperledger-fabric.readthedocs.io/en/release-2.2/blockchain.
html#what-is-hyperledger-fabric. Accessed: 10/2022

18. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis,
K., De Caro, A., Enyeart, D., Ferris, C., Laventman, G., Manevich,
Y., Muralidharan, S., Murthy, C., Nguyen, B., Sethi, M., Singh,
G., Smith, K., Sorniotti, A., Stathakopoulou, C., Vukolić, M.,
Cocco, S.W., Yellick, J.: Hyperledger fabric: a distributed oper-
ating system for permissioned blockchains. In: Proceedings of
the Thirteenth EuroSys Conference. EuroSys ’18. Association
for Computing Machinery, New York (2018). https://doi.org/10.
1145/3190508.3190538

19. Tendermint: What is tendermint. https://docs.tendermint.com/
v0.33/introduction/what-is-tendermint.html (2020). Accessed:
10/2022

20. Buchman, E.: Tendermint: Byzantine fault tolerance in the age of
blockchains. PhD thesis, University of Guelph (2016)

21. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals
problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982).
https://doi.org/10.1145/357172.357176

22. Aggarwal, S., Kumar, N.: Introduction to blockchain. In: The
Blockchain Technology for Secure and Smart Applications
Across Industry Verticals. Advances in Computers, vol. 121,
pp. 211–226. Elsevier, Amsterdam (2021)

23. Marijan, D., Lal, C.: Blockchain verification and validation: tech-
niques, challenges, and research directions. Comput. Sci. Rev. 45,
100492 (2022). https://doi.org/10.1016/j.cosrev.2022.100492

Springer

http://creativecommons.org/licenses/by/4.0/
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/3589462.3589501
https://doi.org/10.1145/3589462.3589501
https://doi.org/10.1016/j.tele.2020.101532
https://doi.org/10.1016/j.tele.2020.101532
https://doi.org/10.1016/j.cosrev.2018.10.002
https://doi.org/10.1016/j.cosrev.2018.10.002
https://doi.org/10.1080/00207543.2018.1533261
https://doi.org/10.1080/00207543.2018.1533261
https://doi.org/10.1109/ACCESS.2019.2903554
https://doi.org/10.1109/ACCESS.2019.2903554
https://doi.org/10.1109/icse-c.2017.142
https://doi.org/10.1109/icse-c.2017.142
https://doi.org/10.1007/s10664-019-09708-7
https://doi.org/10.1109/IWBOSE.2018.8327567
https://doi.org/10.1109/IWBOSE.2018.8327567
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://tezos.com/whitepaper.pdf
https://tezos.com/whitepaper.pdf
https://doi.org/10.1109/hpcs48598.2019.9188227
https://hyperledger-fabric.readthedocs.io/en/release-2.2/blockchain.html#what-is-hyperledger-fabric
https://hyperledger-fabric.readthedocs.io/en/release-2.2/blockchain.html#what-is-hyperledger-fabric
https://hyperledger-fabric.readthedocs.io/en/release-2.2/blockchain.html#what-is-hyperledger-fabric
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538
https://docs.tendermint.com/v0.33/introduction/what-is-tendermint.html
https://docs.tendermint.com/v0.33/introduction/what-is-tendermint.html
https://doi.org/10.1145/357172.357176
https://doi.org/10.1016/j.cosrev.2022.100492


442 L. Olivieri, F. Spoto

24. Piscitello, D.M., Chapin, A.L.: Open Systems Networking:
TCP/IP and OSI. Addison-Wesley Professional Computing Se-
ries. Addison-Wesley Publishing Company, Reading (1993)

25. Robinson, P.: Survey of crosschain communications protocols.
Comput. Netw. 200, 108488 (2021). https://doi.org/10.1016/j.
comnet.2021.108488

26. Hassan, S., De Filippi, P.: Decentralized autonomous organiza-
tion. Int. Policy Rev. 10(2), 1–10 (2021). https://doi.org/10.14763/
2021.2.1556

27. Min, T., Wang, H., Guo, Y., Cai, W.: Blockchain games: a survey.
In: 2019 IEEE Conference on Games (CoG), pp. 1–8 (2019).
https://doi.org/10.1109/cig.2019.8848111

28. Min, T., Cai, W.: A security case study for blockchain games. In:
2019 IEEE Games, Entertainment, Media Conference (GEM),
pp. 1–8 (2019). https://doi.org/10.1109/gem.2019.8811555

29. Fowler, M., Foemmel, M.: Continuous Integration (2006)
30. Mahdi, H., Miraz, M.A.: Blockchain enabled smart contract based

applications: deficiencies with the software development life cycle
models. Baltica 33, 101–116 (2020)

31. Bosu, A., Iqbal, A., Shahriyar, R., Chakraborty, P.: Understanding
the motivations, challenges and needs of blockchain software de-
velopers: a survey. Empir. Softw. Eng. 24(4), 2636–2673 (2019).
https://doi.org/10.1007/s10664-019-09708-7

32. Olivieri, L., Tagliaferro, F., Arceri, V., Ruaro, M., Negrini, L.,
Cortesi, A., Ferrara, P., Spoto, F., Talin, E.: Ensuring determinism
in blockchain software with GoLiSA: an industrial experience
report. In: Proceedings of the 11th ACM SIGPLAN International
Workshop on the State of the Art in Program Analysis. SOAP
2022, pp. 23–29. Association for Computing Machinery, New
York (2022). https://doi.org/10.1145/3520313.3534658

33. Olivieri, L., Negrini, L., Arceri, V., Tagliaferro, F., Ferrara, P.,
Cortesi, A., Spoto, F.: Information flow analysis for detecting
non-determinism in blockchain. In: Ali, K., Salvaneschi, G. (eds.)
37th European Conference on Object-Oriented Programming
(ECOOP 2023). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 263, pp. 1–25. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Dagstuhl (2023). https://doi.org/10.4230/LIPIcs.
ECOOP.2023.23

34. Interchain Foundation: Cosmos network. https://cosmos.network/
(2024). Accessed 04/2024

35. Liu, J., Liu, Z.: A survey on security verification of blockchain
smart contracts. IEEE Access 7, 77894–77904 (2019). https://
doi.org/10.1109/ACCESS.2019.2921624

36. Zhang, R., Xue, R., Liu, L.: Security and privacy on blockchain.
ACM Comput. Surv. 52(3), 1–34 (2019). https://doi.org/10.1145/
3316481

37. Guo, H., Yu, X.: A survey on blockchain technology and its
security. Blockchain: Res. Appl. 3(2), 100067 (2022). https://doi.
org/10.1016/j.bcra.2022.100067

38. Julien Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne,
L., Miné, A., Rival, X.: Static analysis by abstract interpretation of
embedded critical software. SIGSOFT Softw. Eng. Notes 36(1),
1–8 (2011). https://doi.org/10.1145/1921532.1921553

39. Chakraborty, P., Shahriyar, R., Iqbal, A., Bosu, A.: Understand-
ing the software development practices of blockchain projects:
a survey. In: Proceedings of the 12th ACM/IEEE International
Symposium on Empirical Software Engineering and Measure-
ment. ESEM ’18. Association for Computing Machinery, New
York (2018). https://doi.org/10.1145/3239235.3240298

40. Patrick, C.: Principles of Abstract Interpretation. MIT Press Aca-
demic, Cambridge (2021)

41. Rival, X., Yi, K.: Introduction to Static Analysis: An Abstract
Interpretation Perspective. Mit Press, Cambridge (2020)

42. Clarke, E.M. Jr., Grumberg, O., Peled, D.A.: Model Checking.
MIT Press, Cambridge (1999)

43. Gallier, J.H.: Logic for Computer Science: Foundations of Au-
tomatic Theorem Proving. Courier Dover Publications, Mineola
(2015)

44. Hähnle, R., Huisman, M.: Deductive software verification: from
pen-and-paper proofs to industrial tools. In: Computing and Soft-
ware Science: State of the Art and Perspectives, pp. 345–373
(2019). https://doi.org/10.1007/978-3-319-91908-9_18

45. Murray, Y., Anisi, D.A.: Survey of formal verification methods
for smart contracts on blockchain. In: 2019 10th IFIP Interna-
tional Conference on New Technologies, Mobility and Security
(NTMS), pp. 1–6 (2019). https://doi.org/10.1109/NTMS.2019.
8763832

46. Schneidewind, C., Grishchenko, I., Scherer, M., Maffei, M.:
eThor: practical and provably sound static analysis of Ethereum
smart contracts. In: Proceedings of the 2020 ACM SIGSAC Con-
ference on Computer and Communications Security. CCS ’20,
pp. 621–640. Association for Computing Machinery, New York
(2020). https://doi.org/10.1145/3372297.3417250

47. Wesley, S., Christakis, M., Navas, J.A., Trefler, R., Wüstholz,
V., Gurfinkel, A.: Verifying solidity smart contracts via com-
munication abstraction in smartACE. In: Finkbeiner, B., Wies,
T. (eds.) Verification, Model Checking, and Abstract Interpre-
tation, pp. 425–449. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-94583-1_21

48. Otoni, R., Marescotti, M., Alt, L., Eugster, P., Hyvärinen, A.,
Sharygina, N.: A solicitous approach to smart contract verifica-
tion. ACM Trans. Priv. Secur. 26(2), 1–28 (2023). https://doi.org/
10.1145/3564699

49. Hoare, C.A.R.: An axiomatic basis for computer programming.
Commun. ACM 12(10), 576–580 (1969). https://doi.org/10.1145/
363235.363259

50. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Hand-
book of Model Checking, pp. 305–343 (2018)

51. Ferrara, P., Negrini, L., Arceri, V., Cortesi, A.: Static analysis for
dummies: experiencing LiSA. In: Proceedings of the 10th ACM
SIGPLAN International Workshop on the State of the Art in Pro-
gram Analysis. Soap 2021, pp. 1–6. Association for Computing
Machinery, New York (2021). https://doi.org/10.1145/3460946.
3464316

52. Marchesi, L., Marchesi, M., Tonelli, R.: ABCDE – agile block
chain DApp engineering. Blockchain: Res. Appl. 1(1), 100002
(2020). https://doi.org/10.1016/j.bcra.2020.100002

53. Marchesi, L., Marchesi, M., Pompianu, L., Tonelli, R.: Secu-
rity checklists for Ethereum smart contract development: patterns
and best practices (2020). https://doi.org/10.48550/arXiv.2008.
04761

54. Baralla, G., Pinna, A., Corrias, G.: Ensure traceability in Euro-
pean food supply chain by using a blockchain system. In: 2019
IEEE/ACM 2nd International Workshop on Emerging Trends
in Software Engineering for Blockchain (WETSEB), pp. 40–47
(2019). https://doi.org/10.1109/WETSEB.2019.00012

55. Mudge, N.: ERC-2535: diamonds, multi-facet proxy. https://eips.
ethereum.org/EIPS/eip-2535. Accessed: 06/2023

56. OpenZeppelin: Proxy upgrade pattern. https://docs.openzeppelin.
com/upgrades-plugins/1.x/proxies. Accessed: 06/2023

57. Fabric, H.: Upgrade a chaincode. https://hyperledger-fabric.
readthedocs.io/en/release-2.5/chaincode_lifecycle.html#
upgrade-a-chaincode (2023). Accessed 02/2024

58. Olivieri, L., Spoto, F., Tagliaferro, F.: On-chain smart con-
tract verification over tendermint. In: 5th Wokshop on Trusted
Smart Contracts (WTSC’21). Lecture Notes in Computer Sci-
ence, vol. 12676, pp. 333–347. Springer, Berlin (2021). https://
doi.org/10.1007/978-3-662-63958-0_28

59. Arceri, V., Dolcetti, G., Zaffanella, E.: Speeding up static analysis
with the split operator. In: Proceedings of the 12th ACM SIG-
PLAN International Workshop on the State of the Art in Program

Springer

https://doi.org/10.1016/j.comnet.2021.108488
https://doi.org/10.1016/j.comnet.2021.108488
https://doi.org/10.14763/2021.2.1556
https://doi.org/10.14763/2021.2.1556
https://doi.org/10.1109/cig.2019.8848111
https://doi.org/10.1109/gem.2019.8811555
https://doi.org/10.1007/s10664-019-09708-7
https://doi.org/10.1145/3520313.3534658
https://doi.org/10.4230/LIPIcs.ECOOP.2023.23
https://doi.org/10.4230/LIPIcs.ECOOP.2023.23
https://cosmos.network/
https://doi.org/10.1109/ACCESS.2019.2921624
https://doi.org/10.1109/ACCESS.2019.2921624
https://doi.org/10.1145/3316481
https://doi.org/10.1145/3316481
https://doi.org/10.1016/j.bcra.2022.100067
https://doi.org/10.1016/j.bcra.2022.100067
https://doi.org/10.1145/1921532.1921553
https://doi.org/10.1145/3239235.3240298
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1109/NTMS.2019.8763832
https://doi.org/10.1109/NTMS.2019.8763832
https://doi.org/10.1145/3372297.3417250
https://doi.org/10.1007/978-3-030-94583-1_21
https://doi.org/10.1007/978-3-030-94583-1_21
https://doi.org/10.1145/3564699
https://doi.org/10.1145/3564699
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/3460946.3464316
https://doi.org/10.1145/3460946.3464316
https://doi.org/10.1016/j.bcra.2020.100002
https://doi.org/10.48550/arXiv.2008.04761
https://doi.org/10.48550/arXiv.2008.04761
https://doi.org/10.1109/WETSEB.2019.00012
https://eips.ethereum.org/EIPS/eip-2535
https://eips.ethereum.org/EIPS/eip-2535
https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies
https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies
https://hyperledger-fabric.readthedocs.io/en/release-2.5/chaincode_lifecycle.html#upgrade-a-chaincode
https://hyperledger-fabric.readthedocs.io/en/release-2.5/chaincode_lifecycle.html#upgrade-a-chaincode
https://hyperledger-fabric.readthedocs.io/en/release-2.5/chaincode_lifecycle.html#upgrade-a-chaincode
https://doi.org/10.1007/978-3-662-63958-0_28
https://doi.org/10.1007/978-3-662-63958-0_28


Software verification challenges in the blockchain ecosystem 443

Analysis. SOAP 2023, pp. 14–19. Association for Computing
Machinery, New York (2023). https://doi.org/10.1145/3589250.
3596141

60. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on
Ethereum smart contracts (SoK). In: Maffei, M., Ryan, M. (eds.)
Principles of Security and Trust, pp. 164–186. Springer, Berlin
(2017). https://doi.org/10.1007/978-3-662-54455-6_8

61. Yamashita, K., Nomura, Y., Zhou, E., Pi, B., Jun, S.: Potential
risks of hyperledger fabric smart contracts. In: 2019 IEEE Inter-
national Workshop on Blockchain Oriented Software Engineer-
ing (IWBOSE), pp. 1–10 (2019). https://doi.org/10.1109/iwbose.
2019.8666486

62. Barboni, M., Morichetta, A., Polini, A.: Smart contract testing:
challenges and opportunities. In: Proceedings of the 5th Interna-
tional Workshop on Emerging Trends in Software Engineering for
Blockchain. WETSEB ’22, pp. 21–24. Association for Computing
Machinery, New York (2023). https://doi.org/10.1145/3528226.
3528370

63. Olivieri, L., Jensen, T., Negrini, L., Spoto, F.: MichelsonLiSA:
a static analyzer for Tezos. In: 2023 IEEE International Confer-
ence on Pervasive Computing and Communications Workshops
and Other Affiliated Events (PerCom Workshops), pp. 80–85
(2023). https://doi.org/10.1109/PerComWorkshops56833.2023.
10150247

64. Olivieri, L., Negrini, L., Arceri, V., Jensen, T., Spoto, F.: Design
and implementation of static analyses for Tezos smart contracts.
Distrib. Ledger Technol. (2024). Just Accepted. https://doi.org/
10.1145/3643567

65. MITRE: CVE-2010-5139. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2010-5139 (2010). Accessed: 06/2023

66. MITRE: CVE-2018-11687. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2018-11687 (2018). Accessed:
06/2023

67. MITRE: CVE-2018-10299. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2018-10299 (2018). Accessed:
06/2023

68. Lv, Z., Wu, D., Yang, W., Duan, L.: Attack and protection schemes
on fabric isomorphic crosschain systems. Int. J. Distrib. Sens.
Netw. 18(1), 15501477211059945 (2022)

69. Negrini, L., Ferrara, P., Arceri, V., Cortesi, A.: Lisa: a generic
framework for multilanguage static analysis. In: Proceedings of
1st Challenges of Software Verification (2023). https://doi.org/
10.1007/978-981-19-9601-6_2

70. Buro, S., Crole, R., Mastroeni, I.: On multi-language abstraction:
towards a static analysis of multi-language programs. Form. Meth-
ods Syst. Des., 1–35 (2023). https://doi.org/10.1007/s10703-022-
00405-8

71. Ferrara, P., Negrini, L.: Sarl: OO framework specification for
static analysis. In: Software Verification, pp. 3–20. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-63618-0_1

72. Bartoletti, M., Benetollo, L., Bugliesi, M., Crafa, S., Sasso, G.D.,
Pettinau, R., Pinna, A., Piras, M., Rossi, S., Salis, S., et al.: Smart
contract languages: a comparative analysis (2024). arXiv preprint
arXiv:2404.04129. https://doi.org/10.48550/arXiv.2404.04129

73. IOTA: EVM smart contracts. https://wiki.iota.org/isc/getting-
started/languages-and-vms/#evm-smart-contracts (2024). Ac-
cessed 02/2024

74. Alshaikhli, M., Elfouly, T., Elharrouss, O., Mohamed, A., Ot-
takath, N.: Evolution of Internet of Things from blockchain to
IOTA: a survey. IEEE Access 10, 844–866 (2021). https://doi.
org/10.1109/ACCESS.2021.3138353

75. ArcheType. https://archetype-lang.org/ (2024). Accessed
04/2024

76. LIGO: LIGO documentation. https://ligolang.org/ (2024). Ac-
cessed 04/2024

77. SmartPy. https://smartpy.io/docs/ (2024). Accessed 04/2024

78. Nomadic Labs: Michelson: the language of smart con-
tracts in Tezos. https://tezos.gitlab.io/active/michelson.html#
michelson-the-language-of-smart-contracts-in-tezos (2023). Ac-
cessed 04/2023

79. World Wide Web Consortium: WebAssembly overview. https://
webassembly.org (2024). Accessed 04/2024

80. CosmWasm: CosmWasm book. https://book.cosmwasm.com/
(2024). Accessed 04/2024

81. Parity Technologies: Ink! documentation. https://paritytech.
github.io/ink-docs/why-rust-for-smart-contracts (2024). Ac-
cessed 04/2024

82. Web3 Foundation: Polkadot network. https://polkadot.network/
(2024). Accessed 04/2024

83. IOTA: Wasm VM for ISC. https://wiki.iota.org/isc/getting-
started/languages-and-vms/#wasm-vm-for-isc (2024). Accessed
02/2024

84. Genet, T., Jensen, T., Sauvage, J.: Termination of Ethereum’s
smart contracts. In: Proceedings of the 17th International Joint
Conference on e-Business and Telecommunications – SECRYPT,
pp. 39–51. SciTePress, Setúbal (2020). INSTICC. https://doi.org/
10.5220/0009564100390051

85. Wood, G., et al.: Ethereum: a secure decentralised generalised
transaction ledger. Ethereum Proj. Yellow Pap. 151(2014), 1–32
(2014)

86. Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs
of proof-of-work. In: Financial Cryptography and Data Se-
curity: 24th International Conference, FC 2020, Kota Kina-
balu, Malaysia, February 10–14, 2020. Revised Selected Papers,
vol. 24, pp. 505–522. Springer, Berlin (2020). https://doi.org/10.
1007/978-3-030-51280-4_27

87. Maung Maung Thin, W.Y., Dong, N., Bai, G., Dong, J.S.: For-
mal analysis of a proof-of-stake blockchain. In: 2018 23rd In-
ternational Conference on Engineering of Complex Computer
Systems (ICECCS), pp. 197–200 (2018). https://doi.org/10.1109/
ICECCS2018.2018.00031

88. Yoo, J., Jung, Y., Shin, D., Bae, M., Jee, E.: Formal mod-
eling and verification of a federated Byzantine agreement al-
gorithm for blockchain platforms. In: 2019 IEEE International
Workshop on Blockchain Oriented Software Engineering (IW-
BOSE), pp. 11–21 (2019). https://doi.org/10.1109/IWBOSE.
2019.8666514

89. Foundation, S.D.: Intro to stellar. https://stellar.org/learn/intro-to-
stellar. Accessed 05/2024

90. Kawahara, R.: Verification of customizable blockchain consensus
rule using a formal method. In: 2020 IEEE International Confer-
ence on Blockchain and Cryptocurrency (ICBC), pp. 1–3 (2020).
https://doi.org/10.1109/ICBC48266.2020.9169472

91. European Parliament and the Council: Regulation (EU)
2023/2854 of the European Parliament and of the Council of
13 December 2023 on harmonised rules on fair access to and
use of data and amending Regulation (EU) 2017/2394 and Di-
rective (EU) 2020/1828 (Data Act). Document 32023R2854.
PE/49/2023/REV/1 OJ L, 2023/2854, 22.12.2023, ELI: http://
data.europa.eu/eli/reg/2023/2854/oj (2023)

92. European Parliament and the Council: Consolidated text: Regula-
tion (EU) 2016/679 of the European Parliament and of the Coun-
cil of 27 April 2016 on the protection of natural persons with
regard to the processing of personal data and on the free move-
ment of such data, and repealing Directive 95/46/EC (General
Data Protection Regulation) (Text with EEA relevance). Docu-
ment 02016R0679-20160504. ELI: http://data.europa.eu/eli/reg/
2016/679/2016-05-04 (2016)

93. Olivieri, L., Pasetto, L.: Towards compliance of smart contracts
with the European Union data act. In: 5th Workshop on Ar-
tificial Intelligence and Formal Verification, Logic, Automata,

Springer

https://doi.org/10.1145/3589250.3596141
https://doi.org/10.1145/3589250.3596141
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1109/iwbose.2019.8666486
https://doi.org/10.1109/iwbose.2019.8666486
https://doi.org/10.1145/3528226.3528370
https://doi.org/10.1145/3528226.3528370
https://doi.org/10.1109/PerComWorkshops56833.2023.10150247
https://doi.org/10.1109/PerComWorkshops56833.2023.10150247
https://doi.org/10.1145/3643567
https://doi.org/10.1145/3643567
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-5139
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-5139
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-11687
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-11687
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10299
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10299
https://doi.org/10.1007/978-981-19-9601-6_2
https://doi.org/10.1007/978-981-19-9601-6_2
https://doi.org/10.1007/s10703-022-00405-8
https://doi.org/10.1007/s10703-022-00405-8
https://doi.org/10.1007/978-3-030-63618-0_1
http://arxiv.org/abs/2404.04129
https://doi.org/10.48550/arXiv.2404.04129
https://wiki.iota.org/isc/getting-started/languages-and-vms/#evm-smart-contracts
https://wiki.iota.org/isc/getting-started/languages-and-vms/#evm-smart-contracts
https://doi.org/10.1109/ACCESS.2021.3138353
https://doi.org/10.1109/ACCESS.2021.3138353
https://archetype-lang.org/
https://ligolang.org/
https://smartpy.io/docs/
https://tezos.gitlab.io/active/michelson.html#michelson-the-language-of-smart-contracts-in-tezos
https://tezos.gitlab.io/active/michelson.html#michelson-the-language-of-smart-contracts-in-tezos
https://webassembly.org
https://webassembly.org
https://book.cosmwasm.com/
https://paritytech.github.io/ink-docs/why-rust-for-smart-contracts
https://paritytech.github.io/ink-docs/why-rust-for-smart-contracts
https://polkadot.network/
https://wiki.iota.org/isc/getting-started/languages-and-vms/#wasm-vm-for-isc
https://wiki.iota.org/isc/getting-started/languages-and-vms/#wasm-vm-for-isc
https://doi.org/10.5220/0009564100390051
https://doi.org/10.5220/0009564100390051
https://doi.org/10.1007/978-3-030-51280-4_27
https://doi.org/10.1007/978-3-030-51280-4_27
https://doi.org/10.1109/ICECCS2018.2018.00031
https://doi.org/10.1109/ICECCS2018.2018.00031
https://doi.org/10.1109/IWBOSE.2019.8666514
https://doi.org/10.1109/IWBOSE.2019.8666514
https://stellar.org/learn/intro-to-stellar
https://stellar.org/learn/intro-to-stellar
https://doi.org/10.1109/ICBC48266.2020.9169472
http://data.europa.eu/eli/reg/2023/2854/oj
http://data.europa.eu/eli/reg/2023/2854/oj
http://data.europa.eu/eli/reg/2016/679/2016-05-04
http://data.europa.eu/eli/reg/2016/679/2016-05-04


444 L. Olivieri, F. Spoto

and Synthesis (OVERLAY 2023). CEUR Workshop Proceed-
ings, vol. 3629, pp. 61–66 (2024). https://ceur-ws.org/Vol-3629/
paper10.pdf

94. Haque, A.B., Islam, A.K.M.N., Hyrynsalmi, S., Naqvi, B.,
Smolander, K.: GDPR compliant blockchains–a systematic lit-
erature review. IEEE Access 9, 50593–50606 (2021). https://doi.
org/10.1109/ACCESS.2021.3069877

95. Molina, F., Betarte, G., Luna, C.: Design principles for construct-
ing GDPR-compliant blockchain solutions. In: 2021 IEEE/ACM
4th International Workshop on Emerging Trends in Software En-
gineering for Blockchain (WETSEB), pp. 1–8 (2021). https://doi.
org/10.1109/WETSEB52558.2021.00008

96. Tauqeer, A., Kurteva, A., Chhetri, T.R., Ahmeti, A., Fensel, A.:
Automated GDPR contract compliance verification using knowl-
edge graphs. Information 13(10), 447 (2022). https://doi.org/10.
3390/info13100447

97. Chhetri, T.R., Kurteva, A., DeLong, R.J., Hilscher, R., Korte,
K., Fensel, A.: Data protection by design tool for automated
GDPR compliance verification based on semantically modeled
informed consent. Sensors 22(7), 2763 (2022). https://doi.org/10.
3390/s22072763

98. Ferrara, P., Spoto, F.: Static analysis for GDPR compliance. In:
CEUR Workshop Proceedings – Proceedings of ITASEC ’18,
vol. 2058, pp. 1–10 (2018). https://ceur-ws.org/Vol-2058/paper-
10.pdf

99. Ferrara, P., Olivieri, L., Spoto, F.: Tailoring taint analysis
to GDPR. In: Medina, M., Mitrakas, A., Rannenberg, K.,
Schweighofer, E., Tsouroulas, N. (eds.) Privacy Technologies
and Policy, pp. 63–76. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-02547-2_4

100. Ferrara, P., Olivieri, L., Spoto, F.: Static privacy analysis
by flow reconstruction of tainted data. Int. J. Softw. Eng.
Knowl. Eng. 31(7), 973–1016 (2021). https://doi.org/10.1142/
S0218194021500303

101. Hewa, T., Ylianttila, M., Liyanage, M.: Survey on blockchain
based smart contracts: applications, opportunities and challenges.
J. Netw. Comput. Appl. 177, 102857 (2021). https://doi.org/10.
1016/j.jnca.2020.102857

102. Zheng, Z., Xie, S., Dai, H.-N., Chen, W., Chen, X., Weng, J.,
Imran, M.: An overview on smart contracts: challenges, advances
and platforms. Future Gener. Comput. Syst. 105, 475–491 (2020).
https://doi.org/10.1016/j.future.2019.12.019

103. Khan, S.N., Loukil, F., Ghedira-Guegan, C., Benkhelifa, E., Bani-
Hani, A.: Blockchain smart contracts: applications, challenges,

and future trends. Peer-to-Peer Netw. Appl. 14, 2901–2925
(2021). https://doi.org/10.1007/s12083-021-01127-0

104. Fotiou, N., Polyzos, G.C.: Smart contracts for the Internet of
Things: opportunities and challenges. In: 2018 European Confer-
ence on Networks and Communications (EuCNC), pp. 256–260
(2018). https://doi.org/10.1109/EuCNC.2018.8443212

105. Zou, W., Lo, D., Kochhar, P.S., Le, X.-B.D., Xia, X., Feng, Y.,
Chen, Z., Xu, B.: Smart contract development: challenges and op-
portunities. IEEE Trans. Softw. Eng. 47(10), 2084–2106 (2021).
https://doi.org/10.1109/TSE.2019.2942301

106. Bosu, A., Iqbal, A., Shahriyar, R., Chakraborty, P.: Understanding
the motivations, challenges and needs of blockchain software de-
velopers: a survey. Empir. Softw. Eng. 24(4), 2636–2673 (2019).
https://doi.org/10.1007/s10664-019-09708-7

107. Singh, A., Parizi, R.M., Zhang, Q., Choo, K.-K.R., Dehghan-
tanha, A.: Blockchain smart contracts formalization: approaches
and challenges to address vulnerabilities. Comput. Secur. 88,
101654 (2020). https://doi.org/10.1016/j.cose.2019.101654

108. Krichen, M., Lahami, M., Al–Haija, Q.A.: Formal methods
for the verification of smart contracts: a review. In: 2022
15th International Conference on Security of Information and
Networks (SIN), pp. 01–08 (2022). https://doi.org/10.1109/
SIN56466.2022.9970534

109. Marijan, D., Lal, C.: Blockchain verification and validation: tech-
niques, challenges, and research directions. Comput. Sci. Rev. 45,
100492 (2022). https://doi.org/10.1016/j.cosrev.2022.100492

110. Lin, I.-C., Liao, T.-C.: A survey of blockchain security issues and
challenges. Int. J. Netw. Secur. 19(5), 653–659 (2017)

111. Islam, M.R., Rahman, M.M., Mahmud, M., Rahman, M.A., Mo-
hamad, M.H.S., Embong, A.H.: A review on blockchain security
issues and challenges. In: 2021 IEEE 12th Control and System
Graduate Research Colloquium (ICSGRC), pp. 227–232 (2021).
https://doi.org/10.1109/ICSGRC53186.2021.9515276

112. Magazzeni, D., McBurney, P., Nash, W.: Validation and verifi-
cation of smart contracts: a research agenda. Computer 50(9),
50–57 (2017). https://doi.org/10.1109/MC.2017.3571045

113. Koul, R.: Blockchain oriented software testing – challenges and
approaches. In: 2018 3rd International Conference for Conver-
gence in Technology (I2CT), pp. 1–6 (2018). https://doi.org/10.
1109/I2CT.2018.8529728

Publisher’s Note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.

Springer

https://ceur-ws.org/Vol-3629/paper10.pdf
https://ceur-ws.org/Vol-3629/paper10.pdf
https://doi.org/10.1109/ACCESS.2021.3069877
https://doi.org/10.1109/ACCESS.2021.3069877
https://doi.org/10.1109/WETSEB52558.2021.00008
https://doi.org/10.1109/WETSEB52558.2021.00008
https://doi.org/10.3390/info13100447
https://doi.org/10.3390/info13100447
https://doi.org/10.3390/s22072763
https://doi.org/10.3390/s22072763
https://ceur-ws.org/Vol-2058/paper-10.pdf
https://ceur-ws.org/Vol-2058/paper-10.pdf
https://doi.org/10.1007/978-3-030-02547-2_4
https://doi.org/10.1007/978-3-030-02547-2_4
https://doi.org/10.1142/S0218194021500303
https://doi.org/10.1142/S0218194021500303
https://doi.org/10.1016/j.jnca.2020.102857
https://doi.org/10.1016/j.jnca.2020.102857
https://doi.org/10.1016/j.future.2019.12.019
https://doi.org/10.1007/s12083-021-01127-0
https://doi.org/10.1109/EuCNC.2018.8443212
https://doi.org/10.1109/TSE.2019.2942301
https://doi.org/10.1007/s10664-019-09708-7
https://doi.org/10.1016/j.cose.2019.101654
https://doi.org/10.1109/SIN56466.2022.9970534
https://doi.org/10.1109/SIN56466.2022.9970534
https://doi.org/10.1016/j.cosrev.2022.100492
https://doi.org/10.1109/ICSGRC53186.2021.9515276
https://doi.org/10.1109/MC.2017.3571045
https://doi.org/10.1109/I2CT.2018.8529728
https://doi.org/10.1109/I2CT.2018.8529728

	Software verification challenges in the blockchain ecosystem
	Abstract
	Introduction
	Paper structure

	Blockchain overview
	Blockchain network
	Consensus mechanisms

	Software in the blockchain ecosystem
	Blockchain software
	Blockchain-oriented software

	Bug detection, fixing, and patch management in blockchains
	State of the art of blockchain software verification tools
	Challenges, opportunities, and new directions
	Automatic verification architectures
	Smart contract bug fixing
	Verification tools
	Cross-component issues
	Multilanguage issues
	Lack of formal definitions, notions, and proofs
	Lack of coverage in the layers
	Compliance with laws and regulations


	Related work
	Conclusions
	References


