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ABSTRACT
Partially Observable Monte Carlo Planning (POMCP) is an effi-
cient solver for Partially Observable Markov Decision Processes
(POMDPs). It allows scaling to large state spaces by computing
an approximation of the optimal policy locally and online, using a
Monte Carlo Tree Search based strategy. However, POMCP suffers
from sparse reward function, namely, rewards achieved only when
the final goal is reached, particularly in environments with large
state spaces and long horizons. Recently, logic specifications have
been integrated into POMCP to guide exploration and to satisfy
safety requirements. However, such policy-related rules require
manual definition by domain experts, especially in real-world sce-
narios. In this paper, we use inductive logic programming to learn
logic specifications from traces of POMCP executions, i.e., sets
of belief-action pairs generated by the planner. Specifically, we
learn rules expressed in the paradigm of answer set programming.
We then integrate them inside POMCP to provide soft policy bias
toward promising actions. In the context of two benchmark sce-
narios, rocksample and battery, we show that the integration of
learned rules from small task instances can improve performance
with fewer Monte Carlo simulations and in larger task instances.
We make our modified version of POMCP publicly available at
https://github.com/GiuMaz/pomcp_clingo.git.
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1 INTRODUCTION
Partially Observable Markov Decision Processes (POMDPs) are a
popular framework for modeling systems with state uncertainty [3].
The state cannot be completely observed by the agent, therefore
it is modeled as a probability distribution, called belief. However,
computing optimal POMDP policies (exploring the full belief space)
is hard [24]. Several approximate algorithms have been proposed
to mitigate the computational issue, such as, Partially Observable
Monte Carlo Planning (POMCP) [27] and Determinized Sparse Par-
tially Observable Tree (DESPOT) [28]. Most existing approaches
rely on exploring only a part of the belief space, e.g., with random
particle sampling in POMCP; hence, a trade-off must be found be-
tween quality of policies and exploration cost. This hinders the
scalability to real-world scenarios with large belief space. Further-
more, POMCP policies are black-box, hence the decision process
underlying policy generation is not transparent to other agents and
humans, reducing safety and trustability.

In this paper we address the aforementioned issues, introducing
soft logic-based policy bias in the Monte Carlo tree exploration in
POMCP. Differently from existing approaches which set bounds to
the exploration process [17, 20], we use logic specifications to only
suggest actions to POMCP solver, based on current belief. Further-
more, we do not require specifications to be provided by a domain
expert. Instead, we propose to learn logic specifications offline from
traces of executions, i.e., sequences of belief-action pairs (gener-
ated using POMCP or other solvers). We express specifications in
Answer Set Programming (ASP) [18], a state-of-the-art paradigm
for logic planning [8, 10, 21, 30]. We convert the belief to ASP rep-
resentation, in terms of higher-level domain features specified by
an expert user. Then, we use them to represent logic relationships
between beliefs and actions. Defining features requires only basic
domain knowledge (e.g., relevant domain quantities used to rep-
resent POMDP task instances). We then exploit Inductive Logic
Programming (ILP) [23] to infer ASP rules from feature-action pairs.

We validate our approach on two benchmark POMDP problems,
rocksample and battery. The contributions of this paper are the
following: i) we learn specifications about POMDP policies in the
ASP semantics from execution traces, requiring only definition of
domain-relevant features from experts; ii) we use ASP statements to
guide POMCP exploration and increase performance and scalabil-
ity in challenging domain instances, e.g., with increased planning
horizons; iii) we evaluate the impact of the quality and amount of
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execution traces on learning outcome and POMCP performance.
The implementation of our extended POMCP algorithm is made
available.

2 RELATEDWORKS
Merging MDP / POMDP solving algorithms with logic reasoning is
a recent research trend [17, 20, 29]. One advantage of this approach
is to guide policy search with commonsense reasoning and expert
knowledge. For instance, in the REBA framework [29] ASP is used to
describe spatial relations between objects and rooms in a houseware
domain, hence driving a robotic agent to choose a specific room
to inspect, while solving simpler MDP problems locally. Similarly,
authors of [17] propose DARLING, which uses ASP statements
to bound MDP exploration in a simulated grid domain (similar to
rocksample) and in a real service robotics scenario.

Logic statements can help also avoid unwanted behaviors, e.g.
in safety-critic scenarios. To this aim, authors of [19, 20] refine rule
templates to identify unexpected decisions and shield undesired
branches of belief-action tree from exploration in POMCP, in the
context of velocity regulation for a mobile robot. In [32], a goal-
constrained belief space containing only safely reachable states
from the initial one is defined with propositional logics, and a
Satisfiability Modulo Theory (SMT) solver is used to guarantee
proper execution of an houseware automation task.

Aforementioned approaches, as well as similar ones implement-
ing more complex reasoning with, e.g., temporal logic [6, 7, 16],
have one major drawback: logic statements are assumed to be pro-
vided by the user. This is unrealistic, especially in complex domains,
where even expert users can hardly define accurate policy rules.
Moreover, previous works use logic statements to model an addi-
tional reward in MDPs.

In contrast, we learn logic relations between domain-relevant
user-defined features, which are more easily available, and actions
with the paradigm of ILP under ASP semantics, and we use them to
directly advise POMCP simulations. POMCP was recently used
successfully in real-world applications, such as robot planning
[11, 31, 33]. Learning meaningful task representations has been
proposed, e.g., in [1, 26], though computational efficiency is mined
by the use of an ASP meta-program. ILP has been shown to be ef-
fective in enhancing comprehensibility of black-box models [5, 25].
Recent applications in robot planning include task knowledge learn-
ing from human labelled examples with ILASP [22], and learning
of temporal specifications from expert-generated MDP traces [6].
ILASP is more efficient than, e.g., [26] since it does not rely on ASP
meta-program representation as of latest versions.

3 PROBLEM DEFINITION AND CASE STUDIES
The goal of this paper is to discover logical rules which underlie the
decision-making process of a POMDP agent, analyzing patterns of
execution. In particular, the agent performs actions depending on
the current state of the environment and the goal of the assigned
task. Hence, we want to find logical rules which match POMDP
representation of the environment to a specific policy, with the aim
of advising POMCP solver and directing the execution of the agent
in future online executions. In particular, by integrating rules in
POMCP exploration we aim to improve the final cumulative reward

(a) Battery

(b) Rocksample

Figure 1: Example scenarios for our two case studies.

in typically challenging task instances, e.g., with long planning hori-
zons and when the number of available actions (and corresponding
needed simulations) increases. We now provide an informal de-
scription of the two domains chosen as case studies, battery and
rocksample. In the following sections, we will refer to rocksample as
a running example to explain the main elements of the background
and methodology.

3.1 Battery
In the battery domain, an agent moves forward towards a target
location, gaining a positive reward in case of success and a negative
reward in case of battery depletion. The agent has limited energy
autonomy, i.e., a battery with 𝐿 levels of charge. Moving may reduce
the level of the battery, but at known locations on the path there are
recharge stations. However, recharging has a cost (i.e., a negative
reward). The observable state of the system is represented by posi-
tions of the target, agent and stations, while the unobservable part
of the state is the level of the battery, which can be checked with
a noisy sensor. The belief in this case is a probability distribution
over the possible battery levels. An explanatory scenario is depicted
in Figure 1a, with segments connecting the robot, stations and the
goal subdivided in discrete steps of advancement.

3.2 Rocksample
In the rocksample domain, an agent can move in cardinal directions
(north, south, east and west) on a 𝑁𝑋𝑁 grid, one cell at a time, with
the goal to reach and sample a set of𝑀 rocks with known position
on the grid. Rocks may be valuable or not. Sampling a valuable rock
yields a positive immediate reward, while sampling a worthless
rock yields negative reward. The observable state of the system is
described by the current position of the agent and rocks, while the
value of rocks is uncertain before sampling. The belief is in this
case a probability distribution over all possible configurations of
rock values. However, the agent can check the value of a rock, with
an accuracy depending on the distance between the rock and the
agent. Finally, the agent can obtain a positive reward exiting the
grid from the right-hand side. An explanatory scenario with 𝑁 = 11
and𝑀 = 11 is depicted in Figure 1b, where valuable and invaluable



rocks are marked as green and red dots, respectively, and the agent
is at location (8, 7) initially.

4 BACKGROUND
We first introduce the definitions of POMDPs and POMCP, then
we describe key concepts of ASP and ILP which are used in the
following to describe the proposed methodology.

4.1 Partially Observable Monte Carlo Planning
A Partially Observable Markov Decision Process (POMDP) [12]
is a tuple (𝑆,𝐴,𝑂,𝑇 , 𝑍, 𝑅,𝛾), where 𝑆 is a set of partially observ-
able states, 𝐴 is a set of actions, 𝑍 is a finite set of observations,
𝑇 : 𝑆𝑋𝐴 → Π(𝑆) is the state-transition model, with B = Π(𝑆) proba-
bility distribution over states, 𝑂 : 𝑆𝑋𝐴 → Π(𝑍 ) is the observation
model, 𝑅 is the reward function and 𝛾 ∈ [0, 1] is a discount factor. An
agent must maximize the discounted return 𝐸 [∑∞

𝑡=0 𝛾
𝑡𝑅(𝑠𝑡 , 𝑎𝑡 )]. A

probability distribution over states, called belief, is used to represent
the partial observability of the true state. To solve a POMDP it is
required to find a policy, namely a function 𝜋 : B → 𝐴 that maps
beliefs B into actions.

In this work, we focus on Partially Observable Monte-Carlo Plan-
ning (POMCP) [27] to solve POMDPs. POMCP is an online algorithm
that solves POMDPs by usingMonte Carlo techniques. The strength
of POMCP is that it does not require an explicit definition of the
transition model, observation model, and reward. Instead, it em-
ploys a black-box simulator of the environment. POMCP usesMonte
Carlo Tree Search (MCTS) at each time step to explore the belief
space and select the best action. Upper Confidence Bound for Trees
(UCT) [13] is used as a search strategy to select the subtrees to
explore. In particular, given history ℎ of former belief-action pairs,
UCT suggests to explore action 𝑎 which maximizes the action value:

𝑉𝑈𝐶𝑇 (ℎ𝑎) = 𝑉 (ℎ𝑎) + 𝑐 ·

√︄
log𝑁 (ℎ)
𝑁 (ℎ𝑎) (1)

where 𝑉 (ℎ𝑎) is the expected return achieved by selecting action
𝑎, 𝑁 (ℎ) is the number of simulations performed from history ℎ,
𝑁 (ℎ𝑎) is the number of simulations performed while selecting
action 𝑎, and 𝑐 is known as the exploration constant. UCT is used
to balance the exploration of new actions (i.e., action with low
𝑁 (ℎ𝑎)) and the exploitation of effective actions (i.e., action with
high 𝑉 (ℎ𝑎)). The belief is implemented as a particle filter, which
is a sampling over the possible states. The belief can be initialized
randomly or considering prior knowledge about the environment
[4]. At each time step, a particle (representing a specific state of the
POMDP) is selected from the filter and used as an initial point to
perform a simulation in Monte Carlo tree. The particle filter is then
updated at each step after an action is performed. A simulation is
a sequence of action-state pairs that collects a discounted return.
Running different simulations, we can estimate and select the action
which leads to the highest return. If required, new particles can
be generated from the current state through a process of particle
reinvigoration.

4.2 Answer Set Programming
An ASP program represents a domain of interest with a signa-
ture and axioms [2]. The signature is the alphabet of the domain,

defining its relevant attributes as variables (with discrete ranges)
and predicates of variables (atoms). For example, in the rocksam-
ple domain variables of interest are: rock identifiers R (natural),
distances between agent and rock positions D (integer), and (dis-
cretized) probabilities computed from the belief V∈ {0, 10, ..., 100}1.
Atoms typically represent environmental features and actions. Pos-
sible atoms in rocksample are guess(R,V) and sample(R), denoting
respectively, the probability V the rock R is valuable, and the action
of sampling rock R. A variable whose value is assigned is said to
be ground (e.g., R=1). An atom is ground if its variables are ground.
Ground atoms become Booleans with truth value.

Axioms are logical relations between atoms. In this paper, we
consider only causal rules and weak constraints. A causal rule h :-

b1..𝑛 defines preconditions as the logical conjunction
∧𝑛

𝑖=1b𝑖 (body
of the rule) for the head h. For instance,

sample(R) :- guess(R,V), V>60. (2)

means that rock R can be sampled if the agent believes it is valu-
able with probability V> 60%. Weak constraints express preference
criteria between atoms. A weak constraint has the form:

:∼ b1(V1, . . . , V𝑛), . . . , b𝑚(V1, . . . , V𝑛).[w@l, V1, . . . , V𝑛]

where w is the weight, l the (integer) priority level (used if multi-
ple weak constraints are specified), b𝑖 are atoms and V𝑗 variables.
The weight can either be one variable among V𝑗 ’s, or an integer.
If the weight is integer, the weak constraint means that ground-
ing of atoms b𝑖 ’s should be penalized. If the weight is a variable,
say V1, then the constraint means that lower values for V1 should
be preferred. As an example, if (2) holds and the following weak
constraint is specified:

:∼ sample(R), guess(R,V). [-V@1, R, V] (3)

when ≥ 2 rocks have probability > 60% to be valuable, the one with
higher 𝑉 (negative weight) will be preferred.

Given an ASP task description, an ASP solver computes answer
sets. An answer set is the minimal set of ground atoms satisfying ax-
ioms. Starting from an initial grounding, the solver deduces ground
heads of rules from known ground body atoms. For the scope of
this paper, answer sets contain ground features and actions. For
instance, with reference to (2), if at a specific step the agent’s be-
lief distribution (formalized in ASP) is {guess(1,50), guess(2,70)}
(namely, the agent believes rock 1 is valuable with probability 50%,
and rock 2 is valuable with probability 70%), then action sample(2)

will be grounded, and the answer set will contain all three ground
atoms, i.e., {guess(1,50), guess(2,70), sample(2)}.

4.3 Inductive Logic Programming
An ILP problem T under ASP semantics is defined as the tuple
T = ⟨𝐵, 𝑆𝑀 , 𝐸⟩, where 𝐵 is the background knowledge, i.e. a set of
atoms and axioms in ASP syntax (e.g., ranges of variables); 𝑆𝑀 is
the search space, i.e. the set containing all possible ASP axioms that
can be learned; and 𝐸 is a set of examples (e.g., a set of ground atoms
constructed from traces of execution). Our goal is to construct a
set of ASP axioms belonging to 𝑆𝑀 , called hypothesis 𝐻 , that can
explain as many as possible of the examples in 𝐸. To this end, we use

1From now on, probability values represent percentages, e.g., {0%, 10%, ..., 100%}.



state-of-the-art ILASP learner [14], where examples are Context-
Dependent Partial Interpretations (CDPIs).

Definition 1 (Partial interpretation). Let 𝑃 be an ASP program. A
partial interpretation of 𝑃 is defined as 𝑒 = ⟨𝑒𝑖𝑛𝑐 , 𝑒𝑒𝑥𝑐 ⟩, where 𝑒𝑖𝑛𝑐
is named included set, i.e., a subset of ground atoms which can be
part of an answer set of 𝑃 ; 𝑒𝑒𝑥𝑐 is named excluded set, i.e., a subset
of ground atoms which are not part of an answer set of 𝑃 .

Definition 2 (Context-dependent partial interpretation (CDPI)).
A CDPI of an ASP program 𝑃 is a tuple ⟨𝑒,𝐶⟩, where 𝑒 is a partial
interpretation of 𝑃 and 𝐶 is a set of atoms called context.

In this paper, partial interpretations contain atoms for actions, while
the context involves feature atoms. In this way, policy specifications
can be learnt. In our formulation, 𝑒𝑖𝑛𝑐 includes observed actions
and 𝑒𝑒𝑥𝑐 includes unobserved (hence not executed) actions. For
instance, in rocksample, a CDPI may be

⟨⟨{sample(2)}, {sample(1)}⟩, {guess(1,50), guess(2,70)}⟩
where 𝐶 ={guess(1,50), guess(2,70)}, 𝑒𝑒𝑥𝑐 ={sample(1)}, 𝑒𝑖𝑛𝑐 =

{sample(2)}. The meaning of this CDPI is that, given the context
defining the current belief of the agent (namely, it believes that
rock 1 is valuable with probability 50% and rock 1 is valuable with
probability 70%), rock 2 should be sampled and rock 1 should not.

We can now define the ILASP problem considered in this paper,
hence the properties to be satisfied by 𝐻 :

Definition 3 (ILASP task with CDPIs). An ILASP learning task
with CDPIs is a tuple T = ⟨𝐵, 𝑆𝑀 , 𝐸⟩, where 𝐸 is a set of CDPIs
such that:

∀𝑒 = ⟨⟨𝑒𝑖𝑛𝑐 , 𝑒𝑒𝑥𝑐 ⟩,𝐶⟩ ∈ 𝐸 : 𝐵 ∪ 𝐻 ∪𝐶 |= 𝑒𝑖𝑛𝑐 ∧ 𝐵 ∪ 𝐻 ∪𝐶 ̸ |= 𝑒𝑒𝑥𝑐

In other words, ILASP finds axioms which guarantee that actions
in 𝑒𝑖𝑛𝑐 , observed in the examples, can be executed (i.e., can be
grounded in an answer set), while unobserved actions in 𝑒𝑒𝑥𝑐 can-
not, given the context set of environmental features. In addition,
ILASP finds the minimal hypothesis 𝐻 , i.e., axioms with the least
number of atoms. This increases the comprehensibility of learned
axioms and improves efficiency of ASP solving. ILASP can also learn
weak constraints from ordered CDPIs, i.e., partial interpretations
with pre-defined preference values [15].

Finally, ILASP finds the hypothesis which explains most of the
examples, i.e., there may be CDPIs which are not covered by 𝐻 .
When a hypothesis is found, ILASP also returns the number of non-
convered CDPIs, which quantifies the reliability of 𝐻 with respect
to the provided set 𝐸.

5 METHODOLOGY
We now describe our methodology for learning policy-related logic
specifications from POMDP traces of execution, for a given do-
main of interest. In particular, we want to represent the policy
map 𝜋 : B → 𝐴 as a set of logical formulas, through a new map
Γ : F → A, being F = {F𝑖 } a set of categorical environmental
features defined by an user (e.g., guess(R,V) in rocksample), and
A = {A𝑖 } the logical formulation of 𝐴 (containing, e.g., sample(R)
for rocksample). Assuming actions and features are represented
as ASP atoms, three main steps are required to build map Γ and
integrate logical formulas into POMCP: ASP representation of the

domain (Section 5.1); definition of the ILASP problem starting from
traces of POMDP executions (Section 5.2); integration of learned
axioms in POMCP (Section 5.3).

5.1 ASP representation of the domain
In order to represent features and actions in ASP syntax, we de-
fine a feature map 𝐹F : B → 𝐺 (F ) and an action map 𝐹A :
𝐴 → 𝐺 (A), being 𝐺 (·) the grounding function defining all possible
groundings of an atom or a set of atoms. For instance, considering
A = {sample(R)} in a rocksample scenario with 2 rocks, 𝐺 (A) =

{sample(1), sample(2)}. Once maps 𝐹F , 𝐹A are defined by an user,
it is possible to automatically translate traces of POMDP executions
(i.e., sequences of belief-action pairs) to sets of ground atoms.

5.2 ILASP problem definition from POMDP
traces

We can now define an ILASP task as in Section 4.3, with examples
built from POMDP traces using maps 𝐹F , 𝐹A and target hypothesis
𝐻 = Γ. We make the following assumptions to define the ILASP
learning problem:

• examples are taken from “good” traces of execution, i.e.,
where the policy is nearly optimal, so the agent success-
fully completed the task with high discounted return. In this
way, learned rules are more efficient in online execution.
In Section 6 we detail how POMDP traces for learning are
generated in order to satisfy this assumption (e.g., tuning
POMCP parameters);

• for each action, the corresponding map Γ does not depend
on maps for other actions, i.e., axioms for each action are
independent on axioms for other actions (e.g., rules for check-
ing or sampling a rock are mutually independent, but are
only connected to features). Hence, we can define a sepa-
rate ILASP task for each action, increasing computational
efficiency thanks to the shrinkage of the search space.

Each ILASP problem is defined by background knowledge 𝐵, search
space 𝑆𝑀 and examples 𝐸. In this paper, 𝐵 only contains the defini-
tions of ASP variables and ranges. Since Γ : F → A, we define 𝑆𝑀
allowing only atoms ∈ A in the head of candidate axioms and atoms
∈ F in the body. Examples are extracted from traces of POMDP
executions using maps 𝐹F and 𝐹A. Specifically, for each belief-
action ⟨𝑏, 𝑎⟩ ∈ B𝑋𝐴, we obtain a pair of ground feature set and
action ⟨belief, action⟩, where belief⊆ 𝐺 (F ) and action⊆ 𝐺 (A𝑖 ) ,
A𝑖 being the ASP atom representing 𝑎. For instance, in a rocksam-
ple instance with 2 rocks, assume sampling of the second rock is
performed, and the probabilities that rocks 1 and 2 are valuable are
70% and 80%, respectively. Then, A𝑖 =sample(R), action=sample(2)
and belief={guess(1,70), guess(2,80)}. We then generate a CDPI
in the form

⟨⟨{action},𝐺 (A𝑖 ) \ {action}⟩, belief⟩ (4)

where 𝐺 (A𝑖 ) \ {action} = {sample(1)} in the previous example.
Moreover, at each step where an action 𝑎 is not executed, we define
an additional CDPI

⟨⟨∅,𝐺 (A𝑖 )⟩, belief⟩ (5)



For instance, in the previous example, if 𝑎 is the checking action,
𝐺 (A𝑖 ) = {check(1), check(2)}, and similarly for other actions. In
this way, learnt axioms will provide more meaningful and useful
policy specifications, since they will be induced also from coun-
terexamples (i.e., examples where actions are not executed).

In order to learn weak constraints (i.e., preferences on specific
actions with respect to others), for each example as (4) we generate
CDPIs in the form:

⟨⟨𝐺 (A𝑖 ) \ {action}, ∅⟩, belief⟩ (6)

In other words, all non-executed actions are in 𝑒𝑖𝑛𝑐 , while 𝑒𝑒𝑥𝑐 =

∅. We then specify a preference of (4) over (6). This is needed,
since execution traces only contain a single action at each step,
but possibly others could be executed. For instance, consider the
former rocksample instance and assume (2) holds. Sampling of both
rocks is possible, since they are valuable with probability ≥ 60%,
but only the second rock was actually sampled. We then define the
following examples, corresponding respectively to (4)-(6):

⟨⟨{sample(2)}, {sample(1)}⟩, {guess(1,70), guess(2,80)}⟩ (7a)
⟨⟨{sample(1)}, ∅⟩, {guess(1,70), guess(2,80)}⟩ (7b)

Then, we specify that (7a) must be preferred to (7b).
For each action, we consider hypothesis which covers most of

the examples and use it to bias POMCP exploration, as explained
in next subsection.

5.3 Integrating axioms in POMCP
We integrate the computed axioms inside POMCP to help the algo-
rithm selecting the best action given the current state and belief.
Specifically, when a new node is reached during the Monte Carlo
Tree Search (MCTS), we instantiate the variables of the axioms
with values computed from the current belief. POMCP represents
the belief of the root node using a particle filter (i.e., the algorithm
keeps a finite collection of possible states for each belief). Thus,
we compute the values required to ground ASP features by ana-
lyzing all the particles. For example, to compute guess(R,V) for
rock 1 we compute the percentage of particles in which rock 1 is
valuable. When we reach a new non-root node, no particle filter
is available. However, we still ground features that depend only
on the observable part of the state (e.g., the current position in
rocksample). These features need to be re-grounded only for previ-
ously visited non-root nodes that become a root (i.e., we move the
simulation one step forward by selecting an action and receiving an
observation, and the new root is a node that we visited previously
during a simulation). In this case, the features are re-instantiated
using the new full belief. In all the other cases, no recomputation is
needed since the observable part of a node never changes. When
all features of a node are instantiated, we call the ASP solver to
ground new actions.

To combine logical rules with POMCP, we introduce a prior
in UCT (Equation 1). Specifically, for each action 𝑎 grounded by
the ASP solver, we increase the values 𝑉 (ℎ𝑎) to the same value
of 𝑐 , and 𝑁 (ℎ𝑎) to a fixed value representing high reward (this is
domain-dependent, we empirically set it to 10 in our domains). This
is the same as implying that we have already performed 𝑁 (ℎ𝑎)
simulations in the current belief, and they achieved a good return
value (i.e., an high value of 𝑉 (ℎ𝑎)). It is important to notice that

this prior does not impact the optimality of the policy. In fact, the
number 𝑁 (ℎ𝑎) is finite, thus, as in standard POMCP, performing
an infinite number of simulations we would converge toward the
optimal policy as in standard POMCP. However, this prior consid-
erably decreases the need for exploration during MCTS, since the
most probable best actions are suggested by axioms before MCTS
simulation starts. This is a crucial benefit when the tree grows in
size (hence, many simulation are needed), as shown in Section 6.

6 EMPIRICAL EVALUATION
We now describe the empirical evaluation for our two case studies,
rocksample and battery.

6.1 Empirical methodology
Learning executions are generated running POMCP in 1000 random
scenarios for each domain, specifically considering: 12𝑋12 grid
with 4 rocks for rocksample, randomizing the value and position
of rocks and initial position of the agent; 35-step path for battery,
randomizing locations of stations with a limited range of mutual
distances (∈ [1, 4]). We set 215 particles2 and simulations in POMCP
algorithm, in order to generate “good” executions as explained in
Section 5.2. ILASP examples are extracted only from execution
traces with discounted return greater or equal than the average
over all traces. This criterion is domain-independent to select only
meaningful examples to learn from.

We evaluate performance of POMCP with and without the bias
of ASP axioms in two scenarios: i) using fewer particles with re-
spect to the training set, while keeping problem dimension fixed
(50 random settings for each number of particles are generated); ii)
increasing the problem dimension with fixed number of particles to
215. Specifically, in the second case we increase the grid size 𝑁 in
rocksample and path length in battery, running 50 random simula-
tions for each parameter value. In this way, we show the scalability
of rules to different instances of the domains, and their utility in
practical applications, where the planning horizon is critical for
POMCP exploration. ASP solving is performed with state-of-the-art
Clingo [9]. All experiments are run on a notebook with Intel Core
i7-6700HQ and 16GB of RAM.

6.2 Battery
Results for battery domain for each step of our methodology (Sec-
tion 5) follow.

6.2.1 ASP representation. We define the following features for the
battery domain:

• guess(L,V), representing the probability V∈ {0, 10, ..., 100}%
that the level of the battery is at least L∈ {0, 1, ..., 10}.

• dist_next(D), representing the distance D (integer) from the
next station, if any, or the goal.

• X ≥ 𝑥 and X ≤ 𝑥 , where X is either L,D,V and 𝑥 is a possible
value for X.

• at_station, meaning that the agent is on a station location.
Atoms for actions are recharge, check, advance.

2As of standard practice, the number of particles is the same as the number of simula-
tions.



6.2.2 ILASP results. ILASP learns the following causal rules from
a set of ≈ 296003 examples (i.e., CDPIs as in Section 4.3):

check :- V ≥ 20; L ≤ 4; guess(L, V).

advance :- dist_next(D); D ≤ 4.

recharge :- L ≤ 7; V ≥ 30; D ≥ 2; dist_next(D);

guess(L, V); at_station.

Checking is convenient if the level of battery is considerably low
(≤ 4) with non-negligible probability (≥ 20%). Recharging should
be performed if the level of battery is ≤ 7 with good probability
(≥ 30%), and the next station is not sufficiently close (D≥ 2). Finally,
advancing is always suggested, since the next station (or the goal)
is always closer than 4 steps in our problem definition. The learning
time is ≈45 s for the longest recharge rule (requiring more time),
with 𝑆𝑀 including ≈ 4700 axioms4.

6.2.3 POMCP integration results. In Figure 2a, we show the dis-
counted return achieved by POMCP (with and without rule bias)
when the number of particles is varied between 28 and 215. In-
troducing learned ASP axioms does not significantly affect the
performance of the solver. This is probably due to the limited num-
ber of actions involved in the task (only 3, i.e., advance, check and
recharge), thus few branches must be explored at each simulation
step.

Figure 2b shows the discounted return achieved by POMCPwhen
the length of the path increases, while the number of particles
is constantly 215 as in the training setup. In this case, the solver
performs significantly better when learned rules are employed
(the discounted return increases up to 20% when the path length
is 75, i.e., almost double than the training scenario). In fact, as
the path length increases, the risk of battery discharge is higher,
since failing to recharge is more probable. Moreover, the planning
horizon, hence simulation depth, also increases, so guidance of ASP
axioms is crucial.

6.3 Rocksample
Results for rocksample domain for each step of our methodology
(Section 5) follow.

6.3.1 ASP representation. We define the following set of features:
• guess(R,V), representing the probability V that rock R is
“good”. Since ASP can only deal with integer variables, V
is discretized in the range {0, 10, ..., 100} with the following
meaning: guess(1, 10) means that rock 1 is valuable with
probability 𝑃 (1) ∈ [10, 20[ %. We choose this discretiza-
tion step for probabilities empirically; finer discretization
is possible, but may affect ASP computational time in large
domains.

• dist(R,D), representing the 1-norm distance D between the
agent and rock R.

• min_dist(R), meaning that rock R is the closest to the agent.
• delta_x(R,D) (respectively, delta_y(R,D)), meaning 𝑥- (re-
spectively, 𝑦-)coordinate of rock R with respect to the agent
is D.

3The number of examples depends on the number of steps in executions.
4The size of 𝑆𝑀 depends on the number of features, variables and their possible values.

• X ≥ 𝑥 and X ≤ 𝑥 , where X is either V,D and 𝑥 is a possible
value for X.

• sampled(R), meaning that a rock R has been sampled.
• num_sampled(N), meaning that percentage N of rocks has been
sampled (N ∈ {0, 25, ..., 100}.

• target(R), meaning that rock R is the next to be sampled.

In particular, min_dist and best_guess are qualitative featureswhich
are added to possibly simplify ASP rule expressions and improve
their comprehensibility.

Action atoms are east, west, north, south, exit5, check(R), sample(R),
where argument R represents the target rock to be checked or sam-
pled.

6.3.2 ILASP results. ILASP learns the following axioms from a set
of ≈ 8500 examples:

east :- target(R), delta_x(R,D), D ≥ 1. (8a)
west :- target(R), delta_x(R,D), D ≤ -1. (8b)
north :- target(R), delta_y(R,D), D ≥ 1. (8c)
south :- target(R), delta_y(R,D), D ≤ -1. (8d)
target(R) :- dist(R,D), not sampled(R), D ≤ 1. (8e)
target(R) :- guess(R,V), not sampled(R),

70 ≤ V ≤ 80. (8f)
check(R) :- target(R), not sampled(R),

guess(R,V), V ≤ 50. (8g)
check(R) :- guess(R,V), not sampled(R),

dist(R,D), D ≤ 0, V ≤ 80. (8h)
sample(R) :- target(R), dist(R,D), D ≤ 0,

not sampled(R), guess(R,V),

V ≥ 90. (8i)
exit :- guess(R,V), V ≤ 40, not sampled(R),

num_sampled(N), N ≥ 25. (8j)
exit :- dist(R,D), 5 ≤ D ≤ 8, not sampled(R),

num_sampled(N), N ≥ 25. (8k)

Axioms for moving actions are quite simple. Motion depends on
the target rock and relative position with respect to it (delta_x and
delta_y atoms). Two axioms are found for target: an unsampled
rock is chosen as a target if either its distance from the agent is
low (≤ 1) or it is valuable with high probability (guess V between
70% and 80%). Sampling is then performed on the target rock if the
agent is at its location and the probability to be valuable is ≥ 90%.
Two axioms were discovered also for check, which occurs either
when the target rock has low (≤ 50%) probability to be valuable, or
to verify the value of a rock when on it. Finally, the agent decides
to exit the grid when at least 25% of rocks have been sampled and
either an unsampled rock has low probability to be valuable (≤ 40%)
or it is far from the agent (distance between 5 and 8).

5exit is considered as a separate action for generality. Since the agent exits the grid
from the right-hand side in our domain, it is manually mapped to east action for the
scope of this paper, in POMDP representation.
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Figure 2: Battery (mean ± std dev). a. Tests with reduced number of POMCP particles; b. with increasing path length.

ILASP is also able to learn the following set of weak constraints
for the target atom:

: ∼ target(R), dist(R,D).[D@1, R, D]

: ∼ target(R), min_dist(R), guess(R,V).

[-V@2,R,V]

In other words, when multiple rocks can be targets according to
causal rules, the agents ranks them considering primarily the close-
ness, secondly the probability to be valuable. The learning time is
≈420 s for the longest target rules (with weak constraints), with
𝑆𝑀 including ≈ 29500 axioms.

6.3.3 POMCP integration results. Figure 3a shows the performance
of POMCP (with and without rule bias) when the number of parti-
cles varies between 28 and 215 with grid size and number of rocks
as in the training setup (𝑁 = 12 and 𝑀 = 4). The discounted re-
turns achieved with and without the rules are very similar to each
other when a low number of particles (i.e., ≤ 211) is used. When
instead the number of particles increases (i.e., > 211), the learned
rules improve the performance (up to 15 − 20% with 215 particles)6.
In fact, the rules describe more accurately the policy map when
a larger amount of particles is used, because the precision of the
belief distribution is higher, hence, upper and lower bounds about
the distance and probability of rocks to be valuable are more precise
(e.g., D≤0 and V≥90 in (8i)). Since the number of actions in rocksam-
ple is higher than the battery domain, learned axioms significantly
reduce the number of branches to be expanded in the Monte Carlo
tree in POMCP exploration. This is even more evident in Figure 3b,
where the grid size is increased from 12 to 24, while the number of
rocks and simulations are kept equal to those in the training set,
i.e.,𝑀 = 4 and 215 respectively. In this case, the planning horizon
grows, and rules become crucial to achieve better performance. In
fact, POMCP with rules reaches almost double discounted return
then standard POMCP, on average, with a 24𝑋24 grid.

6.4 Further considerations
We now analyze some crucial aspects of our pipeline, specifically
the computational impact of answer set solving in POMCP (Section
6.4.1) and how the quantity and quality of examples in the training
set of executions affect learning and planning outcomes (Sections
6.4.2-6.4.3). For brevity, we consider only the rocksample scenario,
6The dip at 214 particles is due to the lower number of valuable rocks, on average, in
the random scenarios.

which turned out to be more challenging than battery, since it has
more actions.

6.4.1 Computational impact of ASP in POMCP. As explained in
Section 5.3, ASP solving occurs at every node in MCTS. In the rock-
sample scenario with 215 particles and 4 rocks on a 12𝑋12 grid,
Clingo is invoked on average 125000 times per trial, over 50 task
instances. Each ASP solving call takes approximately 0.3 ms. Com-
pared to pure POMCP solver in the same scenario, this results in
higher computational time per step, i.e., executed action (5.53𝑠 vs.
1.88𝑠 on average) and over all task instance (27𝑠 vs. 18𝑠 on average).
Using Clingo has the advantage to keep the implementation modu-
lar, so it is easy to modify task axioms in a separate ASP file to be
evaluated at runtime. However, it is more efficient to implement
ASP axioms directly as conditional statements in POMCP code (an
example is provided in the linked repository), resulting in similar
computational time as pure POMCP (20𝑠 vs. 18𝑠 on average per task
instance, in previous conditions). Moreover, Figure 3a shows that
axioms allow to achieve higher discounted return for ≥ 212 particles
than pure POMCP with 𝑁 = 215. POMCP+Clingo completes a task
instance in ≈ 2.5𝑠 on average with 212 particles, almost one order
of magnitude less than pure POMCP with 215 particles. Thus, our
pipeline can obtain better performance with lower computational
cost.

6.4.2 Robustness of learned axioms. We now evaluate how the
number of examples in the training set for ILASP affects learned ax-
ioms. Figures 4a-4b show the results about rule learning depending
on the number of examples (i.e., CDPIs) used. In the 𝑥-axis we have
the percentage of examples with respect to the original training set
used in previous experiments (i.e., ≈ 8500 in rocksample). In the
𝑦-axis of Figure 4a we show the percentage of non-covered examples,
while in the𝑦-axis of Figure 4bwe show the distance between learned
axioms from a given amount of examples and from the full training
set (normalized by the number of atoms in the latter). Given 2 rules
𝑅1, 𝑅2, each one made of a set of atoms {a𝑖 }, 𝑖 ∈ {1, 2}, we define
their distance as 𝑅1 −𝑅2 = |{a1}∪ {a2}| − |{a1}∩ {a2}|, with | · | the
cardinality of a set. For instance, sample(R) :- dist(R,V), V≤2 has
a distance 5 from (8i), due to the missing not sampled(R), guess(R,
V),V ≥90 and target(R), and the different upper bound on distance
D. We observe that using ≥ 80% of the full training dataset, the
percentage of non-covered examples stabilizes (Figure 4a) and the
distance becomes null for all actions (Figure 4b), thus learned rules
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Figure 3: Rocksample (mean ± std dev). a. Tests with reduced number of POMCP particles; b. with enlarged grid size 𝑁 .

(a) (b) (c)

Figure 4: a. Non-covered examples (%) for different number (#) of examples used for learning; b. Relative distance between rules
learned with different # of examples, w.r.t. rules learned from the full training set; c. Growth rate of discounted return (mean ±
std deviation) for rocksample with larger grid size, when axioms are learned from best examples (215 particles and discounted
return > average) or sub-optimal examples (either discounted return < average or generated from POMCP with 211 particles).

successfully converge to stable hypotheses. Overall, rules learned
from the full dataset cover more > 73% of examples.

6.4.3 Influence of quality of examples on POMCP performance. We
now evaluate the influence of the quality of examples (i.e., of the pol-
icy generating them) on the discounted return achieved by POMCP
with ASP axioms. We want to show what happens when an optimal
policy cannot be computed by POMCP for training set generation
due to the complexity of the task, so only a sub-optimal one is avail-
able. For testing, we first learn rules for rocksample from POMCP
optimal executions generated with 215 particles, but selecting only
traces with discounted return smaller than the average on all traces.
This emulates the case in which a suitable criterion for example se-
lection cannot be easily defined, e.g., in complex domains. Then, in
another test we learn rules from traces generated with 211 particles,
i.e., where axioms improve performance of pure POMCP, and select
traces with discounted return > average. This is also useful for fast
generation of examples in complex domains. Figure 4c shows the
results for the two tests (considering 50 random settings for each
value of grid size), in terms of the rate of growth of discounted return,
i.e., the relative difference between discounted return achieved with
and without rules, normalized by the discounted return achieved
without rules. In our charts, POMCP is run with 215 particles when
combined with rules for validation. In general, rules learned from
sub-optimal examples do not degrade performance with respect to
pure POMCP (only a slight average decrease < 14% is observed for
grid size 𝑁 < 18), thanks to the soft guidance approach. Interest-
ingly, sub-optimal ASP rules learned in both tests still are beneficial

to POMCP as the planning horizon increases (𝑁 ≥ 18). In particular,
at 𝑁 = 24 discounted return increases of approximately 50%.

7 CONCLUSION
We presented a novel methodology for soft POMCP policy guidance,
based on ILP to learn ASP rules describing policy specifications
directly from POMDP execution traces. Our rules do not need to
be hand-crafted by experts, but we only require definition of rele-
vant high-level domain-specific features, in order to describe belief
information in ASP formalism and find matches with POMDP ac-
tions. We showed that learned ASP axioms significantly support
POMCP exploration in the benchmark domains of rocksample and
battery, advising good branches to be explored in POMCP simu-
lation without significantly affecting the computational burden.
In particular, rules are more beneficial when the number of pos-
sible actions increases (rocksample) and the planning horizon is
extended. Furthermore, POMCP property of asymptotic optimality
is preserved when axioms are learned from traces generated with
low-quality policies, and axioms converge to a fixed point as the
number of examples increases.

In the future, we plan to investigate i) how to integrate more ad-
vanced (e.g., temporal) logic specifications to address more complex
tasks; ii) how to account for non-covered examples in the training
set and possibly refine axioms during execution; iii) the influence
of bad defintion of environmental features by users.
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