
Waterline and Obstacle Detection in Images
from Low-cost Autonomous Boats
for Environmental Monitoring

L. Steccanellaa, D. D. Bloisib, A. Castellinic, A. Farinellic

aDTIC, Universitat Pompeu Fabra C/ Roc Boronat 138 - 08018 Barcelona, Spain
bDept. of Mathematics, Computer Science, and Economics, University of Basilicata, Viale

dell’Ateneo Lucano, 10 - 85100 Potenza, Italy
cDept. of Computer Science, University of Verona, Strada le Grazie 15 - 37134 Verona,

Italy

Abstract

Waterline detection from images taken by cameras mounted on low-cost au-

tonomous surface vehicles (ASVs) is a key process for obtaining a fast obstacle

detection. Achieving an accurate waterline prediction is difficult due to the

instability of the ASV on which the camera is mounted and the presence of

reflections, illumination changes, and waves. In this work, we present a method

for waterline and obstacle detection designed for low-cost ASVs employed in

environmental monitoring. The proposed approach is made of two steps: 1) a

pixel-wise segmentation of the current image is used to generate a binary mask

separating water and non-water regions, 2) the mask is analysed to infer the

position of the waterline, which in turn is used for detecting obstacles. Exper-

iments were carried out on two publicly available datasets containing floating

obstacles such as buoys, sailing and motor boats, and swans moving near the

ASV. Quantitative results show the effectiveness of the proposed approach with

99% accuracy running at 11 frames per second on an embedded GPU board.

Keywords: Water detection, Autonomous surface vessels, Robotic boats,

Robot vision, Water quality monitoring

∗Corresponding author
Email addresses: lorenzo.steccanella@upf.edu (L. Steccanella),

domenico.bloisi@unibas.it (D. D. Bloisi), alberto.castellini@univr.it (A. Castellini),
alessandro.farinelli@univr.it (A. Farinelli)

Preprint submitted to Journal of LATEX Templates September 6, 2019



Figure 1: INTCATCH project uses Platypus Lutra boats, about 1m long and 0.5m wide. A

camera has been mounted on the front of the ASV.

1. Introduction

The water quality monitoring process costs every year more than 1 bil-

lion EUR at the European Union level [1]. In particular, analyses of pollution

in large rivers or lakes supplying drinking water are in the range of 150,000 to

400,000 EUR. The current approach, based on field sample and laboratory anal-5

ysis, is unable to assess temporal and spatial variation in the contaminants of

concern. This means that, in case of accident, there is the possibility of taking

inadequate and late decisions for mitigating the pollution impacts.

The use of autonomous surface vehicles (ASVs) for persistent large-scale

monitoring of aquatic environments is a valid and efficient alternative to the10

traditional manual sampling approach [2]. ASVs are capable of undertaking

long-endurance missions and carrying multiple sensors (e.g., for measuring elec-

trical conductivity and dissolved oxygen) to obtain water quality indicators [3].

There exist commercial ASVs specifically developed for water quality monitor-

ing. An example is the Lutra mono hull boat produced by Platypus1, shown15

in Fig. 1. Lutra boats are used in the EU-funded Horizon 2020 project INT-

1http://senseplatypus.com

2

http://senseplatypus.com


CATCH2, which aims to develop a new paradigm in the monitoring of river and

lake water quality, by bringing together, validating, and exploiting a range of

innovative tools into a single efficient and user-friendly model.

To achieve true autonomous navigation, an ASV must sense its environment20

and avoid possible collisions. In this paper, we propose to use vision-based

sensing to reach this goal, focusing on the domain of small, low-cost ASVs

where sensors commonly utilized for localization purposes (e.g., LiDARs) and

powerful processing units cannot be used due to price caps.

The contribution of this work is two-fold: i) we present a pixel-wise deep25

learning based method able to segment images captured by cameras on low-

cost ASV into water/non-water regions, and ii) we describe an algorithm for

extracting the horizon line (called waterline in this context) from the segmented

images and for detecting potential floating obstacles. It is worth noticing that,

the relationship between waterline and obstacles is heavily dependent on the30

pitch and roll angles of the ASV, which are only roughly measured by cheap gy-

roscope and accelerometer sensors available in low-cost boats. Our goal is to use

the waterline to reduce the search space for the detection of potential obstacles

and to deal with the pitch and roll movements, which can cause misdetections,

by dynamically tracking over-time the obstacle positions. In particular, we use35

Convolutional Neural Networks (CNNs) for image segmentation, edge detection

and RANSAC for waterline extraction, and a multi-object tracker based on cost

computation.

Although CNNs were previously introduced in other mobile robotics domains

(e.g., indoor wheeled and quadrotors), and ASV obstacle detection techniques40

were employed with classical computer vision methods (e.g., optical flow), the

two approaches have never been combined yet.

We provide the complete source code of our method (see Section 6) and the

dataset of images and videos created for testing (see the INTCATCH Vision

2http://www.intcatch.eu

3

http://www.intcatch.eu


Figure 2: The INTCATCH autonomous boat system. The boat uses GPS data to navigate

autonomously and can mount different types of sensors on the underside of the boat. Data

are sent to the cloud and can be accessed through smartphones and PCs.

Dataset3). This dataset contains annotated data that can be used for developing45

supervised approaches for object detection.

The remainder of the paper is structured as follows. An overview of the

INTCATCH system is given in Section 2 and related work is discussed in Section

3. The proposed segmentation algorithm is presented in Section 4, while the

waterline and obstacle detection process is described in Section 5. Experimental50

results are shown in Sections 6. Finally, conclusions are drawn in Section 7.

2. System Overview

The realization of an easy-to-use system that can be used by non-expert

users is a key aspect of the INTCATCH project. A general overview of the

INTCATCH autonomous boat system is shown in Fig. 2. Its main components55

are briefly described below.

Boat. Two different models of the Lutra boats were acquired by the INT-

CATCH consortium to cover different deployment scenarios: 1) Prop boat, hav-

3goo.gl/Kxt6HP

4

goo.gl/Kxt6HP


ing in-water propellers to be deployed in as little as 25 cm of water; 2) Airboat,

with a covered fan deployable in as little as 15 cm of water.60

Controls. The user can interact with the boat using a tablet. A specific

Android Control app has been developed for allowing non-expert users to create

mission plans for the boat using a GUI. For example, it is possible to create a

mission path by selecting a set of waypoints on a map with few clicks.

Proprioceptive sensors. A smartphone is on-board in order to provide65

the information needed for autonomous navigation (i.e., GPS, compass, and

gyroscope data). The phone is placed inside the boat, providing location and

orientation information to the autonomous navigation system.

Water quality sensors. A sensor control unit (Go-Sys BlueBox) is con-

nected to an Arduino e-board and transmits information coming from the sen-70

sors measuring the water quality indicators including temperature, electrical

conductivity, dissolved oxygen, and pH.

GPS based autonomous navigation. The current position of the boat,

measured through the GPS data, is constantly compared with the desired posi-

tion defined in the mission path. If the boat diverges from the expected route75

(e.g., due to water flow), the software running on the smartphone sends com-

mands to the motors in order to correct the route. This behaviour is defined as

“line following”. Planning strategies using prior knowledge for battery manage-

ment during autonomous navigation missions are described in [4, 5].

Homing. A core requirement for a safe deployment is recovering from a80

“runaway” condition, where the boat has navigated out of wireless communica-

tion range and is navigating further away from the operator. The boat periodi-

cally (every 0.1 seconds) “drops a breadcrumb”, saving its current location in a

hashmap indexed by the GPS location of the boat that is rounded to the meter.

This essentially creates a regular grid where breadcrumbs are spaced by 1 meter85

in the four directions. The A* path planning algorithm [6] is then run on this

structure considering every breadcrumb connected to its eight neighbors. The

A* algorithm finds a sequence of waypoints that starts from the breadcrumb

that is closer to the boat’s current location and ends at the breadcrumb that is

5



Figure 3: Electrical conductivity values measured on two different days in Lake Garda. For

increased visual clarity at low levels, all values above 800 µS/cm are the same shade of red.

closer to the home location.90

Data storage and visualization. The BlueBox sends geolocalized data

over the Internet to a catchment database called WAIS (Water Information

System). The INTCATCH web app retrieves data about catchments from the

WAIS and visualizes them. The web app can be accessed by different devices,

like smartphones or desktop PC. An example of data visualization is shown in95

Fig. 3, where an interesting situation has been registered thanks to the sensors

mounted on the boat. Two deployments were carried out on two different days,

showing a change in the distribution of the electrical conductivity values. The

two plumes are different, due to the changes flow of the water. A YouTube video

showing monitoring activities carried out on Lake Garda can be seen at https:100

//youtu.be/yAy8Bl3UrO0. Activity recognition on sensor data acquired by the

drones has been performed using clustering and subspace clustering techniques

[7, 8].

3. Related Work

Monocular vision-based obstacle detection for ASVs has previously received105

some interest. The approaches presented in the literature are mainly unsuper-

vised ones.

3.1. Unsupervised Methods

El-Gaaly et al. [9] utilize sparse optical flow, reflection rejection, and an

occupancy grid overlaid on the image. This process produces a significant num-110

6

https://youtu.be/yAy8Bl3UrO0
https://youtu.be/yAy8Bl3UrO0
https://youtu.be/yAy8Bl3UrO0


ber of false positives when the water surface is disturbed. Sadhu et al. [10]

use grayscale histograms of pixel neighborhoods as a descriptor of texture and

saliency to detect logs floating on the surface of water. However, their method

ignores the shoreline. Wei and Zhang [11] present a waterline detection method

based on structure extraction and texture analysis. Their algorithm combines115

local binary patterns (LBPs) and the gray level co-occurrence matrix (GLCM)

to obtain a measure of the intensity contrast of neighboring pixels as well as

the distance and orientation between them. However, their approach fails when

both the trees and the shade of the trees on the bank are dark.

Paccaud and Barry [12] describe a waterline based obstacle-detection system120

for lake-deployed ASVs mounting a camera with a low viewing angle to the

water. For detecting the horizon, they use a statistical method (i.e., the horizon

is defined as the line that best separates the sky and water and minimizes

their relative intra-class variance) and an edge analysis (the horizon is assumed

to be the most salient line in the frame). Data from an Inertial Navigation125

System are used to track the cameras attitude in real time. This information is

used then to improve horizon detection. Possible obstacles are detected using

a gradient-based image processing algorithm. The system runs at 4 frames per

second (FPS) and it has been tested on images from a publicly available dataset

recorded in Lake Geneva (Switzerland).130

3.2. Supervised Approaches

The dynamic nature of water is capable of producing mirror-accurate reflec-

tions of the environment and a turbulent, erratically textured surface, which

are difficult to handle with classical unsupervised approaches. Recent advance-

ments in deep learning methods for computer vision, based in particular on135

CNNs, show promise for the segmentation of images captured by ASV into se-

mantic elements such as obstacles and the water that surrounds them. In this

work, we use CNNs to separate pixels related to water from pixels related to

non-water (e.g., sky, coast, and floating objects) obtaining a mapping between

image pixels and the two classes water/non-water.140

7



CNNs are a type of deep, feed-forward Artificial Neural Networks (ANNs).

Since ANNs are able to approximate any continuous functional mapping, they

can be employed when the form of the required function is unknown [13, 14].

CNNs have shown impressive performance on image classification [15] and object

detection [16]. Segnet [17] is an example of deep fully convolutional neural145

network architecture for semantic pixel-wise segmentation. Its segmentation

engine relies on an encoding-decoding scheme and it can be employed for scene

understanding applications. Multiple mobile robotics domains have started to

incorporate CNNs into obstacle detection and navigation. Giusti et al. [18]

detect forest paths for a quadrotor to navigate. Chakravarty et al. [19] trained150

a CNN to produce depth maps from a single image in indoor environments.

To the best of our knowledge, CNNs have never been used for ASV ap-

plications and, in particular, for waterline detection. Our image segmentation

algorithm is based on the U-net architecture. U-net [20] is an encoder-decoder

type of network for pixel-wise segmentation. In U-net, the receptive fields after155

convolution are concatenated with the receptive fields in an up-convolution pro-

cess, allowing the network to use original features in addition to features after

transpose convolution. Every step in the expansive path consists of i) an upsam-

pling of the feature map followed by a 2×2 transpose convolution that halves the

number of feature channels, ii) a concatenation with the corresponding cropped160

feature map from the contracting path, and iii) two 3×3 convolutions, each

followed by a rectified linear unit (ReLU). This results in overall better perfor-

mance than a network that has access to only features after up-convolution.

4. Water/non-water Classification

Raw images coming from the camera mounted on the boat are used as input165

for a Fully Convolutional Neural Network that classifies pixels as water or non-

water ones. In the following we describe the network architecture, the dataset

used for training, and provide details on the learning process.

8



Figure 4: CNN feedforward prediction. Raw captured image is resized and fed to trained

neural network, producing the class mask.

4.1. CNN Architecture

A U-net based architecture is used for the segmentation process [20]. The170

decision of choosing the U-net architecture has been taken for three main rea-

sons:

1. U-net does not have any dense layer. This means that there is no re-

striction on the size of the input image. Convolutional layers can extract

kernel features from any input shape adapting padding automatically. On175

the other hand, the dense layers need to have fixed size/length input by

their definition.

2. The training stage can be carried out even if only a limited amount of

training data is available.

3. The receptive fields in the encoding and decoding stages are concatenated.180

This allows the network to consider the feature after upconvolution to-

gether with the original ones.

Fig. 4 shows the pipeline for generating the class mask. The input image is

downsampled to obtain a 160×160 resized image. The encoding stage is needed

to create a 256 feature vector, while the decoding stage is needed to obtain185

the predicted mask at 160×160 pixels. The encoding stage is made of eight

3×3 convolutional layers, and by three 2×2 max pooling operations with stride

2. In particular, there is a repeated application of two unpadded convolutions,

each followed by a batch normalization (BN) layer, a ReLU, and a max pooling

operation.190

9



Figure 5: Architecture of the Full BN 160×160 network.

As a difference with respect to the original U-net architecture, our encoding

stage has four levels instead of five and we extract at each level a number of

features that is the half of the original U-net. The complete architecture of the

proposed segmentation net, denoted as Full BN 160×160, is shown in Fig. 5.

The expansive path (see the right side of Fig. 5) is made of six 3×3 convolutional195

layers and by three 2×2 transpose layers. There is a repeated application of two

padded convolutions, each followed by a BN layer and a ReLU. The 32 channels

map extracted in the last layer of the network are then projected in a single

channel space with a sigmoid activation function that outputs the probability

of belonging to the class “water”.200

Regularization. To improve the performance of the neural network, we

explored the use of BN [21] as a regularizer for the training signal. BN is ap-

plied over a mini-batch gradient descent optimization technique (see Section 4.3)

where small batches of data are sampled from the whole dataset D and the net-

work parameters are updated on the basis of the loss values computed on these205

batches. For every batch B containing m values, sampled from D, BN performs

a zero mean and unit variance regularization to each dimension of each hidden

layer. The mini-batch mean is µB = 1
m

∑m
i=1 x

(k)
i , the mini-batch variance is

σ2
B = 1

m

∑m
i=1

(
x
(k)
i − µB

)2
, the normalization of a general activation x

(k)
i is

10



computed as x
(k)
i =

x
(k)
i

−µB√
σ2
B
+ε

. However, the simple standardization of each input210

of a layer may limit the expressiveness of the network. To address this problem,

we also learn, for each activation x(k), two parameters γ(k) and β(k) by which

the normalized value is scaled and shifted as y
(k)
i = γ(k)x̄

(k)
i + β(k). BN is per-

formed on each hidden layer, thus enabling the use of higher learning rates that

greatly accelerate the learning process.215

Increasing the computational speed. When detecting obstacles while

moving at full speed, processing time is a crucial aspect. This motivates the

pursuit of scalable methods that can be deployed with limited processing power.

With the above described Full BN 160×160 architecture, we are able to obtain

a computational speed of about 9 FPS on an embedded board (see Section 6220

for the details about the used hardware). In order to explore the trade-off

between accuracy and processing speed, we trained and tested other network

configurations which are denoted as Half-Conv BN 160×160, Full mobile-net-

v1-layer 160×160, and Full mobile-net-v2-layer 160×160.

Half-Conv BN 160×160 is an architecture where the number of convolutional225

layers applied at each encoding/decoding level is reduced by a factor of 2 with

respect to Full BN 160×160. By reducing the convolutional layers to a single

layer per encoding/decoding level, it is possible to obtain a faster computation

in terms of FPS at the cost of decreased accuracy. Furthermore, it is possible

to skip BN to obtain an increase in speed, with a decrease in accuracy also in230

this case. We refer to the two versions of the net without BN as Full 160×160

and Half-Conv 160×160, respectively.

The architecture denoted as Full mobile-net-v1-layer 160×160 derives from

MobileNet [22], where traditional convolutional layers from level 1 to 4 are re-

placed by depthwise separable convolutions (DSCs), i.e., depthwise convolution235

followed by pointwise convolution. Fig. 6 shows a comparison between the tra-

ditional convolutional layer with BN and ReLU and the MobileNet v1 approach

using DSCs with depthwise and pointwise layers followed by BN and ReLU.

11



Figure 6: Left: Traditional convolutional layer with BN and ReLU. Right: MobileNet v1

Depthwise Separable convolutions with depthwise and pointwise layers followed by BN and

ReLU. Image adapted from [22].

Figure 7: Three frames captured at Lake Garda in Italy, which is one of the sites of the

INTCATCH project. We used images from 8 different videos for training and testing.

4.2. Dataset

In this study, we consider images coming from the INTCATCH Vision Dataset240

and the Obstacle Detection Data Sets published by Paccaud and Barry4. INT-

CATCH Vision Dataset is a repository that stores visual and sensor data of

the INTCATCH project. The data set currently contains 22 videos collected on

lake and river scenarios. All the image sequences were collected using a GoPro

Hero 3 Black camera mounted on the bow of the boat. Some sequences have245

been collected at 60 FPS with 1920×1080 wide angle resolution and other at

25 FPS with 320×240 narrow angle resolution. This has been done to create a

dataset containing a wider range of data. Here, we consider 8 videos of Lake

Garda (Italy), captured at different times of the day and in different locations

of the lake (see Fig. 7). In addition to the images coming from Lake Garda, we250

4https://osf.io/edq4b/

12

https://osf.io/edq4b/


Figure 8: a) Frame from a video captured on River Ter. b) Frame from the sequence DS8

use also images coming from River Ter in Spain (see Fig. 8a).

Obstacle Detection Data Sets is a collection of image sequences captured on

Lake Geneva (Switzerland). It is made of 14 different datasets and each dataset

includes a file with measured attitude (roll and pitch data). The sequences are

useful for testing obstacle detection algorithms. Fig. 8b shows a frame from255

sequence DS8.

Annotation. Images were annotated using a custom tool5 created for the

task. The tool takes advantage of super-pixel segmentation to give hints to the

user that needs to select the areas belonging to the water class. To perform

super-pixel segmentation, we used the SLIC algorithm [23]. This algorithm260

performs K-means in the 5D space of color information and image location. The

mask generated using the super-pixel segmentation have been further refined

manually to obtain the final labelled images.

For training, we labeled 400 images from:

• 6 videos collected on Lake Garda, namely files lakegarda-may-9-prop-X in265

the dataset, where X ∈ {1, 2, 3, 4, 5, 6} and the term “prop” refers to the

use of the boat with submerged propellers.

• 1 videos captured on River Ter, i.e., ter1.avi.

• 1 image sequence from the Obstacle Detection Data Sets, i.e., DS4.

5https://github.com/lorenzosteccanella/PixelWiseLabelTool

13

https://github.com/lorenzosteccanella/PixelWiseLabelTool


Figure 9: Data augmentation.

For testing, we labeled 115 images taken from the sequences lakegarda-may-270

9-prop-7, lakegarda-may-9-prop-8, DS7, and DS8 from the Obstacle Detection

Data Sets (see Section 6 for a discussion about the segmentation results).

Data augmentation. Working with a data set of limited size presents a

problem related to overfitting: Models trained with a small amount of data can

have a limited generalization capacity. Data augmentation is a common practice275

to handle training on small data sets [24]. In this work, we have performed

augmentation on the training data to create a larger data set by using zooming

and cropping, flipping, blurring, rotation, and image enhancing. Fig. 9 shows

some results of the data augmentation process.

Water currents produce significant rolling (i.e., rotation) effects on the ASV.280

14



Since rolling motion is captured in the raw video footage, this effect must be

taken into account to maximize the segmentation accuracy, so we augment the

data set with rotations within -20 to 20 degrees (see Fig. 9d). Other key trans-

formations are horizontal flipping (Fig. 9c), shearing (Fig. 9h), and zooming

(Fig. 9b). Motion blur (Fig. 9e) was used to simulate the effect of rapid285

movements of the boat.

The color range of images was augmented by considering variations in the

hue, saturation, and value (brightness) channels. It is important to note that it

is extremely difficult to predict the hue of water since multiple factors contribute

to the surface color of water bodies, including the depth of the water, the amount290

and type of sediment in the water, the color of the sky reflecting on the water,

and also the water movement. In particular, pixel affected by sky reflections

can cover the full hue spectrum and present low saturation values and high

brightness values [25]. To simulate different light conditions, we augmented the

images using two techniques:295

1. Add a value to each channel (Fig. 9g). A simple way to reproduce different

light condition is to add of a random value to each channel of the image

using the formula below.

O(i, j) = I(i, j) + c (1)

where O(i, j) is the output image, I(i, j) is the input image, c is the

additive factor.300

2. Sigmoid contrast (Fig. 9i): this transformation applies a sigmoid function

as a mask to the input image [26] and can be formalized as:

O(i, j) = 1/(1 + e(g∗(c−I(i,j)))) (2)

where O(i, j) is the output image, I(i, j) is the input image, g is the gain

factor, c is the cutoff factor. We randomly sampled g in the range [9, 11]

and c in the range [0, 0, 70] by assessing the effects on the images.305

The final augmented training dataset becomes 10 times bigger than the

15



original training set. All the images obtained through the data augmentation

process were resized to 160×160 pixels.

4.3. Training

The training step has been performed taking advantage of mini-batch gra-310

dient descent. Mini-batch gradient descent performs an update of weights θ for

each mini-batch of m samples, as in [27]:

θ = θ − α · ∇J(θ;x(z:z+m); y(z:z+m)). (3)

where α is the learning rate, x is the input image, y the labelled mask, z indicates

the mini-batch subset sampled from the training set, ∇ is the gradient function

and J is the cost function computed as:315

J(θ, x(z:z+m), y(z:z+m)) =
1

m
·
m∑
z=0

J(θ, x(z), y(z)) (4)

We use an Adam optimizer [28] with batch size of 32 images. The Adam

optimizer performs gradient descent with momentum, involving a weighted aver-

age of gradients. The hyper parameters chosen for training our net are: learning

rate α = 10−4, decay rate for first and second moment estimates B1 = 0.9 and

B2 = 0.999, respectively. To prevent overfitting, the training was performed320

over 100 epochs using early stopping with patience 20 based on the loss over

the validation set [29].

We compared different loss functions, i.e., binary cross entropy (used in the

original U-net formulation [20]), mean absolute error, mean squared error, and

Dice (see Fig. 10). The comparison, performed using a Dice/F1 metrics, showed325

that the Dice loss (see Eq. 5) is the better choice in our application since it

reached the highest rate. The Dice Similarity Coefficient (DSC) loss function is

defined as [30]:

J = LDSC = 1−
2
∑N
i pigi∑N

i pi +
∑N
i gi

(5)

where pi, gi ∈ [0, 1] represent the continuous values of the sigmoid prediction

map and the ground truth, respectively, at each pixel i. In our application,330

16



Figure 10: Comparison of different losses for training the network Full BN 160x160. The

results are performed on validation set at each epoch. The training is performed with an early

stopping patience of 20 epochs

DSC loss function obtains better results thanks to its capability of mitigating

the class imbalance problem, i.e., pixel belonging to class water are usually more

than other pixels.

5. Waterline Computation and Obstacle Detection

Once the segmentation mask for water/non-water is ready, two further steps335

are performed, namely, waterline computation and obstacle detection. Details

about these two steps are provided below.

5.1. Waterline Computation

The binary mask produced by the CNN has value 1 for pixels belonging to

water and 0 for other pixels. A median filter is applied to it for reducing narrow340

protrusions (such as sailboat masts). Edge detection is then used to isolate the

pixels on the contour between the two classes. To do it, we looked at the points

where the pixels change from 1 to 0. The probabilistic Hough transform with

line primitive is applied to filter out pixels that may be part shorter, closed

17



Figure 11: Example classification and waterline result. In (d), black is true negative, white is

true positive, green is false positive, and purple is false negative. The image is zoomed to the

region around the waterline.

contours that appear below the horizon line (a small buoy below the horizon345

line, for example). Only the pixels that compose a long edge are retained.

Specifically, we used a threshold equal to 20 for intersections in Hough grid cell,

the minimum number of pixel making up a line equal to 20, and a maximum

gap in pixel between connectable line segments equal to 5.

Finally, linear regression is performed utilizing RANSAC [31] to further re-350

duce the influence of sharp changes in the contour. Fig. 11 shows an example of

waterline detection achieved by the proposed algorithm. The raw image (Fig.

11a) is segmented by the CNN to generate the mask of water/non-water pixel

(Fig. 11b). The waterline is then inferred from the mask using a linear regres-

sion model (Fig. 11c). In the bottom (Fig. 11d) the pixel-wise classification355

error is displayed.

5.2. Obstacle Detection

Fig. 12 shows the four steps needed for detecting the objects laying under the

waterline. The information about the current position of the waterline (see Fig.

12a) is used to modify the current frame by erasing all the pixels located over360

the waterline (Fig. 12b). Then, the blobs formed by non-water pixels located

below the waterline are extracted (Fig. 12c) to obtain the final bounding boxes

18



Figure 12: Obstacle detection in the current frame. a) Waterline prediction. b) Filtered

image. c) Blob extraction. d) Bounding boxes around detected objects.

of the objects in front of the boat (Fig. 12d). Details on each step are provided

below.

Image filtering. The first two steps require to filter the original frame from365

the camera to reduce the search space where finding potential obstacles in front

of the boat. The original color frame is transformed to grayscale and pixels

are removed starting from the top location in each column until the waterline.

Then, the pixels labelled as water are also removed obtaining a filtered grayscale

image with few non-zero pixels.370

Blob extraction. The filtered image obtained with the two steps above is

used to extract the blob with an area greater than 20 pixels. This threshold

has been set experimentally and can be adapted to the specific application

scenario. The blobs are computed using the OpenCV function findContours,

while the bounding boxes are created using the OpenCV function boundingRect.375

19



Figure 13: Object tracking example. a) Presence of a false negative in the detection step. b)

The tracking algorithm keep track of the object using previous correct detections.

The source code for the object detection is available at https://github.com/

dbloisi/asv_obstacle_detection.git and a video with the detection results

on the sequence DS8 of the Obstacle Detection Data Sets is available at https:

//youtu.be/OAUtOyMkRu4

5.3. Obstacle Tracking380

Detecting possible objects in single images is not enough to provide a reliable

method for avoiding obstacles. False detection and misdetection must be filtered

overtime to avoid sending false alarms to the navigation system. To this end,

we use a tracking algorithm to keep track of the presence of potential obstacles

in front of the boat. Fig. 13 shows an example where, even if the swan in the385

middle of the image is not detected in that specific frame (see Fig. 13a), the

tracking algorithm keeps track of it because it was correctly detected in previous

frames (see Fig. 13b).

The tracking algorithm is derived from the one available at github.com/

pennisi/multitargettracking, which has been tested in the maritime envi-390

ronment [32]. It is a multi-object tracker based on cost computation. Costs

are calculated using the Mahalanobis distance. Association between tracks and

observations is carried out using a linear assignment approach together with

a Munkres algorithm. The tracker considers the tracks having their bounding

20

https://github.com/dbloisi/asv_obstacle_detection.git
https://github.com/dbloisi/asv_obstacle_detection.git
https://github.com/dbloisi/asv_obstacle_detection.git
https://youtu.be/OAUtOyMkRu4
https://youtu.be/OAUtOyMkRu4
https://youtu.be/OAUtOyMkRu4
github.com/pennisi/multitargettracking
github.com/pennisi/multitargettracking
github.com/pennisi/multitargettracking


Figure 14: Alarm grid example.

boxes moving closer to each other tracks to form a group [33]. This means395

that collapsing tracks are represented by a single identification number, instead

of tracking them separately. A group evolves considering both the estimated

trajectory and the observations coming from the detector.

We use the value 5 as the number of observations after which a track is

considered valid and the value 10 as the number of frames after which a track is400

deleted if no associations are found. The source code of the obstacle tracker is

available at https://github.com/dbloisi/asv_obstacle_tracking.git and

a video with the tracking results on the sequence DS8 of the Obstacle Detection

Data Sets is available at https://youtu.be/-CMP0nRjKJY

It is worth noticing that, as a difference with respect to common visual track-405

ing application (e.g., people tracking), re-identification errors can be accepted,

since every obstacle should be avoided independently from its identity.

5.4. Alarm Grid

Object tracks are used to create alarms in specific locations of the image

plane captured by the camera mounted on the boat. Fig. 14 shows an example.410

A grid of six cell is considered as the occupancy grid map in the area in front

21

https://github.com/dbloisi/asv_obstacle_tracking.git
https://youtu.be/-CMP0nRjKJY


of the boat. It gives an indication of the traversability for each cell. If an

object track is located inside a cell, that cell is considered as non traversable.

For example, in Fig. 14 the two grids located at the top right of the grid

are labeled as non-traversable (red color), while the other cells are traversable415

(green color). A video with the alarm grid generated on the sequence DS8 of the

Obstacle Detection Data Sets is available at https://youtu.be/KzcSooRyhE8

6. Experimental Results

We tested both the capacity of our approach in segmenting the images com-

ing from the ASV and the accuracy of the predicted waterline calculated from420

the segmented image. Five different network configurations were considered.

6.1. Pixel-wise Segmentation

Experiments were carried out using a Jetson TX2 embedded GPU board

with the following specifications: ARM Cortex-A57 (quad-core) @ 2GHz +

NVIDIA Denver2 (dual-core) @ 2GHz, 8GB of LPDDR4 memory with a 128-425

bit interface, and an integrated 256-core NVIDIA Pascal GPU. Training was

performed taking advantage of the Google Colab service that offers a NVIDIA

Tesla K80. The training time varies according to the complexity of the network

and the number of features extracted: It takes from a minimum of 4 hours for

the Half-Conv 160x160 network to a maximum of 6 hours for Full BN 160x160.430

The performance of the pixel-wise classification is evaluated by using pre-

cision (P ), recall (R), accuracy (A), and F1-score (F1) metrics [34]. These

measures are computed from true positives (TP ), true negatives (TN), false

positives (FP ), and false negatives (FN) by the following formulas:

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)

22

https://youtu.be/KzcSooRyhE8


Table 1: Segmentation results using five different network configurations on a region of -200

to +200 pixels around the waterline.

Network N param Precision Recall Accuracy F1 Score FPS - CPU FPS - GPU

Half-Conv 160x160 948001 0.974 0.983 0.978 0.978 5.23 13.27

Half-Conv BN 160x160 950817 0.974 0.982 0.977 0.977 4.88 12.18

Full 160x160 1925601 0.994 0.980 0.988 0.986 3.51 10.53

Full BN 160x160 1931233 0.993 0.983 0.989 0.988 3.06 9.90

Full mobile-net-v1-layer 160x160 422465 0.996 0.972 0.986 0.983 4.25 9.85

A =
TP + TN

TP + FP + TN + FN
(8)

F1 = 2
P ×R
P +R

(9)

Table 1 shows the segmentation results for the five different network config-435

urations. To obtain a more accurate evaluation, results were generated consid-

ering an area of interest around the waterline, which is more prone to errors.

The area consists of a slice of 200 pixel above and 200 pixel below the center

point C of the horizon line, while the full resolution of the camera is 1280x720

pixels (Fig. 11d). To define this area, we computed the Cy coordinate of the440

center of the horizontal line and we extracted an image with original width and

height of 400 pixels, i.e., 200 pixel above and below Cy.

All the FPS values are calculated on average over 10 runs. Full mobile-net-

v1-layer 160x160 achieves better FPS performance on the CPU with respect to

both Full 160x160 and Full BN 160x160. It obtains similar performance with445

respect to Half-Conv BN 160x160. We believe that this is due to the fact that

DSCs are not fully supported in CudaNN.

The test set used for computing the quality metrics for water segmentation

and waterline extraction can be downloaded at goo.gl/FHgwkV.

The networks that we have tested are written in Python, using functions450

included in the libraries OpenCV, TensorFlow, and Keras. The complete source

23

goo.gl/FHgwkV


Table 2: Results on pixel vertical distance between ground truth and predicted waterlines.

Network Mean Max Distance Median Max Distance Standard Deviation, Quantile 0.25 - 0.75

Half-Conv 160x160 25.03 8.0 55.15 5.0 - 14.5

Half-Conv BN 160x160 24.84 9.0 44.85 5.0 - 17.0

Full 160x160 13.24 9.0 15.80 5.0 - 15.0

Full BN 160x160 13.53 8.0 17.08 6.0 - 12.0

Full mobile-net-v1-layer 160x160 15.28 9.0 18.77 6.0 - 13.0

Figure 15: Boxplot on pixel vertical distance between ground truth and predicted water lines

on 1280x720 images

code is available as GitHub repository6.

6.2. Waterline Detection

A pixel-wise evaluation of classification error does not translate directly into

an error in the waterline. To evaluate the waterline detection capabilities of455

our approach, we calculated the maximum vertical distance in pixels between

the ground truth waterline (a RANSAC fit over the ground truth mask) and

the predicted waterline for each original size test image to provide a geometric

measure of the error. The median and the mean of this distance for the entire

test set is summarized in Table 2.460

6https://github.com/lorenzosteccanella/Intcatch_pixelwise_segmentation

24

https://github.com/lorenzosteccanella/Intcatch_pixelwise_segmentation


Figure 16: Two examples demonstrating the limitations of a water line. (a) The contour of

a boat begins to appear and is classified correctly. RANSAC line sticks to dominant horizon

line. (b) Waterline construct breaks down completely, motivating the use of a water contour.

While the measure of the vertical distance between the actual and predicted

waterline does not translate directly into a measure of obstacle avoidance per-

formance, we achieve processing speeds that would be acceptable for a small,

low-speed ASV. When the boundary between water and non-water pixels is

dominated by the horizon line, assuming the boundary between water and ob-465

stacles is linear is reasonable. But as the distance to obstacles decreases, this

assumption begins to break down. Fig. 16 shows two examples of this issue. At

a certain point, a water boundary “contour” becomes more useful. Deep learn-

ing methods, especially CNNs, could be used to learn to identify this contour

directly from raw pixel data, circumventing the need for edge detection or other470

similar post-processing.

25



7. Conclusions

In this paper, we have shown the use of a deep learning based method for

waterline detection on a low-cost ASV. Images captured by the ASV were seg-

mented pixel-wise into water and not-water classes using a CNN. A line was fit475

to the edges in this binary class mask to create the waterline prediction. The

waterline extraction method has been tested on different sequences captured at

Lake Garda in Italy. The chosen application scenario is challenging, due to the

presence of large waves (compared to the dimension of our ASV) and a number

of floating objects (buoys, sailing and motor boats).480

In particular, we have demonstrated the effectiveness of the proposed ap-

proach using four configurations, obtained from two different network archi-

tectures with and without batch normalization. The pixel-wise classification

achieves good performance in all four cases, with accuracy ranging from 0.95

to 0.98. The use of batch normalization allows to improve the training signal485

and the generalization of the network on the test set. Moreover, the waterline

detection approach provides a precision that is acceptable for small, low-speed

ASV (i.e., a mean max distance of 11.33 pixel and median max distance of 8.0

pixels for an image of 128x720 pixels).

Future directions. This work represents a first proof of the feasibility of490

a deep learning approach to horizon line detection and water segmentation on

images coming from a small ASV. It paves the way for investigating the use

of different types of network architectures. A Recurrent Neural Network over

the latent space on our network can be used to track the feature over-time

and this could provide improvements in accuracy and smoothness of transitions495

between frame detection. The network itself could provide directly the horizon

line attaching dense layers over the encoded latent space, and having a multiple

output network.

26



Acknowledgment

We are grateful to Stefano Aldegheri for helping in implementing the water-500

line detection algorithm on the Jetson board and in generating the experimental

results.

This work is partially funded by the European Union’s Horizon 2020 research

and innovation programme under grant agreement No 689341.

References505

[1] E. P. E. C. (EPEC), Detailed assessment of the market potential, and

demand for, an eu etv scheme (2013).

URL https://publications.europa.eu/s/mNoC

[2] M. Dunbabin, A. Grinham, Quantifying spatiotemporal greenhouse gas

emissions using autonomous surface vehicles, Journal of Field Robotics510

34 (1) (2017) 151–169.

[3] D. L. Codiga, A marine autonomous surface craft for long-duration, spa-

tially explicit, multidisciplinary water column sampling in coastal and es-

tuarine systems, Journal of Atmospheric and Oceanic Technology 32 (3)

(2015) 627–641.515

[4] A. Castellini, J. Blum, D. Bloisi, A. Farinelli, Intelligent battery manage-

ment for aquatic drones based on task difficulty driven pomdps, in: Pro-

ceedings of the 5th Italian Workshop on Artificial Intelligence and Robotics

- XVII International Conference of the Italian Association for Artificial In-

telligence, AIRO@AI*IA 2018, Trento, Italy, November 22-23, 2018., 2018,520

pp. 24–28.

[5] A. Castellini, G. Chalkiadakis, A. Farinelli, Influence of state-variable con-

straints on partially observable monte carlo planning, in: Proceedings of

the Twenty-Eighth International Joint Conference on Artificial Intelligence,

IJCAI 2019, Macao, China, August 10-16, 2019, 2019, pp. 5540–5546.525

27

https://publications.europa.eu/s/mNoC
https://publications.europa.eu/s/mNoC
https://publications.europa.eu/s/mNoC
https://publications.europa.eu/s/mNoC


[6] P. E. Hart, N. J. Nilsson, B. Raphael, A formal basis for the heuristic deter-

mination of minimum cost paths, IEEE Transactions on Systems Science

and Cybernetics 4 (2) (1968) 100–107. doi:10.1109/TSSC.1968.300136.

[7] A. Castellini, G. Beltrame, M. Bicego, J. Blum, M. Denitto, A. Farinelli,

Unsupervised activity recognition for autonomous water drones, in: Pro-530

ceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC

’18, ACM, New York, NY, USA, 2018, pp. 840–842.

[8] A. Castellini, F. Masillo, M. Bicego, D. Bloisi, J. Blum, A. Farinelli,

S. Peigner, Subspace clustering for situation assessment in aquatic drones,

in: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Com-535

puting, SAC ’19, ACM, New York, NY, USA, 2019, pp. 930–937.

[9] T. El-Gaaly, C. Tomaszewski, A. Valada, P. Velagapudi, B. Kannan,

P. Scerri, Visual obstacle avoidance for autonomous watercraft using smart-

phones, in: Autonomous Robots and Multirobot Systems workshop, 2013,

pp. 1–15.540

[10] T. Sadhu, A. B. Albu, M. Hoeberechts, E. Wisernig, B. Wyvill, Obstacle

detection for image-guided surface water navigation, in: 13th Conference

on Computer and Robot Vision (CRV), 2016, pp. 45–52.

[11] Y. Wei, Z. Y., Effective waterline detection of unmanned surface vehicles

based on optical images, Sensors 16 (10) (2016) 1–18.545

[12] P. Paccaud, D. A. Barry, Obstacle detection for lake-deployed autonomous

surface vehicles using RGB imagery, PloS one 13 (10) (2018) 1–24.

[13] K.-I. Funahashi, On the approximate realization of continuous mappings

by neural networks, Neural Networks 2 (3) (1989) 183–192.

[14] A. Castellini, D. Paltrinieri, V. Manca, MP-GeneticSynth: inferring bio-550

logical network regulations from time series, Bioinformatics 31 (5) (2015)

785–787.

28

http://dx.doi.org/10.1109/TSSC.1968.300136


[15] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep

convolutional neural networks, in: Proceedings of the 25th International

Conference on Neural Information Processing Systems, Vol. 1 of Advances555

in neural information processing systems (NIPS), 2012, pp. 1097–1105.

[16] D. Erhan, C. Szegedy, A. Toshev, D. Anguelov, Scalable object detection

using deep neural networks, in: Computer Vision and Pattern Recognition

(CVPR), 2014, pp. 2155–2162.

[17] V. Badrinarayanan, A. Kendall, R. Cipolla, Segnet: A deep convolutional560

encoder-decoder architecture for image segmentation, IEEE Transactions

on Pattern Analysis and Machine Intelligence.

[18] A. Giusti, J. Guzzi, D. C. Cirean, F. L. He, J. P. Rodrguez, F. Fontana,

M. Faessler, C. Forster, J. Schmidhuber, G. D. Caro, D. Scaramuzza, L. M.

Gambardella, A machine learning approach to visual perception of forest565

trails for mobile robots, IEEE Robotics and Automation Letters.

[19] P. Chakravarty, K. Kelchtermans, T. Roussel, S. Wellens, T. Tuytelaars,

L. Van Eycken, Cnn-based single image obstacle avoidance on a quadrotor,

in: IEEE International Conference on Robotics and Automation (ICRA),

2017, pp. 6369–6374.570

[20] O. Ronneberger, P.Fischer, T. Brox, U-net: Convolutional networks for

biomedical image segmentation, in: International Conference on Medical

Image Computing and Computer Assisted Intervention (MICCAI), 2015,

pp. 234–241.

[21] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network train-575

ing by reducing internal covariate shift, arXiv preprint arXiv:1502.03167.

[22] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, H. Adam, Mobilenets: Efficient convolutional neural net-

works for mobile vision applications, arXiv preprint arXiv:1704.04861.

29



[23] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Süsstrunk, Slic super-580

pixels compared to state-of-the-art superpixel methods, IEEE transactions

on pattern analysis and machine intelligence 34 (11) (2012) 2274–2282.

[24] L. Perez, J. Wang, The effectiveness of data augmentation in image classi-

fication using deep learning, arXiv preprint arXiv:1712.04621.

[25] A. Rankin, L. Matthies, A. Huertas, Daytime water detection by fusing585

multiple cues for autonomous off-road navigation, Transformational Science

and Technology for the Current and Future Force (2006) 177–184.

[26] N. Hassan, N. Akamatsu, A new approach for contrast enhancement using

sigmoid function, The International Arab Journal of Information Technol-

ogy 1 (2).590

[27] X. Peng, L. Li, F. Wang, Accelerating minibatch stochastic gradient descent

using typicality sampling, ArXiv abs/1903.04192.

[28] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv

preprint arXiv:1412.6980.

[29] R. Caruana, S. Lawrence, C. L. Giles, Overfitting in neural nets: Backprop-595

agation, conjugate gradient, and early stopping, in: Advances in neural

information processing systems (NIPS), 2001, pp. 402–408.

[30] F. Milletari, N. Navab, S.-A. Ahmadi, V-net: Fully convolutional neural

networks for volumetric medical image segmentation, in: 2016 Fourth In-

ternational Conference on 3D Vision (3DV), IEEE, 2016, pp. 565–571.600

[31] M. A. Fischler, R. C. Bolles, Random sample consensus: A paradigm for

model fitting with applications to image analysis and automated cartogra-

phy, Commun. ACM.

[32] M. Fiorini, A. Pennisi, D. Bloisi, Optical target recognition for drone ships,

in: Proc. of the 12th International Conference on Marine Navigation and605

Safety of Sea Transportation (TransNav), 2017, pp. 371–375.

30



[33] F. Previtali, D. D. Bloisi, L. Iocchi, A distributed approach for real-time

multi-camera multiple object tracking, Machine Vision and Applications

28 (2017) 421430.

[34] A. Pennisi, D. D. Bloisi, D. Nardi, A. R. Giampetruzzi, C. Mondino,610

A. Facchiano, Skin lesion image segmentation using delaunay triangulation

for melanoma detection, Computerized Medical Imaging and Graphics 52

(2016) 89 – 103.

31


	Introduction
	System Overview
	Related Work
	Unsupervised Methods
	Supervised Approaches

	Water/non-water Classification
	CNN Architecture
	Dataset
	Training

	Waterline Computation and Obstacle Detection
	Waterline Computation
	Obstacle Detection
	Obstacle Tracking
	Alarm Grid

	Experimental Results
	Pixel-wise Segmentation
	Waterline Detection

	Conclusions

