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Abstract
Dynamical methods were designed to eliminate the ideal
objects abstract algebra abounds with. Typically granted
by an incarnation of Zorn’s Lemma, those ideal objects
often serve for proving the semantic conservation of addi-
tional non-deterministic sequents, that is, with finite but
not necessarily singleton succedents. Eliminating ideal
objects dynamically was possible also because (finitary)
coherent or geometric logic predominates in that area:
the use of a non-deterministic axiom can be captured by
a finite branching of the proof tree.
Incidentally, a paradigmatic case has widely been

neglected in dynamical algebra: Krull’s Lemma for prime
ideals. Digging deeper just about that case, which we
have dealt with only recently (with Yengui), has now
brought us to unearth the general phenomenon underly-
ing dynamical algebra: Given a claim of computational
nature that usually is proved by the semantic conser-
vation of certain additional non-deterministic axioms,
there is a finite labelled tree belonging to a suitable
inductively generated class which tree encodes the de-
sired computation. Our characterisation works in the
fairly universal setting of a consequence relation enriched
with non-deterministic axioms; uniformises many of the
known instances of the dynamical method; generalises
the proof-theoretic conservation criterion we have offered
before (with Rinaldi); and last but not least links the
syntactical with the semantic approach: every ideal ob-
ject used for the customary proof of a concrete claim
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can be approximated by one of the corresponding tree’s
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1 Introduction
Abstract algebra abounds with ideal objects and the in-
vocations of transfinite methods, typically Zorn’s Lemma
[114], that grant those object’s existence. Put under log-
ical scrutiny, ideal objects often serve for proving the
semantic conservation of additional non-deterministic
sequents, that is, with finite but not necessarily singleton
succedents.

By design, dynamical methods in algebra [34, 65, 113]
allow to eliminate the ideal objects upon shifting focus
from semantic model extension principles to their cor-
responding syntactic conservation theorems. This move
in line with Hilbert’s programme has shaped modern
constructive algebra and has seen tremendous success,
not least because (finitary) coherent or geometric logic
[25, 58, 59, 68, 71, 72, 82, 112] predominates in that area:
the use of a non-deterministic axiom can be captured by
a finite branching of the proof tree [34]. Coherent theo-
ries, on the other hand, lend themselves to automated
theorem proving [10, 11, 35, 42, 50, 105].
A paradigmatic case, which to a certain extent has

been neglected in dynamical algebra proper, is Krull’s
Lemma for prime ideals. A particular form of this as-
serts that a multiplicative subset of a commutative ring
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contains the zero element if and only if the set at hand
meets every prime ideal. Prompted by certain aspects in
the novel treatment of valuative dimension [60], Krull’s
Lemma has seen a constructive treatment only recently
[99]. The latter, however, has brought us to unearth the
underlying general phenomenon in the present paper:
Given a claim of computational nature that usually is
proved by the semantic conservation of certain additional
non-deterministic axioms, there is a finite labelled tree
belonging to a suitable inductively generated class which
tree encodes the desired computation.

Our characterisation works in the fairly universal set-
ting of consequence relations, a cornerstone of universal
logic and algebra with a long and rich history that can
be traced back to Hertz [46–48, 62] and Tarski [12, 107],
and, in the guise of covering relations, has played an
important role in the development of formal topology
[20, 21, 69, 70, 91–93].

Consequence relations serve here to capture the basic
structures—ideals of commutative rings, propositional
theories, and partial orders—on top of which we consider
certain non-deterministic axioms that describe “ideal”
refinements of those structures: prime ideals, complete
theories, and linear order extensions.
A decisive aspect of our approach is the notion of a

regular set for certain non-deterministic axioms over a
fixed consequence relation. Abstracted from the multi-
plicative subsets occurring in Krull’s Lemma, regular
sets turn out to be the fundamental ingredient of our
Universal Prime Ideal Theorem (UPIT, Proposition 3.2).
They allow to calibrate precisely UPIT’s gearing and
account for its constructive version (Proposition 4.6).
In this manner we uniformise many of the known

instances of the dynamical method [34, 65, 113]. We
further generalise (Proposition 6.2) the proof-theoretic
conservation criterion we have offered before [87, 88],
using Scott–style entailment relations [100–102], to unify
the many phenomena present in the literature, e.g. [19,
31, 64, 67, 75].

Last but not least, we thus link the syntactical with
the semantic approach: every ideal object used for the
traditional proof of a concrete claim can be approximated
by one of the corresponding tree’s branches (Proposition
4.2).

It is worth emphasizing at this point that, as compared
to (propositional) dynamical algebra [27], the prime ideal
theorem we offer is not only constructive but also de-
finitive and universal. We succeed in unearthing the
one common pattern of how the related trees are to be
grown, by passing to the logical setting of consequence.
Our approach, moreover, is ready for use in customary
mathematical practice without any need to adapt first
the axioms, which is not untypical for dynamical algebra.

Last but not least, we identify regularity as both suffi-
cient and necessary for the prime ideal theorem under
consideration.

Structure of this paper

In Section 2 we discuss consequence relations, non-deter-
ministic axioms, as well as regular subsets, which relate
to both the former concepts. In Section 3 we present
UPIT, a straightforward consequence of Zorn’s Lemma
but equivalent, as will be seen later on, to the Prime
Ideal Theorem (for commutative rings, say). In Section 4
we introduce certain inductively defined classes of finite
trees which then help us to provide the constructive
counterpart (CUPIT) of the Universal Prime Ideal Theo-
rem. Three quite different applications will be discussed
in Section 5, putting emphasis on the universality of our
approach: a constructive version of Krull’s Lemma for
commutative rings, Glivenko’s theorem for propositional
logic, as well as an order extension principle will all fol-
low immediately from CUPIT. Connections with existing
work on multi-conclusion entailment relations will be
discussed in the final Section 6.

On method and foundations

Unless specified otherwise, we work in a suitable fragment
of Aczel’s Constructive Zermelo–Fraenkel Set Theory
(CZF) [2–6] based on intuitionistic first-order predicate
logic. When we occasionally need to invoke a fragment
of the principle of Excluded Middle or even a form of
the Axiom of Choice (AC), and thus go beyond CZF, we
simply switch to ZF and ZFC, respectively, and indicate
this accordingly.

By a finite set we understand a set that can be written
as { 𝑎1, . . . , 𝑎𝑛 } for some 𝑛0. Given any set 𝑆, let Pow(𝑆)
(respectively, Fin(𝑆)) consist of the (finite) subsets of 𝑆.
We refer to [87, 88] for further provisos to carry over to
this note.1

From formal topology [92] we borrow the overlap sym-
bol: the notation 𝑈𝑉 is to say that the sets 𝑈 and 𝑉
have an element in common.

2 Key notions
2.1 Consequence relations

By a consequence relation or a single-conclusion entail-
ment relation we understand a relation

▷ ⊆ Fin(𝑆)× 𝑆

1 For example, we deviate from the terminology prevalent in

constructive mathematics and set theory [5, 6, 13, 14, 65, 66]:
to reserve the term ‘finite’ to sets which are in bijection with
{1, . . . , 𝑛} for a necessarily unique 𝑛0. Those exactly are the sets

which are finite in our sense and are discrete too, i.e. have decidable
equality [66].
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which is reflexive, monotone and transitive in the follow-
ing sense:

𝑈 ∋ 𝑎
𝑈 ▷ 𝑎

(R)
𝑈 ▷ 𝑎
𝑈, 𝑉 ▷ 𝑎

(M)
𝑈 ▷ 𝑏 𝑈, 𝑏▷ 𝑎

𝑈 ▷ 𝑎
(T)

where as usual 𝑈, 𝑉 ≡ 𝑈 ∪ 𝑉 and 𝑈, 𝑏 ≡ 𝑈 ∪ {𝑏}. We
also sometimes write 𝑎1, . . . , 𝑎𝑛 in place of {𝑎1, . . . , 𝑎𝑛}
even if 𝑛 = 0.
It is of course well-known that every consequence

relation ▷ gives way to an algebraic closure operator

⟨−⟩ : Pow(𝑆) → Pow(𝑆)

defined by

𝑎 ∈ ⟨𝑇 ⟩ ≡ (∃𝑈 ∈ Fin(𝑇 ))𝑈 ▷ 𝑎.

Conversely, given ⟨−⟩, by stipulating

𝑈 ▷ 𝑎 ≡ 𝑎 ∈ ⟨𝑈⟩

we gain back a consequence relation from an algebraic
closure operator.

The ideals of a consequence relation ▷ are the subsets
a of 𝑆 which are closed with respect to the corresponding
closure operator, which is to say that a = ⟨a⟩. These
are precisely the subsets a of 𝑆 such that if a ⊇ 𝑈 and
𝑈 ▷ 𝑎, then 𝑎 ∈ a. We say that a is finitely generated if
a = ⟨𝑈⟩ for some 𝑈 ∈ Fin(𝑆).

2.2 Non-deterministic axioms

By a non-deterministic axiom2 on 𝑆 we understand a
pair (𝐴,𝐵) ∈ Fin(𝑆) × Fin(𝑆), which we often put in
turnstile notation:

𝐴 ⊢ 𝐵.
A subset p of 𝑆 is closed for (𝐴,𝐵) if 𝐴 ⊆ p implies p𝐵.

Let ℰ be a set of non-deterministic axioms. An ideal
of ▷ that is closed for every axiom of ℰ will be called a
prime ideal.3 We denote with

Spec(ℰ)

the class of prime ideals of ℰ . Given an ideal a of ▷, let

Spec(ℰ)/a = { p ∈ Spec(ℰ) | p ⊇ a } .

2.3 Regular subsets

Convention. From now on, and throughout the follow-
ing Sections 3 and 4, let 𝑆 be a set with consequence
relation ▷, and let ℰ be a set of non-deterministic axioms
on 𝑆.

2Our terminology borrows from van den Berg’s principle of non-

deterministic inductive definitions [108], variants of which have
recently come to play a role in constructive reverse mathematics
[49, 56].
3We say “prime ideal” to stress that variants of the prime ideal
theorem (e.g., for commutative rings, distributive lattices, Boolean

algebras) form the ground for our abstract version (Proposition
3.2).

We say that a subset 𝑅 of 𝑆 is regular if, for all
𝑈 ∈ Fin(𝑆) and (𝐴,𝐵) ∈ ℰ ,

(∀𝑏 ∈ 𝐵) ⟨𝑈, 𝑏⟩𝑅
⟨𝑈,𝐴⟩𝑅

An element 𝑟 of 𝑆 is said to be regular if so is { 𝑟 }.
Hence 𝑟 is regular precisely when, for all 𝑈 ∈ Fin(𝑆)
and (𝐴,𝐵) ∈ ℰ ,

(∀𝑏 ∈ 𝐵)𝑈, 𝑏▷ 𝑟

𝑈,𝐴▷ 𝑟

Regularity of an element 𝑟 of 𝑆 thus means to require
disjunction elimination [87, 88]

𝑈, 𝑏1 ▷ 𝑟 . . . 𝑈, 𝑏ℓ ▷ 𝑟

𝑈, 𝑎1, . . . , 𝑎𝑘 ▷ 𝑟

for the succedent of every 𝑎1, . . . , 𝑎𝑘 ⊢ 𝑏1, . . . , 𝑏ℓ in ℰ .

3 A universal prime ideal theorem
The following is an abstraction of the usual proof of
Krull’s Lemma [61] and related prime ideal principles
[86].

Lemma 3.1 (ZFC). Let 𝑅 ⊆ 𝑆 be regular and let a be
an ideal. If 𝑅 ∩ a = ∅, then there is a prime ideal p ⊇ a
such that 𝑅 ∩ p = ∅.

Proof. Zorn’s Lemma yields an ideal p over a which is
maximal with respect to the property that 𝑅 ∩ p = ∅.
Every such p is a prime ideal! To see this, let (𝐴,𝐵) ∈ ℰ
be such that 𝐴 ⊆ p yet p ∩ 𝐵 = ∅. Maximality implies
that ⟨p, 𝑏⟩𝑅 for every 𝑏 ∈ 𝐵. Since 𝑅 is regular, it follows
that p = ⟨p, 𝐴⟩𝑅, a contradiction. □

Notice that the proof of Lemma 3.1 establishes that if
𝑅 is regular, then every ideal which is maximal among
those avoiding 𝑅 is prime. It is necessary for this that
𝑅 be regular.
Here is our semantic classical Universal Prime Ideal

Theorem (UPIT):

Proposition 3.2 (ZFC). Let 𝑅 ⊆ 𝑆. The following are
equivalent.

1. 𝑅 is regular.
2. For every (finitely generated) ideal a, the following

are equivalent:
a. 𝑅a.
b. (∀p ∈ Spec(ℰ)/a)𝑅p.

Proof. Suppose that 𝑅 is regular. For each ideal a, every
element witnessing item 2.a witnesses item 2.b just as
well. The reverse implication is the contrapositive of
Lemma 3.1.
Conversely, suppose that for every finitely generated

ideal the equivalence of item 2 holds, let 𝑈 ∈ Fin(𝑆)
and (𝐴,𝐵) ∈ ℰ such that ⟨𝑈, 𝑏⟩𝑅 for every 𝑏 ∈ 𝐵. To
show that ⟨𝑈,𝐴⟩𝑅 it now suffices to check that every
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prime ideal over ⟨𝑈,𝐴⟩ meets 𝑅. In fact, if p is prime
and p ⊇ ⟨𝑈,𝐴⟩ ⊇ 𝐴, then there is 𝑏 ∈ p ∩ 𝐵, for which
⟨𝑈, 𝑏⟩𝑅 and thus p𝑅. □

UPIT is a weak form of the Axiom of Choice, equiva-
lent to the prime ideal theorem for distributive lattices
(cf. Proposition 6.8). There is no way around excluded
middle to prove Proposition 3.2, see Proposition 6.6
below.

Corollary 3.3 (ZFC). The following are equivalent.

1. Every element of 𝑆 is regular.
2. For every (finitely generated) ideal a,

a =
⋂︁

Spec(ℰ)/a.

4 Trees for prime ideals
Given an ideal a, we consider next a certain collection 𝑇a
of finite labelled trees, generated in such a manner that
the root of every 𝑡 ∈ 𝑇a be labelled with a finite subset 𝑈
of a, and the nodes be labelled with elements of 𝑆. The
latter will be determined successively by consequences
of 𝑈 along the additional axioms of ℰ .

Given a path 𝜋 of such a tree 𝑡 ∈ 𝑇a, we write

𝜋 ▷ 𝑟

to say that 𝑟 is a consequence of the set labelling the
root of 𝑡 together with the labels occurring at the nodes
of 𝜋. Set

⟨𝜋⟩ = { 𝑟 ∈ 𝑆 | 𝜋 ▷ 𝑟 } .
Note that we understand paths to lead from the root of
a tree to one of its leaves.

Definition 4.1. Let a be an ideal. We generate 𝑇a in-
ductively according to the following rules:

1. For every 𝑈 ∈ Fin(a), the trivial tree (i.e., the
root-only tree) labelled with 𝑈 belongs to 𝑇a.

2. If (𝐴,𝐵) ∈ ℰ and if 𝑡 ∈ 𝑇a has a path 𝜋 such that
⟨𝜋⟩ ⊇ 𝐴, i.e., 𝜋 ▷ 𝑎 for every 𝑎 ∈ 𝐴, then add, for
every 𝑏 ∈ 𝐵, a child labelled with 𝑏 at the leaf of
𝜋.

This is a so-called generalised inductive definition [1, 81,
103].

For instance, if (𝐴, { 𝑏1, . . . , 𝑏ℓ }) ∈ ℰ and 𝑈 ∈ Fin(𝑆),
then the following tree belongs to 𝑇⟨𝑈,𝐴⟩:

𝑈 ∪𝐴

𝑏1 𝑏2 . . . 𝑏ℓ (1)

By a slight abuse of notation, we say that a tree
𝑡 ∈ 𝑇a is trivial if it results from an application of the
base rule in Definition 4.1 only. The trivial trees in 𝑇a
thus correspond with the elements of Fin(a).

It is instructive to think of the given ideal a as a set
of initial data, of which just a finite amount 𝑈 be used
for computation; with this we label the root. The paths
of a tree 𝑡 ∈ 𝑇a then represent the possible courses of a
computation as if the ideal a were prime.

Proposition 4.2. Let a be an ideal, and 𝑡 ∈ 𝑇a a tree.
For every prime ideal p ⊇ a there is a path 𝜋 through 𝑡
such that p ⊇ ⟨𝜋⟩.

Proof. The path can be constructed by induction as
follows. To begin with, p contains the finite subset of a
that labels the root of 𝑡. Now suppose that the path has
been constructed up to a node 𝜈 at which 𝑡 branches
with respect to (𝐴,𝐵) ∈ ℰ . By induction, p ⊇ 𝐴 and
thus p ∋ 𝑏 for some 𝑏 ∈ 𝐵. We then add to the path the
child of 𝜈 labelled by this b. □

The paths of every 𝑡 ∈ 𝑇a may thus be considered finite
approximations of the prime ideals that contain a.

Definition 4.3. Let a be an ideal. We say that a tree
𝑡 ∈ 𝑇a terminates in a subset 𝑅 ⊆ 𝑆, in short

𝑡 ↓ 𝑅,

if for every path 𝜋 of 𝑡 there is 𝑟 ∈ 𝑅 such that 𝜋 ▷ 𝑟,
that is, ⟨𝜋⟩𝑅. We say that a tree 𝑡 ∈ 𝑇a terminates in an
element 𝑟 of 𝑆 if 𝑡 terminates in the singleton set { 𝑟 }.

Example 4.4. 𝑅a if and only if there is a trivial tree
in 𝑇a terminating in 𝑅.

The main result of this paper, Proposition 4.6 below,
boils down to the following key observation.

Lemma 4.5. Let 𝑅 be a regular subset of 𝑆 and let a
be an ideal. If some 𝑡 ∈ 𝑇a terminates in 𝑅, then 𝑅a.

Proof. By induction on the construction of 𝑡 ∈ 𝑇a. The
base case is trivial. Consider next the case in which a tree
in 𝑇a has been extended at the leaf of one of its paths
𝜋 with children labelled with 𝑏 ∈ 𝐵, where (𝐴,𝐵) ∈ ℰ
and ⟨𝜋⟩ ⊇ 𝐴. Suppose then that for every 𝑏 ∈ 𝐵 there is
𝑟 ∈ 𝑅 such that 𝜋, 𝑏▷ 𝑟. Regularity implies that there is
𝑟0 ∈ 𝑅 such that 𝜋,𝐴▷𝑟0. Since ⟨𝜋⟩ ⊇ 𝐴, it follows that
𝜋 ▷ 𝑟0, whence the induction hypothesis applies. □

Here is our Constructive Universal Prime Ideal Theo-
rem (CUPIT), the constructive counterpart of Proposi-
tion 3.2.

Proposition 4.6. Let 𝑅 ⊆ 𝑆. The following are equiv-
alent.

1. 𝑅 is regular.
2. For every (finitely generated) ideal a, the following

are equivalent:
a. 𝑅a.
b. There is a tree 𝑡 ∈ 𝑇a which terminates in 𝑅.
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Proof. Suppose that 𝑅 is regular. If 𝑎 ∈ 𝑅 ∩ a, then the
trivial tree, labelled with 𝑎, terminates in 𝑅; conversely,
if 𝑡 ∈ 𝑇a terminates in 𝑅, then 𝑅a by Lemma 4.5.
As regards the converse, to show that 𝑅 is regular

let 𝑈 ∈ Fin(𝑆) and (𝐴,𝐵) ∈ ℰ such that ⟨𝑈, 𝑏⟩𝑅 for
every 𝑏 ∈ 𝐵. To see that ⟨𝑈,𝐴⟩𝑅, by item 2 it is enough
to observe that the tree displayed in (1) terminates in
𝑅. □

CUPIT is fairly versatile, as will be emphasised by
means of three applications in Section 5.

Here is the constructive counterpart of Corollary 3.3.

Corollary 4.7. The following are equivalent.

1. Every element of 𝑆 is regular.
2. For every (finitely generated) ideal a,

a = { 𝑟 ∈ 𝑆 | (∃𝑡 ∈ 𝑇a) 𝑡 ↓ 𝑟 } .

Corollary 4.7 corresponds to a certain conservation
result of [87, 88] as will briefly be outlined in Section 6.

5 Applications
5.1 Krull’s Lemma

Our first case study concerns prime ideals of commuta-
tive rings. These have already been considered from a
similar angle [99], into which we have recently been led
by certain aspects of the novel treatment of valuative
dimension [60]. Our concept of regular subset now allows
us to go beyond. For an algorithmic approach via proof
mining to the existence of ideal objects in commutative
algebra we refer to [80].
Let A be a commutative ring with 1. On 𝑆 = A we

consider the entailment relation of radical ideal :

𝑎1, . . . , 𝑎𝑘 ▷ 𝑎 ≡ (∃𝑛 ∈ N) 𝑎𝑛 ∈
𝑘∑︁

𝑖=1

A𝑎𝑖.

Note that an ideal for ▷ is nothing but a radical ideal of
A. On top of ▷ we consider the non-deterministic axiom
of prime ideal, i.e., we let ℰ consist of all the instances,
with 𝑎, 𝑏 ∈ A, of

𝑎𝑏 ⊢ 𝑎, 𝑏 .
We say that a subset 𝑀 of A is weakly multiplicative

if for all 𝑎, 𝑏 ∈𝑀 there is 𝑥 ∈𝑀 such that 𝑎𝑏 ∈ Fil(𝑥),
where Fil(𝑥) denotes the principal filter generated by 𝑥.
In other words, 𝑀 is weakly multiplicative if for every
pair of elements 𝑎, 𝑏 ∈ 𝑀 there is 𝑥 ∈ 𝑀 along with
𝑛 ∈ N and 𝑐 ∈ A such that 𝑥𝑛 = 𝑎𝑏𝑐. In particular,
every multiplicative subset is weakly multiplicative.

Lemma 5.1. A subset 𝑅 of A is regular if and only if
it is weakly multiplicative.

Proof. Suppose that 𝑅 is regular and let 𝑎, 𝑏 ∈ 𝑅. By
regularity, there is 𝑟 ∈ 𝑅 such that 𝑎𝑏▷𝑟 which translates
as claimed. Conversely, if 𝑅 is weakly multiplicative,

suppose that 𝑈, 𝑎▷ 𝑥 and 𝑈, 𝑏▷ 𝑦 for certain 𝑥, 𝑦 ∈ 𝑅.
This is to say that there are 𝑘, ℓ ∈ N and 𝑟, 𝑠 ∈ A as
well as 𝑢, 𝑣 ∈ ⟨𝑈⟩ such that

𝑥𝑘 = 𝑟𝑎+ 𝑢 and 𝑦ℓ = 𝑠𝑏+ 𝑣.

It follows that

(𝑥𝑦)𝑘+ℓ = 𝑡𝑎𝑏+ 𝑤

for certain 𝑡 ∈ A and 𝑤 ∈ ⟨𝑈⟩. Since 𝑅 is weakly mul-
tiplicative there is 𝑧 ∈ 𝑅 along with 𝑛 ∈ N and 𝑐 ∈ A
such that 𝑧𝑛 = 𝑥𝑦𝑐. Thus,

𝑧𝑛(𝑘+ℓ) = 𝑐𝑘+ℓ(𝑡𝑎𝑏+ 𝑤),

which witnesses 𝑈, 𝑎𝑏▷ 𝑧 ∈ 𝑅, whence 𝑅 is regular. □

The following is a constructive version of Krull’s Lemma
that every radical ideal is the intersection of all contain-
ing prime ideals [61]. It is a direct consequence of CUPIT
and the preceding Lemma 5.1.

Proposition 5.2. Let 𝑀 ⊆ A. The following are equiv-
alent.

1. 𝑀 is weakly multiplicative.
2. For every radical ideal a of A, the following are

equivalent:
a. 𝑀a.
b. There is a tree 𝑡 ∈ 𝑇a which terminates in 𝑀 .

Corollary 5.3. For every 𝑎 ∈ A, the following are
equivalent.

1. 𝑎 is nilpotent, i.e., there is 𝑛 ∈ N such that 𝑎𝑛 = 0.
2. There is a tree 𝑡 ∈ 𝑇0 terminating in { 𝑎𝑛 | 𝑛 ∈ N }.

As an application of Corollary 5.3 we consider the
well-known theorem that every non-constant coefficient
of an invertible polynomial is nilpotent. This result has
an elegant proof by reduction to the integral case, and
has already seen many a constructive treatment—see,
e.g., [8, 27, 65, 79, 83, 96, 97]. Thus, suppose that

𝑓 =

𝑚∑︁
𝑖=0

𝑎𝑖𝑋
𝑖 and 𝑔 =

𝑛∑︁
𝑗=0

𝑏𝑗𝑋
𝑗

are such that

1 = 𝑓𝑔 =

𝑚+𝑛∑︁
𝑘=0

𝑐𝑘𝑋
𝑘, where 𝑐𝑘 =

∑︁
𝑖+𝑗=𝑘

𝑎𝑖𝑏𝑗 . (2)

It suffices to check by induction on 𝑚 > 1 that 𝑎𝑚 is
nilpotent. This is enough because in every commutative
ring the sum of an invertible and a nilpotent element is
in turn invertible.
From (2) we infer that 𝑎𝑚𝑏𝑛 = 0, 𝑎0𝑏0 = 1 as well

as that 𝑎𝑚𝑏𝑗 ∈ ⟨𝑏𝑗+1, . . . , 𝑏𝑛⟩ for 0𝑗 < 𝑛. With this
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information we construct a tree which terminates in 𝑎𝑚,
thus witnessing the latter’s nilpotency:

𝑎𝑚𝑏𝑛

𝑎𝑚 𝑏𝑛

𝑎𝑚 𝑏𝑛−1

𝑏1

𝑎𝑚 𝑏0

In fact, the rightmost path entails 𝑎𝑚 since 𝑏0 is invert-
ible; all other paths trivially entail 𝑎𝑚.

5.2 Glivenko’s Theorem

Let ⊢𝑖 and ⊢𝑐 stand for intuitionistic and classical logic
in a propositional language 𝑆. It is known [55, 74] that

Γ ⊢𝑐 𝜙 if and only if Γ,∆ ⊢𝑖 𝜙

for a suitable finite set ∆ of formulas 𝜓 ∨ ¬𝜓, where 𝜓
is a propositional variable occurring in Γ or 𝜙.
Let ▷ = ⊢𝑖 on 𝑆 and consider on top of ▷ the non-

deterministic axiom of excluded middle, i.e., let ℰ consist
of all the instances, with 𝜙 ∈ 𝑆, of

⊢ 𝜙,¬𝜙

Let us consider an example. If, say,

Γ, 𝜓1 ∨ ¬𝜓1, 𝜓2 ∨ ¬𝜓2 ⊢𝑖 𝜙,

then the tree

Γ

𝜓1

𝜓2 ¬𝜓2

¬𝜓1

𝜓2 ¬𝜓2

belongs to 𝑇⟨Γ⟩ and terminates in 𝜙. Proposition 4.6
implies that if 𝜙 is regular, then Γ▷ 𝜙, which is to say
that Γ ⊢𝑖 𝜙.

Lemma 5.4. A formula 𝜙 is regular if and only if it is
stable, i.e., such that ¬¬𝜙▷ 𝜙.

Proof. Clearly, if 𝜙 is regular, then ¬¬𝜙 ▷ 𝜙 follows
from ¬¬𝜙,𝜙▷𝜙 and ¬¬𝜙,¬𝜙▷𝜙. For the converse use
the intuitionistic properties of (double) negation, due to
Brouwer [16, 17], that ▷¬¬(𝜓∨¬𝜓), and that Γ, 𝜓▷¬𝜒
implies Γ,¬¬𝜓 ▷ ¬𝜒. □

Since every negated formula ¬𝜒 is stable, we regain
the following version of Glivenko’s theorem [44] from
Proposition 4.6 with a = ⟨Γ⟩ and the above observations
for ¬𝜒 as 𝜙.

Proposition 5.5 (Glivenko). If Γ ⊢𝑐 ¬𝜒, then Γ ⊢𝑖 ¬𝜒.

We hasten to say that proofs of Glivenko’s theorem
usually go along similar lines. Recent literature about
Glivenko’s result includes [37, 38, 45, 57, 63, 76, 78].4

But what has Glivenko’s Theorem to do with transfi-
nite methods? In fact Proposition 5.5 is the syntactical
underpinning of the following special case of Proposi-
tion 3.2, which in turn is a variant [38] of Lindenbaum’s
Lemma [107].

Proposition 5.6 (ZFC). The intersection of all com-
plete theories over Γ equals { 𝜙 ∈ 𝑆 | Γ ⊢𝑖 ¬¬𝜙 }.

As usual, by a complete theory we mean a deductively
closed subset Γ of 𝑆 such that for every 𝜙 ∈ 𝑆 either
𝜙 ∈ Γ or ¬𝜙 ∈ Γ. By the latter condition it is irrelevant
whether deductive closure is understood for ⊢𝑖 or ⊢𝑐,
but of course the theories of the former are exactly the
ideals of ▷ =⊢𝑖.

5.3 Order extension

Here is another application, this one in the context of
order relations. Let 𝐸 be a set. We say that a binary
relation 𝑅 on 𝑆 is order-regular if, for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐸,

(𝑎, 𝑏) ∈ 𝑅∧ (𝑐, 𝑑) ∈ 𝑅 =⇒ (𝑎, 𝑑) ∈ 𝑅∨ (𝑐, 𝑏) ∈ 𝑅. (3)

An interval order is an order-regular relation which, in
addition, is irreflexive.5 Hence every interval order is
transitive. By a quasiorder we understand a reflexive
transitive relation. A linear order 𝐿 is a transitive re-
lation such that, for all 𝑎, 𝑏 ∈ 𝐸 either (𝑎, 𝑏) ∈ 𝐿 or
(𝑏, 𝑎) ∈ 𝐿, by way of which it is reflexive. A quasiorder
is order-regular precisely when it is linear.
If 𝑃 and 𝑃 ′ are quasiorders such that 𝑃 ⊆ 𝑃 ′, then

we say that the latter extends the former. With this
terminology, the problem of finding a linear extension of
a quasiorder becomes trivial: the cartesian product 𝐸×𝐸
will do. Thus a more restrictive concept of extension is at

4This list of references is by no means meant exhaustive.
5The concept of interval order can be traced back to early work

of Wiener’s on the theory of measurement [40]. Fishburn coined
the term “interval order” for what Wiener had called “relation of
complete sequence” [39–41]. Yet another occurrence of this concept

goes under the name of an irreflexive “Ferrers relation” due to
Riguet [84].
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work, e.g., in social choice theory [15, 18], yet to achieve
linearity often requires transfinite methods [98, 106]. The
following results force non-triviality by demanding that
a linear order be in the complement of a given order-
regular relation.
Let 𝑆 = 𝐸 × 𝐸 and let ▷ correspond to transitive

closure, i.e., put

𝑈 ▷ (𝑎, 𝑏) ≡ (𝑎, 𝑏) ∈
⋃︁
𝑖1

𝑈 𝑖

where 𝑈1 = 𝑈 and 𝑈 𝑖+1 = 𝑈 𝑖 ∘ 𝑈 , where

𝑈 ∘ 𝑉 = { (𝑎, 𝑐) | (∃𝑏 ∈ 𝐸)((𝑎, 𝑏) ∈ 𝑈 ∧ (𝑏, 𝑐) ∈ 𝑉 ) } .

On top of this we now consider the non-deterministic
axiom of order-regularity, i.e. we let ℰ consist of all the
instances, with 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐸, of

(𝑎, 𝑏), (𝑐, 𝑑) ⊢ (𝑎, 𝑑), (𝑐, 𝑏) .

Lemma 5.7. Every order-regular relation is regular.

Proof. Suppose that 𝑅 is order-regular. We need to show
that

⟨𝑈, (𝑎, 𝑏)⟩𝑅 ⟨𝑈, (𝑐, 𝑑)⟩𝑅
⟨𝑈, (𝑎, 𝑑), (𝑐, 𝑏)⟩𝑅

where 𝑈 ∈ Fin(𝑆). It suffices to settle the case in which
the two assumptions are witnessed by chains through
(𝑎, 𝑏) and (𝑐, 𝑑), respectively. Invoking order-regularity
immediately yields the result. At one glance:

𝑥 𝑎 𝑏 𝑦

𝑧 𝑐 𝑑 𝑤

Here (𝑥, 𝑦), (𝑧, 𝑤) ∈ 𝑅, and dashed lines indicate chains
through 𝑈 . Depending on whether (𝑥,𝑤) ∈ 𝑅 or (𝑧, 𝑦) ∈
𝑅, glue along (𝑎, 𝑑) or (𝑐, 𝑏), accordingly. □

In ZFC, UPIT implies that if 𝑅 is an order-regular
relation, and 𝑃 is a quasiorder on 𝐸, then 𝑅 and 𝑃 are
disjoint if and only if there is a linear order 𝐿 that extends
𝑃 yet keeps off 𝑅. The particular case where 𝑃 is the
diagonal relation yields that an order-regular relation 𝑅
is an interval order if and only if its complement contains
a linear order. In fact, a prime quasiorder is nothing but
a linear one.

We further note the following consequence of CUPIT,
which is the constructive counterpart of the aforesaid.

Proposition 5.8. Let 𝑅 be an order-regular relation
and let 𝑃 be a quasiorder on 𝐸. The following are equiv-
alent.

1. 𝑅𝑃 .
2. There is a tree 𝑡 ∈ 𝑇𝑃 which terminates in 𝑅.

6 Multi-conclusion entailment
In this final section we shed some light on certain aspects
of multi-conclusion entailment relations as extending
their single-conclusion counterparts. The relevance of
the notion of entailment relation to constructive algebra
and point-free topology has been pointed out in [19],
and has been used very widely, e.g. in [22–24, 26, 28,
31, 33, 75, 85, 89, 95, 109, 110]. Lorenzen’s precedence
is currently under scrutiny [29, 30]. Consequence and
entailment have further caught interest from various
angles [7, 33, 36, 43, 52–54, 77, 90, 94, 104, 111].
We begin with a brief summary, closely referring to

[87, 88] for a thorough account which builds on ideas
and results from proof theory [75] and dynamical algebra
[31, 34, 65].
Let 𝑆 be a set. Recall that a multi-conclusion entail-

ment relation [100–102] is a relation

⊢ ⊆ Fin(𝑆)× Fin(𝑆)

between finite subsets 𝑈 and 𝑉 of 𝑆 which is reflexive
and monotone:

𝑈𝑉
𝑈 ⊢ 𝑉 (R)

𝑈 ⊢ 𝑉
𝑈,𝑈 ′ ⊢ 𝑉, 𝑉 ′ (M)

as well as transitive:
𝑈 ⊢ 𝑉, 𝑎 𝑈, 𝑎 ⊢ 𝑉

𝑈 ⊢ 𝑉 (T)

where we make use of the usual shorthand notations.
Given ⊢, its trace ▷⊢ is defined by

𝑈 ▷⊢ 𝑎 ≡ 𝑈 ⊢ 𝑎
and in fact is a consequence relation.
A model of ⊢ is a subset p of 𝑆 such that if p ⊇ 𝑈

and 𝑈 ⊢ 𝑉 then p𝑉 . The class of all models of ⊢ will be
denoted by

Mod(⊢).
It is a consequence of the prime ideal theorem for distribu-
tive lattices (PIT) that every multi-conclusion entailment
relation is determined by its models [19], which is to say
that

(∀p ∈ Mod(⊢))(𝑈 ⊆ p =⇒ p𝑉 ) =⇒ 𝑈 ⊢ 𝑉. (4)

Every set ℰ of non-deterministic axioms gives rise
to a multi-conclusion entailment relation ⊢ℰ which is
least among those ⊢ for which 𝐴 ⊢ 𝐵 for all (𝐴,𝐵) ∈ ℰ .
Following [90], this ⊢ℰ can be generated inductively by
the rules for reflexivity and transitivity on axioms:

𝑈𝑉
𝑈 ⊢ℰ 𝑉

(R)
(𝐴,𝐵) ∈ ℰ (∀𝑏 ∈ 𝐵)𝑈, 𝑏 ⊢ℰ 𝑉

𝑈,𝐴 ⊢ℰ 𝑉
(Ax)

(5)
much akin to [32, 73]. Every model of ⊢ℰ is apparently
closed for every member of ℰ , keeping in mind that
the elements of the latter are turned into entailments.
Conversely, by induction it is easy to see that if a subset
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of 𝑆 is closed for every member of ℰ , then it is in fact a
model of ⊢ℰ .

6.1 Regularity as conservation

A multi-conclusion entailment relation ⊢ extends a single-
conclusion entailment relation ▷ on 𝑆 if, for every 𝑈 ∈
Fin(𝑆) and 𝑎 ∈ 𝑆, 𝑈 ▷ 𝑎 implies 𝑈 ⊢ 𝑎, which is to
say that ▷ ⊆ ▷⊢. In case the converse holds as well,
i.e. altogether ▷ = ▷⊢, any such extension is said to be
conservative. An extension ⊢ of ▷ is conservative if and
only if [87, 88], for all entailments 𝑎1, . . . , 𝑎𝑘 ⊢ 𝑏1, . . . , 𝑏ℓ
and 𝑈 ∈ Fin(𝑆),

𝑈, 𝑏1 ▷ 𝑐 . . . 𝑈, 𝑏ℓ ▷ 𝑐

𝑈, 𝑎1, . . . , 𝑎𝑘 ▷ 𝑐 (6)

It suffices to consider only initial entailments in place of
𝑎1, . . . , 𝑎𝑘 ⊢ 𝑏1, . . . , 𝑏ℓ whenever ⊢ is inductively gener-
ated.

Consider again our default set ℰ of non-deterministic
axioms on top of a single-conclusion entailment relation
▷. Passing to the union of ℰ and ▷, we may assume that
(𝑈, { 𝑎 }) ∈ ℰ whenever 𝑈 ▷ 𝑎. Next let ⊢ℰ denote the
multi-conclusion entailment relation which is inductively
generated by ℰ according to the rules (5) laid out before.
In other words, this ⊢ℰ is the least multi-conclusion
entailment relation which extends ▷ such that 𝐴 ⊢ℰ 𝐵
for all (𝐴,𝐵) ∈ ℰ . By the above remarks on the models
⊢ℰ , we immediately know about the semantics of this
entailment relation:

Proposition 6.1. Spec(ℰ) = Mod(⊢ℰ).

The following is a mere rephrasing of the conservation
criterion (6) recalled before.

Proposition 6.2. The following are equivalent.

1. Every element of 𝑆 is regular.
2. ⊢ℰ is conservative over ▷.

6.2 Intersecting prime ideals

Next we aim at identifying those elements which are
common to every prime ideal over a given one. If 𝑡 ∈ 𝑇a
for a certain ideal a, let paths(𝑡) denote the set of all
paths of 𝑡. Next we introduce an auxiliary relation

𝑈 ▷𝑇 𝑎 ≡ (∃𝑡 ∈ 𝑇⟨𝑈⟩)(∀𝜋 ∈ paths(𝑡))𝜋 ▷0 𝑎,

where ▷0 is the least consequence relation that extends
▷ with additional axioms

𝐴▷0 𝑎 for (𝐴, ∅) ∈ ℰ ,
and where we understand 𝜋 ▷0 𝑎 according to the con-
ventions laid out in the first paragraphs of Section 4. It
will turn out that ▷𝑇 is a consequence relation. Notice
that

𝑈 ▷0 𝑎 implies 𝑈 ⊢ℰ 𝑎, (7)

simply because ⊢ℰ contains the generating axioms of ▷0.

Lemma 6.3. For all 𝑈 ∈ Fin(𝑆) and 𝑐 ∈ 𝑆 and (𝐴,𝐵) ∈
ℰ,

(∀𝑏 ∈ 𝐵)𝑈, 𝑏▷𝑇 𝑐

𝑈,𝐴▷𝑇 𝑐

Proof. Let 𝐵 = { 𝑏1, . . . , 𝑏𝑛 }. If 𝑛 = 0, then the trivial
tree labelled with 𝑈,𝐴 witnesses 𝑈,𝐴▷𝑇 𝑐. Suppose next
that 𝑛1, and that trees 𝑡𝑖 ∈ 𝑇⟨𝑈,𝑏𝑖⟩ witness 𝑈, 𝑏𝑖 ▷𝑇 𝑐
for 1𝑖𝑛. These trees can be grafted, correspondingly, at
the leaves of the tree displayed in (1) so as to obtain a
witness for 𝑈,𝐴▷𝑇 𝑐. □

Proposition 6.4. For all 𝑈 ∈ Fin(𝑆) and 𝑎 ∈ 𝑆,

𝑈 ⊢ℰ 𝑎 if and only if 𝑈 ▷𝑇 𝑎 ,

i.e., ▷𝑇 is the trace of ⊢ℰ . In particular, ▷𝑇 is a conse-
quence relation.

Proof. For the left-to-right implication we argue by in-
duction on the generation of 𝑈 ⊢ℰ 𝑎. Reflexivity (R) is
clear, and the case of transitivity (Ax) is taken care of
by Lemma 6.3.
As regards the converse, we argue by induction on

the tree 𝑡 ∈ 𝑇⟨𝑈⟩ witnessing 𝑈 ▷𝑇 𝑎. The base case boils
down to (7). Consider next the case in which 𝑡 has been
extended at the leaf of one of its paths 𝜋 with children
labelled with the 𝑏 ∈ 𝐵, where (𝐴,𝐵) ∈ ℰ and ⟨𝜋⟩ ⊇ 𝐴.
For every 𝑏 ∈ 𝐵, relabelling the root of 𝑡 with 𝑈 ∪ { 𝑏 }
yields a witness for 𝑈, 𝑏 ▷𝑇 𝑎 for which 𝑈, 𝑏 ⊢ℰ 𝑎 by
induction, whence 𝑈,𝐴 ⊢ℰ 𝑎 by (Ax). It remains to
observe that the assumption that ⟨𝜋⟩ ⊇ 𝐴 lifts along the
generation of 𝑡 with successive cuts (T), so that we may
assume ⟨𝑈⟩ ⊇ 𝐴 and conclude 𝑈 ⊢ℰ 𝑎. □

By Proposition 6.4, ⊢ℰ is conservative at least over
▷𝑇 . This means (Proposition 6.2) that every element of
𝑆 is regular for ⊢ℰ over ▷𝑇 (Lemma 6.3). In particular,
the trace of ⊢ℰ equals ▷𝑇 and thus can be computed in
terms of the inductively defined tree class.

Corollary 6.5 (ZFC). For every ideal a,⋂︁
Spec(ℰ)/a = { 𝑎 ∈ 𝑆 | (∃𝑈 ∈ Fin(a))𝑈 ▷𝑇 𝑎 } . (8)

Proof. Combine completeness (4) with Proposition 6.1
and Proposition 6.4. □

If every element of 𝑆 is regular for ℰ over ▷, then
already ▷ is the trace of ⊢ℰ , and thus equals ▷𝑇 by
Proposition 6.4. So (8) boils down to Corollary 3.3.2.

6.3 Some reverse mathematics

The Restricted Law of Excluded Middle (REM) is not
part of CZF. This REM means 𝜙 ∨ ¬𝜙 for every set-
theoretic formula 𝜙 that is bounded in the sense that
only set-bounded quantifiers ∀𝑥 ∈ 𝑦 and ∃𝑥 ∈ 𝑦 occur
in 𝜙.
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The following essentially rests on an argument of Bell’s
[9] and has already been used to show that completeness
(4) implies REM [88].

Proposition 6.6. UPIT implies REM.

Proof. Given a Boolean algebra 𝐵, consider on 𝑆 = 𝐵
the entailment relation ▷ of filter :

𝑎1, . . . , 𝑎𝑘 ▷ 𝑎 ≡ 𝑎1 ∧ · · · ∧ 𝑎𝑘𝑎.
On top of ▷ we consider the non-deterministic axioms
of proper prime filter, viz.

0 ⊢
𝑎 ∨ 𝑏 ⊢ 𝑎, 𝑏

for all 𝑎, 𝑏 ∈ 𝐵. Distributivity ensures that every element
is regular. Corollary 3.3 (which is a direct consequence
of UPIT) thus implies that in each Boolean algebra the
intersection of the family of all its prime filters is { 1 }.
Bell has shown that over intuitionistic set theory IZ this
statement implies excluded middle [9, p. 161ff.]. The
argument goes through over CZF if restricted to deal
with bounded formulas only. □

Lemma 6.7. Suppose that 𝑅 ⊆ 𝑆 is regular. If 𝑈 ⊢ℰ 𝑉
and 𝑉 ⊆ 𝑅, then ⟨𝑈⟩𝑅.

Proof. By induction on 𝑈 ⊢ℰ 𝑉 . The case of transitivity
(Ax) boils down to regularity. □

In particular, we see once again that if 𝑎 is regular,
then 𝑈▷𝑎 if and only if 𝑈 ⊢ℰ 𝑎, and so ⊢ℰ is conservative
over ▷ if (and only if) every element of 𝑆 is regular.
As indicated in Section 5.1, Krull’s Lemma, which

is equivalent to the prime ideal theorem for distribu-
tive lattices (PIT) [51], is a consequence of UPIT. The
reader has perhaps anticipated the following result which
calibrates UPIT.

Proposition 6.8. Over ZF, UPIT is equivalent to PIT.

Proof. While it is evident that UPIT implies PIT, to show
the converse, let a be an ideal and let 𝑅 be regular. Put

𝑈 ⊢′ 𝑉 ≡ (∃𝑈0 ∈ Fin(a))(∃𝑉0 ∈ Fin(𝑅))𝑈,𝑈0 ⊢ℰ 𝑉, 𝑉0.

This ⊢′ is an entailment relation [19] the models of which
are the prime ideals that contain a but avoid 𝑅. Now,
if 𝑅 and a are disjoint, then ⊢′ is consistent according
to Lemma 6.7: that is, ∅′∅. Hence ⊢′ has a model by (4),
which is a consequence of PIT. □

Acknowledgments
The present study was carried out within the projects “A
New Dawn of Intuitionism: Mathematical and Philosoph-
ical Advances” (ID 60842) funded by the John Templeton
Foundation, and “Reducing complexity in algebra, logic,
combinatorics - REDCOM” belonging to the programme
“Ricerca Scientifica di Eccellenza 2018” of the Fondazione

Cariverona. The authors are members of the Gruppo
Nazionale per le Strutture Algebriche, Geometriche e
le loro Applicazioni (GNSAGA) within the Italian Isti-
tuto Nazionale di Alta Matematica (INdAM).6 Last but
not least, the authors wish to express their gratitude
to Ulrich Berger, Stefan Neuwirth and Iosif Petrakis
for interesting discussions, as well as to the anonymous
referees for expertly and insightful remarks that helped
to improve the paper.

References
[1] Peter Aczel. 1977. An introduction to inductive definitions.

In Handbook of Mathematical Logic, Jon Barwise (Ed.). Stud-
ies in Logic and the Foundations of Mathematics, Vol. 90.

Elsevier Science B.V., Amsterdam, 739–782.

[2] Peter Aczel. 1978. The type theoretic interpretation of
constructive set theory. In Logic Colloquium ’77 (Proc. Conf.,

Wroc law, 1977). Stud. Logic Foundations Math., Vol. 96.
North-Holland, Amsterdam, 55–66.

[3] Peter Aczel. 1982. The type theoretic interpretation of
constructive set theory: choice principles. In The L. E. J.
Brouwer Centenary Symposium (Noordwijkerhout, 1981).

Stud. Logic Found. Math., Vol. 110. North-Holland, Amster-
dam, 1–40.

[4] Peter Aczel. 1986. The type theoretic interpretation of con-

structive set theory: inductive definitions. In Logic, method-
ology and philosophy of science, VII (Salzburg, 1983). Stud.
Logic Found. Math., Vol. 114. North-Holland, Amsterdam,

17–49.

[5] Peter Aczel and Michael Rathjen. 2000. Notes on Construc-
tive Set Theory. Technical Report. Institut Mittag–Leffler.
Report No. 40.

[6] Peter Aczel and Michael Rathjen. 2010. Constructive set

theory. (2010). https://www1.maths.leeds.ac.uk/∼rathjen/
book.pdf Book draft.

[7] Arnon Avron. 1991. Simple consequence relations. Inform.

and Comput. 92 (1991), 105–139.

[8] B. Banaschewski and J. J. C. Vermeulen. 1996. Polynomials
and radical ideals. J. Pure Appl. Algebra 113, 3 (1996),

219–227.

[9] John L. Bell. 2005. Set Theory. Boolean-Valued Models and
Independence Proofs (third ed.). Oxford University Press,

Oxford.

[10] Marc Bezem and Thierry Coquand. 2005. Automating co-
herent logic. In International Conference on Logic for Pro-

gramming Artificial Intelligence and Reasoning. Springer,
246–260.

[11] Marc Bezem and Dimitri Hendriks. 2008. On the mechaniza-

tion of the proof of Hessenberg’s theorem in coherent logic.
J. Automat. Reason. 40, 1 (2008), 61–85.
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[111] Ryszard Wójcicki. 1988. Theory of logical calculi. Basic

theory of consequence operations. Synthese Library, Vol. 199.
Kluwer Academic Publishers Group, Dordrecht. xviii+473

pages.
[112] Gavin C. Wraith. 1980. Intuitionistic algebra: some recent

developments in topos theory. In Proceedings of the Interna-

tional Congress of Mathematicians (Helsinki, 1978). Acad.
Sci. Fennica, Helsinki, 331–337.

[113] Ihsen Yengui. 2015. Constructive Commutative Algebra.

Projective Modules over Polynomial Rings and Dynamical
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