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ABSTRACT The body of biomedical literature is growing at an unprecedented rate, exceeding the ability of
researchers to make effective use of this knowledge-rich amount of information. This growth has created
interest in biomedical relation extraction approaches to extract domain-specific knowledge for diverse
applications. Despite the great progress in the techniques, the retrieved evidence still needs to undergo a time-
consuming manual curation process to be truly useful. Most relation extraction systems have been conceived
in the context of Shared Tasks, with the goal of maximizing the F1 score on restricted, domain-specific test
sets. However, in industrial applications relations typically serve as input to a pipeline of biologically driven
analyses; as a result, highly precise extractions are central for cutting down the manual curation effort, thus
to translate the research evidence into practice smoothly and reliably. In this paper, we present a highly
precise relation extraction system designed to reduce human curation efforts. The engine is made up of
sophisticated rules that leverage linguistic aspects of the texts rather than sticking on application-specific
training data. As a result, the system could be applied to diverse needs. Experiments on gold-standard corpora
show that the system achieves the highest precision compared with previous rule-based, kernel-based, and
neural approaches, while maintaining a F1 score comparable or superior to other methods. To show the
usefulness of our approach in industrial scenarios, we finally present a case study on the mTOR pathway,
showing how it could be applied on a large-scale.

INDEX TERMS Biomedical text mining, information extraction, natural language processing, relation
extraction, syntactic dependencies.

I. INTRODUCTION
In the last 30 years we have positively observed a rapidly
growing body of biomedical literature. As a consequence,
it is more and more difficult for researchers to keep pace
with the advances in their fields. Indeed, it has been recently
shown that one would have to examine 27 papers per day
from 130 previously scanned journals to stay up to date with
the literature about a single, specific disease [1]. Such a
large volume of written biomedical knowledge is becoming
increasingly available in the form of electronic data resources
such as digital libraries and biomedical databases. The largest
bibliographic archives such as PubMed [2] and PubMed
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Central (PMC) [3] give access to a total of over 31 million
abstracts and 6.3 million full text documents that are cur-
rently growing at a double-exponential rate. Since researchers
struggle to cope with this amount of data, the development of
effective biomedical text mining systems has become increas-
ingly important to allow them to dig through undiscovered
knowledge.

A variety of text mining tools have been developed over
the last two decades. Efforts by the US National Library of
Medicine have led to the well-known PubMed search service
which allows users to browse research publications filtered
according to user queries including concepts specified with
manually curated MeSH terms [4]. Systems such as FACTA
[5] and Polysearch2 [6], [7] have also been conceived to
retrieve relevant information exploiting the co-occurrence of
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the concepts of interest. However, assuming concepts men-
tioned together to be related typically leads to a lot of irrele-
vant results. Natural Language Processing (NLP) techniques
have begun to be explored in the last two decades in order
to effectively derive meaning from human language in a
deeper useful way. Particularly, Relation Extraction (RE) has
attracted a lot of interest as a valuable tool ranging from
the population of knowledge bases to the construction of
biochemical pathways [8]. To encourage the development
of highly performing relation extraction systems, several
community challenges (i.e., Shared Tasks) [9] have been
designed. For instance, biomedical relation extraction has
been employed to answer research questions ranging from the
identification of protein-protein interactions [10], [11], gene-
disease associations [12]–[15], adverse drug events [16],
[17], and protein subcellular localization [18]. Many systems
have been designed to deal with the peculiarities of the
specific application domain because of the great complexity
and diversity of topics included in the biomedical literature,
falling short when dealing with different research questions.
As a matter of fact, most systems have been proposed in the
context of Shared Tasks, in which the focus is on improving
the harmonic mean of precision and recall (i.e., the F1 score)
on specific test data, rather than providing a highly precise
extraction of information that cuts down the need of a human
manual curation. Indeed, the results of relation extraction
systems still need to undergo a manual scrutiny by field
experts in order tomake the information ready to be exploited.
This resource-demanding manual scrutiny should ideally be
avoided in real-world contexts, where biomedical relation
extraction is the first step of a complex pipeline of biolog-
ically driven analyses which requires highly precise rela-
tions in order to produce reliable insights. This is even more
important because of the rapidly growing body of biomedical
literature, which calls for frequent updates of the extracted
evidence during a project life cycle. Highly precise relation
extraction results, with a satisfactory recall, are thus crucial
in real-world scenarios to smoothly translate the extracted
information into actionable knowledge.

In this paper, we present a relation extraction system
designed to extract highly precise semantic relationships
from biomedical texts without the need of training data. Our
approach is based on a sequence of NLP syntactic modules,
and a novel dependency tree based relation engine which
captures relations by means of syntactic rules based on com-
mon linguistic patterns. As a result, our system could be
applied to different corpora without relying on application
specific biomedical relation instances. The highly precise
results largely limit the need for human manual curation,
allowing scientists to quickly keep abreast of novel discov-
eries and thus to drive an effective research.1

1A docker container is available at: https://www.cosbi.
eu/research/prototypes/biomedical_knowledge_
extraction.

The paper is organized as follows. Section II lists related
work in the field. Section III describes the methods of our
system, going through the natural language processing anal-
ysis and the relation extraction engine. Section IV presents
the results of our system showing the quality of the method
with respect to well-established gold-standard corpora and
recent approaches. Also, a detailed error analysis, current lim-
itations, and room for improvements are discussed. Section V
outlines a case study to show how our system could be effec-
tively applied on large-scale industrial scenarios, whereas
conclusions are in Section VI.

II. RELATED WORK
A variety of methods has been adopted for biomedical rela-
tion extraction. These approaches can be mainly divided into
three categories: rule-based methods, feature- and kernel-
based methods, and neural methods. Rule-based approaches
typically make use of linguistically-motivated patterns on
dependency parse trees or surface words in order to capture
semantic relationships. Fundel et al. [19] showed how a small
number of carefully designed rules based on the shortest
dependency path (SDP) between two examined entities pro-
duces fairly good results. Yu et al. [20] exploited depen-
dency parse trees and a flexible pattern matching scheme,
enriching the system with a decision tree classifier. Diverse
syntactic and orthography features have been extensively
used in feature- and kernel-based methods. Phan et al. [21]
proposed an automatic feature selection method based on the
contribution levels of different feature groups, followed by
a k-nearest neighbor (k-NN) classifier. A variety of kernel-
based methods have been proposed too, ranging from the
walk-weighted subsequence kernel [22] to a combination
of kernels based on different parsers [23]. Other kernel-
based approaches for biomedical relation extraction include
a linguistic pattern-aware dependency tree kernel combined
with a tree kernel [24], a convolution tree kernel [25], and
a distributed smoothed tree kernel combined with a fea-
ture kernel [26]. In the rising wave of deep learning, Zhao
et al. [27] proposed a deep multi-layer neural network for
the task. More recent neural methods use Recurrent Neural
Networks (RNNs), including Bidirectional Long Short-Term
Memory (LSTM) and tree LSTM networks, and Convolu-
tional Neural Networks (CNNs). Zhang et al. [28] showed
how leveraging the complementary advantages of RNNs and
CNNs in a combined hybrid model improves biomedical
relation extraction. Yadav et al. [29] experimented with a
bidirectional LSTM network with an attention mechanism,
exploiting word sequences and the shortest dependency path
between the entities, whereas Zhang et al. [30] introduced a
residual CNN to tackle the task. Ahmed et al. [31] exploited
a tree LSTM network using a structured attention archi-
tecture, showing how the attention mechanism improves
the performance in relation extraction. A recent research
line in NLP include the Transformer, an encoder-decoder
architecture which dispenses with convolutions and recur-
rence, being based solely on an attention mechanism [32].

151000 VOLUME 8, 2020

https://www.cosbi.eu/research/prototypes/biomedical_knowledge_extraction
https://www.cosbi.eu/research/prototypes/biomedical_knowledge_extraction
https://www.cosbi.eu/research/prototypes/biomedical_knowledge_extraction


A. Ramponi et al.: High-Precision Biomedical Relation Extraction for Reducing Human Curation Efforts in Industrial Applications

FIGURE 1. In our biomedical relation extraction approach each input document is firstly analyzed by syntactic preprocessing modules (i.e., tokenizer*,
POS tagger, chunker*, dependency parser, and syntactic corrector*). The resulting syntactic dependency parse tree and token annotations, along with
candidate entity pairs, are analyzed by a relation router to detect candidate relations. Actual relations are finally identified by a relation classifier,
powered with pattern matching rules on the dependency tree. *Custom implementation of preprocessing components.

This architecture is the core of pre-trained language models
such as BERT (Bidirectional Encoder Representations from
Transformers) [33], and its adaptively pre-trained variants
for biomedical texts, namely BioBERT [34] and SciBERT
[35]. Despite the recent advances in deep learning based
techniques, we rely on carefully designed syntactic rules on
dependency parse trees in order to avoid being dependent on
labeled data, and to be able to reuse our system in diverse
industrial scenarios. The most similar approach to our work
is thus represented by the work by Fundel et al. [19].

III. METHODS
The system is designed to extract highly precise relational
information from input texts. In Fig. 1 we schematically show
our approach to relation extraction, that includes two stages:
(i) text preprocessing, in which a sequence of natural lan-
guage processingmodules are applied to texts (Section III-A),
and (ii) relation extraction, in which relationships between
entities are identified and classified (Section III-B).

A. SYNTACTIC PREPROCESSING
A pipeline of natural language processing modules is needed
in order to provide the relation extraction engine the informa-
tion needed to extract highly precise semantic associations.
We present them in the following.

1) TOKENIZATION
The raw text is separated into tokens using the spaCy2 tok-
enizer. We customize it to segment text units also on punc-
tuation (e.g., hyphens, slashes, etc.) by means of regular
expressions. This fine-grained approach to tokenization orig-
inates from the observation that not all the symbol-separated

2www.spacy.io

tokens are the smallest units of information to work with.
For instance, ‘‘IL6-induced atrophy’’ is typically divided in
two tokens (‘‘IL6-induced’’ and ‘‘atrophy’’). However, ‘‘IL6-
induced’’ implicitly encodes relational information that is
eventually desirable to analyze.

2) PART-OF-SPEECH TAGGING
Each token is assigned a label describing its part-of-speech
(POS) at two different granularities: a coarse-grained one
(from Universal POS tags3) and a fine-grained one (from
Penn Treebank tags4). We use the spaCy en_core_web_lg
neural model for POS tagging. These labels serve to both the
chunking and the syntactic dependency parsing steps.

3) CHUNKING
Our fine-grained approach to tokenization allows the system
to ultimately merge only the tokens that together form a self-
contained chunk of information. For instance, given the set
of tokens T = {(,AKT , ),−, 1}, they are part of the same
concept ‘‘(AKT)-1’’, hence it is desirable to merge them
into a single token. To the goal, we designed sequence pat-
terns based on the orthography, and on the fine- and coarse-
grained POS tags of the tokens. The resulting token stores
all attributes of its original constituents (POS tags, lemmas,
surface text, etc.). The list of patterns is in Table 1, together
with common examples. We designed this module to:

1) reduce potential errors in syntactic parsing in case of
long and articulated texts;

2) process easily multi-token words (e.g., ‘‘Inter-
leukin 6’’), frequent in biomedical texts.

3http://universaldependencies.org/u/pos/
4https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_

treebank_pos.html
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TABLE 1. The chunking patterns used by the system. Each token Ti in a candidate sequence T1 . . . Tn must satisfy some pattern restrictions on the
orthography and part-of-speech levels in order to be merged. Underlined tokens are the triggers of a pattern, which have to meet their restrictions in
order to proceed. The rest of the sequence tokens are thus subsequently checked for restrictions. If all the pattern restrictions are satisfied, the merging
rule is applied.

For instance, the units the chunker produces for the follow-
ing sentence are presented inside brackets:

[YtxH] [and] [YvyD] [are] [induced] [after]
[phosphate starvation] [in] [the] [wild type] [in]
[a] [sigma(B)][-][dependent] [manner]

where in bold are the merged tokens. The number of
chunks decreases from 21 to 16, allowing an easier parsing
process, and multi-token words are produced. For simplicity,
we hereafter refer to tokens and chunks indistinctly.

4) SYNTACTIC DEPENDENCY PARSING
A syntactic dependency parse tree of the text is built using the
spaCy non-monotonic transition-based parser. We chose to
rely on the spaCy parser since it has been benchmarked to be
the fastest to date,5 and thus it fully meets industrial require-
ments. The grammatical dependencies (hereafter, edges) of
the tokens or chunks (hereafter, nodes) are drawn from the
CLEAR tag set for dependency parsing.6

5) SYNTACTIC CORRECTOR
The predicted POS tags and grammatical dependencies that
are assigned to tokens are not always correct. Correcting POS
tags or parse trees as a whole is an hard problem; however,
some wrong labels can be easily detected. As a consequence,
for the most trivial errors we automatically correct the labels,
whereas in more complex cases we label the sentence as
unreliable to avoid false positives in the relation extraction
phase. The following corrections are applied:

5https://spacy.io/usage/facts-figures#benchmarks
6https://github.com/clir/clearnlp-guidelines/

• tokens that are heads of a direct object (dobj) or a
nominal subject (nsubj) having a coarse-grained POS tag
different from verb are assigned verb as a POS tag;

• tokens that are heads of an adjectival modifier (amod)
having verb as a coarse-grained POS tag are assigned adj
as a POS tag, since they are in most cases past participles
used as adjectives.

B. RELATION EXTRACTION
The syntactic preprocessing provides the information needed
to extract biomedical relationships between entities from text.
Following previous work in biomedical relation extraction,
we assume entities are given. We rely on syntactic rules,
in order to have a single system that can be applied to diverse
corpora, completely removing the need of training data. Thus
we fully exploit the dependency parse tree and the syntactic
information encoded to each token. Our strategy involves a
routing phase to detect candidate relations (Section III-B.1),
and a classification phase to assess the relations, assigning
them an effector and an effectee roles (Section III-B.2).

1) RELATION ROUTER
We analyze the minimum path of the dependency parse tree
between entities to assess if the path is eligible for represent-
ing a candidate relation pair. We devise several rules to the
goal, based on common linguistic constructs. The process of
routing a syntactic path involves both the analysis of crossed
edges (i.e., dependency relations) and node attributes (e.g.,
lemma, POS tags, etc.). Fig. 2 summarizes the workflow. The
router stops immediately labeling the candidate relation pair
as negative if one of the following conditions is met:
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FIGURE 2. The logic of the relation router. Rhombus shapes indicate
tested conditions, while arrows indicates the router flow. If all the
conditions are negative, the entity pair is considered a relation candidate.
Otherwise, the entity pair is labeled as a negative relation instance.

1) Same entities. If the lemmas of entities are the same,
the candidate pair is labeled as negative;

2) Ungrammatical text. In the case the input text has no
verb if not in subordinate clauses, the pair is considered
unreliable and thus labeled as a negative instance;

3) Unrouteable conjunctions. If conjunctions introduc-
ing subordinate or coordinate prepositions are met (i.e.,
but, whereas, if, therefore, and while), the entities are
unlikely to be related, thus the pair is negative;

4) Unrouteable prepositions. The prepositions if, there-
fore, during, despite, from, and at typically introduce
phrases that specify where – or when – a specific event
occurs – or has occurred. If one of these prepositions is
found in the path, the candidate pair is unlikely to be a
relation and thus discarded (i.e., labeled as negative);

5) Clause routing constraint. Sentences in the biomed-
ical literature are complex and articulated, with

one or more coordinate and subordinate clauses. Enti-
ties in different clauses could be in a relation, but
only under some conditions. We allow the router to
cross a clause only if the target clause has no explicit
subject dependency, and if the final path has exactly
one subject. Otherwise, we consider the pair a negative
instance;

6) More than one subject crossed. If more than a subject
dependency relation is crossed we label the relation
pair as negative, because the minimum path is typically
crossing semantically independent phrases or clauses.
For instance, in the sentence ‘‘A causes B and C triggers
a D-reaction’’, the entity A is not related to the entity D;

7) Purpose-description statements. Some sentences
express a broad research purpose (e.g., ‘‘In this paper
we aim to demonstrate that tuberculosis could be pre-
vented by vaccines.’’), instead of actual relations.When
crossing the path between entities, the lemmas of the
tokens is thus compared to a list of purpose-related
words (Supplementary File 1, ‘‘purpose_words’’).
If a match is found, the pair is labeled as negative.

While crossing the path, the relation router also checks if
the relation is affirmed or negated. This is particularly useful
to detect actual associations for real-world use. Negations are
detected using the following rules:

1) Negative auxiliary. A crossed token node is incident
to an edge having a negation modifier dependency tag
(neg), or is adjacent to a token node with no lemma;

2) Negative verb. One of the crossed verbs belongs to
a negative meaning verb list (Supplementary File 1,
Section ‘‘negation_verbs’’);

3) Negative adverb. A crossed token node is incident to
an edge having a negation adverb as target (Supplemen-
tary File 1, Section ‘‘negation_adverbs’’);

4) Negative noun. One of the crossed nouns belongs to
a negative meaning noun list (Supplementary File 1,
Section ‘‘negation_nouns’’).

5) Negative adjective. One of the crossed adjectives
belongs to a negative meaning adjective list (Supple-
mentary File 1, Section ‘‘negation_adjectives’’).

If the relation router navigates the whole path between
the two entities without any of the routing conditions is met,
the pair is considered a relation candidate and is analyzed by
the relation classifier (Section III-B.2).

2) RELATION CLASSIFIER
The relation classifier analyzes the relation candidates the
router identified, assigning the entities the effector and the
effectee roles. We identified three categories of linguistic
constructs that are typically used to express semantic relations
in the English language. The categories are the following:
• Relation expressed by a verb (RV ). A generalized
version of the effector-relation-effectee rule proposed in
[19] that we enhanced to capture constructs of the form:
entityA-[phrase]-verb-[phrase]-entityB
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where a phrase can appear zero, one, or multiple times.
As a result, the rule matches elaborate statements with
interleaved phrases such as ‘‘A plays a big role in B
assimilation’’ or ‘‘abundance of A causes B degrada-
tion’’, and not only triples of the form entityA-verb-
entityB.

• Relation expressed by a nominalization or a par-
ticiple (RN ). Associations in the biomedical literature
are often expressed by nominalizations or participles.
We thus employ the following rules:

(1) nominalization-of-entityA-by-entityB
Example: ‘‘Activation of A by B’’
(2) nominalization-between-entityA-and-entityB
Example: ‘‘Relation between A and B’’
(3) nominalization-of-entityA-on-entityB
Example: ‘‘Effect of A on B’’
(4) entityA-participle-entityB
Example: ‘‘A-activated B’’, ‘‘A-dependent B’’

While rules (1) and (2) are inspired by the relation-of-
effectee-by-effector and relation-between-effector-and-
effectee proposed in [19], the rule (3) widens the scope
of rule (1), and rule (4) allows the system to effectively
handle nominalized adjectives expressing relations.

• Relation expressed by a conjunction (RC ). This cat-
egory is designed to capture relations of entities that
act together to do something, which are typically both
subjects of a statement. We use the following pattern:
entityA-conjunction-entityB-verb
Example: ‘‘A and B form a complex’’

As a result, if the path between the entities contains a verb,
we consider the candidate relation pair as a RV relation. The
verb found in the path is considered the verb for the relation,
and if multiple verbs are found, we take the last one in the
text order. To assign the roles to the entities, we look at the
verb voice. If the voice is active, the entity that appears first
in the sentence is labeled as the effector, while the second one
is labeled as the effectee. Otherwise, the first entity is labeled
as the effectee, and the second entity as the effector.

In the case no verb is found in the crossed path, but it
contains (a) a past participle,7 (b) an adjective ending in ‘‘ent’’
(e.g., A-dependent B), or (c) a nominalized verb, we consider
the candidate pair as a RN candidate. Additionally, we have
to focus on the types of the edges crossed. During the routing
we allow many edge types to be crossed, but a lot of them
only exist in verb-expressed relations. Since a RN relation
represents a more compact connection between the entities,
it should not contain verbs (if not the participle form), nor
both subjects and objects. To model this additional restric-
tion in terms of edge types and paths, we check whether
the minimum path between the two entities only contains
certain types of grammatical dependencies. Beyond links
expressed by conjunctions and prepositions, only modifiers,

7This holds under some limitations: it should be incident to an edge with
a npadvmod or an amod dependency relation.

TABLE 2. Statistics of the benchmark corpora.

compounds, and appositions should exist (i.e., npadvmod,
amod, compound, appos, punct, prep, pobj, or conj). If con-
dition (a) or (b) is satisfied, the effector and effectee roles
are assigned according to the text order, whereas if condition
(c) is met, roles are assigned by analyzing the preposition
connecting the nominalization and the entities. Specifically,
the effector is the entity that does not have a preposition or,
by as ancestor, whereas the effectee is the entity that has a
preposition amongst on, of, or with as ancestor.

If the crossed path only contains a conjunction, the remain-
ing part of the text is analyzed for RC relations. We check
whether the top-level node of the path is incident to a verb
node. In such case, we check if the verb lemma is inter-
act or form, and if so, we consider the relation as a RC type.8

Note that in the RC category the effector and effectee roles are
not needed since both entities are interacting as both effectors.

Lastly, if all RV , RN , and RC categories are not satisfied,
the candidate relation pair is labeled as negative.

IV. RESULTS AND DISCUSSION
We evaluate our relation extraction method on different
benchmark corpora annotated for biomedical relations: LLL
[36], IEPA [37], and HPRD50 [19]. The corpora are about
different topics in biomedicine, thus they represent a good
evaluation benckmark for our system for diverse real-world
applications. In particular, LLL is a corpus about the model
bacterium Bacillus subtilis, focused on gene transcription
and sporulation; HPRD50 is about regulatory relations, direct
physical interactions and modifications on documents from
the Human Protein Reference Database [38]; and IEPA is
a corpus focused on interactions between a restricted set of
biochemicals (e.g., insulin, oxytoxin, leptin, etc.). Relations
between entities are annotated within the sentence bound-
aries, and entities offsets are provided with the raw texts.
Given a set of entities {e1, e2, . . . , en} ∈ E belonging to an
input sentence S, we generate

(n
2

)
candidate relation instances

(if n ≥ 2) for the sentence S. Following previous work, nega-
tive instances are represented by pairs that are not annotated
as relations in the corpora. The statistics of the corpora are
summarized in Table 2.
For the sake of comparison to previous work, we evaluate

our relation extraction method using precision (1), recall (2),
and F1 score (3):

precision =
TP

TP+ FP
(1)

8In contrast to RV and RN relation categories, we here look at the whole
dependency tree, without restricting the focus to the minimum path.
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TABLE 3. Performance comparison of our system with other approaches on benchmark corpora. Precision (P), Recall (R), and F1 score (F1) are shown by
percentage rounded with a single decimal. Best results for each metric are highlighted in bold. GRGT = Grammatical Relationship Graph for Triplets; O2G
= Optimized combination of 2 Groups with the best contribution levels; k-NN = k-Nearest Neighbor; LPTK = Linguistic Pattern-aware dependency Tree
Kernel; DSTK = Distributed Smoothed Tree Kernel; RNN = Recurrent Neural Network; CNN = Convolutional Neural Network; SDP = Shortest Dependency
Path; LSTM = Long Short-Term Memory; Bi-LSTM = Bidirectional Long Short-Term Memory. *Original implementation we fine-tuned on each corpus.

recall =
TP

TP+ FN
(2)

F1_score =
2 ∗ precision ∗ recall
precision+ recall

(3)

where TP is the number of true positives, FP is the number
of false positives, and FN is the number of false negatives.
However, we are mainly interested in the precision metric,
motivated by a real-world application of the system.

We compared our method to existing methods in liter-
ature, including rule-based approaches [19], [20], feature-
and kernel-based approaches [21]–[26], and neural network
approaches [27]–[31]. Additionally, we compared our sys-
tem to recent transformer-based methods pre-trained on
biomedical texts, namely BioBERT [34] and SciBERT [35].
We fine-tuned both BioBERT and SciBERT on each corpus,
reporting the average performance using 10-fold cross valida-
tion. We used the official implementation and optimal hyper-
parameters provided by the respective authors [34], [35].

Table 3 shows the performance of our system across cor-
pora compared to other methods. Our system achieves the
highest precision on all the corpora (93.2%, 90.7%, and
91.7% on LLL, HPRD50, and IEPA, respectively), outper-
forming by a large margin the BERT-based approaches in
the precision metric while maintaining a F1 score compa-
rable to other methods. The only exception is on the LLL
corpus, where transformer-based methods and the ‘‘DSTK
& feature kernel’’ approach achieve a very high F1 score.
It is worth noting that our relation extraction approach also
achieves the highest F1 score (81.1%) on the IEPA cor-
pus, and differently from machine learning based systems,
it does not need and rely on training data. Additionally,
since our approach is a single system for all the corpora,

it can be used as is on new data (see Section V), a typical
requirement in industrial scenarios. These results strongly
meet our expectations, since our goal was developing a
high-precision system to allow researchers, and in particular
biologists, to obtain reliable information without having to
manually review the results and discard all the false positive
instances. The relation extraction results on benchmark cor-
pora can be further explored at: https://apps.cosbi.
eu/high-precision-nlp-benchmark/.

A. ERROR ANALYSIS
To get additional insights on our approach, we analyzed both
the false positives and the false negatives the system produces
in order to make room for future work. A complete list of all
the errors is provided in Supplementary File 2. We identified
three sources of false positives, also summarized in Fig. 3:

• Annotation inconsistencies.Most false positive results
(i.e., 58.62%) are caused by annotation inconsistencies
in the corpora. We found sentences in which a relation,
on a grammatical basis, actually exists, but it has not
been annotated. For instance, in the following sentence9:
Several distinct mutations in exon2 of VHL disrupt
binding of pVHL to TBP-1.

a relation between ‘‘VHL’’ and ‘‘pVHL’’ has not been
annotated even if it is stated in the text. This could be
due to the complex mutation statement that is described,
which may be considered a biomedical event;

9Corpus: HPRD50, sentence ID: d26.
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• Dependency parsing errors. The 20.69% of false pos-
itives is due to errors in the dependency parse tree. For
instance, in the sentence10:
A low level of GerE activated transcription of cotD
by sigmaK RNA polymerase in vitro, but a higher
level of GerE repressed cotD transcription.

the verb ‘‘activated’’ has amod as the head relation label,
denoting it is the adjectival modifier of ‘‘transcription’’;

• Algorithm errors. Other sources of errors account for
the 20.69% of the total, and are mainly due to artic-
ulated syntactic structures that our algorithm wrongly
navigates. For example, in the following sentence11:
These results clearly demonstrate that UCP3 gene
expression is upregulated by TZDs in the WAT and
BAT in Wistar fatty rats, an obese model with lep-
tin receptor defect, and that adipose UCP3 gene
expression is increased in response to TZDs in
vitro.

our system incorrectly identifies a relation between the
biomedical entities ‘‘UCP3’’ and ‘‘leptin’’.

FIGURE 3. Distribution of the sources of false positive errors across
corpora.

False positive errors can be instead classified depending on
both the relation category they have been tested on, and their
cause. Fig. 4 summarizes the distribution of false negatives
according to this classification. Particularly, the 87.50% of
false negatives belong to the RV category, the 11.03% belong
to the RN category, and the 0.74% fall into the RC category.
The remaining 0.74% are cases that do not belong to any of
the previous categories. For each category, the causes of false
negatives we identified are the following:
• Dependency parsing errors. In the 64.71% of the total
cases, false negatives are caused by errors in the depen-
dency tree of the sentence being analyzed. For example,
in the following sentence12:
We have shown previously that the transcription
of degR is driven by an alternative sigma factor,
sigmaD.

10Corpus: LLL, sentence ID: d18.
11Corpus: IEPA, sentence ID: d88.
12Corpus: LLL, sentence ID: d26.

FIGURE 4. Distribution of the sources of false negative errors across
corpora, according to both relation categories and their causes.

‘‘sigmaD’’ is labeled as an appositional modifier (i.e.,
appos) of the verb ‘‘shown’’; however, its head should
instead be ‘‘factor’’. This results in a wrong structure
that prevents our algorithm to correctly navigate the
tree. We found this kind of error particularly prominent
within the RV category (i.e., 65.55%) and the RN cate-
gory (i.e., 66.67%). No errors of this kind are found in
RC ;

• Complex or unconvered grammatical structure. In
the 25.00% of the cases, the grammatical structure of the
sentence has more than one subordinate or coordinate
clause, and it is not easy to route. To give an example of
this latter case, we can look at the following sentence13:
SpoIIID at low concentration repressed cotC tran-
scription, whereas a higher concentration only par-
tially repressed cotX transcription and had little
effect on cotB transcription.

where to identify the actual relation between ‘‘SpoIIID’’
and ‘‘cotX’’, the system should be able to figure out that
‘‘higher concentration’’ is actually referring to ‘‘SpoI-
IID’’. However, this is far beyond the capabilities of our
algorithm. While this false negative cause accounts for
all the error within the RC category, it only accounts
for the 23.53% and the 33.33% within the RV and RN
categories, respectively;

• Annotation inconsistencies. Similarly to the false posi-
tive analysis, false negatives could also be due to annota-
tion inconsistencies. These errors account for the 8.09%
of the total false negatives, and an example of this error
type is exemplified by the following sentence14:
The aim of this study was to investigate the effects
of hCG, hCG plus oxytocin and oxytocin on
[3H] inositol phosphate (IP) formations in porcine

13Corpus: LLL, sentence ID: d27.
14Corpus: IEPA, sentence ID: d17.
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myometrial cells obtained from ovariectomized and
cyclic gilts.

where ‘‘oxytocin’’ and ‘‘inositol phosphate’’, following
the annotation standards of the corpora, are not actual
relations, but instead statements about the purpose of
the study. Fortunately, these errors are not common,
representing only the 8.40% of the total errors in RV ;

• Negation errors. The remaining false negatives (i.e.,
2.21%) are due to errors by our negation detector. For
instance, in the sentence15:
From these results we conclude that ComK neg-
atively regulates degR expression by prevent-
ing sigmaD-driven transcription of degR, possibly
through interaction with the control region.

our system misses the relation between ‘‘ComK’’ and
‘‘degR’’. This is due to difficulties in discerning negated
relations from negative relations. This error type is only
present within the RV category, accounting for a relative
amount of 2.52% of the errors.

B. ABLATION STUDY
In order to provide additional insights on our method,
we investigate the contribution of each rule category on
the final performance of the system. In Table 4 we report
precision, recall and F1 score on all corpora when RV , RN ,
RC , and negation rule components are individually removed.
As expected, the negation rules are crucial to the precision
of the relation extraction system. In fact, when removed
the precision score decreases on all the corpora (-3.1%, -
8.3%, and -6.6% on LLL, HPRD50, and IEPA, respectively).
We also notice a small increase in the F1 score on the LLL
corpus (+2.0%). This is due to the characteristics of LLL,
which exhibit few negated relations with respect to the other
corpora. When removing RV , RN , and RC , we obtain deeper
insights about the importance of each relation category. For
instance, the relation expressed by a verb (RV ) is by far
the most important rule set. When removed, the precision
increases on all the corpora (+6.8%, +3.7%, and +2.2% on
LLL, HPRD50, and IEPA, respectively), while an important
decrease appears evident in the recall metric (-58.0%, -58.4%,
and -49.1% on LLL, HPRD50, and IEPA, respectively) and
thus in the F1 score. This behaviour confirms that the RV
category is the primary source of errors of our system, but
also the mean of a tradeoff between a very high precision and
a satisfying recall. We notice a similar but less pronounced
trend when removing relations expressed by nominaliza-
tions or participles (RN ). On the other hand, the category of
relations expressed by conjunctions (RC ) contributes a little
on all corpora. Particularly, it improves the precision (+0.1%),
the recall (+0.7%), and the F1 score (+0.5%) on HPRD50,
whereas it decreases the precision (-0.4%) and the F1 score
(-0.2%) on IEPA.

15Corpus: LLL, sentence ID: d26.

TABLE 4. Ablation study on the contribution of each rule type. We report
precision, recall, and F1 score of the relation extraction system on all the
corpora when each rule category is removed.

C. LIMITATIONS AND OUTLOOK
Despite the good results, we identified some limitations
which could be tackled in future work. Our system is able
to extract highly precise binary relations, however there are
use cases in which it would be useful to extract high-order
associations (i.e., relations of relations), making a relation
the argument of another relation, or modeling relations with
more than two arguments. These requirements go beyond
the purpose of this paper since we have focused on relation
extraction and gold-standard annotations proposed in litera-
ture. We thus plan to enrich our system with this enhanced
representation in future work, following the recent trends in
event extraction [8]. Another limitation is about the algorithm
errors, and in particular some difficult cases we presented
in Section IV-A. We decided to rely on a rule-based method
instead of using a machine learning approach to have a high
degree of control on the behavior of the system, and to avoid
to depend on application-specific training data. We designed
rules as general as possible, relying only on syntactic infor-
mation thus avoiding to overfit to words or corpus-specific
constructs. This is a strong point in favour of our approach,
since we are able to use the same system with the same rules
across multiple corpora, obtaining high performance on all
of them without retraining it on new target data. However,
even if we employed a general approach, there are cases the
system still does not capture, and where a machine learning
system can be complementary. We thus plan to combine the
complementary power of both rules and machine learning
methods in future work. An interesting research direction is
to exploit our flexible rule sets in a postprocessing stage to
refine the results of a neural relation extraction method.

V. CASE STUDY
We present a case study on the mTOR signaling pathway [39]
in order to show how our relation extraction system can be
used in an industrial scenario. We have queried PubMed and
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FIGURE 5. A view of the evidence relation network about the mTOR signaling pathway our relation extraction system produces. Nodes indicate
proteins or genes, while edges represent semantic relationships between them. The network is filtered to only show relations with > 75 sentences
supporting them. Orange edges: ASSOCIATED_WITH ; Blue edges: AFFECTS; Brown edges: MEASURES; Grey edges: all relations with ≤ 75 supporting
sentences.

PMC to get all the relevant documents about the mTOR sig-
naling pathway. The search has been performed ensuring the
documents contain ‘‘mTOR pathway’’ in the title, abstract,
MeSH (Medical Subject Headings) terms, or keywords, while
asserting at least two proteins or genes belonging to the
pathway – according to KEGG16 (Kyoto Encyclopedia of
Genes and Genomes) – are present in any position of the
documents. A list of proteins/genes and their aliases is pro-
vided in Supplementary File 3. The query returned a total
of 5,657 documents.

In order to find the semantic relationships between the
actors of the pathway, we have firstly searched the proteins
and genes within the documents using a dictionary-based
approach. Those entities have been looked up using the Aho-
Corasick algorithm [40] with their common textual variants:
(i) hyphenation: search the entity also without hyphens; (ii)
Greek symbols or words: search the entity also with the cor-
responding uppercase and lowercase Greek symbols (‘‘α’’,
‘‘β’’, etc.) and words (e.g., ‘‘alpha’’, ‘‘beta’’, etc.), (iii) case:
search the entity regardless of its letter case, and (iv) lemma:
search the entity in its lemma form to abstract both the word
person and the verb tense.

16https://www.genome.jp/kegg-bin/show_pathway?hsa04150

Then, our relation extraction system has been used
to find relevant associations of those concepts, resulting
in 22,379 evidence sentences from the literature. We have
also assigned the relation (i.e., RV , RN , or RC ) a label indi-
cating a semantic category by taking its lemma, and looking
it up in a manually curated biomedical lexicon comprising
4,600 verbs in a lemma form together with their categories
(e.g., changed → AFFECTS). This resource has been man-
ually curated by field experts [41], and refined by biologists
in our R&D team (Supplementary File 4).

Fig. 5 shows the resulting relation network, where nodes
are the proteins and genes of the pathway, and edges represent
evidence relations having more than 75 sentences support-
ing them (orange: ASSOCIATED_WITH , blue: AFFECTS,
brown: MEASURES). It is worth noting that the knowledge
base is not intended to be a biological ‘‘network pathway’’:
a biomedical relation could in fact be stated even if two
actors are interacting in the long run rather than directly. This
is of particular interest to biologists, since the network is
not restricted to show only evidence sentences about direct
interactions. As a proof of concept, we hereafter present some
associations identified by our relation extraction system:

• Document PMID: 28086757. The system retrieved
the ASSOCIATED_WITH relations (TSC1, involved,
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mTOR) and (TSC2, involved,mTOR) from the follow-
ing sentence:
Rapamycin is used to treat tuberous sclerosis, a dis-
ease caused by mutations in either of the genes
TSC1 or TSC2, both of which are involved in the
regulation of the mTOR pathway [13, 14].

• Document PMID: 29371951. The system returned an
AFFECTS relation (BRAF, inhibit,AMPK ) from the
following sentence:
Oncogenic BRAF V600E mutant can inhibit the
activity of AMPK by promoting phosphorylation
of LKB1 and that this inhibition is critical for
melanoma cell proliferation and growth.

• Document PMID: 29290965. The system identified a
MEASURES relation (p − 4E − BP1, predict, mTOR)
from the following sentence:
Taken together, our and other studies suggest that
p-4E-BP1may be an effective biomarker to predict
mTOR inhibitor sensitivity in SCLC as well as in
other cancers.

VI. CONCLUSION
We presented a high-precision relation extraction system
aiming to speed up the time-consuming process of the man-
ual curation of semantic biomedical associations. Its rule-
based design on syntactic dependency structures of texts gives
the system the independence from specific training data,
making it a one-for-all solution for industrial applications.
Experimental results on gold-standard corpora showed that
our method outperforms existing rule-based, feature- and
kernel-based, and neural-based biomedical relation extrac-
tion approaches on the precision metric, while reaching a
comparable or superior F1 score. Importantly, results indi-
cated the high precision of our method is complementary to
the high recall of transformer-based approaches, highlighting
the need for more research on traditional linguistics-based
methods. As a result, we met the requirement of limiting
the expensive curation of the extracted semantic biomedical
relationships to smoothly and reliably translate the extracted
information into actionable knowledge. We plan to improve
our methods by means of the richer representation of event
extraction, exploiting the complementarity of both our rule
sets and recent deep learning approaches, by blending them
into a single system, one acting as a corrector of the other.
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