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Unsupervised identification of surgical robotic
actions from small non-homogeneous datasets

Daniele Meli, Paolo Fiorini

Abstract—Robot-assisted surgery is an established clinical
practice. The automatic identification of surgical actions is needed
for a range of applications, including performance assessment of
trainees and surgical process modeling for autonomous execution
and monitoring. However, supervised action identification is not
feasible, due to the burden of manually annotating recordings of
potentially complex and long surgical executions. Moreover, often
few example executions of a surgical procedure can be recorded.
This paper proposes a novel fast algorithm for unsupervised
identification of surgical actions in a standard surgical training
task, the ring transfer, executed with da Vinci Research Kit.
Exploiting kinematic and semantic visual features automatically
extracted from a very limited dataset of executions, we are able
to significantly outperform state-of-the-art results on a dataset
of non-expert executions (58% vs. 24% F1-score), and improve
performance in the presence of noise, short actions and non-
homogeneous workflows, i.e. non repetitive action sequences.

Index Terms—Robotic surgery, semantic visual features, unsu-
pervised gesture recognition

I. INTRODUCTION

ROBOT assisted minimally invasive surgery (RAMIS) has
improved the quality of standard laparoscopic surgery

(precise positioning and tremor filtration, visual immersion,
faster recovery time for the patient) in a number of clini-
cal scenarios, including urology [1], esophagectomy [2] and
pancreatectomy [3]. Surgical robots as the well established
da Vinci R© from Intuitive Surgical are currently employed by
novice surgeons for training. Automatic quality assessment
of trainees by a supervisory system is needed to improve
the error-prone verification made by teaching experts. A su-
pervisory system will be needed also in the operating room
of the future [4], to improve the safety and efficiency of
surgery and assist medical staff in decision making. Moreover,
a major challenge for the operating room of the future will be
the implementation of autonomous robotic surgery to reduce
hospital costs and surgeon fatigue. This problem has been
only partially addressed, mainly using pre-defined finite state
models [5], [6], statistical models [7] and logics [8], [9]. All
the mentioned issues require the definition of an accurate
surgical process model (SPM) describing the surgical proce-
dure. The definition of the SPM depends on the granularity
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level of analysis (from low-level description of elementary
motory actions to high-level sequence of main phases of an
intervention) [10]. Though it is possible to define a prior stan-
dard SPM from available expert surgical knowledge, learning
from surgical practice is needed to build a robust SPM which
properly describes variability of the patient’s anatomy and
the surgical workflow, especially at the action level. Datasets
of RAMIS usually include kinematic records from the robot
and videos of the execution. Given expert annotations of the
dataset describing the workflow of execution, Bayes models
[11] and deep neural networks [12], [13] can be successfully
used for automatic supervised learning of SPMs. However,
manual annotation of extensive surgical datasets is prone to
errors and tedious. Current research is mostly focused on the
unsupervised identification of actions from surgical datasets.
Inspired from advances in human activity recognition [14],
[15], researchers have investigated approaches to unsupervised
recognition of surgical actions. [16], [17] use transition-state
clustering (TSC) with deep neural networks on videos and
kinematics of JIGSAWS dataset of surgical actions [18]. Ap-
proaches based on statistical models, e.g. TSC with Gaussian
mixture models [19], soft-boundary algorithms with fuzzy
clustering scores [20] and weakly supervised algorithms [21]
improve the accuracy. However, they use extensive datasets as
JIGSAWS, containing many homogeneous repetitions of the
same task, i.e. executions which do not differ in the sequence
of actions, but present only kinematic variations.

In this paper, we propose a novel algorithm for unsupervised
surgical action identification, considering the benchmark train-
ing task of ring transfer with da Vinci Research Kit (dVRK)
[22]. The setup for the task is shown in Figure 1. The goal
of the task is placing rings on the same-colored pegs, using
the two patient-side manipulators (PSMs) of dVRK. Dynamic
geometric conditions on the setup affect the sequence of
actions. Rings may either be grasped and placed by the same
arm or be transferred between arms, for economy of motion.
Pegs can be occupied by other rings, so they must be freed
before placing another ring. Moreover, rings may be on pegs,
thus requiring extraction, or on the base.

Differently from most state-of-the-art algorithms, this paper
aims at overcoming some non-addressed limitations of unsu-
pervised surgical action identification, specifically: 1) dealing
with small surgical datasets; 2) recognizing actions with short
duration; and 3) dealing with non-homogeneous datasets of
executions, i.e. differing in the operative conditions and the
flow of actions (emulating anatomy-dependent variability in
surgery). To the best of our knowledge, the problem of
non-homogeneous datasets has been only partially addressed
recently in [23]. Authors propose a method based on deep
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Fig. 1: The setup for the ring transfer task. The red dashed line defines
reachability regions for the two PSMs.

learning from augmented simulated data, and apply it to a
peg transfer task similar to ours. The problem of identifying
actions in small datasets of peg transfer has been investigated
in [24].

Inspired from the advances in semantic video interpretation
from high-level knowledge [25], our algorithm enriches purely
kinematic features with semantic domain-dependent features
automatically computed from videos of execution.

The rest of the paper is organized as follows: in Section
II we describe our algorithm; in Section III we compare the
performance of our algorithm, mainly in comparison with [24];
finally, Section IV concludes the paper, in comparison and
outlines possible future research.

II. ACTION IDENTIFICATION ALGORITHM

The input to our action identification algorithm is an execu-
tion trace, i.e. the kinematic and video stream of an instance
of the task; the output is a set of clustered segments, i.e. parts
of the execution trace corresponding to the same action. Ring
transfer consists of 6 actions: move(A,O,C) which defines
motion of one PSM A to an object O ∈ {ring,peg} with
color C; move(A,center,C) which defines the motion of
one PSM to the center of the base to transfer a ring to the
other arm; grasp(A,ring,C), release(A) which define
the grasping and releasing action of a colored ring, respec-
tively; extract(A,ring,C) which defines the extraction of
one ring from a peg where it is placed.

Our algorithm consists of 2 steps: action segmentation to
identify changepoints delimiting segments in the execution
trace; and action classification to group together segments
corresponding to the same action class.

A. Execution trace

The execution trace of the task consists of a kinematic
signature and a synchronized semantic video stream.

1) Kinematic signature: It contains relevant kinematic
features to describe the trace of execution. Similarly to
[24] chosen as benchmark for this paper, our kinematic
signature consists of 16 quantities, including the Cartesian
pA = {xpos,A, ypos,A, zpos,A} and the quaternion coordinates
qA = {xor,A, yor,A, zor,A, wor,A} describing the position and
orientation of the end effectors of the arms A of the dVRK

TABLE I: Geometric features detected in the frames of the video stream of
the execution traces by the SA algorithm.

Name Description

prc = {xrc, yrc, zrc} position of ring with color C (center)
ppc = {xpc, ypc, zpc} position of peg with color C (tip)
pb = {xb, yb, zb} position of center of peg base
rr ring radius

robot; and the opening angles jA of the grippers. Additional
kinematic features may be considered, e.g., speed of the end
effectors as in [21] and scale-invariant measures of torsion
and curvature of the Cartesian trajectories as in [24]. After
preliminary testing with all the features, we decide to omit
velocities, curvature and torsion since they do not affect our
results.

2) Semantic video stream: It consists of a video stream
of the execution trace acquired from a RGB-D camera (cali-
brated with PSMs as in [26]). Geometric features described in
Table I are extracted from video frames using standard color
segmentation and shape recognition (to distinguish between
pegs and rings) with Random Sample Consensus [27]. Then,
they are combined with kinematic features and translated to
semantic features called fluents with the situation awareness
(SA) algorithm proposed in [9], according to the following
relations:

at(A,ring,C)← ||pA − prc||2 < rr

at(A,peg,C)← ||pA − ppc||2 < rr ∧
∧ zpc < zpos,A

in_hand(A,ring,C)← ||pA − prc||2 < rr ∧ jA <
π

8
1

on(ring,C1,peg,C2)← ||prc1 − ppc2||2 < rr ∧
∧ zrc1 < zpc2

reachable(Ax,O,C)← argminA|yoc − ypos,A| = Ax

closed_gripper(A)← jA <
π

8
at(A,center)← ||{xpos,A, ypos,A} − {xb, yb}||2 <

< rr

The semantics of fluents is clear. In particular,
reachable(A,O,C) defines which objects are in the
reachability region of each PSM, as delimited by the red
dashed line in Figure 1.

B. Action segmentation

Given an execution trace, the segmentation algorithm 1
identifies changepoints corresponding to starting / ending
timesteps of actions of the task. The algorithm involves
two main steps: changepoint detection from kinematics, and
changepoint filtering from the semantic video stream.

1) Changepoint detection: The features in the kinematic
signature are first normalized by their maximum values to
allow comparison between different configurations of the setup
for the task (different locations of objects in the scene and

1 π
8

is chosen empirically to identify that the gripper is closed, since the
angle is not 0 when the PSM is holding a ring.
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distances to the PSMs). Then, filtering at 1.5Hz is applied
to each feature, to consider only relevant motions within the
fundamental frequency of human gestures [28]. We identify
changepoints in the kinematic signature evaluating peaks in
the 2nd derivative of the features, and only peaks above a
percentage α of the maximum absolute value are considered.
In order to remove implicit noise in the 2nd derivative, we
compute it using Savitzky-Golay filter (SGF) [29], a digital
filter based on polynomial fitting over an adjustable time
window. SGF captures higher-order momenta in the data,
while removing noise in the signal. SGF has a long history of
successful applications in time series analysis, e.g. for kine-
matic analysis of the human arm [30] and neural signals [31].
Notice that there exist several algorithms and implementations
for changepoint detection, and an extensive review can be
found in [32]. We choose peak detection from SGF on the 2nd
derivative of kinematic features because it is fast and effective
for our experiments, and it is robust since it requires no prior
assumption on the number of segments, and few parameters
to be tuned (time window set to 21 timesteps and α = 20%
empirically).

2) Changepoint filtering: Changepoint detection may return
spurious changepoints, corresponding e.g. to abrupt motions
during the execution. Then, we reduce the set of changepoints
from the detection algorithm, excluding consecutive change-
points distant less than 1s (average duration of shortest actions,
see Section III-A). Then, we compute fluents from the video
stream in correspondence of each changepoint, and we omit
consecutive changepoints which share the same set of fluents.
This choice is made under the assumption that different actions
derive from different environmental conditions: hence, two
consecutive changepoints defining the start of two different
actions shall not share the same set of fluents. Our approach
requires tuning of fewer parameters than the one proposed in
[24]. In fact, authors of [24] propose to identify changepoints
using persistence analysis [33]. Persistence analysis removes
noise and identifies relevant local minima and maxima in the
kinematic features, but requires the definition of an ad-hoc
threshold for each feature, which is often task- and operator-
dependent.

C. Action classification

Given the changepoints of the execution trace(s), we use k-
NN classification to group segments corresponding to same
actions. k-NN is preferred to other classification methods
as support vector machines [24] and self-organizing maps
[15] because it usually performs better on small datasets. We
associate each segment in the execution trace with a feature
vector f = [f1, f2, f3], containing both kinematic information
as in [24] and semantic environmental information from the
video stream.

1) f1: It is an array of reals representing the kinematic
features of each segment. Each feature ki in the kinematic
signature of the segment is shifted to start from t = 0 (for fair
comparison between different segments of the same action);
then, it is approximated by a polynomial pi(t) =

∑n
j=1 aj,it

j ,
with n ∈ N arbitrary degree as in [24] (n = 5 empirically

Algorithm 1 Action segmentation algorithm

1: Input: Execution trace with temporal kinematic signature
K(t) and video stream V (t), threshold for peak detection
α

2: Output: Set of changepoints C
3: Initialize: Normalize and filter K(t), C = []
4: % Changepoint detection
5: for k(t) kinematic feature ∈ K(t) do
6: k̈(t) = SGF(k(t))
7: peaks = PeakDetect(k̈(t))
8: for p ∈ peaks do
9: if |k̈(p)| > α ·max |k̈(p)| then

10: C.append(p)
11: % Changepoint filtering
12: fluents F = []
13: cold = 0
14: for c ∈ C do
15: old fluents Fold = F
16: F = FluentCompute(V (c))
17: if F == Fold ∨ c− cold < 1s then
18: C.remove(c)
19: cold = c

20: return C

in this work). Then, f1 is built concatenating coefficients
aj,i, resulting in an array of dimension (n + 1) · 16.
Polynomial approximation is not the only option for
kinematic representation. For instance, in [15] Fourier
coefficients are used for noise-robust action identification in
the CAVIAR dataset for human gestures [34]. However, in our
experiments Fourier approximation does not show to improve
the performance, so it is discarded. We want our classification
algorithm to generalize over the actual PSM executing a
specific action: for instance, two segments corresponding
to move(PSM1,ring,red), move(PSM2,ring,yellow)

must be classified in the same cluster, corresponding to the
abstract action move(A,ring,C). Hence, we check whether
one of the PSMs does not move, i.e. the kinematic signatures
at the starting and ending changepoints have no significant
difference. In case only one arm moves, the coefficients of
the polynomial approximations of the kinematic features for
that specific arm are added to f1, and null coefficients for
the other arm are appended to complete the vector. In case
both PSMs are moving, coefficients of PSM1 and PSM2 are
concatenated to build f1. In this way, there is no distinction
whether an action is executed by one arm or the other.

2) f2: It is a Boolean array representing fluents holding at
the beginning changepoint of each segment. Each entry in the
array corresponds to a fluent defined in Section II-A, excluding
reachable which is identified at all timesteps in the video
stream (all rings and pegs are always reachable at least by one
arm), hence it is neglected. Each entry in the array has true
value if the corresponding fluent holds at the beginning of the
segment, otherwise it is set to false. In order to guarantee the
invariance of the classification algorithm with respect to the
arm and color instances, f2 has two entries for each fluent,
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one per PSM, and the color attribute is ignored. Similarly to
the generation of f1, if a fluent holds only for one arm, then
the first corresponding entry is set to true, regardless of the
specific arm. The final dimension of f2 is 12.

3) f3: It is a 16D Boolean vector with entries corresponding
to each feature in the kinematic signature of the segment. If
one signature varies from the beginning to the ending change-
point, the value of the corresponding entry is set to true (as for
f1, the order of entries for the two arms does not depend on
the specific PSM). f3 is needed because instances of the same
action may significantly differ from a kinematic perspective,
due to the different relative position of objects and arms in
the scene (for instance, in the scenario depicted in Figure
1, move(PSM1,ring,red) requires a completely different
motion than the one needed for move(PSM2,ring,blue)).
However, we expect that the same kinematic features vary
along the segment.

4) Classification algorithm: k-NN classification compares
feature vectors for different segments in the execution trace(s)
containing both Boolean and real values. Hence, we need to
define a mixed distance metric di,l between segments i, l:

di,l =

√
d2e

d2emax
+

d2h
d2hmax

(1)

where de is the standard Euclidean distance between coeffi-
cients in f1 for the two segments, de =

√∑n
j=1(aj,i − aj,l)2;

while dh is the Hamming distance between [f2, f3] for the two
segments

dh =
hi,l

dim([f2, f3]i)

being hi,l the number of different values in [f2, f3] for segment
i with respect to segment l, and dim(·) the dimension of an
array. demax, dhmax are normalizing factors which are needed
for fair comparison of Euclidean and Hamming distances,
and they are chosen as the maximum cost resulting from k-
NN classification with only Euclidean distance over f1 and
only Hamming distance over [f2, f3], respectively. k for k-NN
classification is chosen as the number of occurrencies of the
most frequent action in the dataset of executions. In this way,
the algorithm is able to recognize all instances of actions in the
dataset. A higher k value would also be valid; however, in the
experiments we show that the best classification performance
is achieved with the minimum k.

III. EXPERIMENTS

We prove the advantages of our unsupervised action iden-
tification algorithm with three different experiments. In Test
A, we consider nine executions of the ring transfer task in
homogeneous standard environmental condition, i.e. with all
rings placed on grey pegs and requiring transfer between arms.
The task is executed by 3 users (not surgeons) with different
expertise in using the dVRK. This experiment is useful for
comparison with benchmark [24], which considers multiple
homogeneous executions of the same task by three expert
users.

In Test B, we first consider an execution in standard envi-
ronmental conditions, performed autonomously as explained in

[9], where the robot’s trajectories were described as Dynamic
Movement Primitives (DMPs) [35], [36], [37], [38]. DMPs
allow to learn and replicate the shape of trajectories executed
by humans, both in Cartesian and orientation space. In [9],
15 executions of the ring transfer task were recorded from
the same users of Test A and used for learning trajectories of
each action in the task. Hence, though the execution is au-
tonomous, it reproduces the kinematics of human executions.
In this test, we generate synthetic task replications from the
original autonomous execution, adding low-frequency human-
like kinematic noise to test the robustness of our algorithm
with respect to noise (hence, the dataset is still homogeneous).

Finally, in Test C, we consider a non-homogeneous dataset
consisting of only the standard execution of Test B without
noise, and three autonomous executions of the task in uncon-
ventional environmental conditions, shown in Figure 3. All
execution traces (kinematic readings from dVRK2 and point
clouds from a Realsense D435 RGB-D camera3) are collected
with the Robot Operating System to ensure synchronization.

For a qualitative understanding especially of our change-
point filtering algorithm, Figure 2 shows the results of our
segmentation algorithm applied to the execution depicted in
Figure 3b. Our changepoint detection algorithm finds more
changepoints (red solid lines) than real ones from manual
segmentation (blue lines). However, we are able to filter out
wrong changepoints (red dashed lines) exploiting fluent detec-
tion from video stream, when two consecutive changepoints
share the same set of fluents.

We quantify the performance of our algorithm using the
reference metrics proposed in [24]. Specifically, we rate the
segmentation accuracy using the matching score:

Mi =
| ∩ (ti, gi)|
|gi|

where ti is the segment identified by our algorithm, gi is
the real segment corresponding to the i-th action, and | · |
denotes the temporal length of a segment. The matching score
measures the overlapping between the identified and actual
segment, normalized by the length of the actual segment. The
results of action classification are quantified using precision,
recall and F1-score. Precision for an action class A is defined
as:

Pr =
TP

FP + TP

being TP the number of true positives, i.e. segments correctly
classified in A, and FP the number of false positives, i.e.
segments mistakenly classified in A. Precision measures the
rate of success of the classification algorithm on the full dataset
of executions. Since k for k-NN classification is chosen as the
maximum number of occurrencies of the most frequent action
in the dataset, FP +TP is chosen for the i-th action class as
dim(P ), where P is the maximum set of segments such that:

• dim(P ) ≥ nocc,i, where nocc,i is the number of occur-
rencies of the i-th action in the dataset;

• the score of the last segment in P is sP = smax, being
smax the score of the nocc,i-th segment in P .

2https://github.com/jhu-dvrk/sawIntuitiveResearchKit
3https://www.intelrealsense.com/depth-camera-d435/

https://github.com/jhu-dvrk/sawIntuitiveResearchKit
https://www.intelrealsense.com/depth-camera-d435/
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Fig. 2: Kinematic signature (after filtering) and segmentation results for the execution in Figure 3b. Blue vertical lines represent real changepoints, red solid
lines represent changepoints identified by our algorithm, red dashed lines represent changepoints excluded after fluent detection. Frames on the top correspond
to two consecutive changepoints sharing the same set of fluents (on(ring,red,peg,grey), on(ring,blue,peg,red) and the reachability
fluents), so the second one is omitted.

In this way, the scores for less frequent actions are not
significantly affected by the most frequent ones. Recall for
an action class A is defined as:

Rec =
TP

FN + TP

with FN the number of false negatives, i.e. segments mistak-
enly not included in A. Recall measures the rate of success
of the classification algorithm for a single action. F1-score
combines precision and recall as follows:

F1 = 2
Pr ·Rec
Pr +Rec

A. Test A: Homogeneous dataset from human executions

In this test, we consider 9 executions of the ring transfer
task in standard environmental conditions, executed by 3
users with different expertise in using the dVRK. Gripper
actions and extract last 1.05 ± 1.09 s, while move actions
last 3.69 ± 2.90 s (comparably with peg transfer in [24] on
average). The high variance is due to the different expertise
of users. Each execution trace contains 36 actions (actions
appear multiple times in each execution). Table II reports
the matching scores (for each action and on average over all
actions). The segmentation results are slightly better than [24],
though comparable. In Table III, we report the results of our
classification algorithm. We choose k = 36 for k-NN classi-
fication, i.e. the number of occurrencies of the most frequent

TABLE II: Matching scores for Test A. All values are percentages.

Action Matching score

move(A,ring,C) 85.65
move(A,peg,C) 90.69
move(A,center,C) 82.43
grasp(A,ring,C) 77.05
extract(A,ring,C) 82.73
release(A) 90.18

Average Our method
Method in [24]

84.79
81.90

action (release) in the dataset. As explained in Section II-C,
this is the minimum possible value for k to recognize at least
all action instances. However, there is no prior guarantee that
this is the optimal value for the classification performance.
Hence, in Figure 4 we run a preliminary test wih increasing
values of k ∈ [36, 56] with a step of 2, and we compare the
average F1-score over all actions in the dataset to identify
the best choice of k. Results show that k = 36 is the optimal
value. Hence, also in the following experiments we will choose
k as the minimum possible value. Given k, we first use the
full feature array [f1, f2, f3] presented in Section II-C as input
to the classification algorithm. However, this results in poor
performance, especially for short actions. Hence, we use only
Boolean features [f2, f3] for short actions to obtain the results
in Table III. Results are significantly improved with respect to
[24], whose method suffers from the executions by non-expert
users, on the contrary.
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(a) Execution with failure (fallen ring) (b) Execution with occupied pegs (c) Simultaneous execution by two PSMs

Fig. 3: Initial environmental conditions for the task executions used in Test B.

Fig. 4: Average F1-score over all actions for Test A, with increasing k value.
The minimum value (red bar) is the optimal one.

TABLE III: Action classification results for Test A. All values are percentages.

Action Feature array Pr Rec F1

move(A,ring,C) [f1, f2, f3]
f1 as in [24]

100.00
22.22

83.33
22.22

90.91
22.22

move(A,peg,C) [f1, f2, f3]
f1 as in [24]

55.56
19.44

55.56
19.44

55.56
19.44

move(A,center,C) [f1, f2, f3]
f1 as in [24]

58.33
25.00

58.33
25.00

58.33
25.00

grasp(A,ring,C) [f2, f3]
f1 as in [24]

41.23
17.78

40.00
22.22

40.61
19.66

extract(A,ring,C) [f2, f3]
f1 as in [24]

66.67
30.56

66.67
30.56

66.67
30.56

release(A) [f2, f3]
f1 as in [24]

40.00
26.67

40.00
26.67

40.00
26.67

Average Our method
f1 as in [24]

60.30
23.61

57.32
24.35

58.68
23.93

B. Test B: Homogeneous dataset with noise

In this test, we consider a dataset consisting of a task
execution in standard conditions learned from humans with
DMPs, and nine more executions generated adding low-
frequency noise to the kinematic signature. This generates
an homogeneous dataset with noise, which increases the
kinematic variability between different users and requires
additional robustness. Noise is generated with power frequency
spectrum:

S(f) = β
1

fλ

with λ = 7.5 so that frequencies above the fundamental
frequency 1.5Hz of human hand [28] have power below
0.05β, hence they can be neglected. β is related to the noise

TABLE IV: Matching scores for Test B. All values are percentages.

Action Matching score

move(A,ring,C) 94.78
move(A,peg,C) 90.47
move(A,center,C) 97.53
grasp(A,ring,C) 76.02
extract(A,ring,C) 71.80
release(A) 93.18

Average Our method
Method in [24]

87.30
81.90

TABLE V: Action classification results for Test B. All values are percentages.

Action Feature array Pr Rec F1

move(A,ring,C) [f1, f2, f3]
f1 as in [24]

75.00
75.00

75.00
75.00

75.00
75.00

move(A,peg,C) [f1, f2, f3]
f1 as in [24]

100.00
100.00

100.00
100.00

100.00
100.00

move(A,center,C) [f1, f2, f3]
f1 as in [24]

40.82
45.00

55.56
50.00

47.06
47.37

grasp(A,ring,C) [f2, f3]
f1 as in [24]

40.00
17.78

50.00
22.22

44.44
19.66

extract(A,ring,C) [f2, f3]
f1 as in [24]

51.02
47.37

69.44
50.00

58.82
48.65

release(A) [f2, f3]
f1 as in [24]

40.00
26.67

40.00
26.67

40.00
26.67

Average Our method
f1 as in [24]

57.81
51.97

65.00
53.98

60.89
52.89

variance. We vary it in the range [0.01, 0.09] with a step of 0.01
to generate the synthetic executions. In Table IV we evaluate
the matching score considering the full synthetic dataset. The
average matching score over all actions with our Algorithm 1
improves the results of [24]. We then evaluate the performance
of our action classification algorithm in Table V. We choose
k = 36 (number of occurrencies of release action) for k-NN
classification. Results are comparable with Test A, though the
improvement with respect to [24] is significant only for short
actions.

C. Test C: Non-homogeneous dataset

In Test C we consider a dataset of only 4 executions under
non-homogeneous environmental conditions, i.e. the initial
conditions of the setup and the action sequence vary be-
tween executions. One execution is in standard environmental
conditions (34 actions), while 3 other ones are depicted in
Figure 3 and include a failure condition with 18 actions (the
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TABLE VI: Matching scores for Test C. All values are percentages.

Action Matching score

move(A,ring,C) 95.36
move(A,peg,C) 92.83
move(A,center,C) 96.35
grasp(A,ring,C) 78.40
extract(A,ring,C) 83.08
release(A) 85.45

Average Our method
Method in [24]

88.58
81.90

TABLE VII: Action classification results for Test C. All values are percent-
ages.

Action Feature array Pr Rec F1

move(A,ring,C) [f1, f2, f3]
f1 as in [24]

81.82
90.00

90.00
90.00

85.72
90.00

move(A,peg,C) [f1, f2, f3]
f1 as in [24]

80.00
80.00

80.00
80.00

80.00
80.00

move(A,center,C) [f1, f2, f3]
f1 as in [24]

40.00
22.22

40.00
40.00

40.00
28.57

grasp(A,ring,C) [f2, f3]
f1 as in [24]

60.00
56.25

75.00
75.00

66.66
64.29

extract(A,ring,C) [f2, f3]
f1 as in [24]

100.00
12.50

62.50
12.50

76.92
12.50

release(A) [f2, f3]
f1 as in [24]

52.38
52.38

52.38
52.38

52.38
52.38

Average Our method
f1 as in [24]

69.03
52.23

66.65
58.31

66.95
54.62

ring falls during the execution, Figure 3a), an unconventional
scenario with occupied colored pegs involving 17 actions
3b, and an execution with PSMs moving simultaneously 3c
including 12 actions. Actions in each execution repeat multiple
times. This is a challenging dataset for unsupervised action
identification, since not all actions appear in all executions,
and both kinematic and semantic features do not repeat in
the same way over the whole dataset. Table VI shows that
the matching score is comparable with Test B both for each
action and on average, and higher than [24] on average. Results
of k-NN classification with k = 21 (number of occurrencies
of release action) are shown in Table VII. Our method
outperforms the scores in [24] (average F1-score rises from
54% to almost 67%). The results for extract action are
significantly improved, reaching precision of 100% and F1-
score of 77% (both scores reach only 12% on the dataset
of [24]). Also F1-score and precision (almost double) for
move(A,center,C) are better. This is even more significant
considering that this action is the least frequent in the dataset,
appearing only in two scenarios (once in Figure 3a and 4 times
under standard environmental conditions). A slight decrease
in the performance is only recorded for move(A,ring,C),
though the F1-score is the highest among all actions.

D. Computational performance

The computational performance of our action identification
algorithm is tested on a PC using 2.6 GHz Intel Core i7-
6700HQ CPU (4 cores / 8 threads). The full action iden-
tification procedure (segmentation + classification) for one

execution trace requires 0.45 s on average (maximum 0.58 s
for the standard execution with the highest number of actions).
For changepoint filtering, the time required for fluent identifi-
cation from video frames must be also accounted for. Fluent
identification from a single frame requires 0.09 s on average;
thus, fluent identification in a full execution trace requires
at most 2.88 s for the execution with most actions (standard
environmental conditions). This results in better performance
than [24], where 5 s are needed for action identification using
a better CPU (3.4 GHz Intel Core i7-3770 with 4 cores / 8
threads). In fact, one main limitation of [24] lies in the use of
persistence analysis [33] and dynamic time warping (DTW)
[39] to identify changepoints. Persistence analysis removes
noise and identifies relevant local minima and maxima in the
kinematic features, but still results in spurious changepoints
which must be removed with further post-processing through
DTW based on Euclidean distance. DTW evaluates the align-
ment of all possible consecutive segments in the kinematic
signature, including spurious ones. As also claimed by the
autrhors of [24], this increases computational complexity.
Notice that the computational performance also depends on
the number of segments to be identified in execution traces.
In [24], 12 actions are involved in a single execution trace
(with possibly some repetitions), while the highest number of
segments in our execution trace under standard environmental
conditions is 32; hence, the comparison of computational
performance is fair.

The computational performance of our algorithm is also
comparable with TSC [19] (≈ 1 − 10 s, though the authors
do not provide hardware information and do not consider
automatic extraction of visual features, presented as a future
work).

IV. CONCLUSION

Unsupervised segmentation of surgical actions from expert
executions is crucial for robotic surgery. In this paper, we
presented a novel algorithm combining kinematic and semantic
visual features to identify actions in unlabeled executions of
a training ring transfer task with dVRK. We addressed some
limitations of state-of-the-art research, as identification from
datasets including short actions, few executions of the task
and possibly non-homogeneous (anomalous) flows of actions.
We validated our algorithm in three different experimental
conditions. We first evaluated the performance on a limited
dataset of 9 executions from humans with different expertise
in using dVRK. We were able to significantly improve results
in the state of the art under different experimental conditions
(but considering only expert executions), doubling F1-score
also for short actions.

We then tested the robustness of our algorithm on a similar
dataset, where a single human execution was augmented with
low-frequency kinematic noise (10 executions total). Results
were comparable with the previous test, though the improve-
ment with respect to the state of the art was not similarly
relevant.

Finally, we showed that our algorithm is able to improve
the state of the art (especially for short actions) on a non-
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homogeneous dataset including only 4 executions and actions
appearing rarely (only 2 times).

The average F1-score over all actions is 58 − 66%, com-
parable or better than state-of-the-art methods based on deep
learning [23] (51%) for a similar task to ours. Improvements
mainly rise from the inclusion of semantic visual features for
classification, which compensate kinematic variability.

We also showed that our algorithm has comparable or better
computational performance than state of the art, allowing
feature extraction and action identification within few seconds.

This paper represents the first step towards unsupervised
learning of action-level SPMs. Next research will combine our
algorithm with inductive learning of interpretable SPMs [40],
[41], and unsupervised semantic recognition of events from
raw videos [42], [43].
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