
Theorem proving strategies: a search-oriented taxonomy∗

(Position paper)

Maria Paola Bonacina†

Department of Computer Science

The University of Iowa

There are many ways of classifying theorem-proving strategies. In proof theory, one
may question whether the strategy is analytic (i.e., it only generates formulae that are
subformulae of the given problem H ⊃ ϕ, where H is the set of assumptions and ϕ the
conjecture) or generative (i.e., not analytic). From the point of view of the language and
its expressive power, one may be interested in whether the strategy works with equations,
clauses, or sentences. From the point of view of the logic and its applicability, one may
consider whether the strategy works for propositional logic, Horn logic, first-order logic,
or higher-order logics. This talk presents a taxonomy of strategies, for fully-automated,
general-purpose, first-order theorem proving, based on how they search [1].

Motivations for being interested in such a classification come from a variety of re-
search problems, from parallelization of theorem proving (parallelism affects the control of
theorem proving, and therefore its search aspect), to machine-independent evaluation of
theorem-proving strategies (an analysis of strategies needs to analyze the search processes
they may generate), and the engineering of theorem provers (theorem-proving methods
are often specified in terms of inference rules only, and a significant amount of knowledge
about search in theorem proving remains hidden in the code of the implementations, partly
because of the lack of formal tools to discuss search in theorem proving).

The primary classification key in this taxonomy is to distinguish between those strate-
gies that work on a set of objects (e.g., clauses) and develop implicitly many proof at-
tempts, and those strategies that work on one object at a time (e.g., a goal clause, or a
tableau) and develop one proof attempt at a time, backtracking when the current proof
attempt cannot be completed into a proof. The strategies in the first group, on the other
hand, never backtrack, because whatever they do may further one of the proof attempts.

The strategies in the first group are called in this taxonomy ordering-based strategies:
exactly because they work with a set of objects, they use a well-founded ordering to or-
der the objects, and possibly delete objects that are greater than and entailed by others.
Thus, these strategies work by generating objects, expanding the set, and deleting ob-
jects, contracting the set. Also, since the set may grow very large, they employ indexing

techniques to retrieve objects, and eager-contraction search plans to control the growth.
The family of ordering-based strategies can be subdivided further into expansion-oriented

strategies, contraction-based strategies, including in turn target-oriented strategies, and se-

mantic or supported strategies. The strategies resulting from the merging of the resolution-

∗Research supported in part by the National Science Foundation with grant CCR-97-01508.
†Dept. of Computer Science, MacLean Hall 15, University of Iowa, Iowa City, IA 52242-1419, U.S.A.,

bonacina@cs.uiowa.edu

1

paramodulation paradigm with the term-rewriting and Knuth-Bendix paradigm belong to
these classes.

The strategies in the second family are called subgoal-reduction strategies, because if
one considers the single object they work on as the goal, each step consists in reducing the
goal to subgoals. Since they do not generate a set of objects, subgoal-reduction strategies
do not use an ordering to sort it, neither do they use an object to delete another one.
Because they need backtracking, a typical choice of search plan is depth-first search with

iterative deepening. This family comprises linear and linear-input clausal strategies, and
tableaux-based strategies. Model elimination, linear resolution, and problem reduction
format methods, which also may have semantic variants, belong to these classes.

theorem-proving strategies

ordering-based strategies subgoal-reduction strategies

expansion-oriented

linear-input strategies

 strategies contraction-based
 strategies

target-oriented strategies

semantic or
supported
strategies

linear
clausal

strategies

tableaux-based
strategies

Figure 1: Classes of strategies

Central to this taxonomy is a formal notion of search plan. The availability of a sound
and complete inference system guarantees the existence of a proof, but it remains the
problem of how to generate one, and this is precisely the task of the search plan. Given
the initial state of a refutational proof attempt containing H and ¬ϕ, the application of
an inference rule to this state produces a new state. Thus, the problem can be seen as a
search problem, with the inference rules as transformation rules, or production rules, states

containing partial proofs, successful states containing complete proofs, and a search plan

– or computation rule in terminology influenced by logic programming – to control the
search. For instance, for a clausal ordering-based strategy, the states are sets or multisets
of clauses, and a successful state contains the empty clause, while for a tableau-based
strategy, the states are tableaux, and a successful state is a closed tableau.

If I denotes the given inference system, and States denotes the set of all possible
states, a search plan Σ is made of at least three components:

• A rule-selecting function ζ:States∗ → I, which selects the next rule to be applied
based on the history of the search so far;

• A premise-selecting function ξ:States∗ → P(LΘ), which selects the elements of the
current state the inference rule should be applied to;

• A termination-detecting function ω:States → Bool, which returns true if the given
state is successful, false otherwise.

2

If the current state is not successful, ζ selects rule f and ξ selects premises ψ1 . . . ψn, the
next step will consist of applying f to ψ1 . . . ψn. The sequence of states thus generated
forms the derivation by I controlled by Σ from the given input. A derivation is successful

if it terminates in a successful state.
It is important to appreciate that given an initial state with H and ¬ϕ, there are many

derivations that an inference system I can generate from the initial state. In this sense,
an inference system is non-deterministic. If I is coupled with a search plan Σ, there is one
and only one derivation generated by I and Σ from the initial state. The combination of
inference system and search plan forms a deterministic procedure called a theorem-proving

strategy. While the inference system is required to be sound and refutationally complete,
a search plan is expected to be fair: if there are proofs, or, equivalently, if there are
successful states in the search space, one will be generated eventually.

By suitably specializing its components, this notion of search plan is shown to apply
to all classes of strategies under consideration, including both ordering-based and subgoal-
reduction strategies. Furthermore, it is applied to cover the concrete search plans of the
ordering-based strategies implemented by the Argonne provers Otter and EQP. For all
classes, the form of derivation is specified, and it is shown how inference system and
search plan cooperate to generate it.

For ordering-based strategies, the modelling of the search space is developed beyond its
description as a search space of states, summarized above. At a lower level of abstraction,
the search space is modelled as a search graph of clauses, made dynamic by contraction. To
see the relationship between these two levels of observation one can think of a magnifying
lense: if one looks inside any state of the search space of states with a magnifying lense, one
sees the underlying search graph of clauses. For the purposes of this taxonomy, this more
detailed model helps to understand what it means that these strategies develop implicitly
multiple partial proofs simultaneously, and, if the strategy succeeds, the proof that has
been completed is extracted from the generated search space.

For subgoal-reduction strategies, the study of refinements include approaches to com-
bine forward and backward reasoning, ways to import the notion of contraction from
ordering-based strategies, and pruning techniques, as summarized in Table 1. The dis-
tinction between clausal and tableaux model elimination in this table is mostly one of
terminology, since almost everything that can be done in one can be done in the other.

Combination of forward Contraction Pruning
and backward reasoning

Model lemmatization lemma subsumption identical ancestor
elimination C-reduction pruning

success caching cache subsumption failure caching

Prolog tabling/memoing cut
Datalog magic sets

Tableaux regressive merging tableau subsumption irregularity
folding up anti-lemmas

UR-resolution subsumption
hyperlinking tautology deletion

purity deletion

Table 1: Refinements of subgoal-reduction strategies

3

At each stage of the derivation, subgoal-reduction strategies keep in memory (active
search space) the current proof attempt (e.g., the current tableau), whereas ordering-based
strategies keep in memory all generated clauses not deleted by contraction (see Table 2).
On the other hand, because a subgoal-reduction strategy searches by backtracking, its
generated search space is equal to the union of all the partial proofs it has attempted.
In terms of proof, tableau-based strategies generate explicitly one proof attempt at a
time, backtrack to modify it, and succeed when it is completed. Ordering-based strategies
build their proof attempts implicitly, and when an empty clause is generated, extract the
completed proof from the generated search space. If a relatively small active search space
may be an advantage of subgoal-reduction strategies, ordering-based strategies may take
advantage of contraction, which deletes existing redundant clauses, and also prevents their
descendants in the search space from being generated.

Ordering-based Subgoal-reduction

Data set of objects one goal-object at a time

Proof attempts built many implicitly one at a time

Backtracking no yes

Contraction yes no

Generated search space all generated clauses all tried tableaux

Active search space all kept clauses current tableau

Generated proof ancestor-graph of empty clause closed tableau

Table 2: Two main classes of strategies.

All classifications contain some elements of arbitrariness. One may think that all
ordering-based strategies are forward-reasoning strategies (i.e., strategies that reason from
the assumptions), whereas all subgoal-reduction strategies are backward-reasoning strate-
gies (i.e., strategies that reason from the goal), but this is not necessarily the case; for
example, an ordering-based strategy with goal clauses in the set of support reasons back-
ward, and a subgoal-reduction strategy with an assumption as top clause reasons forward.
Similarly, it is not necessarily the case that subgoal-reduction strategies work with tableaux
and ordering-based strategies work with clauses, although this is true in many cases. No
classification can be complete, but connections are established with those strategies which
may fit less obviously in this scheme, such as those based on hyperlinking, and with strate-
gies that may use similar principles for other purposes, such as model building.

The full paper [1] provides the reader with a bibliography of over one hundred and
forty entries: since it would have been impossible to include it in this summary and any
selection would have been arbitrary, the interested reader is referred to the full paper
which is available by contacting the author.

References

[1] Maria Paola Bonacina. A taxonomy of theorem-proving strategies. In Manuela Veloso,
Mike Wooldridge (general), and Michael Fisher (logic reasoning knowledge represen-
tation area), editors, Artificial Intelligence Today, volume 1500. Springer Verlag, to
appear.

4

