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Liquidity Induced Asset Bubbles via Flows of ELMMs∗
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Abstract. We consider a constructive model for asset price bubbles, where the market price W is endogenously
determined by the trading activity on the market and the fundamental price WF is exogenously
given, as in [R. Jarrow, P. Protter, and A. Roch, Quant. Finance, 12 (2012), pp. 1339–1349]. To
justify WF from a fundamental point of view, we embed this constructive approach in the martingale
theory of bubbles (see [R. Jarrow, P. Protter, and K. Shimbo, Math. Finance, 20 (2010), pp. 145–185]
and [F. Biagini, H. Föllmer, and S. Nedelcu, Finance Stoch., 18 (2014), pp. 297–326]) by showing the
existence of a flow of equivalent martingale measures for W , under which WF equals the expectation
of the discounted future cash flow. As an application, we study bubble formation and evolution in
a financial network.
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1. Introduction. The formation of asset price bubbles has been thoroughly investigated
from an economical point of view in many contributions; see Tirole [54], Allen and Gale [3],
Choi and Douady [16], [15], Harrison and Kreps [26], Kaizoji [33], Earl, Peng, and Potts
[21], DeLong et al. [20], Scheinkman [50], Scheinkman and Xiong [51], Xiong [59], Abreu
and Brunnermeier [1], Föllmer, Horst, and Kirman [23], Miller [39], and Zhuk [60]. Different
causes have been indicated as triggering factors for bubble birth, such as heterogeneous beliefs
between interacting agents (as in [23], [26], [50], [51], [59], [60]), a breakdown of the dynamic
stability of the financial system [16], [15], the diffusion of new investment decision rules from
a few expert investors to a larger population of amateurs (see [21]), the tendency of traders to
choose the same behavior as the other traders’ behavior as thoroughly as possible (see [33]),
and the presence of short-selling constraints (see [39]).

From the mathematical point of view, one of the main approaches is given by the martin-
gale theory of bubbles as introduced by Cox and Hobson [18] and Loewenstein and Willard
[34] and mainly developed by Jarrow and Protter and colleagues [28], [29], [31], [32], [27]. See
Protter [48] for an overview. In this setting a Q-bubble is defined as the difference between
the market price of a given financial asset and its fundamental value, given by the expectation
of the future cash flows under an equivalent local martingale measure Q.
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LIQUIDITY INDUCED ASSET BUBBLES VIA FLOWS OF ELMMs 801

Defined in this way, the bubble is a nonnegative local martingale under Q, and it is strictly
positive if and only if the market wealth W is a strict Q-local martingale (for a complete
analysis, see, for example, [10], [18], [31], [32], [34], [48]).

In a complete market (see [31]), where only one equivalent local martingale measure
(ELMM) exists, only two possibilities are given: either no bubble appears at all, or a bubble
is already present at the beginning. In [32] and [10] incomplete markets have been taken into
consideration: the birth and the evolution of a bubble are then determined by a flow of differ-
ent ELMMs that gives rise to a corresponding shifting perception of the fundamental value of
the asset. In [32] the underlying pricing measures may change only at certain stopping times;
in [10] a continuous flow in the space of martingale measures is considered.

On the other hand, an alternative model is given by Jarrow, Protter, and Roch in [30],
where the fundamental value is exogenously given, whereas the market value is endogenously
determined by the trading activity of investors and studied through the analysis of the liquidity
supply curve. For another constructive model, see also [11].

In this setting a bubble is still defined as the difference between the market value W and
the fundamental value WF ; however, it does not always coincide with the Q-bubble under a
given equivalent martingale measure Q.

A natural question then is whether it is possible to embed a constructive model, where the
fundamental price is exogenous and the market price endogenous, in the martingale theory of
bubbles by determining a suitable flow of ELMMs for W under which WF is justified from a
fundamental point of view.

More precisely, given a liquidation time T for the financial asset, we look for a flow
(Qt)t∈[0,T ) of ELMMs for the market wealth W such that the fundamental value of the asset
is given as the expectation of the future cash flow as in (3.3). Note, however, that we do not
obtain that WF is also a (local) martingale under each measure of the flow, as thoroughly
discussed in Remark 3.1.

Then our main result is that we can explicitly determine the form of such a flow of ELMMs
in a liquidity-driven model under very general assumptions; see Theorem 3.16. This requires
a consistent technical effort, mostly devoted to guaranteeing the martingale property of the
chosen flows of (eventual) probability densities. In this way we are able to directly connect the
impact of the underlying macroeconomic factors to the shift of the resulting pricing measure,
which may change over time.

As an application of our method, we consider the evolution of a bubble in a financial
network and compute the generating flow of ELMMs. However, this example is also of inde-
pendent interest, as it studies how the interaction of market participants in a financial network
can affect asset price formation and the consequent birth of a bubble. Different studies show
how contagion between investors and herding behavior may play an essential role when a
bubble grows up: euphoria and exuberance can propagate among market participants, due
to exchanges of ideas (see Lux [35]) or to the fact that investors may be attracted by the
short period earnings of acquaintances investing in the bubbly asset, as observed by Bayer,
Mangum, and Roberts in [8], where, analyzing data from the housing bubble in Los Angeles
in the 2000s, the authors noticed a strong contagion between neighbors.

Several contributions in recent years have focused on how some properties of the network,
such as mean degree or degree heterogeneity, can influence the contagion of failures andD
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802 F. BIAGINI, A. MAZZON, AND T. MEYER-BRANDIS

losses between banks during a financial crisis (see, for example, Acemoglu et al. [2], Allen
and Gale [4], Amini, Cont, and Minca [5], Cont, Moussa, and Santos [17], Gai and Kapadia
[24], Newman, Strogatz, and Watts [41], Watts [56], and Watts and Strogatz [57]). Some
investigation has been proposed about how bubbles are generated at the microeconomic level
by the interaction of market participants (see, among others, Lux [35], Scheinkman [50],
Scheinkman and Xiong [51], Tirole [54], and Zhuk [60]). However, only a few studies have
been devoted to understanding how the structure of a given financial network can influence
the spread of contagion between investors that generates a bubble. In [35], for example,
the author models the bubble as caused by a self-organizing process of infection between
traders, expressed by a system of PDEs, leading to equilibrium prices that deviate from the
fundamental value. However, they consider a world in which everybody is connected with
everybody, so that the network structure does not enter into play.

In our special case we focus on a model for the signed volume of market orders of X
dependent on some characteristics of the underlying networks of investors, such as the degree
distribution. In particular we use a modeling approach derived from the literature on infectious
processes in a population by following the so-called Susceptible-Infected-Susceptible (SIS)
model (see Pastor-Satorras and Vespignani [45], [46]). We provide numerical simulations
to investigate how different networks generate different contagion mechanisms and then to
bubbles with different evolutions. In particular, it turns out that in more heterogeneous
networks (i.e., networks with a more right skewed degree distribution) contagion spreads
faster at the beginning, so that the bubble builds up faster and bursts sooner: the nodes with
high degree, which on average get infected faster, contribute with a higher weight in the more
right skewed distributions.

The paper is therefore organized as follows: in section 2 we describe the setting of the
liquidity model, define the fundamental value of the asset, and specify how the trading activity
of investors influences the market price of the asset. In section 3 we determine a possible
flow (Qt)t∈[0,T ) of ELMMs satisfying (3.3) and show that the density process (Zt,s)s∈[0,T )

with Zt,s = dQt

dP |Fs is a true martingale with respect to s. In section 4 we give an example
showing how contagion between investors can develop the bubble in a network and compute
the generating flow of ELMMs.

2. The setting. Let (Ω,F , P ) be a probability space and T > 0 a random time on it,
representing the maturity or liquidation time of the underlying risky asset as in the setting
of [32]. We assume that (Ω,F , P ) is endowed with a filtration F = (Ft)t∈[0,T ] satisfying the
usual assumptions of completeness and right continuity.

On (Ω,F ,F, P ) we have (B1, B2, B3, B4, N), where Bi = (Bi
t)t∈[0,T ], i = 1, 2, 3, 4, are

standard F-Brownian motions and Nt = 1{τ≤t} is a jump process with τ totally inaccessible
stopping time with intensity process π = (πt)t∈[0,T ]. We assume that (B1, B2, B3, B4, N) are
independent processes.

We follow the approach of [30] and study how trading activity may impact prices and
generate the formation and bursting of speculative asset price bubbles. We consider a contin-
uous time setting where a stock is traded through a limit order book. The fundamental wealth
or value of the stock is given as a primitive of the model and represents the price process
if market orders have no quantity impact on the price. The market wealth equals the fun-D

ow
nl

oa
de

d 
05

/2
9/

23
 to

 1
29

.1
87

.2
54

.4
7 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LIQUIDITY INDUCED ASSET BUBBLES VIA FLOWS OF ELMMs 803

damental value until market orders are executed. Market orders, which deplete or fill in the
limit order book, produce a variation in the price over a small interval of time. If new market
orders quickly enter before the price has time to decay again to the fundamental value, these
short-term price variations may accumulate and result in a deviation from the fundamental
wealth with a consequent bubble birth.

More specifically, we consider a financial asset whose fundamental wealthWF = (WF
t )t∈[0,T ]

(associated to the cumulative dividend process (Dt)t∈[0,T ] and to the liquidation value F of
the asset at time T ) is given by

(2.1) dWF
t = WF

t (adt+ bdB1
t ), 0 ≤ t ≤ T,

with WF
0 > 0, a ≥ 0, and b > 0.

We interpret τ as the time of birth of a bubble for this financial asset. The bubble follows
the dynamics

(2.2) dβt = MtΛt(−kβtdt+ 2dXt + 2xWF
t dNt), 0 ≤ t < T,

where X is the signed volume of market orders (buy market orders minus sell market orders),
x is the signed volume of market orders at τ , and M = (Mt)t∈[0,T ], Λ = (Λt)t∈[0,T ] are,

respectively, a measure of illiquidity and the so-called resiliency. We put βτ = 2xΛτMτW
F
τ

for a given x > 0.

Remark 2.1. As in [30], we assume that the supply curve for the stock is linear, i.e.,
that the variation induced by a market order of size y is proportional to y via the stochastic
coefficients M and Λ. Here M quantifies the illiquidity level, while the resiliency coefficient Λ
represents the degree to which the limit order book recovers from small trades. In this way

1
2MtΛt

gives the depth of the order book at time t, i.e., the size of the order required to change
the price of an asset by one unit. This linearity assumption is better justified in the case
of frequently traded and large volume stocks; see [12]. For less liquid companies, statistical
analysis (see, for example, Cetin et al. [14]) shows that the supply is at best piecewise linear.
For more details about the economical motivation of this setting, we refer the reader to [30].

We consider that X satisfies the following dynamics:

Xt = 0 for 0 ≤ t < τ,

dXt = µtdt+ σtdB
2
t for τ ≤ t < T,(2.3)

where µ = (µt)t∈[0,T ] and σ = (σt)t∈[0,T ] are progressively measurable processes that a priori
can also depend on X itself or on the bubble β.

In [30] the signed volume of market orders is modeled as in (2.3) with µ ≡ 0 and σt = αβt.
Here we introduce the drift µ in order to see the influence of the network on the size of the
bubble, as we specify in section 4.

Here the fundamental wealth process WF is exogenously given, while the market wealth
process W = (Wt)t∈[0,T ] is endogenously determined as

Wt = WF
t + βt, 0 ≤ t < T.D
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At liquidation time T we have WT = WF
T : the asset is liquidated at time T at the estimated

firm’s value, i.e., at the fundamental value. In particular we require in what follows that there
exists an equivalent local martingale measure for W only on the open interval [0, T ), since
around time T the liquidation procedure is not subjected to market equilibrium mechanisms.

Assumption 2.2.
(i)
∫ T
τ µ2

sds <∞ a.s.

(ii)
∫ T
τ σ2

sds <∞ a.s., and
∫ T
τ

1
σ4
s
ds <∞ a.s.

(iii) µ and σ are such that there exists a unique solution of (2.3) (see, e.g., Theorem 7 in
Chapter V.3 in [47]).

(iv) M = (Mt)t∈[0,T ] is an adapted process that satisfies the dynamics

dMt = µ̃(Mt)dt+ σ̃(Mt)dB
3
t , 0 ≤ t ≤ T,

where µ̃ and σ̃ are such that there exists a unique solution of (2.4) according to The-

orem 7 in Chapter V.3 in [47]. Moreover,
∫ b
a σ̃
−4(x)dx < ∞ for every a, b such that

0 < a < b <∞.
(v) Λ = (Λt)t∈[0,T ] satisfies the dynamics

dΛt = µ′(Λt)dt+ σ′(Λt)dB
4
t , 0 ≤ t ≤ T,

Λ0 ∈ (λ, 1), with µ′, σ′ that satisfy the conditions in Theorem 7 in Chapter V.3 in
[47]. Furthermore, µ′(λ) > 0, µ′(1) < 0, σ′(1) = 0, σ′(λ) = 0 a.s., so that we obtain
λ ≤ Λt ≤ 1 a.s. for all t ∈ [0, T ].

(vi) π = (πt)t∈[0,T ] is bounded, i.e., |πt| ≤ Π <∞ a.s. for all t ∈ [0, T ].
(vii) T is a bounded a.s. (possibly by a very large constant) F-stopping time independent of

(B1, B2, N) such that τ < T a.s.

Notice that we assume τ < T and T bounded a.s. for the sake of simplicity. The following
results still hold without these conditions by imposing some integrability conditions on T . For
example, it would be sufficient to have T < ∞ a.s., EP [eT |Ft] < ∞, and EP [T − τ |Ft] > 0
a.s. for t ∈ [0, T ].

Remark 2.3. Here we exclude that σ can depend on β. However, the following results also
hold for the case σt = αβt, t ∈ [τ, T ], α ∈ R, considered in [30] to model the evolution of the
bubble given by illiquidity effects. We refer the reader to [36] for more details in this case.

Proposition 2.4. From the hypothesis on M it follows that
∫ T

0 Mα
s ds <∞ a.s. for all α ∈ R.

Proof. Following the same argument as in [37], we have that∫ T

0
Mα
s ds =

∫ T

0

Mα
s

σ̃2(Ms)
d[M,M ]s =

∫ ∞
0

xα

σ̃2(x)
LxTdx,(2.4)

where LxT is the local time at T and the last equality follows by the occupation time formula
(see, for example, Corollary 1 in Chapter IV of [47]).

Then the integral is finite since, by the fact that 0 < Ms <∞ a.s. for each s ∈ [0, T ], we
have that the occupation time LaT has compact support in (0,∞).D
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From Remark 2.3 we have that β satisfies the SDE

dβt = 2ΛtMt

[
(−kβt + µt)dt+ σtdB

2
t + xWF

t dNt

]
, τ ≤ t < T.

The bubble therefore takes the following explicit expression:

βt = βτe
−k

∫ t
τ ΛsMsds +

∫ t

τ
µsΛsMse

−k
∫ t
s ΛuMududs

+

∫ t

τ
σsΛsMse

−k
∫ t
s ΛuMududB2

s , τ ≤ t < T.(2.5)

3. Flow of equivalent local martingale measures. Let Mloc(W ) be the space of equiva-
lent local martingale measures for W = (Wt)t∈[0,T ). Given Q ∈ Mloc(W ), a Q-bubble βQ is
defined as

(3.1) βQt = Wt − EQ[WT |Ft]

in the approach of [31] and [32]. In particular, we have that the bubble introduced in (2.2)
coincides with a Q-bubble if and only if

(3.2) WF
t = EQ[WT |Ft], t ∈ [0, T ),

for some Q ∈Mloc(W ).
This is of course not possible in our setting. However, we can find a flow (Qt)t∈[0,T ) ⊆

Mloc(W ) such that

(3.3) WF
t = EQt [WT |Ft] = EQt [WF

T |Ft].

In this way the bubble described in (2.2) is the result of the shift in the pricing measure
induced by the change in the macroeconomic and financial conditions in the market.

Remark 3.1. We wish to point out the relation between our constructive approach and
the martingale theory of bubbles described in [31], [32], and [10]. In our setting as well as in
the approach of [30], the bubble β is defined as

(3.4) βt = Wt −WF
t ,

where WF is a primitive of the model. According to the martingale theory of bubbles as
illustrated in [31] and [32], the market wealth W is given a priori and for a given Q ∈Mloc(W )
the Q-bubble process βQ is defined as in (3.1), which also implies that βQ is nonnegative. The
two definitions coincide if the fundamental wealth process WF in (3.4) is also a (local) Q-
martingale for Q ∈Mloc(W ), i.e., if (3.2) holds; otherwise they differ.

In our setting as well as in [30, sect. 5], we have that Mloc(W ) ∩Mloc(W
F ) = ∅, so the

bubble process cannot be a local martingale under any equivalent local martingale measure
Q ∈ Mloc(W ) for the wealth process W and may also assume negative values. Hence the
appearance of negative bubbles is not in contrast with arbitrage theory in our approach.

However, while in the martingale approach the model is automatically arbitrage-free be-
cause Mloc(W ) 6= ∅ is assumed a priori, in our “constructive” model for bubbles we needD

ow
nl

oa
de

d 
05

/2
9/

23
 to

 1
29

.1
87

.2
54

.4
7 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

806 F. BIAGINI, A. MAZZON, AND T. MEYER-BRANDIS

to explicitly exclude arbitrage possibilities. Since in Theorem 3.16 we show the existence of
a flow (Qt)t∈[0,T ) ⊆ Mloc(W ), i.e., that Mloc(W ) 6= ∅, we obtain that our market model is
arbitrage-free; see also Remark 3.17.

It is then a challenging question whether our constructive model can be included in the
more fundamental view of the martingale theory of bubbles of [31] and [32] by following [10].
For this purpose we investigate the existence of a flow (Qt)t∈[0,T ) ⊆ Mloc(W ) which can
“fundamentally explain” the a priori given fundamental wealth, i.e., such that (3.3) holds.
This is not in contrast with our comments above since now the measure Qt is not fixed over
the entire interval [0, T ) but may change in time. In fact, (3.3) does not imply that WF is
a martingale under Qt over the interval [0, T ) because (3.3) holds t-wise, and in general it is
not true that

WF
s = EQt [WT |Fs]

for s 6= t, s, t ∈ [0, T ).

We now explicitly compute a flow (Qt)t∈[0,T ) ∈ Mloc(W ) justifying the existence of the
bubble in (2.2) from a fundamental point of view.

Let Q ∈ Mloc(W ). Then the density process Z = (Zt)t∈[0,T ) of Q with respect to P is
given by

Zt =
dQ

dP
|Ft = E

(∫ ·
0
α1
sdB

1
s +

∫ ·
0
α2
sdB

2
s +

∫ ·
0
α3
sdÑs +

∫ ·
0
α4
sdB

3
s +

∫ ·
0
α5
sdB

4
s + Lt

)
t

,

0 ≤ t < T , where Ñt = Nt −
∫ t∧τ

0 nsds, t ∈ [0, T ), L is a martingale strongly orthogonal
to (B1, B2, B3, B4, N), and the processes αi, i = 1, . . . , 5, are such that for 0 ≤ s < T the
following equality holds:

(3.5) WF
s (a+ bα1

s) + 2ΛsMs

(
µs + σsα

2
s − kβs

)
1{s≥τ} + 2πsxW

F
s ΛsMs(α

3
s + 1)1{s<τ} = 0.

Since (3.5) does not involve α4, α5, or L, we put α4 ≡ α5 ≡ L ≡ 0.
We can split (3.5) as

bα1
s = −a− 2πsxΛsMs(α

3
s + 1) for s < τ(3.6)

and

bα1
s = −a+

2ΛsMs

WF
s

(
kβs − µs − σsα2

s

)
for s ≥ τ.(3.7)

We look for a flow of the form

(3.8) Zt,s =
dQt

dP
|Fs = E

(∫ ·
0
αt,1u dB

1
u +

∫ ·
0
αt,2u dB

2
u +

∫ ·
0
αt,3u dÑu

)
s

, s ∈ [0, T ),

since (3.5) does not involve conditions on αt,4, αt,5, and αt,6. In particular, we note that the
laws of M , Λ, and T are invariant under this change of measure.D
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If αt,1, αt,2, and αt,3 satisfy (3.6) and (3.7), the fundamental process under Qt is given by

(3.9)
dWF

s

WF
s

= µ̃tsds+ bdB̃t
s, 0 ≤ s ≤ T,

where B̃t denotes the Qt-standard Brownian motion given by

B̃t
s = B1

s −
∫ s

0
αt,1u du, 0 ≤ s ≤ T,

and

(3.10) µ̃ts =

{
−2πsxΛsMs(α

t,3
s + 1) for s < τ,

2ΛsMs

WF
s

(
kβs − µs − σsαt,2s

)
for s ≥ τ.

If the condition

(3.11) EQt
[∫ T

t
(WF

s )2ds

]
<∞

is satisfied, we have that (3.3) is equivalent to

EQt
[∫ T

t
WF
s µ̃

t
sds
∣∣∣Ft] = 0;

that is,

0 = EQt
[∫ τ

t
WF
s πsxΛsMs(α

t,3
s + 1)ds+

∫ T

τ
ΛsMs

(
kβs − µs − σsαt,2s

)
ds
∣∣∣Ft](3.12)

for t < τ , and

(3.13) EQt
[∫ T

t
ΛsMs

(
kβs − µs − σsαt,2s

)
ds
∣∣∣Ft] = 0

for t ≥ τ .
To show the existence of the flow (Qt)t∈[0,T ) ⊆Mloc(W ), we choose αt,2 and αt,3 so that

the integrals inside the conditional expectation in (3.12) and (3.13) are zero a.s. We show later
that a posteriori this choice ensures as well that (3.11) holds.

For t ≥ τ , let

αt,2s =
1

ΛsMsσs

(
s− E[T |Ft] + t

2
+

E2[T |Ft]− E[T 2|Ft]
2(E[T |Ft]− t)

)
+
kβs
σs
− µs
σs
, t ≤ s < T.

Notice that such an αt,2s is well defined since from Assumption 2.2 it holds that Λs > 0,
Ms > 0, σs > 0 a.s. for every s ∈ [0, T ].D
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808 F. BIAGINI, A. MAZZON, AND T. MEYER-BRANDIS

With this choice we have on {T > t} that

EQt

[∫ T

t
ΛsMs

(
kβs − µs − σsαt,2s

)
ds
∣∣∣Ft]

=EQt

[∫ T

t

(
s− E[T |Ft] + t

2
+

E2[T |Ft]− E[T 2|Ft]
2(E[T |Ft]− t)

)
ds
∣∣∣Ft]

=EQt

[(
T 2 − t2

2
− (T − t)E[T |Ft] + t

2
+ (T − t)E

2[T |Ft]− E[T 2|Ft]
2(E[T |Ft]− t)

) ∣∣∣Ft]
=

E[T 2|Ft]− t2

2
− (E[T |Ft]− t)(E[T |Ft] + t)

2
+

E2[T |Ft]− E[T 2|Ft]
2

= 0,(3.14)

since by Assumption 2.2 the law of T does not change under Qt.
For t < τ define

Ct,τ :=

∫ τ

t
WF
s πsxΛsMs(α

t,3
s + 1)ds

and choose αt,2s to be such that

EQt
[∫ T

τ
ΛsMs

(
kβs − µs − σsαt,2s

)
ds
∣∣∣Ft] = −EQt [Ct,τ |Ft] ,

i.e.,

αt,2s =
1

ΛsMsσs

(
s−

EQt [Ct,τ |Ft]
E[T − τ |Ft]

− E[T + τ |Ft]
2

+
E2[T |Ft]− E[T 2|Ft]

2E[T − τ |Ft]
− E2[τ |Ft]− E[τ2|Ft]

2E[T − τ |Ft]

)
+
kβs
σs
− µs
σs
, t ≤ s < T,

so that

EQt

[∫ T

τ
ΛsMs

(
kβs − µs − σsαt,2s

)
ds
∣∣∣Ft]

=EQt

[∫ T

τ

(
s−

EQt [Ct,τ |Ft]
E[T − τ |Ft]

− E[T + τ |Ft]
2

+
E2[T |Ft]− E[T 2|Ft]

2E[T − τ |Ft]
− E2[τ |Ft]− E[τ2|Ft]

2E[T − τ |Ft]

)
ds
∣∣∣Ft]

=
E[T 2 − τ2|Ft]

2
− EQt [Ct,τ |Ft]−

E[T − τ |Ft]E[T + τ |Ft]
2

+
E2[T |Ft]− E[T 2|Ft]

2

− E2[τ |Ft]− E[τ2|Ft]
2

=− EQt [Ct,τ |Ft],

and then (3.12) holds.
For s < t ∨ τ we set αt,2s = 0.
Summarizing,

αt,2s =

{
0 for s < τ ∨ t,

1
ΛsMsσs

(s− ηt,τ ) + kβs
σs
− µs

σs
for s ≥ τ ∨ t,

(3.15)
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where

ηt,τ =
EQt [

∫ τ
t∧τ W

F
s πsxΛsMs(α

t,3
s + 1)ds|Ft]

2E[T − τ ∨ t|Ft]
− E[T + τ ∨ t|Ft]

2
+

E2[T |Ft]− E[T 2|Ft]
2E[T − τ ∨ t|Ft]

− E2[τ ∨ t|Ft]− E[(τ ∨ t)2|Ft]
2E[T − τ ∨ t|Ft]

.(3.16)

Remark 3.2. Notice that from Assumption 2.2 and from the fact that the integral in (3.16)
is bounded, we have that ηt,τ is finite and Ft-measurable and that, moreover, E[ηαt,τ ] <∞ for
all α ∈ R.

Choosing

αt,3s =

{
0 for s < t or s ≥ τ,

1
(Ms+1)(WF

s +1)
− 1 for t ≤ s < τ

(3.17)

and

αt,1s =


0 for s < t,

−a
b −

2
bπsΛs

Ms
Ms+1

1
WF
s +1

for t ≤ s < τ,

−a
b −

2
bWF

s
(s− ηt,τ ) for s ≥ τ ∨ t,

(3.18)

we have that (3.12) and (3.13) hold.
Now we give the following.

Proposition 3.3. Let αt,1, αt,2, and αt,3 be as defined in (3.15)–(3.18). Then

EQt
[∫ T

t
(WF

s )2ds

]
<∞, t ∈ [0, T ].

Proof. From (3.10) and from the expressions of αt,1, αt,2, and αt,3 in (3.15)–(3.18) we have
that

µ̃ts =

{
−2πsxΛs

Ms
Ms+1

1
WF
s +1

for s < τ,
1
WF
s

(ηt,τ − s) for s ≥ τ,

where ηt,τ is given in (3.16). Then from (3.9) it holds that under Qt

dWF
s = ψsds+ bWF

s dB̃
t
s for s < τ,

dWF
s = (ηt,τ − s)ds+ bWF

s dB̃
t
s for s ≥ τ,

where ψs = −2πsxΛs
Ms
Ms+1

1
WF
s +1

.

Thus we have

WF
s =

ebB̃
t
s− b

2

2
s
∫ s

0 ψue
−bB̃tu+ b2

2
udu for s < τ,

ebB̃
t
s− b

2

2
s
∫ s

0 (ηt,τ − u)e−bB̃
t
u+ b2

2
udu for s ≥ τ.
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Then

EQt
[∫ T

t
(WF

s )2ds

]
= EQt

[∫ τ

t∧τ

(∫ s

0
ψue

b(B̃ts−B̃tu)− b
2

2
(s−u)du

)2

ds+

∫ T

τ

(∫ s

0
(ηt,τ − u)eb(B̃

t
s−B̃tu)− b

2

2
(s−u)du

)2

ds

]

≤ EQt

[
4Π2x2

∫ τ

t∧τ

(∫ s

0
eb(B̃

t
s−B̃tu)− b

2

2
(s−u)du

)2

ds+ (|ηt,τ |+ T )2

·
∫ T

τ

(∫ s

0
eb(B̃

t
s−B̃tu)− b

2

2
(s−u)du

)2

ds

]

≤
(

4Π2x2 + E
[
(|ηt,τ |+ T )4

] 1
2

)
EQt

[∫ T

t∧τ

(∫ s

0
eb(B̃

t
s−B̃tu)− b

2

2
(s−u)du

)4

ds

] 1
2

.

Since T is bounded and the first term is finite by Remark 3.2, it remains to prove

(3.19) EQt

[∫ T

t∧τ

(∫ s

0
eb(B̃

t
s−B̃tu)− b

2

2
(s−u)du

)4

ds

]
<∞.

We have that

EQt

[∫ T

t∧τ

(∫ s

0
eb(B̃

t
s−B̃tu)− b

2

2
(s−u)du

)4

ds

]
= EQt

[∫ T

t∧τ

(∫ s

0
ebB̃

t
s−u−

b2

2
(s−u)du

)4

ds

]

= EQt

[∫ T

t∧τ

(∫ s

0
ebB̃

t
r− b

2

2
rdr

)4

ds

]
≤ EQt

[
(T − t ∧ τ)2

] 1
2 EQt

[(∫ T

0
ebB̃

t
r− b

2

2
rdr

)8
] 1

2

.

The first term is finite by Assumption 2.2 on T and τ , whereas

EQt

[(∫ T

0
ebB̃

t
r− b

2

2
rdr

)8
]
≤ EQt

[∫ T

0
e8bB̃tr−4b2rdr

]
=

∫ T

0
EQt

[
e8bB̃tr−4b2r

]
dr <∞.

Then (3.19) holds and we have the result.

We have therefore proved that if we take αt,1, αt,2, and αt,3 as defined in (3.15)–(3.18),
then (3.6), (3.7), and (3.3) are satisfied.

From now on we denote Zt,s := dQt

dP |Fs for all s ≥ t, and Zt,s = 1 for s < t.
Note that we have not yet used the hypothesis on µ and σ of Assumption 2.2 to derive

(3.8). From now on we will need them to prove that (Zt,s)s∈[t,T ) is a true martingale for each
t ∈ [0, T ), i.e., that each Qt, t ∈ [0, T ), in (3.8) belongs to ∈Mloc(W ).

Remark 3.4. By Assumption 2.2, as proved in Proposition 2.4, we exclude that the integral∫ ·
0 M

2
s ds can explode in finite time. This is a difference with respect to [30], where the bubble

bursts (i.e., βt = 0) at inf{s
∣∣ ∫ s

0 M
2
udu = +∞}.D
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In our model, however, the bubble can be zero, and also negative, even if the liquidity is
not zero: by (2.5) it can be seen that this can happen when the drift µ of the signed volume
of market orders becomes negative. In this approach, therefore, whether or not the bubble
is positive depends more on the attitude of the investors than on the liquidity. In section 4
we propose an example to show how contagion between traders in financial networks can
determine the value of µ.

From now on, we fix t ∈ [0, T ). We begin the analysis by noticing that since [B1, N ] ≡
[B2, N ] ≡ 0,

Zt,s = E
(∫ s

0
αt,1u dB

1
u +

∫ s

0
αt,2u dB

2
u +

∫ s

0
αt,3u dÑu

)
= E

(∫ s

0
αt,1u dB

1
u +

∫ s

0
αt,2u dB

2
u

)
E
(∫ s

0
αt,3u dÑs

)
for s ∈ [0, T ).

Moreover,

E
(∫ s

0
αt,3u dÑu

)
≤ exp

{∫ s

0

[
αt,3u −

1

2
(αt,3u )2

]
dNu −

∫ s

0
αt,3u πudu

}
·
∏

0≤u≤s
(1 + ∆(αt,3u Nu)) exp

{
∆(αt,3u Nu) +

1

2
∆(αt,3u Nu)2

}
≤ 2 exp

{
3

2
+

∫ s

0

[
|αt,3u |+

1

2
|αt,3u |2

]
dNu +

∫ s

0
|αt,3u |πudu

}
≤ 2e3+TΠ,

since by (3.17) it holds that |αt,3s | ≤ 1.
Then, taking (Z̄t,s)s∈[0,T ) with

Z̄t,s = E
(∫ s

0
αt,1u dB

1
u +

∫ s

0
αt,2u dB

2
u

)
,

we have

(3.20) Zt,s ≤ 2e3+TΠZ̄t,s.

We give the following.

Lemma 3.5. Let X, Y be two positive stochastic processes such that Yt ≤ Xt a.s. for all
t ≥ 0, and let X be of class DL.1 Then Y is of class DL as well.

Proof. By Theorem 11 of Chapter I of [47] we have that a family of random variables
(Uα)α∈A is uniformly integrable if and only if there exists a function G defined on [0,∞),

positive, increasing, and convex, such that limx→∞
G(x)
x = +∞ and supα E[G ◦ |Uα|] < ∞.

1A stochastic process X is of class DL if, for each t ≥ 0, {Xτ : τ ≤ t stopping time} is uniformly integrable.D
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Now fix t ≥ 0, and call Jt = {τ : τ ≤ t stopping time}, U tX = {Xτ : τ ∈ Jt}, and U tY = {Yτ :
τ ∈ Jt}.

Since by hypothesis U tX is uniformly integrable, there exists a function G that satisfies the
properties stated before. We have that

G(Yτ ) ≤ G(Xτ ) a.s. for τ ∈ Jt

and then that
E[G(Yτ )] ≤ E[G(Xτ )], τ ∈ Jt.

Thus
sup
τ∈Jt

E[G(Yτ )] ≤ sup
τ∈Jt

E[G(Xτ )] <∞.

Therefore U tY is uniformly integrable and Y is of class DL.

We then have the following.

Proposition 3.6. (Zt,s)s∈[0,T ) in (3.8) is a martingale if (Z̄t,s)s∈[0,T ) is a martingale.

Proof. Since a local martingale is a true martingale if and only if it is of class DL (see
Proposition 1.7 of Chapter IV of [49]), we have that if Z̄ is a true martingale, then 2e3+TΠZ̄,
being a martingale as well, is of class DL. Thus, by Lemma 3.5 and by (3.20), Z is of class
DL, and therefore by Proposition 1.7 of Chapter IV of [49] it is a true martingale.

To prove that Z̄ is a martingale we rely on some results provided by Mijatovic and Urusov
[38] and by Wong and Heyde [58]. We first need some preliminaries.

Consider the state space J = (l, r), −∞ ≤ l < r ≤ ∞, and a J-valued diffusion Y =
(Ys)s∈[0,T ) on some filtered probability space, governed by the SDE

(3.21) dYs = µY (Ys)ds+ σY (Ys)dBs, 0 ≤ s < T,

with Y0 = x0 ∈ J , W Brownian motion, and deterministic functions µY (·) and σY (·), which
from now on we will simply denote by µY and σY , such that

(3.22) σY (x) 6= 0 ∀x ∈ J

and

(3.23)
1

σ2
Y

,
µY
σ2
Y

∈ L1
loc(J),

where L1
loc(J) denotes the class of locally integrable functions on J , i.e., the measurable

functions (J,B(J))→ (R,B(R)) that are integrable on compact subsets of J .
Consider the stochastic exponential

(3.24) E
(∫ s

0
f(Yu)dBu

)
, 0 ≤ s < T,

with f(·) such that

(3.25)
f2

σ2
Y

∈ L1
loc(J),

D
ow

nl
oa

de
d 

05
/2

9/
23

 to
 1

29
.1

87
.2

54
.4

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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and the auxiliary J-valued diffusion Ỹ governed by the SDE

(3.26) dỸs =
(
µY (Ỹs) + f(Ỹs)σY (Ỹs)

)
ds+ σY (Ỹs)dB̃s, 0 ≤ s < T,

where B̃ is a Brownian motion on some probability space (Ω̃, F̃ , P̃ ).
Put J̄ = [l, r] and, fixing an arbitrary c ∈ J , define

ρ(x) := exp

{
−
∫ x

c

2µY
σ2
Y

(y)dy

}
, x ∈ J,(3.27)

ρ̃(x) := ρ(x) exp

{
−
∫ x

c

2f

σY
(y)dy

}
, x ∈ J,(3.28)

s(x) :=

∫ x

c
ρ(y)dy, x ∈ J̄ ,(3.29)

s̃(x) :=

∫ x

c
ρ̃(y)dy, x ∈ J̄ .(3.30)

Denote ρ = ρ(·), s = s(·), s(r) = limx→r− s(x), s(l) = limx→l+ s(x), and analogously for s̃(·)
and ρ̃(·).

Recall that by Feller’s test for explosions Ỹ exits its state space with positive probability
at the boundary point r if and only if

(3.31) s̃(r) <∞ and
s̃(r)− s̃
ρ̃σ2

Y

∈ L1
loc(r−),

where L1
loc(r−) := {g|g : (J,B(J)) → (R,B(R)) such that

∫ r
x g(y)dy < ∞ for some x ∈ J}.

Similarly, Ỹ exits its state space with positive probability at the boundary point l if and only
if

(3.32) s̃(l) > −∞ and
s̃− s̃(l)
ρ̃σ2

Y

∈ L1
loc(l+),

where L1
loc(l+) := {g|g : (J,B(J)) → (R,B(R)) such that

∫ x
l g(y)dy < ∞ for some x ∈ J}.

Moreover, the endpoint r of J is said to be good if

(3.33) s(r) <∞ and
(s(r)− s)f2

ρσ2
Y

∈ L1
loc(r−),

or, equivalently (see [38]), if

(3.34) s̃(r) <∞ and
(s̃(r)− s̃)f2

ρ̃σ2
Y

∈ L1
loc(r−).

Similarly, the endpoint l of J is said to be good if

(3.35) s(l) > −∞ and
(s− s(l))f2

ρσ2
Y

∈ L1
loc(l+),
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or, equivalently, if

(3.36) s̃(l) > −∞ and
(s̃− s̃(l))f2

ρ̃σ2
Y

∈ L1
loc(l+).

We recall here Theorem 2.1 in [38].

Theorem 3.7. Let the functions µY , σY , and f satisfy conditions (3.22), (3.23), and (3.25),
and let Y be a solution of the SDE (3.21).

Then the Doléans exponential given by (3.24) is a martingale for any T <∞ if and only
if both of the following requirements are satisfied:

(a) Condition (3.31) does not hold or conditions (3.33)–(3.34) hold.
(b) Condition (3.32) does not hold or conditions (3.35)–(3.36) hold.

We now obtain the following.

Proposition 3.8. Let S = (Ss)s∈[0,T ) be a geometric Brownian motion

(3.37) dSs = µ0Ssds+ σ0SsdBs, 0 ≤ s < T,

where B is a Brownian motion, µ0 ∈ R, and σ0 > 0.
Then the process

E
(∫ s

0
(Su)−1dBu

)
, 0 ≤ s < T,

is a martingale.

Proof. We show that the requirements of Theorem 3.7 hold for Y = S, with µY (x) = µ0x,
σY (x) = σ0x, and f(x) = x−1. Notice that µY , σY , and f satisfy conditions (3.22), (3.23), and
(3.25) with J = (0,∞). Then, taking c = 1 for the functions (3.27)–(3.30) and first assuming
2µ0
σ2
0
6= 1, we have

ρ(x) = exp

{
−
∫ x

1

2µY
σ2
Y

(y)dy

}
= x

−2µ0
σ20 ,(3.38)

ρ̃(x) = ρ(x) exp

{
−
∫ x

1

2f

σY
(y)dy

}
= x

−2µ0
σ20 exp

(
2

σ0

(
1

x
− 1

))
,(3.39)

s(x) =

∫ x

1
ρ(y)dy =

σ2
0

2µ0 − σ2
0

(1− x−γ0),(3.40)

s̃(x) =

∫ x

1
ρ̃(y)dy = e

− 2
σ0

(
− 2

σ0

)−γ0 [
Γ̄

(
γ0,−

2

xσ0

)
− Γ̄

(
γ0,−

2

σ0

)]
,(3.41)

with γ0 = 2µ0
σ2
0
−1 and where Γ̄(a, z) =

∫∞
z e−tta−1dt, a ∈ R+, z ∈ R, is the incomplete Gamma

function extended to all R.D
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Notice that in (3.41) we have that

s̃(x) = e
− 2
σ0

(
− 2

σ0

)−γ0 [
Γ̄

(
γ0,−

2

xσ0

)
− Γ̄

(
γ0,−

2

σ0

)]
= e
− 2
σ0

(
2

σ0

)−γ0
(−1)−γ0

∫ − 2
σ0

− 2
xσ0

e−t(−1)γ0−1|t|γ0−1dt

= −e−
2
σ0

(
2

σ0

)−γ0 ∫ − 2
σ0

− 2
xσ0

e−t|t|γ0−1dt ∈ R.(3.42)

We obtain the following:
• In l = 0 we have

s̃(0) = −e−
2
σ0

(
2

σ0

)−γ0 ∫ − 2
σ0

−∞
e−t|t|γ0−1dt = −∞;

thus condition (3.32) does not hold, and the first requirement of (b) in Theorem 3.7
is fulfilled.
• If γ0 < 0, we have

s̃(∞) = e
− 2
σ0

(
2

σ0

)−γ0 ∫ 0

− 2
σ0

e−t|t|γ0−1dt =∞;

then condition (3.31) does not hold, and the first requirement of (a) in Theorem 3.7
is fulfilled.
• If γ0 > 0, then s(∞) =

σ2
0

2µ0−σ2
0

= C <∞, and condition (3.33) holds since

s(r)− s
ρσ2

0

= C
x−γ0x

2µ0
σ20

x4
=

1

x3
.

Therefore the second requirement of (a) in Theorem 3.7 is fulfilled.
So we have that if γ0 6= 0, the requirements of Theorem 3.7 are satisfied, and thus Z is a
martingale.

In the case γ0 = 0, i.e., µ0 =
σ2
0
2 , we have that the process S = (Su)u∈[0,T ) in (3.37) takes

the form Su = eσ0Bu , 0 ≤ u < T . We can thus apply the results of Theorem 3.7 taking
J = (−∞,∞), µY ≡ 0, σY ≡ 1, f(x) = e−σ0x, and c = 0 in (3.27)–(3.30). We have

ρ(x) = exp

{
−
∫ x

0

2µY
σ2
Y

(y)dy

}
= 1,

ρ̃(x) = ρ(x) exp

{
−
∫ x

0

2f

σY
(y)dy

}
= exp

(
2(e−σ0x − 1)/σ0

)
,(3.43)

s(x) =

∫ x

0
ρ(y)dy = x,

s̃(x) =

∫ x

0
ρ̃(y)dy =

1

σ0
e
− 2
σ0

(
Ei (2/σ0)− Ei

(
2e−σ0x/σ0

))
,
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where Ei(z) = −
∫∞
−z

e−u

u du is the exponential integral function that satisfies limz→∞Ei(z) =
∞ and limz→0Ei(z) = −∞. Therefore s̃(∞) = ∞ and s̃(−∞) = −∞; then the first require-
ments of (a) and (b) of Theorem 3.7 are both satisfied, and Z is a martingale.

Then we have immediately the following.

Corollary 3.9. Under Assumption 2.2, the process

(3.44) E
(∫ s

τ

1

WF
u

dB1
u

)
, τ ≤ s < T,

is a martingale for every fixed T <∞.

To prove that Corollary 3.9 also implies that E(
∫ s
τ α

t,1
u dB1

u) is a martingale, we extend the
results of Wong and Heyde in [58].

For this purpose we consider an F-progressively measurable d-dimensional process H =
(Hs)s∈[0,T ) of the form

(3.45) Hs = ξ(B(·), s)ζs + ηs,

where ξ ∈ C0(Rd+1,Rd), B is a d-dimensional progressively measurable Brownian motion, and
ζ, η are d-dimensional stochastic processes independent of B. Here the product between ξ and
ζ is intended componentwise.

Define

τMH
N = inf

(
s ∈ [0, T ) : MH(t) :=

∫ t

0
‖Hu‖2du ≥ N

)
,

with the convention that inf ∅ =∞, and then

(3.46) τMH = lim
N→∞

τMH
N .

Then we have the following.

Proposition 3.10. Let H be as in (3.45) and defined up to the explosion time τMH in (3.46).
Then there also exists a d-dimensional F-progressively measurable process, Y = (Ys)s∈[0,T ) with

Ys = ξ(W (·) +
∫ ·

0 Yudu, s)ζs + ηs defined up to the explosion time τMY with

τMY = lim
N→∞

τMY
N ,

where

τMY
N = inf

(
s ≥ 0 : MY (s) :=

∫ s

0
‖Yu‖2du ≥ N

)
∧ T,

such that the stochastic exponential ZH = (ZHs )s∈[0,T ) with ZHs = E
(∫ s

0 HudWu

)
satisfies

P (τMY > T ) = E[ZHT ).

Hence ZH is a (true) martingale if and only if P (τMY > T ) = 1.D
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Proof. Since the proof is a long but easy extension of the result in [58], we omit it here
and refer the reader to [36].

Proposition 3.11. In the setting of section 2, the process

E
(∫ s

0
|αt,1u |dB1

u

)
, 0 ≤ s < T,

with αt,1 in (3.18) is a martingale for each t ∈ [0, T ).

Proof. For s < τ we have

|αt,1s | =
a

b
+

2

b
πsΛs

Ms

Ms + 1

1

WF
s + 1

≤ a

b
+

2

b
Π;

then E(
∫ ·

0 |α
t,1
u |dB1

u) is a martingale up to time τ since it satisfies the Novikov condition
because

E
[
exp

(∫ τ

0
(αt,1s )2ds

)]
≤ E

[
exp(c2τ)

]
with c = a

b + 2
bΠ.

Consider now s ≥ τ . We have that the process Y associated to |αt,1s | as in Proposition 3.10
satisfies

Ys =
2

bWF
s

(s+ |ηt,τ |) exp

(
−b
∫ s

t∧τ
Yudu

)
, t ∧ τ ≤ s < T,

with ηt,τ in (3.16). On the other hand, we have

Ỹs =
1

WF
s

exp

(
−b
∫ s

t∧τ
Ỹudu

)
, t ∧ τ ≤ s < T,

where Ỹ is the process associated to 1
WF . By Corollary 3.9 and Proposition 3.10 it holds that

(3.47)

∫ T

t∧τ
Ỹ 2
s <∞.

We show that the integral of Y 2 does not explode as well.
We have that

(3.48) ∆s =
Ỹs
Ys

=
b

s+ |ηt,τ |
· exp

(
b

∫ s

t∧τ
(Yu − Ỹu)du

)
, t ∧ τ ≤ s < T.

Define the stopping time

τ1 = inf{s ∈ [t ∧ τ, T ) : ∆s ≤ 1} ∧ T,

and notice that, since Y and Ỹ are continuous, ∆τ1 = 1.D
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Define

τ2 = inf{s ≥ τ1 : ∆s ≥ 1} ∧ T.

If τ1 = T , we are done. Otherwise consider s ∈ (τ1, τ2).
Since for τ1 < s < τ2 we have

∆s =
b

s+ |ηt,τ |
· exp

(
b

∫ s

t∧τ
(Yu − Ỹu)du

)
≥ b

T + |ηt,τ |
exp

(
b

∫ τ1

t∧τ
(Yu − Ỹu)du

)
,

it follows that

Ys ≤
Ỹs (T + |ηt,τ |)

b
exp

(
b

∫ τ1

t∧τ
(Ỹu − Yu)du

)
≤ Ỹs (T + |ηt,τ |)

b
exp

(
b

∫ τ1

t∧τ
Ỹudu

)
for τ1 < s < τ2, which implies, together with (3.47), that MY (s) :=

∫ s
t∧τ Y

2
s ds does not explode

before τ2.
But after τ2, up to τ3 = inf{s ≥ τ2 : ∆s ≤ 1}∧T , Y is smaller than Ỹ ; hence MY (s) ≤MỸs

on [τ2, τ3].
Repeating this argument up to T , we obtain that E(

∫ s
0 |α

t,1
u |dB1

u) is a martingale by Propo-
sition 3.10.

We want now to prove that

(3.49) E
(∫ s

0
|αt,2u |dB2

u

)
, 0 ≤ s < T,

with αt,2 in (3.15) is a martingale as well.
We start with the following.

Proposition 3.12. Let β be the bubble as in (2.5). Under Assumption 2.2, the Doléans
exponential

E
(∫ s

0
βudB

2
u

)
, 0 ≤ s < T,

is a martingale.

Proof. If we rewrite β in the form (3.45), we obtain that

ξ(B2(·), s) =

∫ s

τ
σuΛuMue

−k
∫ s
u kΛrMrdrdB2

u, τ ≤ s < T ;

i.e., the process Y associated to β in Proposition 3.10 is given by

Ys = βτe
∫ s
τ (−k+σu)ΛuMuds +

∫ s

τ
µuΛuMue

∫ s
u (−k+σr)ΛrMrdrdu

+

∫ s

τ
σuΛuMue

∫ s
u (−k+σr)ΛrMrdrdB2

u, τ ≤ s < T.(3.50)
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We first prove that Ys < ∞ for each s ∈ [τ, T ). We have
∫ s
u (−k + σr)ΛrMrdr < ∞ a.s. for

each s ∈ [τ, T ) by the hypothesis on σ and Λ in Assumption 2.2 and by Proposition 2.4.
Thus by Theorem 2.4 of [37] and by the fact that T is bounded, we obtain

(3.51)

∫ T

τ
eα

∫ s
u (−k+σr)ΛrMrdrdu <∞

for all α ∈ R, and then by the hypothesis on µ in Assumption 2.2, and again by Proposition 2.4,
we have ∫ s

τ
µuΛuMue

∫ s
u (−k+σr)ΛrMrdrdu <∞, τ ≤ s < T.

By (3.51) and by Assumption 2.2 it follows that the stochastic integral in (3.50) does not
explode before T , so we have that Ys <∞ for each s ∈ [τ, T ).

We prove that this implies
∫ T
t∧τ Y

2
s ds <∞. By the expression of Y in (3.50) we have∫ T

t∧τ
Y 2
s ds =

∫ T

t∧τ
Y 2
s

1

M2
sΛ2

sσ
2
s

d[Y, Y ]s

(by the Kunita–Watanabe inequality)

≤
(∫ T

t∧τ
Y 4
s d[Y, Y ]s

)1/2(∫ T

t∧τ

1

M4
sΛ4

sσ
4
s

d[Y, Y ]s

)1/2

(by the occupation time formula)

=

(∫ ∞
−∞

a4LaTda

)1/2(∫ T

t∧τ

1

M2
sΛ2

sσ
2
s

ds

)1/2

<∞,(3.52)

where the first integral is finite because the local time LaT has bounded support in (−∞,∞),
since Y does not explode before T , and the second one is finite by Assumption 2.2 and
Proposition 2.4. Then the result follows by Proposition 3.10.

Proposition 3.13. Under Assumption 2.2 the process

E
(∫ s

0
|αt,2u |dB2

u

)
, 0 ≤ s < T,

with αt,2 in (3.15) is a martingale for each t ∈ [0, T ).

Proof. We have that

|αt,2s | ≤
1

σs

(
ηt,τ + T

λMs
+ kµs + k|βs|

)
, τ ∧ t ≤ s < T.

Let Ỹ be the process associated to
ηt,τ+T
λMs

+ kµs + k|β| in Proposition 3.10, and let Ȳ be the
one associated to k|β|.D

ow
nl

oa
de

d 
05

/2
9/

23
 to

 1
29

.1
87

.2
54

.4
7 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

820 F. BIAGINI, A. MAZZON, AND T. MEYER-BRANDIS

We have

Ỹs =
ηt,τ + T

λMs
+ kµs + k|βs|+ k

∫ s

τ
σuΛuMuỸue

−k
∫ s
u ΛrMrdrdu

=
ηt,τ + T

λMs
+ kµs + k|βs|+ k

∫ s

τ
σuΛuMuȲue

−k
∫ s
u ΛrMrdrdu

+ k

∫ s

τ
σuΛuMu(Ỹu − Ȳu)e−k

∫ s
u ΛrMrdrdu

=
ηt,τ + T

λMs
+ kµs + Ȳs + k

∫ s

τ
σuΛuMu(Ỹu − Ȳu)e−k

∫ s
u ΛrMrdrdu, τ ≤ s < T,

and consequently, for D̄s := Ỹs − Ȳs,

dD̄s = d

(
ηt,τ + T

λMs
+ kµs

)
+ kΛsMs

[
(σs − 1)D̄s +

ηt,τ + T

λMs
+ kµs

]
ds, τ ≤ s < T,

so that we can write

D̄s =
ηt,τ + T

λMs
+ kµs + k

∫ s

τ

(
ηt,τ + T

λ
+ kµuMu

)
σuΛue

k
∫ s
u ΛrMr(σr−1)drdu, τ ≤ s < T.

By Assumption 2.2 and Proposition 2.4, with the same argument as in the proof of Proposi-
tion 3.12, we have that ∫ T

t∧τ
D̄2
sds =

∫ T

t∧τ
|Ỹs − Ȳs|2ds <∞.

Then, since by Proposition 3.12 we have
∫ T
t∧τ |Ȳs|

2ds <∞, we obtain

(3.53)

∫ T

t∧τ
|Ỹs|2ds <∞.

Now call Y the process associated to Rt,2 in Proposition 3.10.
It holds that

Ys =
1

σs

(
ηt,τ + T

λMs
+ kµs + k|βs|+ k

∫ s

τ
ΛuMuỸue

−k
∫ s
u ΛrMrdrdu

)
+

1

σs
k

∫ s

τ
ΛuMu(Yu − Ỹu)e−k

∫ s
u ΛrMrdrdu

=
1

σs

(
Ỹs + k

∫ s

τ
ΛuMu(Yu − Ỹu)e−k

∫ s
u ΛrMrdrdu

)
, τ ≤ s < T.

Then we have

σsYs − Ỹs =Ψs + k

∫ s

τ
ΛuMu(σuYu − Ỹu)e−k

∫ s
u ΛrMrdrdu, τ ≤ s < T,

where (Ψs)s∈[τ,T ) is given by

(3.54) Ψs = k

∫ s

τ
ΛuMu(Ỹu − σuỸu)e−k

∫ s
u ΛrMrdrdu, τ ≤ s < T.
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It follows that Ds = σsYs − Ỹs satisfies

dDs = dΨs + kΛsMsΨsds, τ ≤ s < T,

and consequently that it takes the form

Ds = Ψs + k

∫ s

τ
ΛuMuΨudu, τ ≤ s < T.

Since by Assumption 2.2 the process Ψ in (3.54) does not explode before T , Ds = σsYs− Ỹs <
∞ a.s. for each s ∈ [0, T ).

Thus, with the same argument as in the proof of Proposition 3.12 it can be proved that∫ T

t∧τ
|σsYs − Ỹs|2ds <∞.

By (3.53) we then have ∫ T

t∧τ
|σsYs|2ds <∞.

Then by the integrability hypothesis on 1
σ4 in (ii) of Assumption 2.2, it holds that∫ T

t∧τ
|Ys|2ds <∞.

The result then follows by Proposition 3.10 and by the fact that if Y α is the process associated
to |αt,2|, it can easily be seen that Y α

s ≤ Ys a.s. for each s ∈ [τ, T ).

Proposition 3.14. Consider (Z1
t,s)s∈[0,T ) and (Z2

t,s)s∈[0,T ), with

Z1
t,s = E

(∫ s

0
αt,1u dB

1
u

)
(3.55)

and

Z2
t,s = E

(∫ s

0
αt,2u dB

2
u

)
,(3.56)

where αt,1 and αt,2 are defined as in (3.18) and (3.15), and suppose that Assumption 2.2
holds. Then (Z1

t,s)s∈[0,T ) and (Z2
t,s)s∈[0,T ) are true martingales.

The proof follows by Proposition 3.11, by Proposition 3.13, and by the following.

Lemma 3.15. Consider Hs =
∫ s

0 YudBu and H̄s =
∫ s

0 |Yu|dBu, s ≥ 0, where Y is a stochas-
tic process such that the stochastic integral is well defined. Then E(H) is a martingale if and
only if E(H̄) is a martingale.

Proof. Theorem 4.1 in [13] states that, for a general continuous local martingale H, E(H)
is a martingale if and only if

lim
n→∞

Qs({As < n}) = 1 ∀s ≥ 0,
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where As = [H,H]s, dQs = E(HTs)dP , and Ts := inf{u ≥ 0 : Au > s}. Since [H,H]s =∫ s
0 Y

2
u du =

∫ s
0 |Yu|

2du = [H̄, H̄]s, this property holds for H if and only if it holds for H̄. Hence
we have the result.

We are now ready to state the main result of the section.

Theorem 3.16. Under Assumption 2.2, Qt defined as in (3.8) belongs toMloc(W ) for each
t ∈ [0, T ).

Proof. The proof follows by the fact that if we take αt,1 and αt,2 as in (3.18) and (3.15),
with µt, σt, M , Λ, and π satisfying Assumption 2.2, then (Z̄t,s)s∈[0,T ) with

Z̄t,s = E
(∫ s

0
αt,1u dB

1
u +

∫ s

0
αt,2u dB

2
u

)
is a martingale with respect to time s.

This follows immediately from Proposition 3.14: (Z1
t,s)s∈[0,T ) in (3.55) and (Z2

t,s)s∈[0,T ) in
(3.56) are martingales, so by Proposition 3.10 we know that H1 = αt,1 and H2 = αt,2 are such
that the associated processes Y 1 and Y 2 defined in Proposition 3.10 do not explode before T .
Taking now H = (H1, H2), the associated process Y = (Y 1, Y 2) does not explode before T as
well, and this concludes the proof.

Remark 3.17. Theorem 3.16 shows that our constructive model can be included in the
more fundamental view of the martingale theory of bubbles of [31] and [32]. For this purpose
we need to admit the possibility of shifting pricing views over time as suggested in [10].
However, we emphasize that our definition of bubbles and the models proposed in section 2
and further investigated in section 4 are independent of any choice of Q ∈ Mloc(W ). This
can be seen as an advantage of this framework since the definition of the Q-bubble could raise
some criticisms (see [25]).

Note that Theorem 3.16 also implies thatMloc(W ) 6= ∅, and hence that our market model
is arbitrage-free on [0, T ).

4. Liquidity induced bubbles in a network. As an illustration of the previous results,
we focus on a particular example. We note, however, that the results of this section are of
independent interest since we provide one of the few contributions on mathematical modeling
of bubbles in a network. For further results on this topic, we also refer the reader to [7], where
it is shown how bubbles can have an impact on the structure of a banking network, and to
[19], where the authors describe the passage from a well-connected network with high global
confidence to a poorly connected network with low global confidence, producing a boom and
bust cycle. Our approach, however, is quite different: we consider an information network
of N investors who may be influenced by the trading activity of their neighborhoods. In
particular we assume that the number N of traders in the network is big enough to guarantee
that our hypothesis on the linearity of the supply curve holds. Investors may place a buy
market order on the bubbly asset because they imitate neighbors in the network who have
successfully bought the asset as well, eventually leading to some self-exciting herding effect.

We refer the reader to some literature about information networks (see, among others,
Ozsoylev and Walden [43], Ozsoylev et al. [44], and Walden [55]) where investors share infor-
mation with neighbors so that, as in [44], two traders linked together buy or sell the sameD
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stock at a similar point in time.
We model the trading contagion mechanism between agents taking place from time τ

via the evolution dynamics of the signed volume of market orders. Our analysis is based on
some epidemiological studies, which describe how diseases spread in social networks, or how
computer viruses spread from computer to computer. In particular, we focus here on the
SIS model, studied, for example, by Pastor-Satorras and Vespignani (see [45] and [46]) to
analyze virus diffusion in a population. We reinterpret virus diffusion as trading contagion
and consider as a first step in our model building process the following stochastic version
of the SIS model for the contagion evolution of the fraction (ρkt )τ≤t≤T of traders of degree
0 ≤ k ≤ N (i.e., traders with information channels to k other traders) who have bought the
asset before or at time t:

(4.1) dρkt =
(
−δρkt + λkmt(1− ρkt )

)
dt+ σ̄kt (ρkt )

α(1− ρkt )αdB2
t , τ ≤ t ≤ T, 0 < ρkτ < 1.

Here mt is the probability that an individual at the end of an edge has bought the asset
before or at time t, λ is the rate of buying contagion, δ is the rate of selling, σ̄k = (σ̄kt )τ≤t≤T ,
k = 1, . . . , N , are progressively measurable processes, which we assume bounded from above
and away from zero, and α ≥ 1. Then the evolution (4.1) guarantees that 0 ≤ ρk ≤ 1, and
we further assume that the parameters are chosen such that even 0 < ρk < 1, which can be
shown, for example, for α > 1 and 1

zλpkk
2 − δ > 0 by using Proposition 2.4 of [37].

To determine the probability mt, we observe that by Bayes’ rule, and since for any given
node v it holds that

P (meet v|deg(v) = k) =
k∑
j jqj

,

where qj is the number of nodes with degree j, we have that

P (deg(v) = k|meet v) =
P (meet v|deg(v) = k)P (deg(v) = k)

P (meet v)
=

k
1
N

∑
j jqj

pk =
kpk
z
,

where z := 1
N

∑
j jqj is the average degree and pk = P (deg(v) = k) = qk/N . Therefore we

have

(4.2) mt =
∑
k

P (deg(v) = k|meet v)ρkt =
1

z

∑
k

kpkρ
k
t , τ ≤ t < T.

Given the contagion evolution of the fraction ρk, we model the average signed volume of market
orders of an agent of degree k by Xk

t = θkt ρ
k
t , where the size of market orders (θkt )τ≤t≤T of a

trader of degree k who buys the asset is given by a positive continuous process with dynamics

(4.3) dθkt = µkt dt+ σkt dB
2
t , τ ≤ t < T, 0 < θkτ ,

where for all k = 1, . . . , N , (µkt )τ≤t≤T is an adapted continuous process and (σkt )τ≤t≤T is a
positive adapted continuous process.2

2Note that the following analysis still holds under different integrability and measurability conditions on σ̄
and σk, µk.D
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824 F. BIAGINI, A. MAZZON, AND T. MEYER-BRANDIS

Since we have d[ρk, θk]t = σ̄kt σ
k
t (ρkt )

α(1− ρkt )αdt, by Itô’s formula it holds that

dXk
t = θkt dρ

k
t + ρkt dθ

k
t + d[ρk, θk]t(4.4)

=
(
−δXk

t + λkmt(θ
k
t −Xk

t ) + ρkt µ
k
t + σ̄kt σ

k
t (ρkt )

α(1− ρkt )α
)
dt

+
(
θkt σ̄

k
t (ρkt )

α(1− ρkt )α + ρkt σ
k
t

)
dB2

t .

Finally, we obtain that the signed volume of total market orders is given by Xt =
∑N

k=0 qkX
k
t ,

where qk is the number of investors of degree k. From (4.4) we thus obtain

(4.5) dXt = (−δXt + λmt(θt − nt) + ηt) dt+ Σ̄tdB
2
t ,

with

(4.6) nt =
∑
k

kqkX
k
t , θt =

∑
k

kqkθ
k
t , ηt =

∑
k

kqk

(
ρkt µ

k
t + σ̄kt σ

k
t (ρkt )

α(1− ρkt )α
)
,

and

(4.7) Σ̄t =
∑
k

qk

(
σ̄kt θ

k
t (ρkt )

α(1− ρkt )α + ρkt σ
k
t

)
.

We are thus in the framework3 of section 2, with

(4.8) µt = −δXt + λmt(θt − nt) + ηt

and σt = Σ̄t, leading to the following SDE for the bubble β:

(4.9) dβt = ΛtMt [−kβt + 2 (−δXt + λmt(θt − nt) + ηt)] dt+ 2ΛtMtΣ̄tdB
2
t

for τ ≤ t < T , with explicit solution

βt =βτe
−k

∫ t
τ ΛsMsds +

∫ t

τ
(−δXs + λms(θs − ns) + ηs) ΛsMse

−k
∫ t
s ΛuMududs

+

∫ t

τ
Σ̄sΛsMse

−k
∫ t
s ΛuMududB2

s , τ ≤ t < T.(4.10)

Remark 4.1. Setting µj ≡ σ̄j ≡ σj ≡ 0 for all 0 ≤ j ≤ N in (4.1) and (4.3), respectively,
we can identify the driving deterministic contagion evolution for the signed volume of market
orders as implied by the SIS network model approach:

(4.11) dXt = (−δXt + λmt(θt − nt)) dt.
3The assumption that θk is driven by the same Brownian motion of ρk allows us to show the existence of

the flow by using directly the results of section 2, but it can be easily relaxed, letting θk depend also on an
additional Brownian motion Bθ independent of B2, as we do in subsection 4.1.D
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Remark 4.2. In subsection 4.1 we consider two different types of network topologies in
order to see how the characteristics of the network influence the dynamics of the expected
fraction of buyers through nt. In the first type we have a connectivity distribution which is
very peaked at the average value z and decaying exponentially fast for k � z and k � z.
Examples of this kind of network are random graph models [22] and the small-world model
of Watts and Strogatz [57]. In the second type the degree distribution is more right skewed,
following, for example, a power law, as in Barabási and Albert’s preferential attachment model
[6]. From (4.11) and (4.6) we can see that the expected contagion between buyers will spread
faster in the second kind of network, since the distribution puts more weight on the nodes
with higher degree, resulting in a bigger value of nt in (4.6).

We conclude the introduction of the model by showing a sufficient condition under which
the above bubble specification can be represented by a flow of local martingale measures
as analyzed in the general framework of the previous sections, i.e., that there exists a flow
Qt ∈Mloc(W ) with Radon–Nykodim derivative process

(4.12) Zt,s =
dQt

dP
|Fs = E

(∫ ·
0
αt,1u dB

1
u +

∫ ·
0
αt,2u dB

2
u +

∫ ·
0
αt,3u dÑu

)
s

, s ∈ [0, T ),

such that

WF
t = EQt [WF

T |Ft], 0 ≤ t ≤ T.

Taking αt,1, αt,2, and αt,3 in (3.18), (3.15), and (3.17), respectively, we need only show that
Z in (4.12) is, in fact, a martingale.

Proposition 4.3. Assume that there exists a k̄ ∈ 1, . . . , N such that θk̄t > ε a.s. for all
t ∈ [τ, T ], where ε > 0. Then for each t ∈ [0, T ], (Zt,u)u∈[0,T ) is a (P,F)-martingale.

Proof. We show that µ and Σ in (4.8) and (4.7) satisfy Assumption 2.2.

We have
∫ T
τ µ2

sds <∞ since m, σ̄j are bounded and σj , µj , X, θ, n are continuous processes

for j ∈ 1, . . . , N . Analogously one can show
∫ T
τ Σ̄2

sds <∞.

Finally by using that σk̄, ρk̄ ≥ 0 and that θk̄, σ̄k̄ are bounded away from zero, it is easy to
see that

(4.13)

∫ T

τ

1

Σ̄4
s

ds ≤ C

q4
k̄

∫ T

τ

1

(ρk̄s)
4α(1− ρk̄s)4α

ds

for some constant C. We can show that the integral on the right-hand side of (4.13) is finite
by applying Theorem 2.6 of [37].

4.1. Analysis of the model. We now comment on our model and specify how the evolution
of the bubble described in (4.9) depends on the involved parameters as well as on the structure
of the network.

The evolution of the bubble is characterized by two different phases: in the first the
bubble builds up, since the quick increase of the signed volume of market orders X dominates
in (2.2). However, after a while the processes ρk in (4.1) tend towards an equilibrium in whichD
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826 F. BIAGINI, A. MAZZON, AND T. MEYER-BRANDIS

the drift of ρk vanishes. When this drift’s component (and also the contribution of η in (4.5))
is sufficiently small, the mean reverting term of (2.2) starts to dominate, leading to the burst
of the bubble and to the second phase, i.e., the decrease of the bubble towards zero.

In the ascending phase, assuming first for illustration purposes the process (θt)t≥τ to be
constantly equal to θ > 0 and σ̄j = 0 for all 0 ≤ j ≤ N , the essential force of the bubble is
given by the deterministic contagion mechanism (4.11) driving the signed volume of market
orders X in (4.5). The contagion accelerates to a maximum and then slows down. In this way
X evolves along an “S” shape as shown in Figure 1, growing towards an equilibrium/maximum
that is increasing in the volume term θ and the contagion rate λ and decreasing in the recovery
rate δ.

Further, the speed at which X grows towards the maximum is increasing in λ and decreas-
ing in δ. However, since both the length and the maximum of observed speculation bubbles
are highly uncertain, we randomize this mechanism by letting θ be a stochastic process. The
impact of a random volume term θ will be to modify the “S” pattern by allowing the bubble
to slow down or pick up in a random way until it reaches a random maximum. In the bursting
phase, the dynamics of the bubble will be dominated by the mean reverting factor k, which
drives the bubble down.

We now focus on the impact of the choice of the underlying network on the dynamics of
the bubble. We compare two different cases, an Erdős–Rényi network with Poisson degree
distribution

pj =
e−λ̃λ̃j

j!
, j ∈ N, λ̃ ∈ R,

and a scale-free network with a power law distribution

(4.14) pj ∼ j−γ , 2 < γ < 3, j ∈ N.

The Erdős–Rényi network has a degree distribution which is very peaked around the mean
degree z, whereas the scale-free one, which is well known to better represent real-world infor-
mation networks (see [44]), has a much larger right tail, which allows for a more heterogeneous
degree distribution with some nodes being very connected and others less so (core-periphery
structure).

For simplicity, we consider the following deterministic specifications: we set σ̄j = 0 for all
0 ≤ j ≤ N and assume the processes (Mt)t≥τ , (Λt)t≥τ , and (θt)t≥τ to be constantly equal to
M = Λ = θ = 1. Further, we choose τ = 0.

We take two different values of γ in (4.14), i.e., γ1 = 2.2 and γ2 = 2.5, obtaining therefore a
more connected network (with z = z1 ∼ 3.2) and a less connected one (with z = z2 ∼ 1.9). We
consider as well two Erdős–Rényi networks with z = z1 ∼ 3.2 and z = z2 ∼ 1.9, respectively.
We take the distribution pj up to a maximum degree that corresponds to a network with 5000
nodes; see section 3.3.2 of [40].

In Figure 1 we illustrate the trajectories of X for the four different networks, taking λ = 1,
δ = 1. One can notice that both the mean degree and the degree heterogeneity play a key role
in the evolution of X: in particular, both of them are positively correlated with the speed of
the increase. It can also be seen that in the Erdős–Rényi network, i.e., in the less right skewed
one, as well as in the less connected networks, the fraction reaches its equilibrium later in
time.D
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Figure 1. Deterministic fraction of buyers for different networks, with λ = 1, δ = 1.
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Figure 2. Maximum value of the bubble as a func-
tion of λ with δ = 1, k = 0.4.
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Figure 3. Maximum value of the bubble as a func-
tion of δ with λ = 1, k = 0.4.

We then focus on the behavior of the bubble and consider a mean reversion level k = 0.4
in (4.10). In Figures 2 and 3 we show the maximum reached by the bubble as a function
of λ and δ, respectively, whereas in Figures 4 and 5 we plot the time needed to reach the
maximum, again as a function of λ and δ, respectively.

Figure 5 shows that the time to the maximum is decreasing in δ in the scale-free net-
work and increasing in δ in the Erdős–Rényi one; i.e., the two networks give rise to different
behaviors. It can be seen that for small λ and big δ the maximum is higher in the case of
the scale-free network, whereas the opposite holds for big λ and small δ. On the other hand,
the time needed by the bubble to attain the maximum is always higher in the case of the
Erdős–Rényi network.

In our analysis up to this point, we have taken the process θ = (θt)t≥τ to be constant.
We now show the influence of the process θ on the dynamics of the bubble assuming that itD
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Figure 4. Time to the maximum as a function of λ
with δ = 1, k = 0.4.
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Figure 5. Time to the maximum as a function of δ
with λ = 1, k = 0.4.
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Figure 6. Example of trajectories of θ with µθ = 0,
σθ = 0.2.
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Figure 7. Corresponding trajectories of the bubble
in a scale-free network with mean degree z = 3.2.

satisfies the SDE

dθt = σθθtdB
3
t , τ ≤ t < T,

where σθ = 0.4, taking δ = 0.2, λ = 0.4, Λ = 0.5, k = 1, σ̄j = 0.1 for all 0 ≤ j ≤ N , τ = 0,
T = 7, M = 1, θ0 = 3. See, for example, Figures 6 and 7 for the case of a scale-free network
with mean degree z = 3.2.

The influence of the process θ on the bubble is apparent. If θ has an increase from its
initial value, the bubble bursts relatively late (see the yellow dynamics): in this sense, the
growth of θ can postpone the burst of the bubble. The other trajectories evolve similarly to
each other up to the point where the corresponding processes θ differ. In the blue case, θ
decreases and the bubble soon bursts. For the red dynamics, θ increases, making the bubble
grow more.D
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Figure 8. Example of trajectories for a bubble in a
scale-free network.
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Figure 9. Example of trajectories for a bubble in an
Erdős–Rényi network.

We conclude the section illustrating the impact of the structure of the network by showing
three trajectories of the bubble in Figure 8 for the the scale-free case, and in Figure 9 for the
Erdős–Rényi case. We choose δ = 0.2, λ = 0.3, Λ = 0.5, k = 1, σ̄j = 0.2 for all 0 ≤ j ≤ N ,
τ = 0, T = 3, M = 1, θ0 = 3, and σθ = 0.2. We can see that the bubble builds up faster
in the scale-free network, but at the same time the trajectories have a steeper decrease, and
therefore the effect of the burst of the bubble is more dramatic. On the other hand, Figure 7
shows that a quick decrease of θ can also lead to a quick burst and then to a hard landing.

4.2. Model testing on real data. In this subsection we test some features of our model
on real data. Since we were not able to find tick by tick data for the signed volume of market
orders of well-known bubbles of the past such as the dot com bubble, we consider the asset
prices Alphabet Inc. (NASDAQ:GOOG) and Amazon.com Inc. (NASDAQ:AMZN). For these
stocks we could obtain tick by tick data for the signed volume of their market orders starting
from June 2016. These companies, as can also be seen by the prices reported in Figures 10
and 11, have experienced in the last years a boom, which has brought many financial analysts
to propose the presence of a new tech bubble, similar to the dot com mania of the late 1990s
(see, for example, [9], [42], [52], [53]).

We consider the realized signed volume of market orders since 2016. As shown in Figures 12
and 13, the signed volume tends to increase over time for both Alphabet and Amazon. This
behavior indicates the tendency of traders to invest in these companies, contributing to the
increase of the price in line with our model.

Our aim is to investigate whether typical trading behavior in a bubble environment is
captured in our model. In particular, since we deal with a relatively small time window of
a potential bubble, we calibrate the coefficients of the deterministic component X̄ for X in
(4.11), driving the signed volume of market orders on the observed data for Amazon and
Alphabet by employing a quadratic regression. In doing so, we further assume that σ̄j = 0
for j ∈ 1, . . . , N , that the process (θt)t≥τ is constant, and that all the nodes of the network
have the same degree d = 3, i.e., that the degree distribution of our network is a Dirac deltaD
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Figure 10. Price in USD of Alphabet Inc.,
June 2016–October 2017.
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Figure 11. Price in USD of Amazon.com Inc.,
July 2016–October 2017.
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Figure 12. Realized signed volume of market orders and deterministic signed volume given by (4.11),
Alphabet Inc., June 2016–October 2017.

centered in d = 3. In this way, X̄ has dynamics

(4.15) dX̄t = (−aX̄2
t + bX̄t)dt, t ≥ 0,

where a = 3λ
θ and b = 3λ− δ.

Further, for every asset we compute the mean relative squared error of the prediction,
where the relative squared error at point ti is defined as (X̄ti −Xobs

ti )2/(Xobs
ti )2. Here X̄ is theD
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Figure 13. Realized signed volume of market orders and deterministic signed volume given by (4.11),
Amazon.com Inc., June 2016–October 2017.

signed volume predicted by our model, and Xobs is the observed signed volume. Moreover, we
also compute the 99% and 95% confidence intervals for the estimates of the two parameters
a and b in (4.15).

The mean relative squared errors are shown in Table 1.

Table 1
Mean relative squared error of the predicted signed volume of market orders versus the observed data for

Alphabet Inc. and Amazon.com Inc.

Alphabet Inc. Amazon.com Inc.

0.0511 0.0291

The confidence intervals of the parameters, together with the selected values, are shown
in Tables 2 and 3 for Alphabet Inc. and Amazon.com Inc., respectively.

Table 2
Confidence intervals for parameters a and b in (4.15) for Alphabet Inc.

99% c.i., l. endp. 95% c.i., l. endp. Parameter 95% c.i., r. endp. 99% c.i., r. endp.

a 1.3013 1.3015 1.3016 1.3017 1.3019

b 10.8271 10.8381 10.8727 10.9074 10.9184

In Figures 12 and 13, we illustrate how our model changes when the parameters a and b are
equal to the endpoints of the 99% confidence intervals. In particular, we show the trajectories
of the predicted signed volume of market orders when a is equal to the right endpoint ofD
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Table 3
Confidence intervals for parameters a and b in (4.15) for Amazon.com Inc.

99% c.i., l. endp. 95% c.i., l. endp. Parameter 95% c.i., r. endp. 99% c.i., r. endp.

a 0.3557 0.3559 0.3560 0.3561 0.3563

b 6.6935 6.7113 6.7676 6.8239 6.8417

the confidence intervals and b to the left one and vice versa, i.e., when a is equal to the left
endpoint and b to the right one.

In Figures 12 and 13 we can observe the “S” behavior discussed in subsection 4.1. We
remark that since we perform a local analysis by considering a specific short time window
with constant θ, this behavior cannot be directly interpreted as an indication of a decreasing
phase of the bubble. In the next time window the signed volume may start to grow steeply
again, due to the impact of a stochastic θ. In this case the curve describing the evolution of
the signed volume would also grow for a longer time, distorting the “S” shape as illustrated
in Figures 6 and 7.

We can conclude that the analysis shows the flexibility of our model and its capacity to
1. describe both the increasing and the descending phase of the bubble;
2. capture the impact of signed volume market orders on bubbles’ formation and burst;
3. take into account the underlying network structure in the contagion process of a bub-

ble’s evolution;
4. describe typical features of a bubble’s behavior such as steep increase and hard landing.
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