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SOMMARIO 

Le analisi genomiche si basano sull'uso di un singolo genoma di riferimento, il quale 

però non rappresenta tutta la diversità genomica all’interno di una specie. Il 

pangenoma è stato ideato con lo scopo di descrivere l'intero contenuto genomico di 

una specie. I modelli presenti in letteratura si dividono in pangenomi lineari e 

pangenomi grafici basati sui nucleotidi. Il modello lineare contiene il genoma di 

riferimento insieme alle sequenze non rappresentate in esso (NRR). Questo modello 

permette di descrivere se un gene è presente in una determinata cultivar tramite 

l’analisi di presenza e assenza dei geni (analisi PAV). Il pangenoma grafico basato sui 

nucleotidi consente invece di visualizzare le somiglianze e le differenze locali delle 

regioni genomiche. I due modelli di pangenoma sono complementari tra loro: il 

pangenoma lineare crea un genoma consenso rappresentando presenza e assenza dei 

geni tra individui in una struttura tabellare, mentre il pangenoma grafico basato sui 

nucleotidi riporta graficamente tutte le possibili variazioni nucleotidiche, ma non può 

essere utilizzato per l'analisi di presenza e assenza dei geni. 

Lo scopo di questa tesi è quello di creare un nuovo modello di pangenoma, chiamato 

pangenoma grafico basato su elementi, in cui è possibile rappresentare graficamente i 

geni ed  effettuare l'analisi di presenza e assenza di essi. Il pangenoma grafico basato 

su elementi è stato costruito a partire dai geni identificati dall’l’annotazione 

automatica nei genomi di 5 diverse accessioni di P. vulgaris . I geni identificati sono 

stati convertiti in nodi di un grafo e sono stati collegati solo se adiacenti nel genoma. 

Successivamente, i geni ortologhi presenti nelle diverse cultivar sono stati identificati 

e collassati per rappresentare un singolo nodo del grafo.  

I risultati hanno mostrato che, a causa della fusione di copie geniche originate da 

eventi di duplicazione (geni paraloghi), meno geni sono stati riportati nel pangenoma 

grafico basato sugli elementi rispetto al modello lineare. Inoltre, la visualizzazione 

delle regioni nel pangenoma grafico ad elementi è risultata più chiara rispetto a quella 

ottenuta nel modello grafico basato sui nucleotidi, poiché è stata rappresentata solo la 

presenza o l'assenza di geni tra le diverse cultivar. Rispetto agli altri modelli, il 

pangenoma grafico basato su elementi ha consentito di focalizzarsi sia a livello genico 



sia a livello nucleotidico in una visualizzazione "zoom-in", mostrando anche le 

somiglianze e le dissomiglianze nucleotidiche locali. 

In questo modo, il pangenoma grafico basato sugli elementi ha offerto una migliore 

interpretazione delle regioni genomiche, combinando i vantaggi dell'analisi della 

presenza/assenza dei geni con la visualizzazione grafica.  



ABSTRACT 
Genomic analyses are based on using a single reference genome that does not 

represent the whole intraspecies diversity. Instead, a pangenome contains the whole 

genome content of a species. State-of-art models for pangenome representations are 

divided into linear and nucleotide-based graph pangenomes. The linear model is 

composed by the reference genome with a set of non-representative reference (NRR) 

sequences, and it provides information about the presence of a gene in a certain 

cultivar through presence and absence analysis (PAV analysis). Nucleotide-based 

graph pangenome allows displaying of local similarities and dissimilarities of genomic 

regions. In this perspective, the two pangenome models are complementary to each 

other: the linear pangenome model creates a consensus genome reporting in a table 

representation the inter-individual gene presence and absence, whereas the 

nucleotide-based graph pangenome model displays graphically all possible nucleotide 

variations but cannot be used for gene presence and absence analysis.  

The aim of this thesis was to create a new pangenome model, called element-based 

graph pangenome in which it is possible to graphically represent the genes and 

perform the analysis of the presence and absence of the reported genes. Briefly, 

genes were annotated in the genomes of 5 different cultivars of Phaseolus vulgaris, 

through automatic gene prediction. Genes representing nodes in the graph were 

linked only if they were adjacent in the genome. Then, orthologous genes between 

different cultivars were identified and merged to represent a single node in the graph.  

Developed element-based graph pangenome was compared to linear and nucleotide-

based graph pangenome applied to the same bean accessions. 

Results showed that due to the merging of gene copies derived by duplication event 

(paralogs), fewer genes were reported in element-based graph pangenome compared 

to linear model. Moreover, the visualization of regions was much clearer than that of 

nucleotide-based graph model, since only the presence or absence of genes across 

different cultivars was displayed. Different from other pangenome models, element-

based graph pangenomes provided the advantage of moving information from the 

gene to the nucleotide in a” zoom-in” visualization, displaying local nucleotide 

similarities and dissimilarities. 



In conclusion, the element-based graph pangenome offered a simpler interpretation 

of genomic regions, combining the advantages of analyzing the presence/absence of 

genes with the graphic visualization.  
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INTRODUCTION 

Discovery of pangenome 
At the opening of the genomic era, it was thought that a single reference genome 

coming from an individual was sufficient to describe a species.  However, in 2005, 

Tettelin et al.[1] questioned how many genomes were necessary to fully describe 

Streptococcus agalactiae, a bacterial species. 

The sequencing of several strains of Streptococcus agalactiae [1], [2]revealed that ≈80% 

of any single genome was shared by all individuals (core genome) and the remaining 

part, the dispensable genome, was partially shared or private to individuals (Figure 1). 

These findings underlined the low representativeness of the reference genome. 

Hence, to characterize the whole intraspecies, the term “Pangenome” has been 

defined by Tettelin et al. [1], [2]. This new genomic format describes a set of 

sequences which divides into: 

• core sequences containing genes shared by all accessions,  

• dispensable sequences with genes present in part of accessions, 

Figure 1. In silico comparative genomic analysis of Streptococcus agalactiae GBS genomes (Adapted from Tettelin et al., 

2005) 
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• unique sequences with genes present in only one of the studied accessions 

(Figure 2A).  

Alternatively, the pangenome could be subdivided into Softcore, Shell, and Cloud 

genome (Figure 2B). The softcore genome[3] comprises genomic regions or genes that 

are present in most individuals (>95%). Regions that are shared by at least 10% and 

less than 95% of individuals belong to the Shell genome. The remaining part, shared 

by a minor part of individuals (<10%) accounts for the Dispensable or Cloud genome.  

The history of pangenome 

In the same year of Tettelin, Morgante et al.[4] analysed regions derived from several 

allelic genome segments, in the maize inbreeds “Mo17” and “B73” (Figure 3A). The 

comparison of the two inbred lines revealed that 50% of the genome was shared, 

accounting for a size of 1.67 Gb (total genome size for each of the lines of 2.50 Gb). 

A dispensable genome of comparable size was found for each of the two lines: these 

genomic regions were made up mostly of transposable elements of different types. 

Afterwards, Da Silva et al. [5]assembled the genome of the Vitis vinifera “Uruguayan 

Tannat clone UY11” and they performed an iterative mapping to reference against 

the “PN40024” reference genome[6], [7]. De novo transcriptome assembly found an 

amount of 1873 genes missing in “PN40024” reference genomes (Figure 3B).  

Subsequently, the first plant pangenome was assembled in 2014 [7] where seven 

cultivars of Glycine soya were sequenced and de novo assembled. Li et al.[7] found that 

80% of the genomes were shared by all individuals and the dispensable genome 

Figure 2. Pangenome definition 
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contains more than 51% of gene families. Thus, the dispensable genome was 

containing genes involved in different biological processes and with new functions 

compared to genes present in all individuals. 

 

 

 

 

Additionally, in 2017, a plant pan-genomic study involving 54 lines of grass 

Brachypodium distachyon [8] revealed that the rate of gene content identified with several 

individuals was twice the number of genes present in one individual.  Dispensable 

genes identified by these studies were characterized to be involved in biotic stress 

response and development. Likewise, in 2019, the pan-genomic study applied to 

Solanum lycopersicum L. and its close wild relatives (Solanum pimpinellifolium, Solanum 

cheesmaniae and Solanum galapagense) reported 4,873 additional genes involved in 

disease-resistance biological processes [9] . 

Although pangenomic studies have focused on bacterial and plant species, diversity 

among individuals was observed in animals (and humans) as well. Li et al. 

[10]identified in Asian and African individuals ∼5 Mb of population-specific DNA 

which was not represented in the human reference genome. Consequently, these 

results suggested that the human pangenome would include an additional size of 19 

to 40 Mb of novel information. Moreover, a study by Sherman et al. [11], published 

in 2018, through sequencing of 910 human individuals of African descent, confirmed 

that some regions (10% of total sequences) were missing from the human reference 

Figure 3. (A) Pangenome of maize of lines Mo17 and B73 lines (Adapted from Morgante et al., 2005) (B) Pangenome of 

Vitis vinifera cultivars Cabernet, Merlot and Tannat 
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genome, many of which contain protein-coding genes. Subsequently, The Human 

Pangenome Reference Consortium (HPRC) was established and in 2022 the HPRC 

published the first draft of the human pangenome [12]. This pangenome, which was 

generated starting from 47 phased, diploid assemblies from a cohort of individuals, 

adds 119 million base pairs of euchromatic polymorphic sequence and 1,529 gene 

duplications relative to the existing reference, GRCh38. 

Types of pangenomes  
All developed pangenomes can be divided into open or closed according to the 

growth of the number of genes per number of sequenced and analyzed genomes 

(Figure 4A). 

 

 In open pangenomes[13], [14], the total number of sequences/genes increases as 

more genomes are added. Sympatric species which live in a community tend to have 

an open pangenome [15], [16]. 

 In closed pangenomes[7]–[9], [17]–[21] ,the number of total sequences/genes will 

not increase with the increase of sequenced genomes. Closed pangenome are the 

ones that involved allopatric species since they live alone in their ecological niche[15], 

[16] . 

Furthermore, genomes can be divided into functional and sequence pangenomes 

(Figure 4B).  

A functional pangenome is described as a set of all genes for taxon 

representatives[13]. Such set contains redundant genes with the same function and 

Figure 4. Classification of open and closed pangenomes (B) Functional and sequence pangenomes 
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applying an additional analysis gene can be clustered into gene families[22]. However, 

information on the localization of genes in genomes is not reported. Usually, this 

form of pangenome has been largely applied to bacterial and other prokaryotic 

species. 

In eukaryotic species, it is more interesting to study also intergenic and intronic 

regions. Hence, the pangenome has been extended to also non-coding genome. 

Hence functional pangenome became a sequence pangenome, which consists of a 

complete set of genomic sequences representing a species. Consequently, genomic 

sequences of individuals of the same species are compared with each other, 

generating a unique (non-redundant) set of DNA fragments and describing the 

structure of the pangenome [23], [24] 

Additionally, state-of-art formats of pangenome divide into linear and nucleotide-

based graph pangenomes.  

Linear pangenome 
Linear pangenome consists of a set of non-reference representative sequences 

collected with respect to the reference genome.  

The construction of the linear pangenome divides into two phases. “Map-to-pan” is 

the first step of the generation of a linear pangenome, and it consists in assembling 

these extra sequences called non-reference representative (NRR) sequences. Several 

methods are available in the literature to assemble NRR sequences and they are 

divided into[25] (Figure 5): 

● metagenomic-like assembly of unaligned reads: sequencing reads of each 

individual are aligned against the reference genome and unmapped reads of 

all individuals are pooled together to perform the assembly of NRR      

sequences[26] 

● independent assembly of unaligned reads: unmapped reads of each 

individual are used to assemble a set of contigs specific for the individual. 

Contigs are then merged with the other individuals and are clustered at the 

DNA level to remove redundant sequences. 

● iterative assembly of unaligned reads: iteratively, each individual is added 

to the pangenome, its sequencing reads are aligned against the pangenome, 

14



and subsequently assembly of its deriving unmapped reads is performed and 

finally assembled contigs are added to the pangenome[27]. 

● independent whole-genome assembly: in this approach, each individual 

genome assembly is performed, and contigs are then mapped to reference 

genome to extract unaligned contigs. Subsequently, assembled contigs are 

then clustered together to remove redundancy and to construct the final set      

of NRR sequences[18], [28]–[30]. 
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Figure 5.  Computational approaches to construct linear pangenome. In the upper panel, 4 approaches of map-to-pan 

setup are displayed in which NRR sequences of pangenome are generated. In the lower panel, determination of gene 

presence or absence by read coverage is displayed (Adapted from Hu et al., 2020) 
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For better accuracy, all approaches of the map-to-pan phase require mapping the 

data against a reference genome with a low level of fragmentation.  

Consequent to the map-to-pan phase, genes are annotated across the whole 

pangenome, and they are classified as core, variable and unique. In this analysis, 

called “Presence and absence analysis” (PAV analysis), usually short-read sequencing 

reads from several accessions are mapped against the pangenome and coverage of 

reads mapping in genic regions will define if a gene is present or not in a certain 

cultivar. To define the presence of the genes, different thresholds of coverage could 

be applied: 

● having 95% of CDS covered by at least one read[18] 

● having at least 85% of gene space covered [18] 

● having 60% of CDS covered by at least one read[30] 

● having at least 50% of gene space covered[21], [31], [32] 

In the years, many pipelines have been created to automatically create linear 

pangenome on large-scale datasets. For instance, EUPAN[33] automatically performs 

the whole genome assembly approach in the “map to pan” phase, gene annotation 

and PAV analysis. Instead, the PSVCP[34] pipeline performs iterative assembly in the 

“map to pan” phase, PAV calling and SV identification. Panseq[35] which has been 

developed for bacterial pan-genomic studies, performed PAV analysis starting from a 

set of assembled genomes. PGAT[36] pipeline includes, besides the previously 

mentioned functionalities, also ortholog assignments, gene content analysis, SNP 

calling and enrichment analysis. 

Although the widespread use in literature, the linear pangenome has the disadvantage 

of losing the information contained in reads not mapping to the reference and 

containing structural variants. In addition, information and coordinates of non-

reference haplotypes are difficult to incorporate and consider in existing 

pipelines[37]. In conclusion, linear pangenome provides a consensus genome 

representation where gene presence and absence in different cultivars or individuals 

has not graphical visualization but it is represented in a table format. 
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Nucleotide-based graph pangenome 
To represent inter-individual’s nucleotide variation, a new graph format for the 

pangenome has been proposed in 2020 [38]. This data structure provides the 

advantage to simplify the representation of redundant sequences since conserved 

regions are compressed to represent a single haplotype in the pangenome (Figure 

6A). Additionally, the main advantage is to directly infer similarities and 

dissimilarities of collected sequences in multiple alignments of the genomes. 

Hence, while linear pangenome creates a sort of consensus model of the genome, the 

pangenome graph displays the whole inter-individual variation inside a population at 

nucleotide level. 

 

The pangenome graph consists of two main components: nodes which represent 

genomic regions of individuals and edges that display the spatial connection of 

genomic regions (Figure 6B). Since the graph should be directed, a path in the graph 

describes the genome of one of the individuals involved in the pangenome. Hence, 

nodes in the path could describe reads, contigs, haplotypes or an entire genome. 

Moreover, bubbles (regions of the graph where multiple paths connect a common 

head and tail node) represent genomic regions which show divergence among the 

studied individuals.   

Figure 6. (A) Linear and nucleotide-based graph pangenomes (B) Nodes, edges and paths in nucleotide-based graph pangenome. 
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As for linear format, a pangenome graph can be constructed starting from a set of 

genomes assemblies[39], [40] or from a set of resequencing data[41], [42].  

Graphical Fragment Assembly (GFA) format was built to make a uniform format for 

representation purposes. However, visualization of pangenome graphs is adapted for 

each developed graph pangenome assembly tool. Nucleotide-based graph 

pangenome could be represented also in GAM (Graph Alignment/Map) format 

which includes alignment information deriving from SAM (Sequence 

Alignment/Map)/BAM (Binary Alignment/Map format. In addition, GAF (Graph 

Alignment Format) add to the present GFA format the text-based PAF (Pairwise 

Alignment Format). Recently graph mapping from GAF was also renamed as rGFA 

(Reference Graph Alignment Format. 

Visualization tools as Bandage[43] globally display the graphs in terms of aspect and 

structures instead of base-level visualization (Figure 7). Instead, Sequence Tube Map 

[45]displays nucleotide variation at base-level and short-read mapping but at the local 

level. 

 

Nucleotide-based graph pangenome allows to integrate into the graph all detected 

structural variants as alternative paths in a genome graph. Reported structural 

variants improve the identification of other novel sequences in the pangenome graph 

Figure 7.  Different graph visualization of region using Bandage(a), odgi viz(b), vg viz(c) and sequence-tube map(d) 
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[46]. Recent studies demonstrated that graph pangenomes are more sensitive in 

identification of SVs with short reads with respect to the reference genome[41], [47]–

[49].Since pangenome graphs were created to overcome the limitation of the linear 

reference genome, alignment tools have been created or adapted to work in graph 

pangenome format: some of these tools are GenomeMapper [50], Seven Bridges’ 

Graph Genome Aligner[51], HISAT2 [52] (Hierarchical Indexing for Spliced 

Alignment of Transcripts 2) and V-MAP (Variant Map)[53]. 

To conclude, pangenome graph  [54]can bring innovation to genomic studies biased 

by linear reference genome: decrease of the impact of reference bias, enhancement of 

mapping accuracy of sequencing data, increase of the sensibility of rare variant calling 

and improvement of de novo assembly of genomes of new individuals[37]. 

Particularly, higher precision and recall in variant identification (SNP, Indel, SV) was 

observed when using graph pangenome compared to linear pangenome in Solanum 

lycopersicum [55] species (Figure 8). 

Gene annotation can be inserted into the nucleotide-based graph pangenome, but it 

cannot be directly applied to it. The gene annotation is applied to the sequences used 

Figure 8. F1 scores (harmonic means of precision and recall) using simulated sequencing data from 

the genetic variants of 31 accessions with HiFi reads with different depths and genetic variants from 

the graph pangenome and the linear genome (Adapted from Zhou et al., 2020) 
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to generate the nucleotide-based graph pangenome. Then, the gene is transferred to a 

node if its coordinates intersect with the coordinates of the region represented by the 

node (Figure 9A). 

Then, a node which describes nucleotide variation can partially or fully contain one 

or more genes and cannot describe exon boundaries (Figure 9B). 

 For visualization of the genic region, odgi [56] implemented a procedure to create a 

local graph starting from the coordinates of genes (Figure 9C).   

 

 

However, as nucleotide-base graph pangenome represents the inter-individuals 

variation at nucleotide-level and genes are interspersed among multiple nodes, this 

model is not directly applicable for gene presence and absence analysis. 

Figure 9 (A) Gene annotation transfer to nodes of nucleotide-based graph pangenome (B) Bandage representation of a region 

including gene annotation (C)Subgraph created with odgi of MHC locus in human genome of 97 individuals. All contigs of the 

same haplotype are represented with the same colour . Most of the haplotypes has one contig covering the whole locus, meanwhile, 

in few of them, the locus is split in several contigs. 
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Automatic gene annotation 
As pangenome analyses focus on gene content, identifying genes is an essential step 

in creating a pangenome model. 

Gene annotation is the process of identifying protein-coding genes across the whole 

genome. Gene annotation accuracy has extremely high importance since errors 

introduced during gene annotation affect the downstream process. 

Gene annotation can be performed in manual or automatic mode. Manual 

annotation exploits different types of experimental evidence to identify genes. 

However, this method requires big efforts in terms of time and costs. Instead, 

automatic gene annotation which relies on ab initio methods, reduces time and costs 

to obtain the final genome annotation. Considering that automatic gene prediction is 

not manually curated and a loss of accuracy is expected [57]the method achieving the 

best results in accuracy should be selected. 

Two methods are mostly used to perform automatic gene annotation: the pure ab-

initio method and the hint-based approach (Figure 10). 

The pure ab initio method consists of exploiting a model describing the features of 

the genes of the species of interest, to find the genes across the genome without the 

Figure 10. Computational approaches for model training and final prediction in gene prediction 
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use of experimental data. Conversely, in the hint-based approach, the ab-initio 

methods are integrated with experimental data to assist the predictor during the gene 

prediction. 

Both approaches are based on Hidden Markov Model[57]which describes a transition 

between sub-models (Figure 11). These hidden models are associated with gene 

features (exon, intron, start and stop codon, 3’ and 5’ splice site, upstream and 

downstream intergenic region) and they are described by a probability of giving a 

particular observable nucleotide sequence. 

 

However, as exon and intron length are important for gene detection and do not 

have a geometric distribution, a generalized Hidden Markov Model (GHMM) was 

developed to account also for the length distribution of different Markov submodels. 

Hence, the gene model is a statistical model which relies on signal sensors and content 

sensors describing the intrinsic features of genes. The first type of sensor describes 

short sequence motifs belonging to the genic region, like for instance splice sites, 

branch points, polypyrimidine tracts, start codons and stop codons. On the other hand, 

content sensors describe nucleotide composition which is specific to the species of 

interest. Particularly, this feature allows for discriminating the open reading frame 

Figure 11. Representation of Hidden Markov Model of gene prediction reporting the different gene features. 

(Adapted from Wang et al., 2004) 
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(ORF) boundaries from the surrounding intergenic regions. In such a manner, being 

based on GHMM, ab initio gene predictors, like Genescan[58] GlimmerHMM[59], 

GeneID [60], FGENESH[61] Snap[62] Augustus[63]–[65] and GeneMark-ES [66] are 

able to identify unknown genes or genes that similarity-based approaches are not able 

to detect. 

Additionally, in both approaches, model training is the most important step to 

achieve high-quality gene predictions. In this step, the model is trained on a set of 

genes contained in the organism of interest or correlated species. 

The model training requires the use of bona fide gene structures: at least 200 genes 

should be used to train the model[67]. Bona fide gene structures can be constructed 

in a manual or automatic way.  Two automatic procedures (BUSCO[68] and 

BRAKER [47], [48]) were implemented in the literature. The first method consists in 

automatically exploiting gene models that are highly conserved across species 

(BUSCO genes[68]–[71]). The second one consists in using the RNA-seq data to 

construct and predict gene models that will be used as a training set for the gene 

predictor. 
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Toward the Phaseolus vulgaris element-based graph pangenome 

Phaseolus vulgaris, known as the common bean, has been defined as the most important 

grain legume for human nutrition. Like other legumes, beans are able to fix 

atmospheric nitrogen. The origin of the common bean has been largely debated. 

Common bean varieties are organized into gene pools named Mesoamericans and 

Andean. Their event of divergence aged more than 100,000 years ago [72] together 

with their domestication and adaptation events have brought to originate different 

landraces (Figure 12). As speciation, domestication and adaptation led to 

morphological and functional changes, the presence or absence of genes’ variation is 

expected among different accessions of P. vulgaris and hence, this species represents an 

optimal example to apply the pangenome. 

  

Figure 12. (A) Geographic distribution of sampled genotypes (B) Divergence of the wild Mesoamerican and Andean. 

(Adapted from Schmutz et al., 2014) 
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AIM OF THE THESIS 

This thesis aims to address the limits of the linear and nucleotide-based graph 

pangenome, creating a new type of pangenome, named “element-based graph”. In 

this pangenome format, we merge the advantages of linear pangenome (analysis of 

presence or absence of genes) with the advantages of nucleotide-based graph 

pangenome (graph visualization). The element-based graph pangenome was applied 

on 5 accessions of P. vulgaris. Prior to the development of element-based graph 

pangenome, a benchmark of approaches for each step (gene annotation and 

orthologous genes identification), was performed.  The developed element-based 

graph pangenome was compared with linear and nucleotide-based pangenome to 

underline their strengths and weaknesses. 
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MATERIALS & METHODS 
The reference genome of Phaseolus vulgaris (Pv442 and G19883 cultivar) [61] was 

downloaded from the Phytozome platform[73]Additionally, 4 other genomes 

corresponding to different cultivars were considered in the study: “MIDAS”, 

“G12873”, “BAT93” and “JaloEPP558” (Table 1).  “BAT93” and “JaloEPP558” 

genomes have been provided by Institut National De La Recherche Agronomique 

whereas “MIDAS” and “G12873” have been sequenced and assembled by our 

laboratory. 

 

G19883 

(Andean & 
Landrace) 

MIDAS 

(Andean & 
Landrace) 

G12873 

(Mesoamerican & 
Wild) 

BAT93 

(Mesoamerican & 
Landrace) 

JALOEPP558 
(Andean & 
Landrace) 

Total 

Assembly 

Size (bp) 

537,218,636 509,180,482 584,993,346 637,803,808 606,487,223 

Number of 

scaffolds 
478 - - - - 

Number of 

contigs 
1,044 1,913 6,293 1,441 1,061 

Contigs 

average 

length (bp) 

509,156 266,168 92,959 442,611 571,618 

Contigs N50 

(bp) 
1,885,876 3,412,857 2,176,347 11,017,447 13,928,440 

Contigs N90 

(bp) 
377,857 211,500 57,415 1,083,210 2,001,031 

Longest 

contigs (bp) 
12,554,793 24,636,533 20,321,960 36,599,242 45,469,680 

Number of 

genes 
27,433 - - - - 

 

Table 1. Assembly statistics of 5 P. vulgaris acessions 
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Automatic gene prediction in linear, element-based graph and nucleotide-

based graph pangenomes 

Training step 
Two existing approaches were employed to perform automatic model training using 

bona-fide gene structures. 

In approaches 1-2, conserved gene training was performed. Then training was 

performed using the software BUSCO [68] v4.1.4 and the specific database 

“fabales_odb10 genes” to train Augustus v3.3.3[63]–[65] model.  

In approaches 3-4, training based on aligned RNA-seq data was performed. The 

training was based on BRAKER2 v2.1.4[69]–[71] software, which identifies gene 

models based on RNA-seq data of the selected species. To perform BRAKER2 [69]–

[71] prediction, short RNA-seq data of 21 cultivars were aligned (unpublished data 

and from Bellucci et al[74] ) against the genome using HISAT2[52] with the custom 

parameter of intron length (minimum intron length set of 23 kbp). Subsequently, 

BAM files were converted into hints and provided to BRAKER2 [69]–[71] software.  

Prediction step 
Prior to ab initio prediction, repetitive regions of the genomes have been soft-masked 

to avoid gene over-predictions. Repetitive regions were identified using 

RepeatMasker v 4.1.1 [75] software with a custom repeat library specific to each 

genome. Specific repeat libraries were identified using RepeatModeler2[76]with LTR 

module.  

Gene prediction was conducted using 2 approaches: “pure” and hint-based 

prediction. 

A pure ab initio approach was applied in approaches 1-3 where the trained model was 

used to perform a pure ab initio prediction using Augustus[63]–[65] on the soft-

masked genomes. 

In approaches 2-4, a hint-based approach using aligned RNA-seq data and protein 

was applied. Considering that aligned RNA-seq data could introduce noise, evidence 

introns supported by split RNA-seq reads with at least 20x coverage were provided 

to the Augustus predictor. As protein data, proteins annotated in the same species or 
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from correlated species (in Phaseolus vulgaris[77], Medicago trunculata [78]and Glycine 

max[79]) were aligned against the genome using GenomeThreader [80] 

Quality metrics 
Results for each procedure were evaluated in terms of: 

● Filtering analysis 

● BUSCO completeness or presence of highly conserved genes 

● Gene sensitivity and specificity 

● Fragmentation analysis 

Filtering analysis 

Filtering analysis was performed on the predictions of the four approaches to filter 

out transposon-related gene or artefacts gene prediction, falsely detected by the 

software. Predicted genes were scanned with InterProscan[81]v-5.46-81.0 for the 

presence of protein domains. Using a custom script, genes with transposons-related 

domains or without known protein domains were filtered out. 

BUSCO completeness or presence of highly conserved genes 

The presence of highly conserved genes was checked by performing BUSCO 

[68]completeness analysis using fabales database. The sequence of the predicted 

proteins of each tested approach was provided to BUSCO software v 4.1.4. 

Gene sensitivity and specificity 

Results were evaluated using gene sensitivity and specificity[82] metrics. The 

percentages of gene sensitivity and specificity were computed with the command 

evaluate_gtf by eval software[83] To have a ground truth, 2000 genes (not tagged as 

“highly-conserved” genes) were extracted from the current annotation of P. vulgaris 

reference annotation [77]This set of genes was divided randomly into 10 sets of 

testing genes to perform the evaluation ten times. To compute these metrics, 

obtained predictions were restricted to the gene locus of the 200 control genes, 

allowing 100 bp flanking regions for each gene locus (as suggested by the protocol in 

ref [67]). 

Fragmentation analysis 

Fragmentation analysis was performed using the protein length ratio (PLR) as a 

metric. PLR is computed as the ratio between a predicted protein and its respective 

protein present in P. vulgaris official annotation[77]. Predicted proteins were aligned 
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against the proteomes of P. vulgaris official annotation using blastp[84], [85]. Only 

best-hit for each predicted protein were considered according to bitscore (a metric 

provided by BLAST which measures sequence similarity independent of query 

sequence length and database size).  Protein length was computed for all predicted 

proteins of the obtained annotation and occurrence of PLR values were plotted in a 

barplot.  

Functional annotation 
The filtered proteins were blasted against Phaseolus vulgaris[77], Medicago trunculata 

[78]and Glycine max[79] proteins with BLASTp[84], [85]v 2.12.0 and filtered by the 

best hits. The clustering of the predicted genes was performed with the proteins of 

all the species considered in the annotation using OrthoFinder [86], [87] v 2.5.4 and 

the functional annotation results were obtained through a custom script. 

Development of linear pangenome 

Map-to-pan phase 

To build a linear pangenome, a non-iterative approach was applied using “MIDAS”, 

“G12873”, “BAT93” and “JaloEPP558” genome assemblies. Hence, the reference 

genome was independently mapped on each of the four genomes using minimap2 

[87]v.2.17. Then, Assemblytics[88] v.1.2.1 was used to identify sequences that were 

considered deletions in the four alignments. Contigs, which were not aligned to the 

reference genome (“uncovered contigs”), were identified with samtools[89] depth 

v1.1.1. Both the deletions and the uncovered contigs were filtered for a minimum 

length of 1 Kb to keep only the sequences with significant length.  

A clustering was performed to maintain only one orthologous sequence among the 

different accessions and to maintain all the paralogous. A sequence identity of 90% 

has been used as the threshold for the clustering phase and all the filtered sequences 

were clustered with CD-HIT-EST[90] v4.8.1.  

Subsequently, the final accessory sequences obtained were then blasted blastn [84], 

[85] v2.9 against NCBI non-redundant nucleotide databases to remove the organellar 

contigs and the possible contaminants. 
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Automatic gene annotation 

Gene annotation on non-representative reference (NRR) sequences has been applied 

using Approach 2. P. vulgaris of official annotation[77] was considered as annotation 

for reference genome. 

PAV analysis 

The presence/absence of the pangenome genes was defined with the realignment of 

“G19833”, “MIDAS”, “G12873”, “BAT93” and “JaloEPP558”  assemblies against 

the pangenome using minimap2[87] v.2.17 with option. A gene was called “present” 

in a cultivar if the coverage of the cultivar’s assemblies computed with samtools 

[89]coverage v1.1.1 command was above the 5% of gene space region.  

Development of nucleotide-based graph pangenome 

Construction of nucleotide-based graph pangenome 

A nucleotide-based graph pangenome was built from “G19833”, “MIDAS”, 

“G12873”, “BAT93” and “JaloEPP558” genome assembliesusing the following 

software: minigraph[40], Pantools[91] and pggb[39] . 

Nucleotide-based graph pangenome has been assembled using minigraph [40] with 

option -xggs. Pangenome graphs were generated using pggb [39] with option -p 90 -n 

5 -t 20 -v -V 'G19833#'. Finally, Pantools [91] was also used to draft a nucleotide-

based pangenome with kmer size of 255 nucleotides. 

Bandage[43] odgi[56] and neo4j v3.5 [92] visualization tools were used to visualize the 

nucleotide-based pangenome generated with minigraph, pggb and Pantools, 

respectively. 

Annotation of nucleotide-based graph pangenome 

Genes were annotated in “MIDAS”, “G12873”, “BAT93” and “JaloEPP558” 

assemblies using Approach 2. P. vulgaris official annotation was used for “G19833” 

cultivar. The genes were reconnected to nodes of nucleotide-based graph pangenome, 

cross-checking to node coordinates and gene ones using bedtools[93] v2.26.0 intersect 

command and custom script. 

Development of element-based graph pangenome 

Automatic gene annotation 

Gene annotation using Approach 2 was used to generate the nodes of the element-

based graph pangenome using a custom script. 
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Annotation of spatial edges 

Spatial edges were assembled by exploiting gene annotation in GTF[94] format using a 

custom script.  

Annotation of orthologous edges and PAV analysis 

Identification of orthologous genes was performed using both synteny and gene 

family analysis. 

Genes contained in syntenic blocks were detected with i-ADHoRe[95]software. 

Internal to the analysis, homologous relationships between genes were detected 

through a protein alignment all-to-all as performed using blastall [96]using parameters 

recommended by MCScanX[97] Protein alignment of all cultivars and the gene 

annotation of all cultivars were provided for the analysis. Pairs of genes in synteny 

were extracted from the “multiplicon_pairs.txt” output file.  

In the gene family approach, genes belonging to the same gene family were identified 

with Orthofinder [86]analysis using default parameters and the protein sequences of 

all cultivars. Orthologs genes of all cultivars were retrieved from the output 

“Orthologues” folder. 

Subsequently, using a custom script, orthologs across different cultivars were collapsed 

to form single nodes. The same script was used to perform presence and absence 

analysis and to classify each gene as core, variable or unique. 

Graphia [98] software was used to visualize local regions of element-based 

pangenome. 

Gene Ontology (GO) enrichment analysis of unique genes have been performed using 

ClusterProfiler v3.18.1. 
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RESULTS 
Automatic gene annotation was performed to linear, nucleotide-based graph and 

element-based graph pangenomes. Before construction of pangenome formats, an 

in-depth analysis of accuracy of approaches for automatic gene annotation was 

performed. After optimization of gene annotation, linear, nucleotide-based graph and 

element-based graph pangenomes were assembled and the obtained element-based 

graph format was compared with other two ones. 

Benchmark of automatic gene annotation 
Four automatic gene annotation approaches were benchmarked to assess the most 

accurate one. Approaches were applied to the P. vulgaris reference genome 

(“G19833” cultivar), and the results were compared with official annotation. The 

most accurate method was then applied to linear, nucleotide-based graph and 

element-based graph pangenomes. 

The tested approaches were (Table 2): 

• pure ab initio approach using a model trained with fabales highly conserved 

genes (Approach 1) 

• hint-based approach using a model trained with fabales highly conserved 

genes (Approach 2) 

• pure ab initio approach using a model trained with aligned RNA-seq data of 

21 P. vulgaris cultivars (Approach 3) 

• hint-based approach using a model trained with aligned RNA-seq data of 21 

P. vulgaris cultivars (Approach 4) 
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All tested approaches reported a higher number of predicted genes compared to the 

official annotation (Table 3). 

 

 

Then, the quality of the four approaches was assessed according to: 

• filtering analysis 

• BUSCO completeness  

• Gene sensitivity and specificity 

• fragmentation analysis 

  

 
Official 

annotation 
Approach 1 Approach 2 Approach 3 Approach 4 

Number of 
initial 

predictions 
27,433 30,053 32,387 34,786 36,713 

Table 2. Computational approaches tested for automatic gene prediction. 

Table 3. Number of predictions for P. vulgaris official annotation and the four approaches 

34



Filtering analysis 
Filtering analysis based on the presence of protein-coding domains was performed, 

to exclude potential artefacts (“unknown genes”) or transposon-related genes. 

After filtering, the number of predicted genes of Approach 1 and 2 (BUSCO-

training-based approaches) were reduced by 15.2% and 17.4% (Figure 13A, Table S1) 

whereas in Approaches 3-4, it was decreased by 23.4% and 24.6% (Figure 13A). 

Hence, a higher filtering prediction rate was observed in Approaches 3-4 (RNA-seq-

training-based approaches), confirming the major presence of artefacts or 

transposon-related predictions. 

Most of the excluded predictions in all approaches accounted for genes with no 

protein-coding domain in the ORF region (“unknown genes”) while transposon-

related genes account for a small amount (Figure 13B). 

Finally, after the filtering analysis, Approaches 1, 2, 3 and 4 reported 25,481, 26,757, 

26,649 and 27,669 final genes, respectively (Table S1). Therefore, the final annotation 

obtained in Approaches 2,3 and 4 showed a comparable number of genes related to 

P. vulgaris official annotation (27,433).  

Hence, filtering analysis should be performed after automatic gene predictions to 

outcome the problems of over predictions.  

Figure 13. (A) Number of predicted genes before and after filtering analysis (B) Number of predictions belonging to transposon-
related and unknown genes. 
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BUSCO completeness or presence of complete genes highly conserved genes 

The BUSCO completeness, known as presence of complete genes highly conserved 

(Figure 14A, TableS2) , is a commonly used quality metric for gene annotation [99]–

[102]. 

 

Approach 1 and 3 predicted 4,956 and 4,944 highly-conserved genes (BUSCO 

complete genes), respectively, while hint-based approaches (Approaches 2 and 4) 

annotated 5,194  and 5,183, respectively. Thus, the integration of extrinsic evidence 

(RNA-seq and protein data) in hint-based approaches increased the sensitivity by 

approximately 238 genes. Additionally, Approach 2 marginally outperformed 

Approach 4 by 11 highly-conserved genes.  

Since Approaches 2 and 4 (hint-based approaches) had better performance, they 

were compared with P. vulgaris official annotation (Figure 14B). The two approaches 

did not reach the same completeness achieved by P. vulgaris official annotation which 

contained 5,289 highly conserved genes. This difference was imputable to 118 highly-

conserved genes present in P. vulgaris official annotation but not identified by the two 

tested approaches. However, this difference accounted for 0.21% of the 5,289  

highly-conserved genes present in the official annotation. 

Figure 14. (A) Presence of complete highly conserved genes of tested approaches (B) Venn diagram of 
complete highly conserved genes found by P. vulgaris official annotation and by Approaches 2-and 4 
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Presence of complete genes non-highly conserved  
Performances of the four prediction methods were assessed using gene sensitivity and 

specificity. Given the numerousness of the testing genes, the analysis was performed 

on ten different testing sets containing 200 genes. Thus, the efficiency of different 

approaches in gene sensitivity and specificity was provided. 

In terms of gene sensitivity (Figure 15A, Table S3), approaches 1 and 3 performed a 

median of 36.2% and 40.7%, respectively. Hence, for each testing set, less than 100 

genes were accurately predicted by the software. Hint-based approaches (approaches 

2 and 4) achieved a higher gene sensitivity (a median of 62.3% and 63.1%), related to 

the inclusion of RNA-seq and protein data.  

Similar to gene sensitivity, gene specificity in hint-based approaches was superior to 

pure ab-initio approaches (Figure 15B, Table S3).  While a gene specificity of median 

value 33%-35.4% was achieved in pure ab-initio approaches (Approaches 1 and 3), a 

median value of 52% was reached in hint-based approaches (Approaches 2 and 4). 

Thus, providing extrinsic evidence reduced the annotation of over-predictions by the 

predictor. 

Additionally, the latter two approaches had similar performances in terms of gene 

sensitivity and specificity (Figure 15A-B). However, the distributions of gene 

sensitivity and specificity of Approach 4 were broader (Figure 15A-B) compared to 

Figure 15. Percentage of gene sensitivity (A) and gene specificity (B) of tested approaches 1-4 applied on 10 random sets of testing  
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the ones relative to Approach 2, meaning that the performance of the latter 

mentioned one was less variable.  

Fragmentation analysis  
To evaluate a further quality parameter, the level of fragmentation in predicted genes 

was computed for all the four approaches. To perform this analysis, obtained 

predictions were compared to the P. vulgaris official annotation using Protein length 

ratio (PLR) metric (Figure 16). 

Approximately 15,000 predicted proteins in both Approach 1 and 3 (pure ab initio 

methods) had a PLR of 1 (Figure 16). This means that 50% and 43% of total 

predicted proteins (30,053 and 34,786 in Approach 1 and 3 respectively) had lengths 

comparable with the respective proteins in P. vulgaris official annotation. Hint-based 

approaches (Approaches 2 and 4) predicted more than 20,000 proteins with a PLR of 

1, showing a better performance than other approaches. Thus, the fragmentation of 

approximately 5,000 proteins was reduced using hints during the prediction.  
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Distributions of PLR values (Figure 17) showed that all approaches had most of the 

predictions with PLR values between 0.5 and 1.0.  Approach 2 showed a compact 

distribution with higher values compared to other approaches (Figure 17).  Approach 

3 which is also a hint-based approach, had a wider distribution outlining an increased 

fragmentation (Figure 17). 

Figure 16. Protein length ratio of gene predictions in approach 1(A), 2(B), 3(C), 4(D). 

 

Figure 17. Protein length ratio distribution for the four tested approaches 
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Finally, the benchmarking analysis outlined that accurate results were achievable with 

hint-based approaches (Approaches 2 and 4) according to BUSCO completeness, 

gene sensitivity and specificity. Fragmentation analysis showed that performing a 

model training with highly conserved genes (Approach 2) reduced the level of 

fragmentation. Hence, Approach 2 coupled with filtering analysis was used for the 

development of the three pangenomes. 
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Development of pangenomes and automatic annotation on linear, 

nucleotide-based graph and element-based graph pangenomes 
Automatic gene annotation was applied to the three pangenome formats (Figure 18).  

 

The annotation was directly applied to the generated NRR sequences in linear 

pangenome (Figure 18A).  

Differently, in nucleotide-based graph pangenome, genes were annotated in the 

different genome assemblies which were then used to construct the graph (Figure 

18B). After the generation of nucleotide-based graph pangenome, genes were 

connected to one, more or none of the nodes present in the graph, crosschecking the 

coordinates of nodes and genes. 

In element-based graph pangenome, the assemblies were annotated with genes which 

then were used to generate the nodes of the graph (Figure 18C). 

 

Figure 18.  Automatic gene annotation in linear (A), nucleotide-based graph (B), element-based graph (C) 
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Development of linear pangenome 

Map-to-pan phase 

Linear pangenome was constructed through the independent whole-genome 

assembly approach using P. vulgaris cv. “G19833”, “MIDAS”, “G12873”, “BAT93” 

and “JaloEPP558”.   

7,969 non-reference representative sequences accounting for a total length of 

105,289,733 bp were extracted (Table 4) from the genomes of “non-reference” 

cultivars.  

Subsequently, NRR sequences were added to the P. vulgaris reference genome. Thus, 

assembled P. vulgaris pangenome accounted for a total length of 642,508,369 bp 

formed by 9,491 sequences. 

 

 

 

 

 

 

Table 4. Pangenome statistics for linear pangenome 

Automatic gene annotation  

Automatic gene annotation (Approach 2+ Filtering analysis) which was performed 

on NRR sequences, predicted 2,376 genes. Thus, 30,549 genes were annotated in P. 

vulgaris pangenome. 

PAV analysis 

PAV analysis found 24,335 core, 3,483 variable and 1,991 unique genes out of the 

total of 29,809 genes.  

  

Reference total length 537,218,636 

Number of reference sequences 1,522 

NRR total length 105,289,733 

NRR number of sequences  7,969 

Pangenome total length 642,508,369 

Number of pangenome sequences 9,491 
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Development of nucleotide-based graph pangenome 

Construction of nucleotide-based graph pangenome 

A nucleotide-based graph pangenome was constructed using the assemblies of P. 

vulgaris cv. “G19833”, “MIDAS”, “G12873”, “BAT93” and “JaloEPP558” cultivars 

(Table 5). 3 different software were used to generate the nucleotide-based graph 

pangenome. The obtained pangenome with high level of contiguity was then chosen. 

SOFTWARE NUMBER OF NODES NUMBER OF EDGES 
TOTAL SEGMENT 

LENGTH 

Minigraph 292,860 401,906 684,012,681 

Pan-tools 5,144,904 8,829,433 2,862,405,752 

Pggb 21,057,343 41,266,817 840,238,892 

Table 5. Number of nodes, edges and total segment length of assembled nucleotide-based 

pangenome generated using Minigraph, Pan-tools and Pggb softwares using P. vulgaris cv. 

“G19833”, “MIDAS”, “G12873”, “BAT93” and “JaloEPP558” 

Minigraph pangenome showed the lowest number of nodes (292,860) compared to 

Pan-tools and pggb pangenome which were composed of 5,144,904 and 21,057,343 

nodes respectively. In addition, graphs generated by Minigraph resulted to be the 

pangenome with the smallest size (684,012,681 bp) compared to Pan-tools 

(2,862,405,752 bp) and pggb (840,238,892 bp) pangenomes. 

However, the size of the Minigraph pangenome assembly was comparable to the 

“BAT93” genome assembly (637,803,808 bp) which was the cultivar reported with a 

major genome length. 

In conclusion, the Minigraph pangenome was chosen for the comparison as it was 

the most contiguous graph pangenomes in terms of nodes and total size compared to 

the other two pangenomes. 
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Automatic gene annotation of nucleotide-based graph pangenome 

Automatic gene annotation (Approach 2 + Filtering analysis) was performed on 

“MIDAS”, “G12873”, “BAT93” and “JaloEPP558” genome assemblies where genes 

have not been identified yet. Then, automatic gene annotation was not applied for 

the “G19833” cultivar where the official gene annotation was present. 

The number of annotated genes in “MIDAS”, (27,101) was in line with the number 

of genes contained in P. vulgaris cv. “G19833” (27,433) (Table 6). Instead, in 

“G12873”, 1000 more genes were annotated (28,469) compared to the official 

reference annotation. Furthermore, in “JaloEPP558”, and “BAT93”, the number of 

annotated genes was even higher (29,523 and 32,998 respectively).  

Table 6. Automatic gene prediction on “MIDAS”, “G12873”, “BAT93” and “JaloEPP558” 

plus the official annotation of the reference genome (“G19833”). Number of genes in unique nodes, 

multiple nodes and not assigned to nodes in all the 5 cultivars.”. 

Subsequently, automatic gene annotation was transferred into nucleotide-based graph 

pangenome: each gene was assigned to one or multiple nodes if their coordinates 

intersected with its gene space.  

Observed transfer of gene annotation reported all genes annotated in the “G19833” 

cultivar. 25,572, 23,251, 26,467 and 32,385 genes respectively for” MIDAS”, 

“G12873”, “BAT93” and “JaloEPP558” cultivars were not assigned to nodes of the 

nucleotide-based graph. Manual inspection revealed that these genes were not 

assigned to any nodes since the software in conserved regions reported only the 

genes of the genome with lowest level of fragmentation (in this case “G19833” 

Cultivar 
Number of final 

genes 

Number of genes 

in unique nodes 

Number of genes 

in multiple nodes 

Number of genes 

not assigned to 

nodes 

G19833 27,433 19,643 7,790 0 

MIDAS 27,101 1,197 332 25,572 

G12873 28,469 3,507 1,711 23,251 

Bat93 29,523 2,458 598 26,467 

JaloEPP558 32,998 546 67 32,385 
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genome). 

Instead, 7,790, 332, 1,711, 598 and 67 of “G19833”,” MIDAS”, “G12873”, 

“BAT93” and “JaloEPP558” genes were assigned to multiple nodes in the 

pangenome graph. 

PAV analysis 
PAV analysis was not possible to perform since all nodes were assigned to only one cultivar 

among “G19833”, “MIDAS”, “G12873”, “BAT93” and “JaloEPP558” cultivar. 

Hence, shared nodes were not possible to assess, making it impossible to identify 

core, variable and unique genes. 
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Development of element-based graph pangenome 
The method applied for the construction of element-based graph pangenome differs 

from the approaches used to assemble linear and nucleotide-based graph 

pangenome. The development of element-based graph pangenome is divided into 

four steps which are depicted in Figure 19A. 

The initial step in creating a pangenome is to define nodes (Figure 19B). Specifically, 

nodes are any object anchored to the genome, such as genes. To generate these 

nodes, automatic gene annotation is performed on a set of genome assemblies of 

different cultivars of the same species. 

Figure 19.  (A) Process of development of element-based graph pangenome is divided into four steps: (B) Annotation of genes using 

automatic prediction; (C) Annotation of spatial edges; (D) Identification of ortholog; (E) Annotation of core, variable and unique genes 

through ortholog edges. 
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Once gene structures have been generated, interactions among nodes need to be 

defined (Figure 19C). Adjacent genes are connected through spatial edges, exploiting 

the gene annotation which allows defining the gene order. 

Afterwards, orthologs are identified using synteny or/and gene family analysis and 

connected through edges (Figure 19D). At this stage, a raw “un-collapsed graph” has 

been created; in this setting, all genes are displayable, and all relationships (spatial and 

ortholog) are directly visualizable.  

Core, variable and unique genes could be identified through relationships among 

orthologs of different cultivars (Figure 19E). These orthologs (core and variable 

genes) were collapsed and visualized as single nodes. Instead, unique genes remained 

unchanged. The obtained graph reported only annotation of core, variable and 

unique genes, resulting in a much simple interpretation (Figure 20). 

 

 

  

Figure 20. Visualization of annotation of core, variable and unique genes in element-based graph pangenome 
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Automatic gene annotation 

Genes which were annotated on genome assemblies of” MIDAS”, “G12873”, 

“BAT93” and “JaloEPP558” cultivars were used to generate the nodes of element-

based graph pangenome. The official P. vulgaris gene annotation was used for 

“G19833” cultivar. 

Element-based graph pangenome accounted for 145,524 nodes corresponding to 

145,524 annotated genes.  This set of genes contained orthologs across cultivars or, 

in the same cultivar, copies of the same gene which have originated from gene 

duplication or unique genes. 

Annotation of spatial edges 

 Spatial edges among 145,524 genes were created in element-based graph pangenome 

(Table 7). 

Table 7.  The number of annotated genes and the number of genes connected by edges for each 

cultivar in element-based graph pangenome. 

CULTIVAR 
NUMBER OF 

ANNOTATED GENES 

NUMBER OF GENES/NODES LINKED 

BY EDGES 

G19833 27,433 27,420 (99.953%) 

MIDAS 27,101 26,813 (98.937%) 

G12873 28,469 28,391 (99.726%) 

Bat93 29,523 29,522 (99.997%) 

JaloEPP558 32,998 32,997 (99.997%) 
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In all studied cultivars, not the totality of the annotated genes was connected through 

spatial relationships (Table 7). Manual inspection revealed that these were solitary 

“genes”, without adjacent genes placed on shorter contigs. They were inserted in the 

graph as nodes without connection to other ones. (Figure 21).  

Annotation of orthologs relationships and PAV analysis 

In Element-based graph pangenome, relationships between orthologs were identified 

and annotation of core, variable and unique genes was performed. For this analysis, 

three approaches were tested (Figure 22): 

• Approach 1 based only on the synteny analysis. 

• Approach 2 based only on gene family analysis. 

Figure 21. Element-based graph pangenome with reconstructed spatial edges and solitary 

gene 
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• Approach 3 or combined analysis which integrates the results of synteny and 

gene family analysis. 

Number of total, core, variable and unique genes 

The number of core, variable, unique and total genes were computed for the three 

tested approaches.  

Approach 1 and 2 (Figure 23A, TableS4) identified 19,757 and 20,712 core genes, 

respectively. Approach 3 found a comparable number of core genes (20,784), respect 

to Approach 2. 

Figure 22.  Approaches tested to identify orthologous genes and annotate core, variable and unique genes. 
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Approaches 1 and 2 detected 4,205 and 6,204 variable genes (Figure 23A, Table S4). 

Approach 3 identified a lower number of variable genes (3,981) compared to the other 

two approaches. 

Approach 1 identified the highest number of unique genes (5,362) among all 

approaches (Figure 23A, Table S4). Approach 2 identified only 1,675 unique genes. 

While Approach 3 still reported a lower number of unique genes (1,527).  

Altogether, these results showed that Approach 3 seemed to have conservativeness 

in identifying shared genes (core and variable) compared to other approaches. In 

addition, the major contribution in identifying the ortholog relationship in Approach 

3 is made by the integration of the results of gene-family analysis (Approach 2). 

Approaches 1, 2 and 3 identified 29,324, 28,591 and 26,292 total genes, respectively 

(Figure 23A, TableS4). The more the approach is conservative, the more genes are 

identified as core and the fewer genes are reconstructed (Figure 23B). Additionally, a 

further reduction of total genes was imputable of collapsing of co-orthologs in 

element-based graph pangenomes. 

Figure 23. (A) Number of shared (core and variable), unique and total genes identified by synteny, gene family and combined 

approaches. (B) Graph reporting the number of genes against the number of total genes identified in synteny, gene family and 

combined approaches together with Pearson correlation coefficient 

 

51



Concordance of core, variable and unique genes 

The three approaches were compared in terms of concordance of core, variable and 

unique genes (Figure 24). Orthologs across different cultivars that were previously 

merged, were un-collapsed and considered in the comparisons (Figure 24). 

All approach commonly identified 97,039 core genes (Figure 24A). Approach 3 

detected 4,479 core genes which were not found by other approaches.  

All three approaches commonly identified 9,186 variable and 1,527 unique genes 

(Figure 24B-C). Approach 3 identified no extra variable or unique genes. 

All the previous findings confirmed the complementarity of Approach 1 and 

Approach 2, meaning that these approaches identified a part of homology 

relationships among orthologs. Thus, Approach 3 which showed the highest 

sensitivity in core and variable identification and the highest precision in the 

detection of variable and unique genes, was used for PAV analysis of element-based 

pangenome. In PAV analysis, 20,784 of 26,292 total genes were identified as core. 

3,981 and 1,527 were annotated as variable and unique genes (Table 8).   

Figure 24. Venn diagram of core (A), variable (B) and unique (C) genes identified in the three approaches: orthologous genes were 

considered separately for core and variable genes. 
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1522 of 1527 unique genes (99.6%) were belonging to P. vulgaris cv “G19833”. The 

remaining 5 unique genes belonged to “MIDAS” (2 genes), “BAT93” (2 genes) and 

“G12873” (1 gene) cultivars respectively.  

Enrichment analysis showed that unique genes are significantly enriched in myosin 

complex (GO:0016459), cytoskeletal motor activity (GO:0003774) and actin 

cytoskeleton (GO:0015629) biological processes (Figure S1A). 

 

 

 

 

 

 

Table 8.  Pangenome statistics for element-based graph pangenome 

 

 

 

 

 

 

 

 

 

 

 

 

Total genes 26,292 

Core genes 20,784 

Variable genes 3,981 

Unique genes 1,527 
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Comparison of element-based graph pangenome with linear pangenome 
Element-base graph pangenome was compared to linear pangenome in terms of 

core, variable and unique genes. Then, concordance in terms of core, variable and 

unique genes between the two pangenome was assessed to evaluate their differences.  

Number of core, variable and unique genes in linear and element-based graph 

pangenomes 

29,809 and 26,292 genes were annotated in linear and element-based graph 

pangenome, respectively (Figure 25A).  Thus, linear pangenome reported a higher 

number of total genes since co-orthologs were not collapsed together as in element-

based graph pangenome. 

 

Linear pangenome reported a higher number of core genes (24,335) compared to 

element-based graph pangenomes (20,784). Moreover, a comparable number of 

variable genes were identified by linear pangenome (3,483) and element-based graph 

pangenomes (3,981), respectively. A similar number of unique genes was also 

identified in the two pangenomes (3,483 and 3,981 in linear and element-based graph 

pangenomes, respectively). 

In both pangenomes, the fraction of core, variable and unique genes was comparable 

accounting for approximately ≈80%, ≈15% and ≈5%, respectively (Figure 25B). 

Figure 25. (A) Number of core, variable and unique genes (B) Pie chart of core, variable and unique genes over total genes annotated 

in linear and element-based graph pangenomes 
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Concordance of core, variable and unique genes 

Subsequently, concordance was computed to see if the same genes are predicted as 

core, variable and unique genes both in linear and element-graph-based pangenomes. 

This analysis was restricted to only genes from the “G19833” cultivar as the gene 

models are equivalent in the two pangenomes (Figure 26). 

 

21,918 core genes present in the “G19833” cultivar were commonly identified in the 

two pangenomes (Figure 26A), accounting for a high concordance of 86.1%.  

Additionally, in terms of variable genes, the concordance between the two 

pangenome is lower (39.3%): only 1,649 genes were found commonly in linear and 

element-based graph pangenome (Figure 26B). Finally, only 16 of the “G19833” 

genes were reported as unique in the two pangenomes (Figure 26C). 

  

Figure 26. Venn diagram of core(A), variable (B) and unique (C) genes present in G19873 cultivar present in linear and element-

based graph pangenomes. 

55



Comparison of element-based graph pangenome with nucleotide-based 

graph pangenome 
After comparing with linear pangenome, element-graph pangenome was compared 

to nucleotide-based graph pangenome. As reported in section of Results 2.2.3 PAV 

analysis was not possible to perform in nucleotide-based graph pangenome. Then, 

for comparison purpose, the visualization layout of element-based graph 

pangenomes was set side by side with the one of nucleotide-based graph pangenome. 

In addition, the growth of nodes and visualization complexity influenced by the 

number of input genomes was assessed in the two pangenomes.  

Comparison of visualization 

One locus of the region responsible for pod indehiscence trait [89] was visualized in 

both in nucleotide-based graph  pangenomes (Figure 27A and in element-based 

graph pangenome (Figure 27B-C):the genetic locus with coordinates 

Chr05:38,307,142-38,324,025 have a length of 16.8 kbp and contains 3 genes. 

 

Visualization in nucleotide-based pangenome displayed 28 nodes (Figure 27A). In 

this representation, the three genes belonging to the “G19833 “cultivar are 

Figure 27. Representation of region in Chr05:38,307,142-38,324,025 in nucleotide-based pangenome (A) in un-

collapsed (B) and collapsed (C) element-based graph pangenome. 
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represented but none of their orthologs in the other cultivars are reported: two genes 

are reported together into one node whereas one gene is reported alone into another 

node. Moreover, intergenic regions contributed to the variation represented in the 

graph.  

Visualization in element-based graph pangenome in un-collapsed fashion (before 

orthologs merging) displayed 15 nodes (Figure 27B): the genes of different cultivars 

are represented with their relationships. Hence, the presence and absence of genes in 

cultivars are easier to assess. Indeed, it is observable that all three genes were core.  

With the collapse option set to ortholog across cultivars, the element-based graph 

pangenome was represented by only 3 nodes (Figure 27C). Visualization became 

clearer since it displayed only genes annotated as core, variable or unique. Overall, 

the collapsed representation in element-based graph pangenome allowed keeping 

global oversight compared to the nucleotide-based pangenome.  

To assess differences in presence or absence of genes in both pangenomes, 

visualization was made in some genes known associated to phenotypic traits: 

Phvul.006G018800 [103], Phvul.007G171466 [104], Phvul.007G171333 [104], 

Phvul.002G300900 [105], Phvul.009G190100 [106] and Phvul.008G038400 [107](Figure 

28).  

Visualization of V, P and cbZIP genes (Phvul.006G018800, Phvul.007G171333 and 

Phvul.009G190100) in element-based graph pangenome confirmed the presence of 

these genes in all analyzed cultivars. Local visualization of nucleotide-based 

pangenome reported not all genes in the five cultivars, not correctly classifying V, P 

and cbZIP as core genes.  

Additional copy of P gene (Phvul.007G171466) present in G19833 genome was 

correctlyclassified in both pangenomes as unique gene, meaning that MIDAS, 

G12873, Jalo and Bat cultivars have a single copy of this gene. SWEET4 gene 

(Phvul.002G300900) was classified variable and absent in Jalo cultivar, concordantly 

by the two pangenomes’ representations.  

Myb113 gene (Phvul.008G038400) was classified as variable genes in both element-

based graph and nucleotide-based graph pangenomes. However, presence of Myb113 

gene in cultivars was underestimated since this gene was classified absent in Jalo 
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cultivar in nucleotide-based graph pangenome. Finally, element-based showed that in 

G12873 genome, two gene copies are present (gG4907 and gG4909). 

 

 

 

 

 

  

Figure 28. Representation of V(Phvul.006G018800), P (Phvul.007G171466 and Phvul.007G171333), 

SWEET4(Phvul.002G300900), cbZIP (Phvul.009G190100), MyB113(Phvul.008G038400). Visualization in element-

based graph pangenome (top part) and nucleotide-based graph pangenome (bottom part). Biological description and 

association to phenotypic traits is reported.  
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Visualization complexity with the growth of input genomes  
Visualization was inspected according to the growing of input genomes. Nucleotide 

and element-based graph pangenomes were assessed using iteratively 5 P. vulgaris 

genomes (“G19833”, “MIDAS”, “G12873”, “BAT93” and “JaloEPP558”). The 

syntenic region, with coordinates Chr:06:30,666,467- 30,708,540 containing 7 genes, 

was visualized both in the two pangenomes (Figure 29). 

 

Visualization of the 42-kbp region in Chr06:30,666,467-30,708,540 led to an increase 

from 1 node to a total set of 70 nodes.  On average, each addition of a new genome 

increased the complexity of the nucleotide-based pangenome with 17.5 nodes (Figure 

29A, Table S7). In some cases, the addition of a genome was observed not to 

increase the nodes as new regions might have an identical sequence to the already 

present genomic regions. 

Figure 29. Visualization of nucleotide-based pangenome (A) collapsed(B) and uncollapsed (C) element-based graph pangenome in 

region Chr06:30,666,467-30,708,540 using the 5 P. vulgaris genomes (“G19833”, “MIDAS”, “G12873”, “BAT93” and 

“JaloEPP558”) 
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Visualization of the same syntenic region in uncollapsed version of element-based 

graph pangenome led to an increase in the number of genes from 7 to 35, with all 

orthologs being displayed (Figure 29B). Even though all information is displayed, the 

visualization remains compact and easily interpretable thanks to the implemented 

“backbone” structure describing the spatial organization of genes. However, 

collapsing them led to a synthesized representation of the pangenome (Figure 29C) 

without loss of information relative to the genes involved. 

Nodes’ complexity with the growth of input genomes  
The effect of the number of input genomes on the amount of nodes was assessed in 

nucleotide-based graph and element-based graph pangenomes. The “G19833”, 

“MIDAS”, “G12873”, “BAT93” and “JaloEPP558” genomes were added iteratively 

in the pangenomes. The un-collapsed version of the element-based graph 

pangenome was included in the comparison since it represented different haplotypes 

of a region like nucleotide-based graph pangenome (Figure 30, Table S8). 

 

The growth of nodes in nucleotide-based graph pangenome was superior to the one 

of element-based graph pangenome (collapsed version), having on average an 

increase of 73,096 nodes for each added genome. The mean growth was 2.5-fold 

Figure 30.  The number of nodes in nucleotide-based, linear, collapsed-element and un-collapsed-element pangenomes using 

iteratively the 5 P. vulgaris genomes (“G19833”, “MIDAS”, “G12873”, “BAT93” and “JaloEPP558”). 
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superior to element-based graph pangenome in the un-collapsed version (29,523 

nodes on average) where orthologous copies of the same genes or all possible 

orthologous genes are displayed. 
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DISCUSSION 
State-of-art pangenome approaches [25], [27], [37], [108], [109]are gaining more and 

more importance and they will completely replace the reference genome in genomic 

studies. However, state-of-art pangenome have some limitations addressed in this 

thesis: linear pangenome does not provide a graphical representation of gene 

presence and absence among individuals whereas nucleotide-based graph pangenome 

does not include the whole gene content of studied cultivars as well as cannot be 

used for gene presence and absence analysis. Due to the limitations of present 

approaches, we proposed a new type of pangenome, called element-based graph 

pangenome. 

In element-based graph pangenome, PAV analysis is represented in graph format and 

information about cultivars can be compressed and decompressed (Figure 31A). This 

type of pangenome becomes a consensus genome in which shared genes maintain 

spatial relationships and where orphan genes are inserted between their adjacent 

genes. Hence, in such visualization, variable and unique genes in element-based 

pangenome generate bubbles, which represent polymorphic loci in nucleotide-based 

graphs [108], [110]. Additionally, syntenic regions (Figure 31B) in element-based 

pangenome are easily detectable as two or more strings of orthologs interconnected 

to each other. 

Figure 31. (A) Open visualization of one gene in collapsed version of element-based graph pangenome.  

(B)Visualization of syntenic region in un-collapsed version of element-based graph pangenome  
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Nucleotide similarities and dissimilarities in coding regions are displayed in a zoomed-

in representation through local nucleotide-based graph pangenome [108] (Figure 32). 

The element-based graph pangenome, on the other hand, is a zoomed-out 

representation of a graphical nucleotide-based pangenome. 

 

Comparison analysis with other pangenome formats demonstrated additional features 

of this newly proposed approach. First, visualization in element-based graph 

pangenome allowed an easy interpretation of gene presence or absence in cultivars 

compared to nucleotide-based graph pangenome, where genes are not present in nodes 

or dispersed into multiple nodes. Hence, element-based graph pangenome provided a 

full representation of gene annotation which is not fully included in nucleotide-based 

graph pangenome. 

Moreover, a reduced number of nodes compared to nucleotide-based graph 

pangenome confirmed the contribution given by the diversity of non-coding genome 

[111], in particular the transposable elements[4]. Future studies which include a large 

set of individuals[112],  will benefit from this advantage. 

All these analyzed features (compact visualization, full representation of genes and the 

low number of nodes) made the element-based graph pangenome more efficient in 

terms of PAV analysis and visualization compared to nucleotide-based pangenomes. 

Figure 32. Conversion of element-based graph pangenome into local nucleotide-based pangenome to visualize nucleotide variation 

of one core gene. 
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Nevertheless, compared to linear pangenome, element-based graph pangenome 

reported a lower number of total genes due to collapsing of paralogs. These genes 

normally are separately reported in linear pangenome. However, consistent with the 

literature [113], [114], paralog genes should be collapsed together only if they share the 

same genomic context. 

Linear[25] and nucleotide-based graph pangenomes[40] are influenced by the 

stringency of identity or coverage threshold chosen to collapse similar or identical 

regions.  On the contrary, element-based graph pangenome has strong annotation 

dependency for which the accuracy of automatic gene prediction has a main influence 

on the discovery of core, variable and unique genes in element-based graph 

pangenome [115]. Indeed, applying a low-conservative approach will increase the rate 

of true negative genes and it will consequently reduce the sensitivity of finding core 

genes whereas using an approach with low precision will increase the amount of false 

positive genes (over-prediction) and the number of private genes in element-based 

graph pangenome. Hence, in this work, the most accurate automatic gene prediction 

was assessed through benchmarking, considering both conservativeness and precision 

in gene finding. 

Benchmark results confirmed the non-optimal performances of automatic gene 

prediction found in the literature [82], [116]. Reported high values of completeness of 

highly conserved genes[117] did not outlined the best approach. Instead, gene 

sensitivity and specificity analysis[82]supported the non-optimal accuracy of automatic 

prediction in specific-organism genes where low sensitivity and precision usually occur 

[118]–[120]. However, results confirmed that providing extrinsic evidence during the 

prediction through hint-based approaches (approaches 2 and 4) increases the 

likelihood of annotating real genes [121]. Fragmentation analysis outlined that noise 

and inaccurate mapping of extrinsic data led to low precision and fragmentation in the 

RNA-seq data training approach (Approach 4). Hence, in contrast with the previous 

findings [122] reporting a good performance of model training based on RNA-seq 

data, the hint-based approach, which exploits the training of conserved genes 

(Approach 2), outperformed the others. Additionally, the filtering analysis allowed the 

exclusion of artefacts or unidentified repeats which were not properly masked before 

genome annotation [119] 
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Besides automatic gene annotation and like other types of pangenomes, element-based 

graph pangenome is influenced by orthologous identification[115], [123], [124] which 

could be performed through synteny [125], [126] and/or gene family analysis[86], 

[127]. Expectedly, synteny analysis (Approach 1) overestimated unique genes due to 

assembly fragmentation [128]. In addition, gene duplication or translocation events 

[129]–[132] may have decreased the sensitivity of this approach in finding orthologous 

genes, falsely annotated as unique. Instead, evidence showed that clustering of protein 

sequences in gene family-based analysis (Approach 2) allowed to overcome such 

limitations, observing a higher sensitivity in orthologs detection. Nevertheless, synteny 

analysis (Approach 1) was more sensitive in finding orthologs for some 

genes[133].Then singularly, the two approaches (Approach 1 and 2) partially identified 

the connection among core genes, overestimating variable genes. Hence, the 

integration of results from both analyses in a combined approach (Approach 3) 

resulted in having the highest conservativeness.  

In conclusion, we propose a new type of pangenome called element-based graph 

pangenome providing the advantage to detect the presence or absence of elements 

annotated in the genome. In this case, we considered only the coding part since most 

of the pan-genomic studies did not examine other regions. Hereafter, in the future, 

element-based graph pangenome could include conserved noncoding elements 

(CNEs) which have been reported to be organized in clusters [134], [135] or 

transposable elements whose insertion into genic regions creates relevant phenotypic 

traits[136]–[138] . Thus, in this way, an element-based graph pangenome could 

indicate the presence and the genomic positions of coding and non-coding elements 

across genomes, allowing extrapolation of biological information among studied 

individuals. 
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SUPPLEMENTARY DATA 
 

 

 

 

 

 

 

Table S1. Number of initial and final predictions for each tested approach. The reduction rate 
reported as percentage of filtered prediction against the total ones. 

 

 

 Approach1 Approach2 Approach3 Approach4 

Complete 92.4% 96.7% 92.2% 96.6% 

Fragmented 2.3% 0.9% 2.6% 1.0% 

Missing 5.3% 2.4% 5.2% 2.4% 

 

Table S2. Complete,fragmented and missing fabales conserved genes for tested approach 

 

 

Table S3. Gene specificity and sensitivity using ten testing sets of random 200 P.vulgaris official 
annotation 

 

 Reference Approach1 Approach2 Approach3 Approach4 

Number of 
inital 

predictions 
27433 30053 32387 34786 36713 

Number of 
final 

predictions 
 25481 26757 26649 27669 

Reduction 
rate of 

predictions 
 15.2 17.4 23.4 24.6 

GENE SENSITIVITY (%) 
 Test1 Test2 Test3 Test4 Test5 Test6 Test7 Test8 Test9 Test10 

Approach 1 32.32 37.69 34.5 30.15 38.38 37.69 40.7 35 37.37 26.13 

Approach 2 61.11 62.31 66 60.3 60.1 62.81 62.31 63 63.13 59.8 

Approach 3 39.39 44.72 39 39.2 42.42 38.69 46.23 42 42.93 34.67 

Approach 4 60.61 64.32 67.5 60.8 59.09 62.81 63.32 66 64.65 60.3 

GENE SPECIFICITY (%) 

 Test1 Test2 Test3 Test4 Test5 Test6 Test7 Test8 Test9 Test10 

Approach 1 30.33 34.4 31.22 26.09 35.85 35.55 36 31.67 35.24 23.01 

Approach 2 52.38 51.88 56.17 48.39 51.52 51.44 52.54 52.72 54.82 50.64 

Approach 3 34.98 38.53 33.77 31.84 37.84 33.77 38.02 35.9 38.12 29.74 

Approach 4 51.72 52.24 56.49 47.83 49.79 51.44 52.28 54.1 55.17 50 
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 Synteny Gene Family Synteny+Gene Family 

Core genes 19757 20712 20784 

Variable genes 4205 6204 3981 

Unique genes 5362 1675 1527 

Total 29324 28591 26292 

 

Table S4. Core, Variable, Unique and Total genes identified by Synteny, Gene family and 
Combined approaches. 

 

 

 Linear pangenome Element-based graph pangenome 

Core 20396 20784 

Variable 10080 3981 

Unique 100 1527 

Total 30549 26292 

 

Table S5. Core, Variable, Unique and Total genes identified in linear and element-based graph 
pangenomes. 

 

 

 

Number of 
genomes 

Nodes in 
Nucleotide

-based 
pangenom

e 

1 1 

2 1 

3 62 

4 62 

5 70 

 

Table S7. Complexity of nucleotide-based pangenome in a local region. Number of nodes is 
reported per number of added genome. 

 

 

 

 

 

79



 

 

 
Uncollapse
d element 

graph 

Collapsed 
element 

graph 

Nucleotide
-based 
graph 

1 27433 27433 478 

2 54534 28723 52919 

3 83003 28934 202942 

4 112526 40842 214120 

5 145524 26292 292860 

AVERAGE 
GROWTH 

29523 -285 73096 

 

Table S8. Complexity of nucleotide-based pangenome and element-based graph pangenome in 
terms of nodes per added genomes 
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Figure S1. Functional enrichment of 1,527 unique genes 
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