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Abstract. In this paper we study the evolution of asset price bubbles driven by contagion effects spreading
among investors via a random matching mechanism in a discrete-time version of the liquidity based
model of [R. A. Jarrow, P. Protter, and A. F. Roch, Quant. Finance, 12 (2012), pp. 1339--1349].
To this scope, we extend the Markov conditionally independent dynamic directed random matching
of [D. Duffie, L. Qiao, and Y. Sun, J. Econ. Theory, 174 (2018), pp. 124--183] to a stochastic
setting to include stochastic exogenous factors in the model. We derive conditions guaranteeing that
the financial market model is arbitrage-free and present some numerical simulation illustrating our
approach.
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1. Introduction. The formation of asset price bubbles has been the object of many inves-
tigations in the economic and mathematical literature. Different causes have been indicated
as triggering factors for bubble birth and evolution, such as a risk shifting problem in [2], the
joint effect of the individual incentive to time the market and the inability of arbitrageurs to
coordinate their selling strategies in [1], heterogeneous beliefs between interacting traders as
in [19], [21], [37], [38], [46], [47], a disruption of the dynamic stability of the financial system
in [11], [10], the diffusion of new investment decision rules from a few expert traders to a
larger population of amateurs in [17], the tendency of investors to adopt the behavior of other
agents in [28], and the presence of short-selling constraints in [35] and of noise traders with
erroneous stochastic beliefs in [13].

However, mathematical models for microfinancial interactions leading to the formation of
asset price bubbles are still missing. This paper aims at filling this gap by studying a random
matching mechanism among investors which impacts the trading volume of an asset and then
its price via illiquidity effects. To this purpose, we first introduce a discrete time version of the
liquidity based model of [27], where the fundamental price of the asset is exogenously given,
while the market price is influenced by the trading activities of investors via an erosion of the
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ASSET BUBBLES VIA RANDOM MATCHING 1305

limit order book. The birth of a bubble is then caused by a deviation of the market value
from the fundamental one.

Here, we model the signed volume of market orders by assuming that the investment
attitudes of the traders on the market are influenced via a random matching mechanism. To
this scope, we suppose that agents on the market can be of three types, i.e., optimistic, neutral,
and pessimistic regarding the future returns of the asset, and that they trade according to
their type. This means that an optimistic agent places a buy market order while a pessimistic
one places a selling market order. Neutral agents neither buy nor sell the asset. The evolution
of the signed volume of market orders is thus determined by the fraction of optimistic, neutral,
and pessimistic agents, respectively.

In order to model the evolution of these quantities, we extend the Markov conditionally
independent dynamic directed random matching of [15] to a stochastic setting. More precisely,
the model in [15] describes a mechanism for how a continuum of agents search in a directed
way for a suitable counterparty. The word ``directed"" refers to the fact that the search is
not purely random, but the agents are motivated to meet another agent that provides them
with some benefit. In particular, every agent is described by its type which may change at
any time step, and can randomly mutate to another type and randomly match with another
agent. This meeting may induce a further type change. Furthermore, agents can also enter
some potentially enduring partnerships with random break-up times.

These models have a broad application, for example, in the fields of financial markets,
monetary theory, and labor economics. The first mathematical basis for this approach in
a discrete time setting is provided in [15] and strongly relies on techniques of nonstandard
analysis, as a continuum of agents is considered. Given some deterministic functions describing
the probabilities associated to the random matching and random changes introduced above,
they prove existence of a dynamical system with independent agents types and deterministic
cross-sectional distribution of types. We now extend this model by allowing the probabilities
driving the system to also depend on an additional state of the world to allow the random
matching mechanism to be driven by some stochastic exogenous factors. Hereby, the technical
difficulty is to find a suitable setting to extend the results in [15] in a consistent way. For
this purpose we construct a probability space \Omega as the product of the space \^\Omega of the random
matching and the space \~\Omega of the factors which may influence the transition probabilities, and
introduce a Markov kernel on \Omega . After proving the existence of such a dynamical system with
input processes, we study conditional type distributions.

We then apply these results to model investment attitudes leading to bubble formation in
the discretized version of [27]. More precisely, we assume that the signed volume of market
orders is described by a random matching mechanism, where the agents can be of positive,
negative, or neutral type, as explained above. The stochasticity of the transition probabil-
ities is crucial here as it reflects the impact of heterogeneous factors such as socioeconomic
indicators, external events, and public news. We are able to show that the market model is
arbitrage-free by proving the existence of an equivalent martingale measure under suitable
assumptions. Furthermore, we provide some examples for the input processes of the ran-
dom matching mechanism in an arbitrage-free market model. We illustrate these results with
numerical simulations.
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1306 BIAGINI, MAZZON, MEYER-BRANDIS, AND OBERPRILLER

The paper is organized as follows. In section 2 we introduce a discrete time version of
the liquidity based model of asset prices in [27]. In section 3 we extend the directed random
matching mechanism in [15] to a stochastic setting. We combine these two constructions in
section 4, where we propose a model of the signed volume of market orders influenced by a
random matching mechanism. In this setting we derive some conditions guaranteeing that the
financial market model is arbitrage-free and we conclude with some numerical simulations.

2. The formation of asset price bubbles. We consider a word-of-mouth mechanism
spreading among investors who meet by random matching, giving rise to the formation of
asset price bubbles. To this scope, we introduce a discretized version of the liquidity based
model in [27].

2.1. A liquidity based model for asset price bubbles in discrete time. We here present a
discrete time version of the continuous time model of [27], which explains the birth of bubbles
as the deviation of the market price S from the fundamental price F caused by the impact of
trading volume and illiquidity.

Let T > 0 be a given trading horizon and consider a time discretization 0 =: t0 < t1 <
\cdot \cdot \cdot < tN - 1 < tN = T of the interval [0, T ]. Also introduce a filtered probability space
(\Omega ,F, (Fi)i=0,...,N , P ), where we set Fi := Fti for i= 1, . . . ,N . In section 3 we further specify
a possible construction of this space in the context of random matching. The market model
consists of the money market account B \equiv 1 and one liquid financial asset (stock), which is
traded through limit and market orders.

Remark 2.1. In order to be consistent with the notation of the random matching mecha-
nism (see section 3), we indicate the dependence on time ti with a superscript i for filtrations
or processes.

The fundamental price of the asset is given by the stochastic process F = (F i)i=0,...,N ,
where F i represents the value at time ti for i = 0, . . . ,N . Such a process is exogenously
given. On the other hand, the market price of the asset is generated by the trading activity
of the investors as we describe in the following. In particular, agents place buy and sell orders
through a limit order book, which acts as market maker.

Coherently with the construction of [27], we assume that the average price to pay per
share for a transaction of size x via a market order at time ti is given by

Si(x) = Si +M ix, x\in R+, i= 0, . . . ,N,(2.1)

where S = (Si)i=0,...,N and M = (M i)i=0,...,N are nonnegative, adapted processes on the space
(\Omega ,F, (Fi)i=0,...,N , P ), representing the quoted price and a measure of illiquidity, respectively.
Fix a time ti for i= 1, . . . ,N . The limit order book at ti is described by the density function
\rho i(\cdot ), where \rho i(z) is the number of shares offered at price z at time ti. As in [27], the total
amount paid by a trader who wants to buy x shares at time ti is given by\int zx

Si

z\rho i(z)dz,(2.2)

where zx is the solution of \int zx

Si

\rho i(z)dz = x.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ASSET BUBBLES VIA RANDOM MATCHING 1307

Due to the linear structure in (2.1) it follows that \rho i(z) = 1/2M i and zx = Si+2M ix; see [27]
for further details.

Let X = (Xi)i=0,...,N be an adapted stochastic process representing the signed volume of
aggregate market orders (buy minus sell orders). Next, we introduce a process R= (Ri)i=0,...,N

with values in [0,1] to describe the short-term resiliency of the limit order book. In particular,
if \Delta X buy market orders are executed at time ti, R

i represents the proportion of new sell
limit orders placed from ti to ti+1, having therefore the effect to partly fill the temporary gap
[Si, Si +\Delta X] in the limit order book. If the gap caused by the new buy market orders is not
fully filled before other market orders are executed, the market price of the asset deviates from
the fundamental value, thus creating a bubble. However, it is observed that such a deviation
decays in the long run; see [27] for details. Such an effect is quantified by the speed of decay
process \kappa = (\kappa i)i=0,...N .

The evolution of the market price process S = (Si)i=1,...,N is then given by

Si = Si - 1 + F i  - F i - 1  - \kappa i(Si - 1  - F i - 1)\Delta ti + 2\Lambda iM i\Delta Xi, i= 1, . . . ,N,(2.3)

where \Lambda i := 1 - Ri, i= 0, . . . ,N . Moreover, \Delta ti := ti - ti - 1, \Delta X
i :=Xi - Xi - 1 for i= 1, . . . ,N .

At initial time we have X0 = 0 and S0 = F 0. In particular, (2.3) is a discretized version of the
SDE considered in [27].

Following [27], we now provide the definition of an asset price bubble in this setting.

Definition 2.2. An asset price bubble \beta = (\beta i)i=0,...,N is defined as

\beta i := Si  - F i, i= 0, . . . ,N.

By (2.3) we obtain that

\beta i = \beta i - 1  - \kappa i\beta i - 1\Delta ti + 2\Lambda iM i\Delta Xi, i= 1, . . . ,N,(2.4)

\beta 0 = 0.

Remark 2.3. In this construction, the birth of the bubble occurs when M , \Lambda , and \Delta X
are strictly positive. Afterward the bubble can revert to zero due to the declining impact of
M\Lambda \Delta X or to the growing influence of the mean reverting term  - \kappa \beta \Delta t, when the size of \beta 
increases.

Equation (2.4) shows that the main force driving the bubble evolution is the signed volume
of market orders X. Market orders, indeed, deplete or fill in the limit order book, producing a
variation in the price over a small interval of time. If new market orders quickly enter before
the price has time to decay again to the fundamental value, these short-term price variations
may accumulate and result in a deviation from the fundamental wealth.

We now focus on modeling X by assuming that the investment attitudes of the traders on
the market are influenced via a random matching mechanism. To this scope, we suppose that
agents on the market can be of three types, i.e., optimistic, neutral, and pessimistic regarding
the future returns of the asset, and that they trade according to their type. This means that
an optimistic agent places a buy market order while a pessimistic one places a selling market
order. Neutral agents neither buy nor sell the asset. Based on this characterization, from

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1308 BIAGINI, MAZZON, MEYER-BRANDIS, AND OBERPRILLER

now on we refer to optimistic and pessimistic agents also as buyers and sellers, respectively.
We admit that agents may influence each other if they meet and that they may change their
type at each time ti, i= 1, . . . ,N, via a random matching mechanism as we explain in section
3. The evolution of X is determined by the processes \^pi = (\^pji )j=0,...,N , i = 1,2,3, standing
for the fraction of optimistic, neutral, and pessimistic agents, respectively. In particular, the
value of X at time ti is given by

Xi =\Theta i(\^pi1  - \^pi3), i= 0, . . . ,N,(2.5)

where \Theta = (\Theta i)i=0,...,N is an adapted stochastic process modeling the average size of buy

market orders as in [8]. We assume that at time t0 = 0 it holds that \^p10 = \^pi3, i.e., that the
fraction of optimistic agents is equal to that of pessimistic ones, so that X0 = 0. We now
model the evolution of the fractions \^p1, \^p2, and \^p3 by using a special case of the Markov
conditionally independent dynamic directed random matching which we introduce in the next
section.

3. Markov conditionally independent dynamic directed random matching. We here
extend the setting in [15] by using stochastic kernels. Let (\~\Omega , \~F, \~P ) be a probability space and
(\^\Omega , \^F) another measurable space. We consider the product space

(\Omega ,F) := (\~\Omega \times \^\Omega , \~F\otimes \^F)(3.1)

and denote the elements of \Omega by \omega := (\~\omega , \^\omega ). Let \^P be a Markov kernel1 (or stochastic kernel)
from \~\Omega to \^\Omega . Given \~\omega \in \~\Omega , we set \^P \~\omega := \^P (\~\omega ) with a slight notational abuse. We then
introduce a probability measure P on (\Omega ,F) as the semidirect product of \~P and \^P , that is,

P ( \~A\times \^A) := ( \~P \ltimes \^P )( \~A\times \^A) =

\int 
\~A

\^P \~\omega ( \^A)d \~P (\~\omega )(3.2)

for \~A \in \~F, \^A \in \^F and consider the probability space (\Omega ,F, P ) representing all possible states
of the world. We assume that the probability space (\Omega ,F, P ) is endowed with a filtration
F = (Fn)n\geq 1.

We then introduce the space of agents as given by an atomless probability space (I, I, \lambda ).
Let (I \times \Omega , I\boxtimes F, \lambda \boxtimes P ) be a rich Fubini extension2 of (I \times \Omega , I\otimes F, \lambda \otimes P ). We classify all
agents in I according to their type belonging to the finite space S = \{ 1,2, . . . ,K\} . We say
that an agent has type J if he is not matched. We denote \^S := S \times (S \cup \{ J\} ) and call it
the extended type space. If an agent has the extended type (k, l), this means that she is of
type k \in S and is currently matched to another agent of type l \in S. If an agent of type k
is not matched at the moment, the agent's extended type is (k,J). We consider probability
distributions on \^S. In particular, we introduce the space \^\Delta of extended type distributions,

1We recall the definition of a Markov kernel from Definition 8.25 in [31] for the reader's convenience.

Definition 3.1. Let (\~\Omega , \~F), (\^\Omega , \^F) be measurable spaces. A map \kappa : \~\Omega \times \^F\rightarrow [0,\infty ] is called a Markov kernel
or stochastic kernel from \~\Omega to \^\Omega if

1. \kappa (\cdot , \^A) is \~F-measurable for any \^A\in \^F;

2. \kappa (\~\omega , \cdot ) is a probability measure on (\^\Omega , \^F) for any \~\omega \in \~\Omega .
2For the definition of such a Fubini extension, see Appendix A.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ASSET BUBBLES VIA RANDOM MATCHING 1309

which is the set of probability distributions p on \^S satisfying p(k, l) = p(l, k) for any k and l in
S. We endow \^\Delta with the topology T\Delta induced by the topology on the space of matrices with
| S| rows and | S| + 1 columns. Moreover, let \^p= (\^pn)n\geq 1 be a stochastic process on (\Omega ,F, P )
with values in \^\Delta , representing the evolution of the underlying extended type distribution. We
assume that \^p0 is deterministic.

We now introduce a dynamical system where agents match with each other and change
type with probabilities depending on exogenous, random factors defined on the space (\~\Omega , \~F, \~P ).
As random matching mechanisms are used to model decentralized environments, e.g., OTC
markets or labor markets, this has a wide area of applications. In the context of [30] and [34],
where agents meet to trade with goods, stochastic processes on (\~\Omega , \~F, \~P ) can model factors
which influence the availability of the good on the market, e.g., weather when the good is
food. In [34], where in addition two different currencies are introduced, a further stochastic
process defined on (\~\Omega , \~F, \~P ) can be used to describe the exchange rate. Moreover, in the labor
market model of [3], the space (\~\Omega , \~F, \~P ) can be used to represent the stock market which is
an indicator of the general economic situation. A further application for asset price bubbles
modeling is given in section 4.

The rest of the section is devoted to defining and constructing such a dynamical system
together with a suitable Fubini extension. Our presentation is structured as follows. We
first give the definition of random matching and of dynamical system; see Definitions 3.2
and 3.3, respectively. We then introduce stochastic processes on (\Omega ,F, P ) which identify the
probabilities of matching and type change. These processes are the parameters of our model
and depend in particular on the state of the world \~\omega \in \~\Omega and on the current distribution of
types \^p. In Definition 3.5 we introduce a specific dynamical system characterized by these
parameters. In Theorem 3.13 we then show that for the introduced input parameters there
exists a rich Fubini extension (I \times \Omega , I \boxtimes F, \lambda \boxtimes P ) on which our dynamical system can be
constructed. In order to do that, we fix (\~\Omega , \~F, \~P ) and exploit (3.1)--(3.2). We finally show
relevant properties of the dynamical system in Theorem 3.14.

We now describe a matching mechanism among the agents, by following Definition 2
in [16].

Definition 3.2.
1. A full matching \phi : I \rightarrow I is a one-to-one mapping such that for each i \in I, \phi (i) \not = i,

and \phi (\phi (i)) = i.
2. A (partial) matching \psi is a matching from I to I such that for some subset B of I,

the restriction of \psi to B is a full matching on B, and \psi (i) = i on I \setminus B. This means
that agent i is matched with agent \psi (i) for i \in B, whereas any agent i not in B is
unmatched, represented by setting \psi (i) = i.

3. A random matching on \Omega is a mapping \pi : I \times \Omega \rightarrow I such that \pi \omega := \pi (\cdot , \omega ) is a
matching for each \omega \in \Omega .

In what follows we use ``matching"" to denote a partial matching for the sake of simplicity.
We now provide the general definition of dynamical systems.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1310 BIAGINI, MAZZON, MEYER-BRANDIS, AND OBERPRILLER

Definition 3.3. A dynamical system D defined on (I\times \Omega , I\boxtimes F, \lambda \boxtimes P ) is a triple (\alpha ,\pi , g) =
(\alpha n, \pi n, gn)n\in N\setminus \{ 0\} =: (\Pi n)n\in N\setminus \{ 0\} such that for each integer period n \geq 1 we have the
following:

1. \alpha n : I \times \Omega \rightarrow S is the I\boxtimes F-measurable agent-type function. The corresponding end-of-
period type of agent i under the realization \omega \in \Omega is given by \alpha n(i,\omega )\in S.

2. A random matching \pi n : I \times \Omega \rightarrow I, describing the end-of-period agent \pi n(i) to whom
agent i is currently matched, if agent i is currently matched. If agent i is not matched,
then \pi n(i) = i. The associated I\boxtimes F-measurable partner-type function gn : I \times \Omega \rightarrow 
S \cup \{ J\} is given by

gn(i,\omega ) =

\Biggl\{ 
\alpha n(\pi n(i,\omega ), \omega ) if \pi n(i,\omega ) \not = i,

J if \pi n(i,\omega ) = i,

providing the type of the agent to whom agent i is matched, if agent i is matched, or
J if agent i is not matched.

A dynamical, directed random matching mechanism was studied for the first time in [15],
where the probabilities describing the random matching only depend on the current probability
distribution on the space of pairs consisting of an agent's type and the type of the agent with
whom she is matched. We now generalize this approach by allowing the probabilities also
to depend on the state of the world, which influences the random matching. Hereby, the
technical difficulty is to find a suitable setting to extend the results in [15] in a consistent way,
as the existence of the random matching system in [15] relies extensively on techniques of
nonstandard analysis. This is necessary in order to construct a Fubini extension by working
with Loeb spaces which satisfy a Fubini property.

In this setting we describe how agents may change their type by random matching with
other agents. Consider time periods (n)n\geq 1.

Each time period n can be divided into three steps: mutation, random matching, and
match-induced type changing with break-up. In the first step, agents might mutate their type,
and in the second step, any currently unmatched agent can be matched. Finally, in the third
step a currently matched pair of agents can either break up or stay in their relationship.
They can also change type as a consequence of their matching or their break up. We assume
that the probabilities of these mechanisms depend on input processes (\eta n, \theta n, \xi n, \sigma n, \varsigma n)n\geq 1

on (\Omega ,F, P ) as we describe next. Here, (\eta n, \theta n, \xi n, \sigma n, \varsigma n) are matrix valued processes with

(\eta n, \theta n, \xi n, \sigma n, \varsigma n) = (\eta nkl, \theta 
n
kl, \xi 

n
kl, \sigma 

n
kl[r, s], \varsigma 

n
kl[r])k,l,r,s\in S\times S\times S\times S

for n \geq 1. In particular, we assume that the input processes are of the following form. For
any n\geq 1, k, l \in S, and any \iota = \eta , \theta , \xi , \sigma [r, s], \varsigma [r] we set

\iota nkl : (\Omega ,F, P )\rightarrow ([0,1],B([0,1])),

\iota nkl(\omega ) := \iota kl(\~\omega ,n, \^p
n(\~\omega , \^\omega ))(3.3)

with \iota kl : \~\Omega \times N\times \^\Delta \rightarrow [0,1]. Precisely, if \^pn(\~\omega , \^\omega ) is the underlying extended type distribution
at time n\in N under the scenario (\~\omega , \^\omega )\in \Omega , then

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ASSET BUBBLES VIA RANDOM MATCHING 1311

\bullet \eta kl(\~\omega ,n, \^p
n(\~\omega , \^\omega )) is the probability that an agent of type k becomes an agent of type

l at the first, mutation step time n given \~\omega ;
\bullet \theta kl(\~\omega ,n, \^p

n(\~\omega , \^\omega )) is the probability that an unmatched agent of type k is matched to
an agent of type l given the scenario \~\omega at time n; we define bnk(\omega ) := 1 - 

\sum 
l\in S ;\theta 

n
kl(\omega );

\bullet \xi kl(\~\omega ,n, \^p
n(\~\omega , \^\omega )) is the probability that a matched pair of types k and l breaks up

under \~\omega at time n;
\bullet \sigma kl[r, s](\~\omega ,n, \^p

n(\~\omega , \^\omega )) is the probability that a matched pair of agents of respective
types k and l, which stays in their relationship, becomes a pair of agents of type r and
s, at the third time step at time n given \~\omega ;

\bullet \varsigma nlk[r](\~\omega ,n, \^p
n(\~\omega , \^\omega )) is the probability that given a pair of agents of type k and l that

break up at time n, the agent of type k becomes an agent of type r given \~\omega .
We assume the following:

\bullet for any n\geq 1, k, l \in S and every \iota = \eta , \theta , \xi , \sigma [r, s], \varsigma [r], the function \iota nkl is (F,B([0,1]))-
measurable.

\bullet (\eta 0, \theta 0, \xi 0, \sigma 0, \varsigma 0) are deterministic, i.e.,

\eta (0, \cdot ), \theta (0, \cdot ), \xi (0, \cdot ), \sigma (0, \cdot ), \varsigma (0, \cdot ) : \^\Delta \rightarrow [0,1].

\bullet For every n\geq 1 and each k \in S and \omega \in \Omega it holds that\sum 
l\in S

\eta nkl(\omega ) = 1.(3.4)

\bullet For all k, l \in S, \~\omega \in \~\Omega , and n \in N the function \^pkJ\theta kl(\~\omega ,n, \^p) is continuous in \^p \in \^\Delta 
with respect to the topology T\Delta . Moreover, for any k, l \in S, \~\omega \in \~\Omega , n \in N, and \^p \in \^\Delta 
we suppose the following to hold:

\^pkJ\theta kl(\~\omega ,n, \^p) = \^plJ\theta lk(\~\omega ,n, \^p) and
\sum 
r\in S

\theta kr(\~\omega ,n, \^p)\leq 1.(3.5)

\bullet For every n\geq 1, k, l \in S, it holds that \xi nkl = \xi nlk.
\bullet For every k, l, r, s\in S and each \omega \in \Omega it holds that\sum 

r,s\in S
\sigma nkl[r, s](\omega ) = 1 and \sigma nkl[r, s](\omega ) = \sigma nlk[s, r](\omega ).(3.6)

\bullet For every n\geq 1, k, l, r \in S and each \omega \in \Omega it holds that\sum 
r\in S

\varsigma nkl[r](\omega ) = 1.(3.7)

Remark 3.4. Note that for fixed \~\omega \in \~\Omega , the processes (\eta , \theta , \xi , \sigma , \varsigma ) are deterministic and
depend only on the current time n and the extended type distribution \^pn at time n. This
means that for fixed \~\omega \in \~\Omega the setting boils down to the framework of [15]. While in [15] only
the input parameter \theta , i.e., the parameter determining the random matching step, depends
on \^p and the other parameters \eta , \xi , \sigma , \varsigma are independent of \^p, we consider a dependence on \^p
in every parameter. This allows us to take into account self-reinforcement mechanisms fueling
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1312 BIAGINI, MAZZON, MEYER-BRANDIS, AND OBERPRILLER

the shift of agents toward a given type; see also our application in section 4. Moreover, \theta n

must depend on \^pn in order for (3.5) to hold.

Next, we use the processes (\eta , \theta , \xi , \sigma , \varsigma ) introduced above to construct a specific dynamical
system D as in Definition 3.3 with random probabilities, as an extension of a dynamical system
in [15].

Definition 3.5. Let an initial condition \Pi 0 = (\alpha 0, \pi 0, g0) of D be given, i.e., functions
\alpha 0 : I\rightarrow S, \pi 0 : I\rightarrow I and g0 : I\rightarrow S\cup \{ J\} . A dynamical system D defined on (I\times \Omega , I\boxtimes F, \lambda \boxtimes P )
with parameters (\eta , \theta , \xi , \sigma , \varsigma ) = (\eta n, \theta n, \xi n, \sigma n, \varsigma n)n\geq 1 is defined as follows.

Assume that \Pi n - 1 = (\alpha n - 1, \pi n - 1, gn - 1) is given for some n \geq 1, and define \Pi n =
(\alpha n, \pi n, gn) by characterizing the three substeps of random change of types of agents, random
matchings, break-ups, and possible type changes after matchings and break-ups as follows.

Mutation. For n\geq 1 consider an I\boxtimes F-measurable postmutation function

\=\alpha n : I \times \Omega \rightarrow S.

In particular, \=\alpha n
i (\omega ) := \=\alpha n(i,\omega ) is the type of agent i after the random mutation under the

scenario \omega \in \Omega . The type of the agent to whom an agent is matched is identified by an
I\boxtimes F-measurable function

\=gn : I \times \Omega \rightarrow S \cup \{ J\} ,

given by

\=gn(i,\omega ) = \=\alpha n(\pi n - 1(i,\omega ), \omega )

for any \omega \in \Omega . In particular, \=gni (\omega ) := \=gn(i,\omega ) is the type of the agent to whom agent i is
matched under the scenario \omega \in \Omega . Given \^pn - 1 and \~\omega \in \~\Omega , for any k1, k2, l1, and l2 in S, for
any r \in S \cup \{ J\} , for \lambda -almost every agent i, by the definition of (\eta k,l)k,l\in S we have

\^P \~\omega 
\bigl( 
\=\alpha n
i (\~\omega , \cdot ) = k2, \=gni (\~\omega , \cdot ) = l2| \alpha n - 1

i (\~\omega , \cdot ) = k1, g
n - 1
i (\~\omega , \cdot ) = l1, \^pn - 1(\~\omega , \cdot )

\bigr) 
(\^\omega )

= \eta k1,k2

\bigl( 
\~\omega ,n, \^pn - 1(\~\omega , \^\omega )

\bigr) 
\eta l1,l2

\bigl( 
\~\omega ,n, \^pn - 1(\~\omega , \^\omega )

\bigr) 
,(3.8)

\^P \~\omega 
\bigl( 
\=\alpha n
i (\~\omega , \cdot ) = k2, \=gni (\~\omega , \cdot ) = r| \alpha n - 1

i (\~\omega , \cdot ) = k1, g
n - 1
i (\~\omega , \cdot ) = J, \^pn - 1(\~\omega , \cdot )

\bigr) 
(\^\omega )

= \eta k1,k2

\bigl( 
\~\omega ,n, \^pn - 1(\~\omega , \^\omega )

\bigr) 
\delta J(r).(3.9)

We then define

\=\beta n(\omega ) = (\=\alpha n(\omega ), \=gn(\omega )), n\geq 1.

The postmutation extended type distribution realized in the state of the world \omega \in \Omega is denoted
by \v p(\omega ) = (\v pn(\omega )[k, l])k\in S,l\in S\cup \{ J\} , where

\v pn(\omega )[k, l] := \lambda (\{ i\in I : \=\alpha n(i,\omega ) = k, \=gn(i,\omega ) = l\} ).(3.10)

Matching. We introduce a random matching \=\pi n : I \times \Omega \rightarrow I and the associated post-
matching partner-type function \=\=gn given by

\=\=gn(i,\omega ) =

\Biggl\{ 
\=\alpha n(\=\pi n(i,\omega ), \omega ) if \=\pi n(i,\omega ) \not = i,

J if \=\pi n(i,\omega ) = i,

satisfying the following properties:
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ASSET BUBBLES VIA RANDOM MATCHING 1313

1. \=\=gn is I\boxtimes F-measurable.
2. For any \~\omega \in \~\Omega , any k, l \in S, and any r \in S \cup \{ J\} , it holds that

\^P \~\omega (\=\=gn(\~\omega , \cdot ) = r| \=\alpha n
i (\~\omega , \cdot ) = k, \=gni (\~\omega , \cdot ) = l)(\^\omega ) = \delta l(r).

This means that

\=\pi n\omega (i) = \pi n - 1
\omega (i) for any i\in \{ i : \pi n - 1(i,\omega ) \not = i\} .

3. Given \~\omega \in \~\Omega and the postmutation extended type distribution \v pn in (3.10), an un-
matched agent of type k is matched to an unmatched agent of type l with conditional
probability \theta kl(\~\omega ,n, \v p

n), that is, for \lambda -almost every agent i and \^P \~\omega -almost every \^\omega , by
the definition of (\theta nk,l)k,l\in S we have

\^P \~\omega (\=\=gn(\~\omega , \cdot ) = l| \=\alpha n
i (\~\omega , \cdot ) = k, \=gni (\~\omega , \cdot ) = J, \v pn(\~\omega , \cdot ))(\^\omega ) = \theta nkl(\~\omega , \v p

n(\~\omega , \^\omega )).(3.11)

This also implies that

\^P \~\omega (\=\=gn(\~\omega , \cdot ) = J | \=\alpha n
i (\~\omega , \cdot ) = k, \=gni (\~\omega , \cdot ) = J, \v pn(\~\omega , \cdot )) (\^\omega )

= 1 - 
\sum 
l\in S

\theta nkl(\~\omega , \v p
n(\~\omega , \^\omega )) = bk(\~\omega , \v pn(\~\omega , \^\omega )).(3.12)

The extended type of agent i after the random matching step is

\=\=\beta ni (\omega ) = (\=\alpha n
i (\omega ), \=\=g

n
i (\omega )), n\geq 1.

We denote the postmatching extended type distribution realized in \omega \in \Omega by \v \v pn(\omega ) =
(\v \v pn(\omega )[k, l])k\in S,l\in S\cup \{ J\} , where

\v \v pn(\omega )[k, l] := \lambda (\{ i\in I : \=\=\alpha n(i,\omega ) = k, \=gn(i,\omega ) = l\} ).(3.13)

Type changes of matched agents with break-up. We now define a random matching
\pi n by

\pi n(i) =

\Biggl\{ 
\=\pi n(i) if \=\pi n(i) \not = i,

i if \=\pi n(i) = i.
(3.14)

We then introduce an (I\boxtimes F)-measurable agent-type function \alpha n and an (I\boxtimes F)-measurable
partner-type function gn with

gn(i,\omega ) = \alpha n(\pi n(i,\omega ), \omega ), n\geq 1,

for all (i,\omega ) \in I \times \Omega . Given \~\omega \in \~\Omega , \v \v pn \in \^\Delta , for any k1, k2, l1, l2 \in S and r \in S \cup \{ J\} , for
\lambda -almost every agent i, and for \^P \~\omega -almost every \^\omega , we have

\^P \~\omega (\alpha n
i (\~\omega , \cdot ) = l1, g

n
i (\~\omega , \cdot ) = r| \=\alpha n

i (\~\omega , \cdot ) = k1, \=\=gni (\~\omega , \cdot ) = J) (\^\omega ) = \delta k1
(l1)\delta J(r),(3.15)
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1314 BIAGINI, MAZZON, MEYER-BRANDIS, AND OBERPRILLER

\^P \~\omega 
\bigl( 
\alpha n
i (\~\omega , \cdot ) = l1, g

n
i (\~\omega , \cdot ) = l2| \=\alpha n

i (\~\omega , \cdot ) = k1, \=\=gni (\~\omega , \cdot ) = k2, \v \v pn(\~\omega , \cdot )
\bigr) 
(\^\omega )

=
\bigl( 
1 - \xi k1k2

(\~\omega ,n, \v \v pn(\~\omega , \^\omega ))
\bigr) 
\sigma k1k2

[l1, l2](\~\omega ,n, \v \v p
n(\~\omega , \^\omega )),(3.16)

\^P \~\omega 
\bigl( 
\alpha n
i (\~\omega , \cdot ) = l1, g

n
i (\~\omega , \cdot ) = J | \=\alpha n

i (\~\omega , \cdot ) = k1, \=\=gni (\~\omega , \cdot ) = k2, \v \v pn(\~\omega , \cdot )
\bigr) 
(\^\omega )

= \xi k1k2
(\~\omega ,n, \v \v pn(\~\omega , \^\omega ))\varsigma nk1k2

[l1](\~\omega ,n, \v \v p
n(\~\omega , \^\omega )).(3.17)

The extended type function at the end of the period is

\beta n(\omega ) = (\alpha n(\omega ), gn(\omega )), n\geq 1.

We denote the extended type distribution at the end of period n realized in \omega \in \Omega by \^pn(\omega ) =
(\^pn(\omega )[k, l])k\in S,l\in S\cup J , where

\^pn(\omega )[k, l] := \lambda (\{ i\in I : \alpha n(i,\omega ) = k, gn(i,\omega ) = l\} ).(3.18)

Remark 3.6. If we set

P ( \^A) := P (\~\Omega \times \^A)

for any \^A\in \^F, then by (3.2) we have that

P
\Bigl( 
\^A| \=F
\Bigr) 
(\~\omega 1) := P

\Bigl( 
\^A\times \~\Omega | \=F

\Bigr) 
(\~\omega 1) =

\int 
\~\Omega 

\^P \~\omega ( \^A) \~P
\bigl( 
d\~\omega | \=F

\bigr) 
(\~\omega 1) = \^P \~\omega 1( \^A)

for every \~\omega 1 \in \~\Omega . Hence, for fixed \~\omega \in \~\Omega , the probabilities \^P \~\omega (\cdot ) which appear in Definition
3.5 might be regarded as conditional probabilities on the product space \Omega = \^\Omega \times \~\Omega endowed
with the \sigma -algebra \=F= \{ \emptyset ,\Omega \} \otimes \~F.

Remark 3.7. The random matching mechanism we propose describes the directed search for
a suitable counterpart by a continuum of agents. The word ``directed"" refers to the fact that
agents are motivated to meet among each other intentionally. However, in general we don't
make any specific assumption on the motivation for a meeting. Partnerships can immediately
break up or last until a given random break-up time. Every agent is described by a type which
may change at any time step, possibly as a consequence of a new match. In particular, we allow
probabilities governing matching, type change, and break-ups to be driven by some stochastic
exogenous factors. Information or opinion sharing can be viewed as possible stochastic factors
inducing type change after a match. In our application of section 4, for example, an agent
involved in a new match might become optimistic about the evolution of the asset's price if
her new partner communicates having earned good returns after buying it, as in the empirical
findings in [5]. This can feed a contagion mechanism, also described in [33], making people
switch to optimistic views. Note that, differently from [4], information or opinion sharing is
not necessarily about the final payoff of the asset, but can also concern the short-term returns.

In the following definition we describe a dynamical system D which satisfies additional
conditional independence assumptions.
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ASSET BUBBLES VIA RANDOM MATCHING 1315

Definition 3.8. A dynamical system D as in Definition 3.3 is Markov conditionally inde-
pendent given \~\omega \in \~\Omega if for \lambda -almost every i and j, for \^P \~\omega -almost every \^\omega \in \^\Omega , for every period
n\geq 1, and for all k1, k2 \in S, l1, l2 \in S \cup \{ J\} , the following properties hold:

1. initial dependence: \beta 0i and \beta 0j are independent.
2. Markov and independent mutation, conditional to \~\omega :

\^P \~\omega 
\Bigl( 
\=\beta ni (\~\omega , \cdot ) = (k1, l1), \=\beta nj (\~\omega , \cdot ) = (k2, l2)

\bigm| \bigm| \bigm| (\beta ti(\~\omega , \cdot ))n - 1
t=0 , (\beta 

t
j(\~\omega , \cdot ))n - 1

t=0

\Bigr) 
(\^\omega )

(3.19)

= \^P \~\omega 
\Bigl( 
\=\beta ni (\~\omega , \cdot ) = (k1, l1)

\bigm| \bigm| \bigm| \beta n - 1
i (\~\omega , \cdot )

\Bigr) 
(\^\omega ) \^P \~\omega 

\Bigl( 
\=\beta nj (\~\omega , \cdot ) = (k2, l2)

\bigm| \bigm| \bigm| \beta n - 1
j (\~\omega , \cdot )

\Bigr) 
(\^\omega ).

3. Markov and independent random matching, conditional to \~\omega :

\^P \~\omega 
\Bigl( 
\=\=\beta ni (\~\omega , \cdot ) = (k1, l1),

\=\=\beta nj (\~\omega , \cdot ) = (k2, l2)
\bigm| \bigm| \bigm| 

\=\beta ni (\~\omega , \cdot ), \=\beta nj (\~\omega , \cdot ), (\beta ti(\~\omega , \cdot ))n - 1
t=0 , (\beta 

t
j(\~\omega , \cdot ))n - 1

t=0

\bigr) 
(\^\omega )

= \^P \~\omega 
\Bigl( 
\=\=\beta ni (\~\omega , \cdot ) = (k1, l1)

\bigm| \bigm| \bigm| \=\beta ni (\~\omega , \cdot )\Bigr) (\^\omega ) \^P \~\omega 
\Bigl( 
\=\=\beta nj (\~\omega , \cdot ) = (k2, l2)

\bigm| \bigm| \bigm| \=\beta nj (\~\omega , \cdot )\Bigr) (\^\omega ).(3.20)

4. Markov and independent matched-agent-type changes with break-ups, conditional to \~\omega :

\^P \~\omega 
\Bigl( 
\beta ni (\~\omega , \cdot ) = (k1, l1), \beta 

n
j (\~\omega , \cdot ) = (k2, l2)

\bigm| \bigm| \bigm| 
\=\=\beta ni (\~\omega , \cdot ), \=\=\beta nj (\~\omega , \cdot ), (\beta ti(\~\omega , \cdot ))n - 1

t=0 , (\beta 
t
j(\~\omega , \cdot ))n - 1

t=0

\Bigr) 
(\^\omega )

= \^P \~\omega 
\Bigl( 
\beta ni (\~\omega , \cdot ) = (k1, l1)

\bigm| \bigm| \bigm| \=\=\beta ni (\~\omega , \cdot )\Bigr) (\^\omega ) \^P \~\omega 
\Bigl( 
\beta nj (\~\omega , \cdot ) = (k2, l2)

\bigm| \bigm| \bigm| \=\=\beta nj (\~\omega , \cdot )\Bigr) (\^\omega ).(3.21)

We now prove the existence of a Markov conditionally independent random matching by
using the same arguments as in [15]. The proof relies on the product structure of the space \Omega 
in (3.1) and the Markov kernel \^P in (3.2), as well as on concepts from nonstandard analysis.
Note here that an object with an upper left star means the transfer of a standard object to the
nonstandard universe. For a detailed overview of the necessary tools of nonstandard analysis
and a definition of hyperfinite internal probability space we refer to Appendces D.2 and D.3 in
[15], respectively.

From now on, we work under the following assumption.

Assumption 3.9. Let (\~\Omega , \~F, \~P ) be the probability space in (3.1). We assume that there
exists its corresponding hyperfinite internal probability space, which we denote from now on
also by (\~\Omega , \~F, \~P ) by slight notational abuse.

Remark 3.10. It is possible to construct such a space whose corresponding Loeb space can
be transferred to a classical standard probability space, as can be seen, for example, in [15],
where (\~\Omega , \~F, \~P ) is the space of trajectories of a multidimensional Markov process.

In the outlined setting we now prove the existence of a rich Fubini extension (I\times \Omega , I\boxtimes F, \lambda \boxtimes 
P ), on which a dynamical system D described in Definition 3.5 for given input probabilities
is defined.

Remark 3.11. Before we state the main results, we give an intuition on how the product
structure and the Markov kernel allow us to use the same arguments as in [15]. If we fix
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1316 BIAGINI, MAZZON, MEYER-BRANDIS, AND OBERPRILLER

the state of the world \~\omega , the input functions (\eta , \theta , \xi , \sigma , \varsigma ) are deterministic and we are in the
setting of [15]. Thus, by the results in [15] the existence of a space \^\Omega and \^P follows directly.
Motivated by this, we fix (\~\Omega , \~F, \~P ) and iteratively construct a suitable space (\^\Omega , \^F), together
with a probability measure \^P \~\omega for any \~\omega \in \~\Omega . By using the definition of the Markov kernel,
we can then define a measure P on the product space (\Omega ,F) = (\~\Omega \times \^\Omega , \~F\otimes \^F).

In a first step, we focus on the random matching step and show the existence of a suitable
hyperfinite probability space and partial matching. This is a generalization of Lemma 7 in
[15].

Proposition 3.12. Let (I, I0, \lambda 0) be a hyperfinite counting probability space with Loeb space
(I, I, \lambda ). Then, there exists a hyperfinite internal set \Omega with internal power set F0 such that
for any initial internal type function \alpha 0 : I\rightarrow S, any initial internal partial matching \pi 0 : I\rightarrow I
with

g0(i) =

\Biggl\{ 
\alpha 0(\pi 0(i)) if \pi 0(i) \not = i,

J if \pi 0(i) = i,

and any matching probability function \theta kl : \~\Omega \times N \times \^\Delta \rightarrow [0,1] and \^p \in \ast \^\Delta , there exist an
internal random matching \pi from I \times \Omega to I and an internal probability measure P0 with the
following properties.

1. It holds that

\Omega := \~\Omega \times \^\Omega and F0 := \~F\times \^F0,

where \^\Omega is a hyperfinite internal set, \^F0 is its internal power set, and (\~\Omega , \~F) is the
hyperfinite internal probability space which exists by Assumption 3.9.

2. We have P0 := \~P \ltimes \^P \^p
0 , where

\^P \^p
0 is a Markov kernel from \~\Omega to \^\Omega . From now on, we

denote \^P \^p,\~\omega 
0 := \^P \^p

0 (\~\omega ).
3. The internal random matching \pi : I \times \Omega \rightarrow I is defined as

\pi (i, (\~\omega , \^\omega )) := \^\pi (i, \^\omega ),

where \^\pi : I \times \^\Omega \rightarrow I is an internal random matching. We use the notation

\pi \^\omega (i) := \^\pi (i, \^\omega ) = \pi (i, (\~\omega , \^\omega ))(3.22)

for any \omega = (\~\omega , \^\omega )\in \Omega .
4. Let H = \{ i : \pi 0(i) \not = i\} . Then

\^P \^p,\~\omega 
0

\Bigl( 
\{ \^\omega \in \^\Omega : \pi \^\omega (i) = \pi 0(i) for any i\in H\} 

\Bigr) 
= 1

for any \^p\in \ast \^\Delta and \~\omega \in \~\Omega .
5. The internal mapping from I \times \Omega to S \cup \{ J\} is defined by the immersion

g(i, (\~\omega , \^\omega )) := \^g(i, \^\omega ),
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ASSET BUBBLES VIA RANDOM MATCHING 1317

where \^g is the internal mapping from I \times \^\Omega to S \cup \{ J\} , given by

\^g(i, \^\omega ) =

\Biggl\{ 
\alpha 0(\^\pi (i, \^\omega )) if \^\pi (i, \^\omega ) \not = i,

J if \^\pi (i, \^\omega ) = i,

for any (i, \^\omega )\in I \times \^\Omega . Then for any k, l \in S and fixed \^p\in \ast \^\Delta and \~\omega \in \~\Omega we have

\^P \^p,\~\omega 
0 (\^gi = l)\simeq \theta kl(\~\omega ,0, \^p)

for \lambda -almost every agent i\in I satisfying \alpha 0(i) = k and \pi 0(i) = i.
6. For any \^p \in \ast \^\Delta and \~\omega \in \~\Omega , denote the corresponding Loeb probability spaces of the

internal probability spaces (\^\Omega , \^F0, \^P
\^p,\~\omega 
0 ) and (I \times \^\Omega , I0 \otimes \^F0, \lambda 0 \otimes \^P \^p,\~\omega 

0 ) by (\^\Omega , \^F, \^P \^p,\~\omega )

and (I \times \^\Omega , I \boxtimes \^F, \lambda \boxtimes \^P \^p,\~\omega ), respectively. Moreover, denote the corresponding Loeb
probability spaces of the internal probability spaces (\Omega ,F0, P0) and (I\times \Omega , I0\otimes F, \lambda 0\otimes P0)
by (\Omega ,F, P ) and (I \times \Omega , I\boxtimes F, \lambda \boxtimes P ), respectively. The mapping \^g is an essentially
pairwise independent random variable from (I \times \^\Omega , I\boxtimes F, \lambda \boxtimes \^P \^p,\~\omega ) to S \cup \{ J\} for any
\^p\in \ast \^\Delta and \~\omega \in \~\Omega .

Proof. See Appendix B for the proof.

We are now ready to give the following theorem, which is the main result of the section.

Theorem 3.13. Let Assumption 3.9 hold and fix the input functions

(\eta kl, \theta kl, \xi kl, \sigma kl[r, s], \varsigma kl[r])k,l,r,s\in S\times S\times S\times S

defined above. Then for any extended type distribution \"p \in \^\Delta and any deterministic initial
condition \Pi 0 = (\alpha 0, \pi 0) there exists a rich Fubini extension (I \times \Omega , I\boxtimes F, \lambda \boxtimes P ) on which a
discrete dynamical system D = (\Pi n)\infty n=1 with parameters (\eta , \theta , \xi , \sigma , \varsigma ) as in Definition 3.5 can
be constructed. In particular,

\Omega = \~\Omega \times \^\Omega , F= \~F\otimes \^F, P = \~P \ltimes \^P ,

where (\^\Omega , \^F) is a measurable space and \^P a Markov kernel from \~\Omega to \^\Omega . The dynamical
system D is also Markov conditionally independent according to Definition 3.8 and with initial
cross-sectional extended type distribution \^p0 equal to \"p0 with probability one.

Proof. See section 2 of [9].

We now state some properties of the dynamical system D with input processes, which is
a generalization of the results in Appendix C in [15]. In particular, given \~\omega \in \~\Omega the following
result allows us to recursively calculate the expectation under \^P \~\omega of \^pn, \v pn, \v \v pn for every n\geq 1,
which will be useful for applications.

For each time n\geq 1 we define a map \Gamma n : \~\Omega \times \^\Delta \rightarrow \^\Delta as follows:

\Gamma n
kl(\~\omega , \^p) =

\sum 
k1,l1\in S

\bigl( 
1 - \xi k1l1

\bigl( 
\~\omega ,n, \~\~pn

\bigr) \bigr) 
\sigma k1l1 [k, l]

\bigl( 
\~\omega ,n, \~\~pn

\bigr) 
\~pnk1l1

+
\sum 

k1,l1\in S

\bigl( 
1 - \xi k1l1

\bigl( 
\~\omega ,n, \~\~pn

\bigr) \bigr) 
\sigma k1l1 [k, l]

\bigl( 
\~\omega ,n, \~\~pn

\bigr) 
\theta k1l1 (\~\omega ,n, \~p

n) \~pnk1J ,(3.23)
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1318 BIAGINI, MAZZON, MEYER-BRANDIS, AND OBERPRILLER

and

\Gamma n
kJ(\~\omega , \^p) = bk (\~\omega ,n, \~p

n) \~pnkJ +
\sum 

k1,l1\in S
\xi k1l1

\bigl( 
\~\omega ,n, \~\~pn

\bigr) 
\varsigma k1l1 [k]

\bigl( 
\~\omega , \~\~pn

\bigr) 
\~pnk1l1

+
\sum 

k1,l1\in S
\xi k1l1

\bigl( 
\~\omega ,n, \~\~pn

\bigr) 
\varsigma k1l1 [k]

\bigl( 
\~\omega ,n, \~\~pn

\bigr) 
\theta k1l1 (\~\omega ,n, \~p

n) \~pnk1J(3.24)

with

\~pnkl =
\sum 

k1,l1\in S
\eta k1k (\~\omega ,n, \^p)\eta l1l (\~\omega ,n, \^p) \^pk1l1

\~pnkJ =
\sum 
l\in S

\^plJ\eta lk (\~\omega ,n, \^p) ,

and

\~\~pnkl = \~pnkl + \theta kl (\~\omega ,n, \~p
n) \~pnkJ ,

\~\~pnkJ = bk (\~\omega ,n, \~p
n) \~pnkJ .

Theorem 3.14. Assume that the discrete dynamical system D introduced in Definition 3.5
is Markov conditionally independent given \~\omega \in \~\Omega according to Definition 3.8. Given \~\omega \in \~\Omega ,
the following holds:

1. For each n\geq 1, E \^P \~\omega 

[\^pn] = \Gamma n(\~\omega ,E \^P \~\omega 

[\^pn - 1]).
2. For each n\geq 1,

E
\^P \~\omega 

[\v pnkl] =
\sum 

k1,l1\in S
\eta k1,k

\Bigl( 
\~\omega ,n,E

\^P \~\omega 

[\^pn - 1]
\Bigr) 
\eta l1,l

\Bigl( 
\~\omega ,n,E

\^P \~\omega 

[\^pn - 1]
\Bigr) 

E
\^P \~\omega 

[\^pn - 1
k1,l1

]

and

E
\^P \~\omega 

[\v pnkJ ] =
\sum 
k1\in S

\eta k1,k

\Bigl( 
\~\omega ,n,E

\^P \~\omega 

[\^pn - 1]
\Bigr) 

E
\^P \~\omega 

[\^pn - 1
k1,J

].

3. For each n\geq 1,

E
\^P \~\omega 

[\v \v pnkl] = E
\^P \~\omega 

[\v pnkl] + \theta kl

\Bigl( 
\~\omega ,n,E

\^P \~\omega 

[\v pn]
\Bigr) 

E
\^P \~\omega 

[\v pnkJ ]

and

E
\^P \~\omega 

[\v \v pnkJ ] = bk

\Bigl( 
\~\omega ,n,E

\^P \~\omega 

[\v pn]
\Bigr) 

E
\^P \~\omega 

[\v pnkJ ].

4. For \lambda -almost every agent i, the extended type process \{ \beta ni \} \infty n=0 is a Markov chain in \^S

on (I \times \^\Omega , I\boxtimes \^F, \lambda \boxtimes \^P \~\omega ), whose transition matrix zn at time n - 1 is given by

zn(k\prime J)(kl)(\~\omega ) =
\sum 

k1,l1,k\prime \in S

\bigl( 
1 - \xi k1l1(\~\omega ,n, \~\~p

\~\omega ,n)
\bigr) 
\sigma k1l1 [k, l]

\bigl( 
\~\omega ,n, \~\~p\~\omega ,n

\bigr) 
\cdot \theta k1l1

\bigl( 
\~\omega ,n, \~p\~\omega ,n

\bigr) 
\eta k\prime k1

\Bigl( 
\~\omega ,n,E

\^P \~\omega 

[\^pn - 1]
\Bigr) 
,(3.25)

zn(k\prime l\prime )(kl)(\~\omega ) =
\sum 

k1,l1,k\prime ,l\prime \in S

\bigl( 
1 - \xi k1l1

\bigl( 
\~\omega ,n, \~\~p\~\omega ,n

\bigr) \bigr) 
\sigma k1l1 [k, l]

\bigl( 
\~\omega ,n, \~\~p\~\omega ,n

\bigr) 
\cdot \eta k\prime k1

\Bigl( 
\~\omega ,n,E

\^P \~\omega 

[\^pn - 1]
\Bigr) 
\eta l\prime l1

\Bigl( 
\~\omega ,n,E

\^P \~\omega 

[\^pn - 1]
\Bigr) 
,(3.26)
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ASSET BUBBLES VIA RANDOM MATCHING 1319

zn(k\prime l\prime )(kJ)(\~\omega ) =
\sum 

k1,l1\in S
\xi k1l1

\bigl( 
\~\omega ,n, \~\~p\~\omega ,n

\bigr) 
\varsigma k1l1 [k]

\bigl( 
\~\omega ,n, \~\~p\~\omega ,n

\bigr) 
\cdot \eta k\prime k1

\Bigl( 
\~\omega ,n,E

\^P \~\omega 

[\^pn - 1]
\Bigr) 
\eta l\prime l1

\Bigl( 
\~\omega ,n,E

\^P \~\omega 

[\^pn - 1]
\Bigr) 
,(3.27)

zn(k\prime J)(kJ)(\~\omega ) = bk
\bigl( 
\~\omega ,n, \~p\~\omega ,n

\bigr) 
\eta k\prime k

\Bigl( 
\~\omega ,n,E

\^P \~\omega 

[\^pn - 1]
\Bigr) 

+
\sum 

k1,l1\in S
\xi k1l1

\bigl( 
\~\omega ,n, \~\~p\~\omega ,n

\bigr) 
\varsigma k1l1 [k]

\bigl( 
\~\omega ,n, \~\~p\~\omega ,n

\bigr) 
\theta k1l1

\bigl( 
\~\omega ,n, \~p\~\omega ,n

\bigr) 
\cdot \eta k\prime k1

\Bigl( 
\~\omega ,n,E

\^P \~\omega 

[\^pn - 1]
\Bigr) 
.(3.28)

5. For \lambda -almost every i and j, the Markov chains \{ \beta ni \} \infty n=0 and \{ \beta nj \} \infty n=0 are independent

of (\^\Omega , \^F, \^P \~\omega ).
6. For \^P \~\omega -almost every \^\omega \in \^\Omega , the cross-sectional extended type process \{ \beta n\^\omega \} \infty n=0 is a

Markov chain on (I, I, \lambda ) with transition matrix zn at time n - 1, which is defined in
(3.25)--(3.28).

7. For any (k, l)\in S \times (S \cup \{ J\} ) we have

E
\^P \~\omega 

[\v pnkl] = \v pnkl, E
\^P \~\omega 

[\v \v pnkl] = \v \v pnkl, and E
\^P \~\omega 

[\^pnkl] = \^pnkl,

\^P \~\omega -a.s.

Proof. See section 3 of [9].

Remark 3.15. By using Remark 3.6, the results in Theorem 3.14 also hold on the product
space \Omega = \^\Omega \times \~\Omega by conditioning on \=F with respect to the probability measure P .

4. Application: A dynamic directed random matching model for the evolution of
asset price bubbles. We now use the random matching mechanism described in section 3 to
describe interactions among investors in the setting of section 2. We consider an atomless
probability space (I, I, \lambda ) representing the space of investors. We introduce the space of
investors' types S = \{ 1,2,3\} , where investors of type 1, 2, 3 are respectively optimistic, neutral,
and pessimistic, and the space \^\Delta = (\^pij)i=1,2,3,j=1,2,3,J of processes with values in the space of
matrices with three rows and four columns3 representing the extended type distributions. We
denote with \^pnij the fraction of investors of type i= 1,2,3 at time tn matched with a partner
of type j = 1,2,3, and with \^pniJ the fraction of unmatched agents of type i at time tn. For any
k= 0, . . . ,N , we then have

\^pki =

3\sum 
j=1

\^pkij + \^pkiJ .(4.1)

Let (\~\Omega , \~F, \~F = (\~Fi)i=0,...,N , \~P ) be a filtered probability space from subsection 2.1 on which
the stochastic processes (F i)i=0,...,N , (M i)i=0,...,N , (\Lambda i)i=0,...,N , (\kappa i)i=0,...,N , (\Theta i)i=0,...,N are
defined. Then, Theorem 3.13 provides the existence of a rich Fubini extension (I \times \Omega , I\boxtimes F,

3This space can be endowed with a topology on the space of matrices.
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1320 BIAGINI, MAZZON, MEYER-BRANDIS, AND OBERPRILLER

\lambda \boxtimes P ) for a discrete dynamical system D = (\Pi n)\infty n=1 as in Definition 3.5 with

\Omega = \~\Omega \times \^\Omega , F= \~F\otimes \^F, P = \~P \ltimes \^P ,

where (\^\Omega , \^F) is a measurable space on which the stochastic process \^pi = (\^pki )k=0,...,N , i= 1,2,3,

can be constructed as in the proof of Theorem 3.13, and \^P is a Markov kernel from \~\Omega to \^\Omega 
according to Definition 3.1.

By Theorem 3.14, the dynamics of the fraction of optimistic, neutral, and pessimistic
agents are identified by the conditional transition probabilities

(\eta kl, \theta kl, \xi kl, \sigma kl[r, s], \varsigma kl[r])k,l,r,s\in S\times S\times S\times S .

Next, we specify the form of these functions in this setting.
We do not make any particular assumptions on (\theta kl, \xi kl, \varsigma kl[r])k,l,r,s\in S\times S\times S , which identify

the conditional probabilities of matching, break-up, and post-break-up change of type. We just
emphasize that their evolution depends on some state of \~\Omega . We focus instead on modeling the
functions \eta k1,k2

and \sigma k1k2
[l1, l2], k1, k2, l1, l2 = 1,2,3, appearing in (3.8) and (3.16), respectively.

Such quantities represent the probabilities of type change, independent of matching or after a
new match, conditional to the state of \~\Omega and to the current values of the fractions of investors'
types. They depend on the state of \~\Omega , on the values of the current fractions of optimistic,
neutral, and pessimistic investors, and on the type of the agent to whom they are matched in
the case of postmatch type change, as follows:

(i) A match with an optimistic agent may induce an upgrade in type (i.e., from 3 to 1 or
2, or from 2 to 1).

(ii) A match with a pessimistic agent may induce a downgrade of type (i.e., from 1 to 2
or 3, or from 2 to 3).

(iii) The propensity of an agent to become more optimistic, i.e., to change type from 3 to
1,2 or from 2 to 1, is increasing with respect to \^p1 - \^p3. On the contrary, the propensity
of an agent to become more pessimistic is increasing with respect to \^p3 - \^p1. This holds
for both the type changes, conditional or unconditional to the match.

Before giving an example of such conditional probabilities, we comment on the above
model.

Remark 4.1. The main features of the model described above are the following:
(i) All the processes determining the matching, breaking-up, and type change probabilities

depend on some underlying stochastic processes on the probability space (\~\Omega , \~F, \~P ).
These factors may represent socioeconomic indicators as well as the fundamental price
of the assets or the impact of public news. In this way, the birth of the bubble may
be determined by changes in the driving factors, leading to a higher probability of
matching with optimistic traders or of changing type from pessimistic to optimistic
and vice versa.

(ii) Investors can change their views with a probability depending on the number of op-
timistic and pessimistic agents in the market. This assumption reflects that, when
observing a large number of optimistic agents in the market, an investor may be prone
to thinking she will have the opportunity to profit from other market participants'
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ASSET BUBBLES VIA RANDOM MATCHING 1321

overvaluation at least in the short or medium term. For example in the model of [39]
agents are willing to pay prices exceeding their own valuation of the fundamental value
of a bubbly asset because of speculation opportunities in the near future.

(iii) Traders can also influence each other when they meet. This reflects some phenomena
which are typically observed during both the blowing-up and the bursting phase. When
the bubble grows, herd behavior may be induced by a tendency to mimic the actions
of acquaintances making gains and by word-of-mouth spread of information regarding
the fast increase of the stock price. This will eventually fuel further up the prices;
see [33] for a description and formalization of this phenomenon and [5], where such
mechanisms are documented in the US 2007 housing bubble. Similar attitudes, but
in a different direction, characterize the investors' behavior starting the burst and
speeding up the decrease of the price after the burst.

We conclude the section by giving a concrete example of a possible choice of \eta k1,k2
and

\sigma k1k2
[l1, l2], k1, k2, l1, l2 = 1,2,3.

Example 4.2. Fix \~\omega \in \~\Omega and j \in \{ 1, . . . ,N\} , representing time. We set

\eta \~\omega ,jk1,k2
:= \eta k1k2

(\~\omega , j, \cdot )

and

\sigma \~\omega ,j
k1k2

[l1, l2] := \sigma k1k2
[l1, l2](\~\omega , j, \cdot ).

We model such conditional probabilities in the following way.
(i) Consider an increasing function f j : R+ \rightarrow [0,1/2] such that f j(0) = 0 and set

f j+ = f j
\Bigl( 
(\^pj1  - \^pj3)

+
\Bigr) 
, f j - = f j

\Bigl( 
(\^pj3  - \^pj1)

+
\Bigr) 
.(4.2)

Given the random variables Fijk : (\~\Omega , \~F) \rightarrow ([0,1/2],B([0,1/2])), i, j, k = 1,2,3, the
type change probabilities after a match are then defined as follows:
\bullet After a match of two agents of the same type who stay in a relationship we have

\sigma \~\omega ,j
kk (r, s) = \delta r(k)\delta s(k),

i.e., they both maintain their types.
\bullet After a match of two agents who are respectively optimistic and neutral and stay

in a relationship, we assume

\sigma \~\omega ,j
12 (k, \ell ) = 0 if k= 3 or \ell = 3 and \sigma \~\omega ,j

12 (2,1) = 0,

i.e., none of the agents changes his type to pessimistic and they do not switch types.
Moreover, we set

\sigma \~\omega ,j
12 (1,1) = F121(\~\omega ) + f j+, \sigma \~\omega ,j

12 (2,2) = F122(\~\omega ) + f j - ,

\sigma \~\omega ,j
12 (1,2) = 1 - \sigma \~\omega ,j

12 (1,1) - \sigma \~\omega ,j
12 (2,2),
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1322 BIAGINI, MAZZON, MEYER-BRANDIS, AND OBERPRILLER

i.e., the probability that the neutral agent changes to optimistic due to the match is
given by a random term depending only on \~\Omega plus a term which is strictly positive
only if the number of buyers is higher than the number of sellers, and increasing
with respect to their difference. The opposite holds for a possible change of the
optimistic agent to neutral.

\bullet After a match of two agents who are respectively neutral and pessimistic and stay
in a relationship, we assume that

\sigma \~\omega ,j
23 (k, \ell ) = 0 if k= 1 or \ell = 1 and \sigma \~\omega ,j

23 (3,2) = 0,

i.e., we exclude the possibility that one of them may become optimistic. In analogy
to the previous case, we fix

\sigma \~\omega ,j
23 (2,2) = F232(\~\omega ) + f j+, \sigma \~\omega ,j

23 (3,3) = F233(\~\omega ) + f j - ,

\sigma \~\omega ,j
23 (2,3) = 1 - \sigma \~\omega ,j

23 (2,2) - \sigma \~\omega ,j
23 (3,3).

\bullet For a match of two agents who are respectively neutral and pessimistic and stay in
a relationship, we put

\sigma \~\omega ,j
13 (3,1) = \sigma \~\omega ,j

13 (3,2) = \sigma \~\omega ,j
13 (2,2) = 0,

i.e., the agents do not switch their types and do not become neutral. We also set

\sigma \~\omega ,j
13 (1,1) = F131(\~\omega ) + (f j+)

2, \sigma \~\omega ,j
13 (1,2) = F132(\~\omega ) + f j+(1 - f j+),

\sigma \~\omega ,j
13 (3,3) = F133(\~\omega ) + (f j - )

2, \sigma \~\omega ,j
13 (2,3) = F132(\~\omega ) + f j - (1 - f j - ),

\sigma \~\omega ,j
13 (1,3) = 1 - \sigma \~\omega ,j

13 (1,1) - \sigma \~\omega ,j
13 (1,2) - \sigma \~\omega ,j

13 (3,3) - \sigma \~\omega ,j
13 (2,3)(4.3)

consistently with the construction above.
\bullet Condition (3.6) holds, i.e., \sigma \~\omega ,j

k\ell (r, s) = \sigma \~\omega ,j
\ell k (s, r).

(ii) Consider an increasing function gj : R+ \rightarrow [0,1/2] such that gj(0) = 0, and introduce
gj+ and gj - analogously to (4.2). We define

Bj =

\left(   1 - gj - gj - (1 - gj - ) (gj - )
2

gj+ 1 - gj+  - gj - gj - 
(gj+)

2 gj+(1 - gj+) 1 - gj+

\right)   ,

and then the matrix of the probabilities \eta \~\omega ,jk,l = [Bj ]kl + [C(\omega )]kl, k, l= 1,2,3, where

Cij(\omega ) : (\~\Omega , \~F)\rightarrow ([0,1/2],B([0,1/2]))

are random variables, i, j = 1,2,3.

Example 4.3. We focus again on the postmatching change of type described as in Example
4.2: agents may change their views after a match because of the information from other
traders. In particular, during the blowing-up phase of the bubble, upgrade of types may be

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ASSET BUBBLES VIA RANDOM MATCHING 1323

induced by matches with optimistic agents (i.e., buyers). In the current example we include
the idea that the tendency of an agent to switch to more optimistic forecasts after a match
also depends on the number of optimistic agents she has already met (and vice versa). We
include these considerations as follows. We let again N be the finite number of time periods.

The type4 of an agent is identified by a number k \in \^\^S := \{ 0,1, . . . ,3(N + 1)3  - 1\} defined as

k= no + nn(N + 1) + np(N + 1)2 + (v - 1)(N + 1)3,(4.4)

where no, nn, np are the number of optimistic, neutral, and pessimistic investors that the
agent has met, respectively, and v = 1,2,3 indicates an optimistic, neutral, and pessimistic
view, respectively.5 This means that, after a match, an agent of type k in (4.4) changes to
type

\=k= \=no + \=nn(N + 1) + \=np(N + 1)2 + (\=v - 1)(N + 1)3,

where \=ni = ni + 1 for i = o,n, p and \=nj = nj for j \not = i. Moreover, \=v \not = v if and only if the
investor changes forecasts.

Note that the views of an agent of type k are immediately identified as optimistic if
k < (N + 1)3, neutral if k \in [(N + 1)3,2(N + 1)3), and pessimistic if k \geq 2(N + 1)3. We can
also recover the fractions of optimistic, neutral, and pessimistic investors at time tk, denoted
above by \^pki , i= 1,2,3, respectively, by

\^pki =

(i+1)(N+1)3 - 1\sum 
l=i(N+1)3

\^\^p
k

l , i= 1,2,3, k= 0, . . . ,N,

where \^\^p
k

l is the fraction of investors of type l \in \^\^S at time tk. We then extend Example 4.2 by

defining \sigma \~\omega ,j
k1k2

[l1, l2], k1, k2, l1, l2 \in \^\^S, l = 1, . . .N , by also including the number of optimistic,
neutral, and pessimistic agents already met: pessimistic agents of type l = no + nn(N + 1) +
np(N+1)2 +2(N+1)3 which encounter an optimistic agent may switch to neutral or optimistic
with a probability increasing with respect to no. This is in line with Remark 4.1(iii).

As an example, for two agents of types

k1 = no + nn(N + 1) + np(N + 1)2 + 2(N + 1)3 and k2 =mo +mn(N + 1) +mp(N + 1)2,

and defining

l1 = (no + 1) + nn(N + 1) + np(N + 1)2 and l2 =mo +mn(N + 1) + (mp + 1)(N + 1)2,

we can set

\sigma \~\omega ,j
k1k2

[l1, l2] =
no

no + nn + np
F131(\~\omega ) + (f j+)

2,

4This is a small notational difference with respect to the setting of section 3, where 0 is not included in the
indices set. In this way the representation in (4.4) is easier.

5Clearly, not all k in (4.4) represent feasible types: for example, at the nth step, only types represented by
k = no + nn(N + 1) + np(N + 1)2 + v(N + 1)3 with no + nn + np \leq n are possible. When a type is infeasible,
the fraction of agents of that type is zero.
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1324 BIAGINI, MAZZON, MEYER-BRANDIS, AND OBERPRILLER

where F131(\cdot ) and f j+ are defined in Example 4.2. Here, \sigma \~\omega ,j
k1k2

[l1, l2](\~\omega ) is the probability that
a pessimistic agent (note that k1 > 2(N +1)3) that has already met no optimistic, nn neutral,
and np pessimistic investors and meets a further optimistic investor (note that k2 < (N+1)3),
becomes optimistic (note that l1 < (N + 1)3). This probability is increasing with respect to
no, so that the more optimistic investors the agent has already met, the more she is prone to
switch to optimistic views.

4.1. Absence of arbitrage. In this section, we provide a setting under which the financial
market model considered in section 4 is arbitrage-free in the sense of the following definition.

Definition 4.4. Let (\Omega ,G,G, \=P ) be a filtered probability space with a risky asset S and a
risk-free asset B = 1, such that the corresponding (discounted) price process is given by a
nonnegative adapted process S = (Si)i=0,...,N . We call a self-financing strategy \gamma = (\gamma (0), \gamma (1))6

an arbitrage opportunity if the associated value process V = (V i)i=0,...N given by

V 0 := \gamma 1 and V i := \gamma i \cdot Si

satisfies

V0 \leq 0, VT \geq 0 \=P -a.s., and \=P [VT > 0]> 0.

Theorem 4.5 (Theorem 1.7 in [20]). There exists no arbitrage on the financial market
introduced in section 4 if and only if there exists an equivalent martingale measure Q with
respect to P for the (discounted) market price S.

Remark 4.6. Definition 4.4 of arbitrage corresponds to the point of view of a price taker.
This is in line with considering a continuum of agents in section 3. More specifically, in an
atomless probability space (I, I, \lambda ) representing the space of agents, each individual agent has
no market-making power (see also, e.g., [36], [44]) and cannot influence the price process which
is in contrast determined by the impact of the group of all agents.

To ease the computations, we assume that the agents break up immediately, by setting
\xi kl = 1 for any k, l= 1,2,3. Thus, we only consider the probability \varsigma nkl[r] that when two agents
of types k, l break up immediately after matching, the first agent becomes of type r. Again
for the sake of simplicity, we also assume that \kappa k = 0 for all k= 0, . . . ,N . Then, by (2.3) and
(2.5) it follows that

Sk = Sk - 1 + F k  - F k - 1 + 2\Lambda kMk(Xk  - Xk - 1)

= Sk - 1 + F k  - F k - 1 + 2\Lambda kMk
\Bigl[ 
\Theta k(\^pk1  - x\^pk3) - \Theta k - 1(\^pk - 1

1  - \^pk - 1
3 )

\Bigr] 
(4.5)

for any k= 1, . . . ,N . For P = \~P \ltimes \^P given as in (3.2), we define a measure Q of the form

Q := \~Q\ltimes \^P ,(4.6)

where \~Q\sim \~P is a probability measure on \~\Omega .
The next lemma will be useful in the following and shows that the Markov kernel \^P does

not impact the expectation of (Sk)k=0,...,N : this follows from the exact law of large numbers
stated at point 7 in Theorem 3.14, which permits us to obtain (4.8) in the proof of the lemma.

6A trading strategy \gamma = (\gamma (0), \gamma (1)) with \gamma (j) = (\gamma i(j))i=1,...,N for j = 0,1 is called self-financing if
\gamma i \cdot Si = \gamma i+1 \cdot Si+1 for i= 1, . . . ,N  - 1 with \gamma i \cdot Si := \gamma i(0) + \gamma i(1)Si.
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ASSET BUBBLES VIA RANDOM MATCHING 1325

Lemma 4.7. Consider a random matching mechanism with immediate break-up. Let S =
(Sk)k=0,...,n be of the form (4.5) and let Q be given as in (4.6). Then it holds that

EQ
\Bigl[ 
Sk  - Sk - 1| Fk - 1

\Bigr] 
= E

\~Q
\Bigl[ 
F k  - F k - 1| \~Fk - 1

\Bigr] 
+ 2E

\~Q
\Bigl[ 
\Lambda kMk\Theta k

\Bigl( 
\Gamma k
1J(\cdot , \^pk - 1) - \Gamma k

3J(\cdot , \^pk - 1)
\Bigr) 
| \~Fk - 1

\Bigr] 
 - 2\Theta k - 1(\^pk - 1

1  - \^pk - 1
3 )E

\~Q
\Bigl[ 
\Lambda kMk| \~Fk - 1

\Bigr] 
, k= 1, . . . , n,

for \Gamma defined in (3.24).

Proof. Fix k= 1, . . . , n. Since (F i)i=0,...N , (M i)i=0,...N , (\Lambda i)i=0,...N , (\Theta i)i=0,...,N are defined
on (\~\Omega , \~F, \~Q), by (4.5) we have

EQ
\Bigl[ 
Sk  - Sk - 1| Fk - 1

\Bigr] 
= E

\~Q
\Bigl[ 
F k  - F k - 1| \~Fk - 1

\Bigr] 
+ 2EQ

\Bigl[ 
\Lambda kMk\Theta k

\Bigl( 
\^pk1  - \^pk3

\Bigr) 
| Fk - 1

\Bigr] 
 - 2\Theta k - 1(\^pk - 1

1  - \^pk - 1
3 )E

\~Q
\Bigl[ 
\Lambda kMk| \~Fk - 1

\Bigr] 
.(4.7)

From the definition of Q in (4.6) we get

EQ
\Bigl[ 
\Lambda kMk\Theta k \^pk

\Bigr] 
=

\int 
\~\Omega 
\Lambda k(\~\omega )Mk(\~\omega )\Theta k(\~\omega )E

\^P \~\omega 
\Bigl[ 
\^pk
\Bigr] 
d \~Q(\~\omega )

=

\int 
\~\Omega 
\Lambda k(\~\omega )Mk(\~\omega )\Theta k(\~\omega )\Gamma k

\Bigl( 
\~\omega ,E

\^P \~\omega 

[\^pk - 1]
\Bigr) 
d \~Q(\~\omega )

=

\int 
\~\Omega 
\Lambda k(\~\omega )Mk(\~\omega )\Theta k(\~\omega )\Gamma k

\Bigl( 
\~\omega , \^pk - 1

\Bigr) 
d \~Q(\~\omega )(4.8)

= E
\~Q
\Bigl[ 
\Lambda kMk\Theta k\Gamma k

\Bigl( 
\cdot , \^pk - 1

\Bigr) \Bigr] 
(4.9)

by points 1 and 7 in Theorem 3.14. By (4.1) we have

\^pk1  - \^pk3 =

3\sum 
j=1

\^pk1j + \^pk1J  - 
3\sum 

j=1

\^pk3j  - \^pk3J = \^pk1J  - \^pk3J ,

as the agents immediately break up. Then by (4.9) it follows that

EQ
\Bigl[ 
\Lambda kMk\Theta k

\Bigl( 
\^pk1  - \^pk3

\Bigr) 
| Fk - 1

\Bigr] 
= E

\~Q
\Bigl[ 
\Lambda kMk\Theta k

\Bigl( 
\Gamma k
1J(\cdot , \^pk - 1) - \Gamma k

3J(\cdot , \^pk - 1)
\Bigr) 
)| \~Fk - 1

\Bigr] 
,(4.10)

where we use that \Gamma k
ij(\~\omega , \^p) = 0 for all i, j = 1,2,3, \~\omega \in \~\Omega , \^p \in \^\Delta by (3.23), as \xi k1l1 = 1 for any

k1, l1 = 1,2,3.
Putting together (4.7) and (4.10) we get the result.

Proposition 4.8. Consider a random matching mechanism with immediate break-up. Let \~Q
be a probability measure equivalent to \~P such that

\bullet the stochastic processes (F k)k=1,...,N and (\Theta k)k=1,...,N are ( \~Q, \~F)-martingales;
\bullet for any k= 1, . . . , n it holds that

E
\~Q
\Bigl[ 
\Gamma k
1J(\cdot , \^pk - 1) - \Gamma k

3J(\cdot , \^pk - 1)| \~Fk - 1
\Bigr] 
= \^pk - 1

1  - \^pk - 1
3 ;(4.11)
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1326 BIAGINI, MAZZON, MEYER-BRANDIS, AND OBERPRILLER

\bullet the stochastic processes (\Gamma k
1J(\cdot , \^pk - 1)  - \Gamma k

3J(\cdot , \^pk - 1))k=1,...,N , (\Lambda kMk)k=1,...,N , and
(\Theta k)k=1,...,N are pairwise conditionally independent under \~Q given \~Fk - 1.

Then Q := \~Q\ltimes \^P is an equivalent martingale measure for the discounted asset price
S. Hence, the market model introduced in section 4 is arbitrage-free.

Proof. The measure Q := \~Q\ltimes \^P is clearly equivalent to P since \~Q \sim \~P . By Lemma 4.7
we have

EQ
\Bigl[ 
Sk  - Sk - 1| Fk - 1

\Bigr] 
= E

\~Q
\Bigl[ 
F k  - F k - 1| \~Fk - 1

\Bigr] 
+ 2E

\~Q
\Bigl[ 
\Lambda kMk\Theta k

\Bigl( 
\Gamma k
1J(\cdot , \^pk - 1) - \Gamma k

3J(\cdot , \^pk - 1)
\Bigr) 
| \~Fk - 1

\Bigr] 
 - 2\Theta k - 1(\^pk - 1

1  - \^pk - 1
3 )E

\~Q
\Bigl[ 
\Lambda kMk| \~Fk - 1

\Bigr] 
= 2E

\~Q
\Bigl[ 
\Lambda kMk| \~Fk - 1

\Bigr] 
E

\~Q
\Bigl[ 
\Theta k| \~Fk - 1

\Bigr] 
\cdot E \~Q

\Bigl[ \Bigl( 
\Gamma k
1J(\cdot , \^pk - 1) - \Gamma k

3J(\cdot , \^pk - 1)
\Bigr) 
| \~Fk - 1

\Bigr] 
 - 2\Theta k - 1(\^pk - 1

1  - \^pk - 1
3 )E

\~Q
\Bigl[ 
\Lambda kMk| \~Fk - 1

\Bigr] 
= 0,

where the second equality comes from the martingale property of F and from the condi-
tional independency assumption, whereas the last one follows from the martingale property
of (\Theta k)k=1,...,N and from (4.11).

In the following, we analyze under which conditions there exists a probability measure
\~Q \sim \~P satisfying the assumptions of Proposition 4.8. Similarly to Example 4.2 we choose
suitable functions \~\eta ij , \theta ij , \~\varsigma ilj : \~\Omega \times N \rightarrow [0,1], for any i, j, l= 1,2,3, i \not = j, and define

\eta ij(\~\omega ,k, \^p
k - 1) := \~\eta ij(\~\omega ,k)+fij

\Bigl( 
\^pk - 1
1J  - \^pk - 1

3J

\Bigr) 
,(4.12)

\theta il(\~\omega ,k, \~p
k) := \theta (\~\omega ,k)\~pklJ ,(4.13)

\varsigma il[j](\~\omega ,k, \~p
k) := \delta \{ l\} (j)

\Bigl( 
\~\varsigma ilj(\~\omega ,k)+gilj

\Bigl( 
\~pk1J  - \~pk3J

\Bigr) \Bigr) 
,(4.14)

for k = 1, . . . ,N , where fij , gijl : R \rightarrow [0,1], in such a way that (3.5) holds and that \eta ij , \varsigma il[j] \in 
[0,1]. Here \^pk - 1 is the distribution of agent types after the (k - 1)th time step and \~pk is the
distribution of types after the random change at the kth time step. Finally, in view of (3.4)
and (3.7), we define

\eta ii(\~\omega ,k, \^p
k - 1) = 1 - 

3\sum 
j=1,j \not =i

\eta ij(\~\omega ,k, \^p
k - 1)(4.15)

and

\varsigma il[i](\~\omega ,k, \~p
k) = 1 - 

3\sum 
j=1,j \not =i

\varsigma il[j](\~\omega ,k, \~p
k).(4.16)
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ASSET BUBBLES VIA RANDOM MATCHING 1327

Note that (4.14) and (4.16) imply that

\varsigma ii[i](\~\omega ,k, \~p
k) = 1 - 

3\sum 
j=1,j \not =i

\varsigma ii[j](\~\omega ,k, \~p
k) = 1,(4.17)

that is, when two agents of the same type meet, they keep their type.

Remark 4.9. In the construction (4.12)--(4.14), type changes are governed by a stochastic
driver defined on the space \~\Omega plus a term which only depends on the former distribution of
types. Also note that \varsigma ij [l] depends in general on the distribution \~\~p immediately after the
break-up, which coincides with the distribution \~p before the matching, as agents break up
immediately.

Lemma 4.10. Consider a random matching mechanism with immediate break-up, where
the functions \eta ij , \theta ij , \varsigma ij [l] for i, j, l = 1,2,3 are defined in (4.12)--(4.14). Let Q be given as in
(4.6). Then it holds that

\Gamma k
iJ(\~\omega , \^p

k - 1) = (1 - \theta (\~\omega ,k))F \~\omega 
i (\^p

k - 1) + \theta (\~\omega ,k)F \~\omega 
i (\^p

k - 1)F \~\omega 
i (\^p

k - 1)

+

3\sum 
k1=1,k1 \not =i

\biggl( 
\~\varsigma k1ii(\~\omega ,k) + gk1ii

\Bigl( 
F \~\omega 
1 (\^p

k - 1) - F \~\omega 
3 (\^p

k - 1)
\Bigr) 

+ 1 - \~\varsigma ik1k1
(\~\omega ,k) - gik1k1

\Bigl( 
F 1
\~\omega (\^p

k - 1) - F \~\omega 
3 (\^p

k - 1)
\Bigr) \biggr) 

\cdot F \~\omega 
i (\^p

k - 1)F \~\omega 
k1
(\^pk - 1)\theta (\~\omega ,k),(4.18)

for i= 1,2,3 and k\geq 2, where

F \~\omega 
i (\^p

k - 1) :=

3\sum 
l=1,l \not =i

\^pk - 1
lJ

\Bigl( 
\~\eta li(\~\omega ,k)+fli

\Bigl( 
\^pk - 1
1J  - \^pk - 1

3J

\Bigr) \Bigr) 

+ \^pk - 1
iJ

\left(  1 - 
3\sum 

l=1,l \not =i

\Bigl( 
\~\eta il(\~\omega ,k)+fil

\Bigl( 
\^pk - 1
1J  - \^pk - 1

3J

\Bigr) \Bigr) \right)  .(4.19)

Proof. By (3.24), (4.12)--(4.14), and (4.16)--(4.17), we have

\Gamma k
iJ(\~\omega , \^p

k - 1)

= (1 - \theta (\~\omega ,k)) \~pkiJ + \theta (\~\omega ,k)\~pkiJ \~p
k
iJ

+

3\sum 
k1=1,k1 \not =i

\Bigl( 
\~\varsigma k1ii(\~\omega ,k) + gk1ii

\Bigl( 
\~pk1J  - \~pk3J

\Bigr) 
+ 1 - \~\varsigma ik1k1

(\~\omega ,k) - gik1k1

\Bigl( 
\~pk1J  - \~pk3J

\Bigr) \Bigr) 
\cdot \~pkiJ \~pkk1J\theta (\~\omega ,k),(4.20)

with \~pkiJ = F \~\omega 
i (\^p

k - 1), where F \~\omega 
i (\^ptk - 1

) is defined in (4.19).

We now give an example where the functions (\~\eta ij)i,j=1,2,3, \theta , (\~\varsigma ijk)i,j,k=1,2,3 can be chosen to
guarantee the existence of a probability measure \~Q\sim \~P on (\~\Omega , \~F) satisfying the assumptions of
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1328 BIAGINI, MAZZON, MEYER-BRANDIS, AND OBERPRILLER

Proposition 4.8. Proposition 4.8 then implies that the associated Q := \~Q\ltimes \^P is an equivalent
martingale measure for the market price S of the asset, and consequently that the market
model is arbitrage-free.

Example 4.11. Let

\~\Omega :=

N\prod 
k=1

\Bigl( 
\~\Omega k \times \~\~\Omega k

\Bigr) 
,(4.21)

with \~\Omega k := \{ \~\omega k
1 , \~\omega 

k
2\} for k = 1, . . . ,N and \~\~\Omega k :=

\prod 3
r=1

\~\~\Omega k,r where \~\~\Omega k,r = \{ \~\~\omega k
ir
, . . . , \~\~\omega k

ir+1
\} with

i1 = 1, i2 = l1, i3 = l2, i4 = l for finite numbers 1 < l1 < l2 < l, endowed with \sigma -algebras
\~Fk and

\~\~Fk, respectively. Without mentioning any further, we assume that each \sigma -algebra is
generated by the subsets of the corresponding space. Moreover, we denote by \omega , \~\omega k elements
of \Omega , \~\Omega k for k= 1, . . . ,N , respectively. Introduce P := \~P \ltimes \^P by choosing

\~P :=

N\bigotimes 
k=1

\Bigl( 
\~Pk \otimes \~\~Pk

\Bigr) 
with \~Pk probability measure on \~\Omega k and \~\~Pk =

\prod 3
r=1

\~\~Pk,r where \~\~Pk,1,
\~\~Pk,2, and

\~\~Pk,3 are prob-

ability measures on \~\~\Omega k,1,
\~\~\Omega k,2, and

\~\~\Omega k,3, respectively, for any k = 1, . . . ,N . Moreover, we
assume that

\~Pk(\~\omega 
k
i )> 0 for any i= 1,2, k= 1, . . . ,N,(4.22)

and \~\~Pk(\~\~\omega 
k
i ) > 0 for any i = 1, . . . , l, k = 1, . . . ,N . Let the processes \Theta and F be defined on\prod N

k=1
\~\~\Omega k,1 and

\prod N
k=1

\~\~\Omega k,2, respectively. We assume that there exist \~\~Qk,1 \sim \~\~Pk,1,
\~\~Qk,2 \sim \~\~Pk,2

under which \Theta and F are martingales, respectively. Analogously, let \Lambda and M be defined on\prod N
k=1

\~\~\Omega k,3 and \~\~Qk,3 \sim \~\~Pk,3 be a martingale measure for \Lambda M . Set

\~\~Qk =

3\prod 
r=1

\~\~Qk,r, k= 1, . . . , n.(4.23)

We introduce

\theta (\~\omega ,k) := \theta 1(k)1\{ \~\omega k=\~\omega k
1\} + \theta 2(k)1\{ \~\omega k=\~\omega k

2\} (4.24)

and

\~\eta ij(\~\omega ,k) =

\left\{               

\~\eta 131 (k)1\{ \~\omega k=\~\omega k
1\} + \~\eta 132 (k)1\{ \~\omega k=\~\omega k

2\} for i= 1, j = 3,

\~\eta 311 (k)1\{ \~\omega k=\~\omega k
1\} + \~\eta 312 (k)1\{ \~\omega k=\~\omega k

2\} for i= 3, j = 1,

\~\eta 211 (k)1\{ \~\omega k=\~\omega k
1\} + \~\eta 212 (k)1\{ \~\omega k=\~\omega k

2\} for i= 2, j = 1,

\~\eta 231 (k)1\{ \~\omega k=\~\omega k
1\} + \~\eta 232 (k)1\{ \~\omega k=\~\omega k

2\} for i= 2, j = 3,

0 for all other indices,

(4.25)
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ASSET BUBBLES VIA RANDOM MATCHING 1329

for some functions \~\eta 131 , \~\eta 
13
2 , \~\eta 

31
1 , \~\eta 

31
2 , \~\eta 

21
1 , \~\eta 

21
2 , \~\eta 

23
1 , \~\eta 

23
2 : \{ 1, . . . ,N\} \rightarrow [0,1/2]. The functions (4.14)

are defined by

\~\varsigma ijl(\~\omega ,k) =

\left\{     
\~\varsigma 131 (k)1\{ \~\omega k=\~\omega k

1\} + \~\varsigma 132 (k)1\{ \~\omega k=\~\omega k
2\} for i= 1, j = 3, l= 3,

\~\varsigma 311 (k)1\{ \~\omega k=\~\omega k
1\} + \~\varsigma 312 (k)1\{ \~\omega k=\~\omega k

2\} for i= 3, j = 1, l= 1,

0 for all other indices,

(4.26)

for some functions

\~\varsigma 311 , \~\varsigma 
31
2 , \~\varsigma 

13
1 , \~\varsigma 

13
2 : \{ 1, . . . ,N\} \rightarrow [0,1/2].(4.27)

We assume that the functions fij : R \rightarrow [0,1], i, j = 1,2,3, i \not = j, which appear in (4.12)
satisfy

f2,1(x), f3,1(x), f3,2(x)\in (0,1/2], f1,2(x) = f2,3(x) = f1,3(x) = 0,(4.28)

f3,1(x) + f3,2(x)\leq 1/2,(4.29)

for any x> 0.
Moreover, we assume that gijj : R \rightarrow [0,1], i, j = 1,2,3, i \not = j, appearing in (4.14) is such

that

g211(x), g311(x), g322(x)\in (0,1/2],(4.30)

g133(x), g122(x), g233(x) = 0(4.31)

for any x> 0.
Finally, we assume that (4.28) and (4.30)--(4.31) hold switching the indices 1 and 3 when

x< 0.

Remark 4.12. In (4.24)--(4.27) the probabilities governing type changes which are defined
on (\~\Omega , \~F) are identified only by two possible states at every time. Moreover, we only allow
for random type changes before the matching to pessimistic and optimistic type. For post
matchings type change, we assume that neutral investors cannot change their type. Such
assumptions allow for less lengthy computations in the following. An extension to a more
general case (see, for example, subsection 4.2), can be easily provided. In particular, when
the probabilities are identified by a higher number of states, we have more degrees of freedom
for defining the measure \~Q.

Assumptions (4.28) and (4.30)--(4.31) are in line with the model in section 4. In particular,
under (4.28), if there are more optimistic than pessimistic investors, agents can switch to more
pessimistic views only due to some exogenous, stochastic effects modeled by \~\eta . Furthermore,
there is instead a strictly positive term, depending on the difference between optimistic and
pessimistic investors, which increases the probability that pessimistic or neutral traders switch
to more optimistic forecasts. The reverse happens if there are more pessimistic than optimistic
traders.

Similar considerations hold for the upgrade/downgrade probabilities in (4.14). Under the
hypothesis \^p1 > \^p3, there is always a strictly positive term which increases the probability
of upgrade of type (see (4.26)), whereas the probability downgrade of type after matching is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/2

1/
24

 to
 9

5.
23

2.
10

.7
6 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



1330 BIAGINI, MAZZON, MEYER-BRANDIS, AND OBERPRILLER

only given by a stochastic, exogenous effect represented by \~\varsigma , see (4.26). Again, the reverse
holds when \^p1 < \^p3.

Further bounds on conditions on the involved functions are necessary to guarantee that
the type change probabilities remain in (0,1).

The following lemma is a straightforward consequence of the construction of \~\Omega and \~P ,
together with the definition of the processes \Theta , F , \Lambda , andM in Example 4.11 and with (4.22).

Lemma 4.13. In the setting of Example 4.11, introduce the probability measure Q := \~Q\ltimes \^P
with

\~Q :=

N\bigotimes 
k=1

\Bigl( 
\~Qk \otimes \~\~Qk

\Bigr) 
,(4.32)

where \~\~Qk is defined in (4.23) and \~Qk(\~\omega 
k
i ) > 0 for any i= 1,2,k= 1, . . . ,N . Then Q satisfies

Proposition 4.8 and is equivalent to P .

We then get the following result.

Proposition 4.14. In the setting of Example 4.11, there exist functions \~\eta 31i , \~\eta 13i , \~\eta 21i , \~\eta 23i ,
\theta i, \~\varsigma 

31
i , \~\varsigma 13i , i= 1,2, appearing in (4.24)--(4.26) such that the market is arbitrage-free.

Proof. Let \~Q be of the form (4.32). Moreover, define

q(k) := \~Q

\Biggl( 
k - 1\prod 
l=1

\~\Omega l \times \~\omega k
1 \times 

N\prod 
l=k+1

\~\Omega l \times 
N\prod 
l=1

\~\~\Omega l

\Biggr) 
= \~Qk(\~\omega 

k
1 )(4.33)

for any k = 1, . . . ,N . By Proposition 4.8 and Lemma 4.13, we need to find q(k) for k \in 
\{ 1, . . . ,N\} such that

\^pk - 1
1  - \^pk - 1

3

= EQ
\Bigl[ 
\^pk1  - \^pk3| Fk - 1

\Bigr] 
= E

\~Q
\Bigl[ 
\Gamma k
1J(\cdot , \^pk - 1) - \Gamma k

3J(\cdot , \^pk - 1)| \~Fk - 1
\Bigr] 

(4.34)

= E
\~Qk

\Bigl[ 
\Gamma k
1J(\cdot , \^pk - 1) - \Gamma k

3J(\cdot , \^pk - 1)| \~Fk - 1
\Bigr] 

= q(k)a1 + (1 - q(k))a2,(4.35)

where

ai = (1 - \theta i(k))
\Bigl[ 
F 1
i (\^p

k - 1) - F 3
i (\^p

k - 1)
\Bigr] 

(4.36)

+ \theta i(k)
\Bigl( 
F 1
i (\^p

k - 1)F 1
i (\^p

k - 1) - F 3
i (\^p

k - 1)F 3
i (\^p

k - 1)
\Bigr) 

+ \theta i(k)
\Bigl( \Bigl[ 
g211

\Bigl( 
F 1
i (\^p

k - 1) - F 3
i (\^p

k - 1)
\Bigr) 
+
\Bigl( 
1 - g122

\Bigl( 
F 1
i (\^p

k - 1) - F 1
i (\^p

k - 1)
\Bigr) \Bigr) \Bigr] 

\cdot F 1
i (\^p

k - 1)F 2
i (\^p

k - 1)

 - 
\Bigl[ 
g233

\Bigl( 
F 1
i (\^p

k - 1) - F 3
i (\^p

k - 1)
\Bigr) 
+
\Bigl( 
1 - g322

\Bigl( 
F 1
i (\^p

k - 1) - F 1
i (\^p

k - 1)
\Bigr) \Bigr) \Bigr] 
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ASSET BUBBLES VIA RANDOM MATCHING 1331

\cdot F 3
i (\^p

k - 1)F 2
i (\^p

k - 1)

+
\Bigl[ 
\~\varsigma 31i (k) + g311

\Bigl( 
F 1
i (\^p

k - 1) - F 3
i (\^p

k - 1)
\Bigr) 
 - \~\varsigma 13i (k) - g113

\Bigl( 
F 1
i (\^p

k - 1) - F 3
i (\^p

k - 1)
\Bigr) \Bigr] 

\cdot F 1
i (\^p

k - 1)F 3
i (\^p

k - 1)
\Bigr) 
,

with

F 1
i (\^p

k - 1) = \^pk - 1
2J

\Bigl( 
\~\eta 21i (k)+f21

\Bigl( 
\^pk - 1
1J  - \^pk - 1

3J

\Bigr) \Bigr) 
+ \^pk - 1

3J

\Bigl( 
\~\eta 31i (k)+f31

\Bigl( 
\^pk - 1
1J  - \^pk - 1

3J

\Bigr) \Bigr) 
+\^pk - 1

1J

\Bigl( 
1 - f12

\Bigl( 
\^pk - 1
1J  - \^pk - 1

3J

\Bigr) 
 - \~\eta 13i (k) - f13

\Bigl( 
\^pk - 1
1J  - \^pk - 1

3J

\Bigr) \Bigr) 
(4.37)

and

F 3
i (\^p

k - 1) = \^pk - 1
2J

\Bigl( 
\~\eta 23i (k)+f23

\Bigl( 
\^pk - 1
1J  - \^pk - 1

3J

\Bigr) \Bigr) 
+ \^pk - 1

1J

\Bigl( 
\~\eta 13i (k)+f13

\Bigl( 
\^pk - 1
1J  - \^pk - 1

3J

\Bigr) \Bigr) 
+\^pk - 1

3J

\Bigl( 
1 - f32

\Bigl( 
\^pk - 1
1J  - \^pk - 1

3J

\Bigr) 
 - \~\eta 31i (k) - f31

\Bigl( 
\^pk - 1
1J  - \^pk - 1

3J

\Bigr) \Bigr) 
(4.38)

for i = 1,2. Note that (4.34) comes from Lemma 4.7, whereas (4.35) follows by (4.18) and
(4.24)--(4.26).

By (4.35) it follows that q(k) has to satisfy

q(k) =
\^pk - 1
1  - \^pk - 1

3  - a2
a1  - a2

=
a2 + \^pk - 1

3  - \^pk - 1
1

a2  - a1
(4.39)

and that

a1 < \^pk - 1
1  - \^pk - 1

3 and a2 > \^pk - 1
1  - \^pk - 1

3(4.40)

or

a1 > \^pk - 1
1  - \^pk - 1

3 and a2 < \^pk - 1
1  - \^pk - 1

3(4.41)

to guarantee that q(k) \in (0,1). Without loss of generality we assume from now on that
\^pk - 1
1  - \^pk - 1

3 > 0, as identical considerations hold with opposite sign if \^pk - 1
1  - \^pk - 1

3 < 0. The
goal is to find conditions on \~\eta 31i (k), \~\eta 13i (k), \~\eta 21i (k), \~\eta 23i (k), \theta i(k), \~\varsigma 

31
i (k), \~\varsigma 13i (k), i= 1,2, such that

(4.40) holds. In order to do that, we focus on a2.
We first derive conditions which guarantee that a2 > \^pk - 1

1  - \^pk - 1
3 . Choose \~\eta 312 (k) and

\~\eta 132 (k) such that

\~\eta 132 (k)

\~\eta 312 (k)
<

\^pk - 1
3

\^pk - 1
1

,(4.42)

and (to simplify the following computations) \~\eta 212 (k) = \~\eta 232 (k) = 0. Also fix \~\varsigma 312 (k) > \~\varsigma 132 (k).
Then by (4.37)--(4.38), by assumption (4.28), and since \^pk - 1

1  - \^pk - 1
3 > 0, we have that

F 1
2 (\^p

k - 1) - F 3
2 (\^p

k - 1) = k - 1
2J f21

\Bigl( 
\^pk - 1
1J  - \^pk - 1

3J

\Bigr) 
+ \^pk - 1

3J

\Bigl( 
\~\eta 312 (k) + f31

\Bigl( 
\^pk - 1
1J  - \^pk - 1

3J

\Bigr) \Bigr) 
+ \^pk - 1

1J

\bigl( 
1 - \~\eta 132 (k)

\bigr) 
 - \^pk - 1

1J \~\eta 132 (k)

 - \^pk - 1
3J

\Bigl( 
1 - f32

\Bigl( 
\^pk - 1
1J  - \^pk - 1

3J

\Bigr) 
 - \~\eta 312 (k) - f31

\Bigl( 
\^pk - 1
1J  - \^pk - 1

3J

\Bigr) \Bigr) 
(4.43)

\geq \^pk - 1
1J

\bigl( 
1 - 2\~\eta 132 (k)

\bigr) 
 - \^pk - 1

3J

\bigl( 
1 - 2\~\eta 312 (k)

\bigr) 
> \^pk - 1

1J  - \^pk - 1
3J ,(4.44)

where the last inequality follows from (4.42).
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1332 BIAGINI, MAZZON, MEYER-BRANDIS, AND OBERPRILLER

Similarly, by (4.36), (4.44), by assumptions (4.30)--(4.31), and again since \^pk - 1
1  - \^pk - 1

3 > 0,
we get

a2 \geq (1 - \theta 2(k))
\Bigl[ 
F 1
2 (\^p

k - 1) - F 3
2 (\^p

k - 1)
\Bigr] 

+ \theta 2(k)
\Bigl( 
F 2
2 (\^p

k - 1)
\Bigl( 
F 1
2 (\^p

k - 1) - F 3
2 (\^p

k - 1)
\Bigr) 
+
\bigl( 
\~\varsigma 312 (k) - \~\varsigma 132 (k)

\bigr) 
F 1
2 (\^p

k - 1)F 3
2 (\^p

k - 1)
\Bigr) 
,

> (1 - \theta 2(k)) [F
1
2 (\^p

k - 1) - F 3
2 (\^p

k - 1)].

In order to guarantee that a2 > \^pk - 1
1  - \^pk - 1

3 , we then choose \theta 2(k) such that

1 - \theta 2(k)>
\^pk - 1
1  - \^pk - 1

3

F 1
2 (\^p

k - 1) - F 3
2 (\^p

k - 1)
.

By (4.44) this is possible if \theta 2 is small enough.
Next, we derive conditions which guarantee that a2 < \^pk - 1  - 1 - \^pk - 1

3 . Choose

\~\eta 312 (k) = \~\eta 212 (k) = 0 and \~\eta 132 (k) = \~\eta 232 (k) = 1/2.(4.45)

From (4.37)--(4.38) we derive

F 1
2 (\^p

k - 1) - F 3
2 (\^p

k - 1) = \^pk - 1
2J f21

\Bigl( 
\^pk - 1
1J  - \^pk - 1

3J

\Bigr) 
+ \^pk - 1

3J f31

\Bigl( 
\^pk - 1
1J  - \^pk - 1

3J

\Bigr) 
+ \^pk - 1

1J

\biggl( 
1 - 1

2

\biggr) 
 - 1

2
\^pk - 1
1J  - 1

2
\^pk - 1
2J

 - \^pk - 1
3J

\Bigl( 
1 - f31

\Bigl( 
\^pk - 1
1J  - \^pk - 1

3J

\Bigr) 
 - f32

\Bigl( 
\^pk - 1
1J  - \^pk - 1

3J

\Bigr) \Bigr) 
\leq 0,(4.46)

where the first equality and (4.46) follow from (4.45) and (4.28)--(4.29), respectively. Looking
now at (4.36) with i = 2, we can then choose \theta 2(k) small enough so that a2 < \^pk - 1

1  - \^pk - 1
3 .

This concludes the proof.

Remark 4.15. The parameters \~\eta 312 (k), \~\eta 132 (k), \~\eta 212 (k), \~\eta 232 (k), \theta 2(k),\~\varsigma 
31
2 (k), \~\varsigma 132 (k) given in

the proof of Proposition 4.14 guarantee the existence of an equivalent martingale measure in
the setting of Example 4.11. Other choices are of course possible under which an equivalent
martingale measure still exists: for example, one can show that (4.45) can be relaxed.

4.2. Numerical simulations. In this section we provide some numerical simulations of
the model defined in (2.4) and (2.5), where \^p1 and \^p3 are governed by the dynamical system
introduced in section 3 with matching and type change probabilities having dynamics given by
(4.12)--(4.14). In particular, we consider the following setting. We discretize the time interval
[0, T ] in N subintervals. The processes \Lambda = (\Lambda n)i=0,...,N and M = (Mn)n=0,...,N appearing in
(2.3) are binomial models, defined on the probability space (\~\Omega , \~F, \~P ), which approximate two
geometric Brownian motions with drift equal to zero and volatilities \sigma \Lambda > 0 and \sigma M > 0. That
is, \Lambda n := Y n\Lambda n - 1, n = 1, . . . ,N and constant \Lambda 0 > 0, where Y n is a random variable defined
on (\~\Omega , \~F) such that

\~P (Y n = u) = p, \~P (Y n = 1/u) = 1 - p,
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ASSET BUBBLES VIA RANDOM MATCHING 1333

where

u := e\sigma \Lambda T/N , p=
1 - d

u - d
,

and M is defined analogously. The functions fij and gijj , i, j = 1,2,3, and i \not = j, which appear
in (4.12) and (4.14), respectively, are defined by

fij(x) := gijj(x) :=

\left\{           
1
3(x

+)0.4 if i= 2, j = 1 or i= 3, j = 2,
1
3( - x

 - )0.4 if i= 1, j = 2 or i= 2, j = 3,\bigl( 
1
3(x

+)0.4
\bigr) 2

if i= 3, j = 1,\bigl( 
1
3( - x

 - )0.4
\bigr) 2

if i= 1, j = 3

(4.47)

for any x\in R. Note that the choice of these functions is coherent with our framework, where
investors might have a type upgrade or downgrade when \^p1 - \^p3 > 0 or \^p1 - \^p3 < 0, respectively.
Moreover, since | \^p1 - \^p3| \leq 1, a direct switch from optimistic to pessimistic views or vice versa
is more unlikely to happen. Also note that, since the processes \~\eta ij and \~\varsigma ilj , i, j, l= 1,2,3, are
bounded by 1/4, (4.47) guarantees that the values in both (4.12) and (4.14) are bounded by
1/2. In this way, the sum for fixed i does not exceed 1. Furthermore, we have as follows:

1. The process \Theta = (\Theta n)n=0,...,N in (2.5) is defined by \Theta n := 2/\pi arctan(Zn
\Theta ), where Z\Theta =

(Zn
\Theta )n=0,...,N is a binomial model on (\~\Omega , \~F, \~P ) approximating a geometric Brownian

motion with drift equal to zero and volatility \sigma \Theta > 0. Note that this choice guarantees
that the dynamics of \Theta stay in (0,1).

2. The process \theta = (\theta n)n=0,...,N in (4.13) is defined by \theta n := 2/\pi arctan(Zn
\theta ), where Z\theta =

(Zn
\theta )n=0,...,N is a binomial model on (\~\Omega , \~F, \~P ) approximating a geometric Brownian

motion with drift equal to zero and volatility \sigma \theta > 0.
3. For i, j = 1,2,3, the processes \~\eta ij = (\~\eta nij)n=0,...,N in (4.12) are defined by \~\eta nij :=

2/\pi arctan(Zn
\eta ,i,j), where Z\eta ,i,j = (Zn

\eta ,i,j)n=0,...,N is a binomial model on (\~\Omega , \~F, \~P ) ap-
proximating a geometric Brownian motion with drift equal to zero and volatility \sigma \eta > 0.

4. For i, j = 1,2,3, the processes \~\varsigma ij = (\~\varsigma nij)n=0,...,N in (4.14) are defined by \~\varsigma nij :=

2/\pi arctan(Zn
\varsigma ,i,j), where Z\varsigma ,i,j = (Zn

\varsigma ,i,j)n=0,...,N is a binomial model on (\~\Omega , \~F, \~P ) ap-
proximating a geometric Brownian motion with drift equal to zero and volatility \sigma \varsigma > 0.

The processes Z\Theta ,Z\theta ,Z\eta ,i,j ,Z\varsigma ,i,j , i, j = 1,2,3, introduced above, are all independent of each
other. We choose parametersN = 100, T = 1, \^p01 = \^p02 = \^p03 = 1/3, \Lambda 0 =M0 = 1, \sigma \Lambda = \sigma M = 0.3,
\Theta 0 = 5, \sigma \Theta = 0.2, \eta 0ij = \varsigma 0ijl = 0.2, i, j, l = 1,2,3, \sigma \eta = \sigma \varsigma = 0.4, \theta = 0.5, \sigma \theta = 0.2. We also set
the reversion process in (2.4) to be constant, i.e., specifically, \kappa n = 0.01 for all n = 1, . . . ,N .
In Figure 4.1 we show some trajectories of the process (\^pn1  - \^pn3 )n=0,...,N on the right and the
bubble process \beta on the left. We decided to divide the trajectories into three couples of panels
for the reader's convenience. We note the following:

\bullet In our model, bubbles can be negative: this is a difference with respect to the classical
martingale theory of bubbles introduced by Cox and Hobson [12] and Loewenstein
and Willard [32] and mainly developed by Jarrow, Protter, and others [23], [24], [25],
[26], [22], [7], where the fundamental value is always smaller than the market value.
However, this is not in contrast with absence of arbitrages and is in agreement with
real markets, where asset prices might sometimes be underestimated; see, for example,
[18] and [40].
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1334 BIAGINI, MAZZON, MEYER-BRANDIS, AND OBERPRILLER

Figure 4.1. Some trajectories of the process (\^pn1  - \^pn3 )n=0,...,N , in the right panels, and of the bubble in (2.4)
in the left panels. For any pair of panels, a trajectory of a given color on the right drives the bubble trajectory of
the same color on the left, together with the realizations of the processes \Lambda , M , and \theta . Parameters are N = 100,
T = 1, \^p01 = \^p02 = \^p03 = 1/3, \Lambda 0 = M0 = 1, \sigma \Lambda = \sigma M = 0.3, \Theta 0 = 5, \sigma \Theta = 0.2, \eta 0

ij = \varsigma 0ijl = 0.2, i, j, l = 1,2,3,
\sigma \eta = \sigma \varsigma = 0.4, \theta = 0.5, \sigma \theta = 0.2, \kappa = 0.01.

\bullet Bubbles increase and also burst with different speeds. In particular, our model allows
both for hard landing (i.e., steep and fast decrease) and soft landing (i.e., soft and
slow decrease) after the burst of the bubble; see [6] and [45] for an analysis on hard
and soft landing.

\bullet Due to the presence of the functions fij and gijj , i, j, l= 1,2,3, in our model investors
may change type independently or after a match according to the current phase of the
market, that is, if prices are rising, they have a higher probability to switch to more
optimistic views, and vice versa. This drives both the ascending and the descending

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ASSET BUBBLES VIA RANDOM MATCHING 1335

Figure 4.2. Average of a sample of trajectories of the bubble process in (2.4). The left and right panels
show the sample average for 100,000 and 1,000,000 simulations, respectively. Parameters are N = 100, T = 1,
\^p01 = \^p02 = \^p03 = 1/3, \Lambda 0 =M0 = 1, \sigma \Lambda = \sigma M = 0.3, \Theta 0 = 5, \sigma \Theta = 0.2, \eta 0

ij = \varsigma 0ijl = 0.2, i, j, l= 1,2,3, \sigma \eta = \sigma \varsigma = 0.4,
\theta = 0.5, \sigma \theta = 0.2, \kappa = 0.01.

phase of the bubble. However, there are some exogenous factors, which we model on
the space (\~\Omega , \~F, \~P ), that may influence the bubble as well, and may anticipate or delay
the burst. In particular, they can make the increase of the bubble before the burst
(respectively, the decrease after the burst) more or less steep.

In Figure 4.2 we plot the function t\rightarrow 1
n

\sum n
i=1 \beta 

i
t, where \beta 

i
t is the value for the ith simulated

trajectory of the bubble, i = 1, . . . , n. The left and right panels show the sample average for
n= 100,000 and n= 1,000,000, respectively.

In Figure 4.3 we plot instead the function above for a sample of 1,000,000 trajectories in
the case when the values of the fractions of investors are \^p01 = 4/9, \^p02 = 2/9, \^p03 = 1/3.7 In this
case, we see that at the beginning, the bubble blows up on average, because of the actions
of the functions fij and gijj , i, j, l = 1,2,3. However, as the number of pessimistic investors
changing their views starts to decrease, the bubble slows down, and then bursts on average
because of the action of the mean reverting term  - \kappa \beta in (2.4).

Figure 4.3 clearly shows that, when the fractions of pessimistic and optimistic investors
are different, the bubble is not a martingale under the measure for which we simulate the
processes. However, we find a measure under which the expectation of the bubble at time
t1 is very close to its value at t0 by tuning the parameters. In particular, this measure is
identified by letting the binomial processes driving \~\eta 13 and \~\varsigma 133 increasing with probability
0.95 and the ones driving \~\eta 31 and \~\varsigma 311 increasing with probability 0.1, at the first time step.
We see that the average value of \beta 1 is 0.1 under the first measure and close to 10 - 5 under the
new measure.

5. Conclusions. We have modeled the formation of asset price bubbles by introducing a
random matching mechanism among agents in a discrete time version of the model in [27].
In order to do it, we extend results of [15] to a stochastic setting. In particular, via the
introduction of a Markov kernel, we are able to construct the probability space where the
asset price process is defined as the product of the space \^\Omega of the random matching and the

7We let anyway the bubble start from zero here: one can assume a sudden jump of \^p1 at initial time, or
that \theta = 0 before time 0.
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1336 BIAGINI, MAZZON, MEYER-BRANDIS, AND OBERPRILLER

Figure 4.3. Average of a sample of trajectories of the bubble process in (2.4) of size 1,000,000. Parameters
are N = 100, T = 1, \^p01 = 4/9, \^p02 = 2/9, \^p03 = 1/3, \Lambda 0 =M0 = 1, \sigma \Lambda = \sigma M = 0.3, \Theta 0 = 5, \sigma \Theta = 0.2, \eta 0

ij = \varsigma 0ijl = 0.2,
i, j, l= 1,2,3, \sigma \eta = \sigma \varsigma = 0.4, \theta = 0.5, \sigma \theta = 0.2, \kappa = 0.01.

space \~\Omega of the factors which may influence the transition probabilities. This approach allows
us to isolate and model the self-exciting mechanism governing the blow-up of the bubble and
the exogenous factors impacting the bursting phase of the bubble. In subsection 4.2 we present
a numerical experiment showing how this approach is able to capture important behavioral
features of asset price bubbles.

Appendix A. Fubini extension. We here present the definition of a rich Fubini extension,
which is needed for the setting in section 2. We start by recalling the concept of essentially
pairwise independent random variables in the sense of Definition 2 in [15].

Definition A.1. Consider the random variable f : (I \times \Omega , I\otimes F, \lambda \otimes P )\rightarrow (Y,G), where Y is
a Polish space endowed with the Borelian \sigma -algebra G. We set fi := f(i, \cdot ) for all i \in I. We
say that f is essentially pairwise independent if for \lambda -almost all j \in I, fj is independent of fi
for \lambda -almost all i\in I.

In Proposition 2.1 of [43] and Proposition 1.1 of [41] it is shown that an essentially pairwise
independent random variable, which is also jointly measurable, is constant for \lambda -almost all
i\in I. This is the so called ``sample measurability problem,"" which has been studied in [14], [29].
To overcome this issue, the \sigma -algebra I\otimes F needs to be enlarged to allow jointly measurable
random variables to be essentially pairwise independent but not constant. This measurability
problem can be solved by working with an extension of the product space (I\times \Omega , I\otimes F, \lambda \otimes P )
which still satisfies the Fubini property; see [43]. We here recall the definition of a Fubini
extension; see, e.g., Definition 1 of [15].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/2

1/
24

 to
 9

5.
23

2.
10

.7
6 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



ASSET BUBBLES VIA RANDOM MATCHING 1337

Definition A.2. A probability space (I \times \Omega ,W,Q) is said to be a Fubini extension of the
product probability space (I\times \Omega , I\otimes F, \lambda \otimes P ) if for any real-valued Q-integrable random variable
f on (I \times \Omega ,W,Q) we have that

1. the functions fi(\cdot ) := f(i, \cdot ) and f\omega (\cdot ) := f(\cdot , \omega ) are integrable on (\Omega ,F, P ) for \lambda -almost
all i\in I, and on (I, I, \lambda ) for P -almost all \omega \in \Omega , respectively;

2.
\int 
\Omega fidP and

\int 
I f\omega d\lambda are integrable on (I, I, \lambda ) and on (\Omega ,F, P ), respectively, with\int 

I\times \Omega 
fdQ=

\int 
I

\biggl( \int 
\Omega 
fidP

\biggr) 
d\lambda =

\int 
\Omega 

\biggl( \int 
I
fid\lambda 

\biggr) 
dP.

The Fubini extension is denoted by (I \times \Omega , I\boxtimes F, \lambda \boxtimes P ).

Moreover, note that by definition it holds that \lambda \boxtimes P | I\otimes F = \lambda \otimes P . In Theorem 6.2 in [42]
and Proposition 5.6 in [43] it is shown that there exists a rich Fubini extension, which allows
the construction of processes with essentially pairwise independent and jointly measurable
random variables, which are not \lambda -almost surely constant.

Appendix B. Proof of Proposition 3.12. For every fixed \~\omega \in \~\Omega we construct the measure
\^P \~\omega as in the proof of Lemma 7 in [15]. Furthermore, as the construction of the space \^\Omega in
Lemma 7 in [15] is independent of the input functions, we can also follow their approach.
Then, the definitions of \Omega ,F, and P0 in points 1 and 2 in the proposition allow us to finish
the proof. For the reader's convenience we show the proof in detail in the following.

Proof. Let (I, I0, \lambda 0) be the hyperfinite counting probability space with its Loeb space
(I, I, \lambda ). The proof consists of four steps.

Step 1: For each k \in S, \~\omega \in \~\Omega and \^p\in \ast \^\Delta , let

b0k(\~\omega ) = bk(\~\omega ,0, \^p) := 1 - 
\sum 
r\in S

\theta kr(\~\omega ,0, \^p)

and Ik = \{ i\in I : \alpha 0(i) = k,\pi 0(i) = i\} .
For each i\in Ik, \~\omega \in \~\Omega and \^p\in \ast \^\Delta define a probability \zeta \^p,\~\omega i on S \cup \{ J\} such that

\zeta \^p,\~\omega i (l) := \theta kl(\~\omega ,0, \^p) for l \in S and \zeta \^p,\~\omega i (J) := \delta J(l) for l \in S \cup \{ J\} .

Let \^\Omega 0 = (S\cup \{ J\} )I be the internal set of all the internal functions from I to S\cup \{ J\} . For
any \~\omega \in \~\Omega and \^p \in \ast \^\Delta , also let \mu \^p,\~\omega 

0 be the internal product probability measure
\prod 

i\in I \zeta 
\^p,\~\omega 
i on

(\^\Omega 0,A0), where A0 is the internal power set of \^\Omega 0. For each fixed \^\omega 0 \in \^\Omega 0 and k, l \in S, the
agents in the set \=A\^\omega 0

kl = \{ i \in Ik : \^\omega 0(i) = l\} are now supposed to be matched with agents in
\=A\^\omega 0

lk .

Step 2: The issue now is that \=A\^\omega 0

lk and \=A\^\omega 0

kl might fail to have the same internal cardinality,

for k \not = l, and \=A\^\omega 0

kk may fail to have an even internal cardinality, which would allow an internal

full matching on \=A\^\omega 0

kk. The scope of the second step of the proof is to fix such a problem. For
k, l \in S with k \not = l, let

C \^\omega 0

kl = \{ Akl :Akl \subseteq \=A\^\omega 0

kl ,Akl is internal and | Akl| =min\{ | \=A\^\omega 0

kl | , | \=A
\^\omega 0

lk | \} \} .

For any k \in S, let C \^\omega 0

kk be the family of the sets of the form \=A\^\omega 0

kk \setminus \{ i\} for i \in \=A\^\omega 0

kk if | \=A\^\omega 0

kk| is
odd, and C \^\omega 0

kk the set with one element \=A\^\omega 0

kk if | \=A\^\omega 0

kk| is even. Set C
\^\omega 0 :=

\prod 
k,l\in S C

\^\omega 0

kl . Define an
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1338 BIAGINI, MAZZON, MEYER-BRANDIS, AND OBERPRILLER

internal probability measure \mu \^\omega 0 on C \^\omega 0 with internal power set C\omega 0 by letting \mu \^\omega 0(A) = 1
| C \^\omega 0 | 

for A\in C \^\omega 0 .
Let

\^\Omega 1 := \{ (Akl)k,l\in S :Akl \subseteq I and Akl is internal, where k, l \in S\} .

The probability measure \mu \^\omega 0 can be trivially extended to the common sample space \^\Omega 1 with
its internal power set by letting \mu \^\omega 0(A) = 0 for A\in \^\Omega 1 \setminus C \^\omega 0 .

Given the hyperfinite internal probability space (\^\Omega 0,A0, \mu 
\^p,\~\omega 
0 ) and the internal transition

probability \mu \^\omega 0 , \^\omega 0 \in \^\Omega 0, we can define the internal probability measure \mu \^p,\~\omega 
1 on \^\Omega 0\times \^\Omega 1 with

its internal power set by letting \mu \^p,\~\omega 
1 (\^\omega 0,A) = \mu \^p,\~\omega 

0 (\^\omega 0)\times \mu \^\omega 0(A) for any \^\omega 0 \in \^\Omega 0 and A\in \^\Omega 1.
Step 3: For any fixed \^\omega 0 \in \^\Omega 0 and A\^\omega 0 = (Akl)k,l\in S \in C \^\omega 0 , we consider the internal

partial matchings on I that match agents from Akl to Alk. Let B\^\omega 0

k = Ik \setminus (
\bigcup 

l\in S A
\^\omega 0

kl ), which

is the set of initially unmatched agents who remain unmatched. Let \=B\^\omega 0

k denote the set

\{ i \in Ik : \^\omega 0(i) = J\} ; then it is clear that B\^\omega 0

k = \=B\^\omega 0

k \cup 
\bigcup 

l\in S(
\=A\^\omega 0

kl \setminus \=A\^\omega 0

kl ). Let B\^\omega 0 =
\bigcup K

k=1B
\^\omega 0

k .

For each k \in S, let \^\Omega \^\omega 0,A
\^\omega 0

kk be the internal set of all the internal full matchings on A\^\omega 0

kk. Let

\mu \^\omega 0,A
\^\omega 0

kk be the internal counting probability measure on \^\Omega \^\omega 0,A
\^\omega 0

kk . For k, l \in S with k < l, let

\mu \^\omega 0,A\^\omega 0

kl be the internal set of all the internal bijections from A\^\omega 0

kl to A\^\omega 0

lk . Let \mu \^\omega 0,A
\^\omega 0

kl be the

internal counting probability on A\^\omega 0

kl . Let \^\Omega 2 be the internal set of all the internal partial

matchings from I to I. Define \^\Omega \^\omega 0,A
\^\omega 0

2 to be the set of \phi \in \^\Omega 2 such that
1. the restriction \phi | H = \pi 0| H , where H is the set \{ i : \pi 0(i) \not = i\} of initially matched

agents;
2. \{ i\in Ik : \phi (i) = i\} =B\^\omega 0

k for each k \in S;
3. the restriction \phi | A\^\omega 0

kk
\in \^\Omega \^\omega 0,A

\^\omega 0

kk for k \in S;
4. for k, l \in S with k < l, \phi | A\^\omega 0

kl
\in \^\Omega \^\omega 0,A

\^\omega 0

kk .

We now define an internal probability measure \mu \^\omega 0,A
\^\omega 0

2 on \^\Omega 2 such that
1. for \phi \in \^\Omega \^\omega 0,A

\^\omega 0

2 ,

\mu \^\omega 0,A
\^\omega 0

2 (\phi ) =
\prod 

1\leq k\leq l\leq K,A
\^\omega 0
kl \not =\emptyset 

\mu \^\omega 0,A
\^\omega 0

kl (\phi | A\^\omega 0
kl
);

2. for \phi /\in \^\Omega \^\omega 0,A
\^\omega 0

2 , \mu \^\omega 0,A
\^\omega 0

2 (\phi ) = 0.

The probability measure \mu \^\omega 0,A
\^\omega 0

2 can be trivially extended to the sample space \^\Omega 2.

For any \~\omega \in \~\Omega , define an internal probability measure \^P \^p
0 (\~\omega ) on \^\Omega = \^\Omega 0 \times \^\Omega 1 \times \^\Omega 2 with

the internal power set \^F0 by letting

\^P \^p
0 (\~\omega )((\^\omega 0,A, \^\omega 2)) =

\Biggl\{ 
\mu \^p,\~\omega 
1 (\^\omega 0,A)\times \mu \^\omega 0,A

2 (\^\omega 2) if A\in C \^\omega 0 ,

0 otherwise.
(B.1)

The construction in (B.1) provides the Markov kernel from \~\Omega to \^\Omega as in point 2 of the
proposition. From now on, denote \^P \^p,\~\omega 

0 := \^P \^p
0 (\~\omega ) for any \~\omega \in \~\Omega .

For (i, \^\omega )\in I \times \^\Omega , let \^\pi (i, (\^\omega 0,A, \^\omega 2)) = \^\omega 2(i) and

\^g(i, \^\omega ) =

\Biggl\{ 
\alpha 0(\^\pi (i, \^\omega )) if \^\pi (i, \^\omega ) \not = i,

J if \^\pi (i, \^\omega ) = i.
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ASSET BUBBLES VIA RANDOM MATCHING 1339

Denote the corresponding Loeb probability spaces of the internal probability spaces (\^\Omega 0, \^F0,
\^P \^p,\~\omega 
0 ) and (I \times \^\Omega 0, I0\otimes \^F0, \lambda 0\otimes \^P \^p,\~\omega 

0 ) by (\^\Omega , \^F, \^P \^p,\~\omega ) and (I \times \^\Omega , I\boxtimes \^F, \lambda \boxtimes \^P \^p,\~\omega ), respectively.
Set

\=\Omega = \{ (\^\omega 0,A, \^\omega 2)\in \^\Omega : \^\omega 0 \in \^\Omega 0,A\in C \^\omega 0 , \^\omega 2 \in \Omega \^\omega 0,A
2 \} .

Then by construction of \^P \^p,\~\omega 
0 , it is clear that \^P \^p,\~\omega 

0 (\=\Omega ) = 1. Moreover, \^\pi is by construction
an internal matching and satisfies point 4 of the proposition. It is then possible to define
(\Omega ,F0, P0) as stated in points 1 and 2 of the proposition and to consider the corresponding
Loeb probability space; see point 6. Furthermore, we can extend \^\pi and \^g to \Omega as stated in
points 3 and 5.

Step 4: We now prove points 5 and 6 of the proposition. Define an internal process \^f from
I \times \^\Omega to S \cup \{ J\} such that for any (i, \^\omega )\in I \times \^\Omega we have

\^f(i, \^\omega ) =

\Biggl\{ 
\^\omega 0(i) if \pi 0(i) = i,

\alpha 0(\pi 0(i)) if \pi 0(i) \not = i.

Fix from now on \^p\in \ast \^\Delta and \~\omega \in \~\Omega . It is clear that if \alpha 0(i) = k and \pi 0(i) = i, then

\^P \^p,\~\omega ( \^fi = l)\simeq \^P \^p,\~\omega 
0 ( \^fi = l) = \mu \^p,\~\omega 

0 (\^\omega 0(i) = l) = \zeta \^p,\~\omega i (l) = \theta kl(\~\omega ,0, \^p),

which means that

\^P \^p,\~\omega ( \^fi = l) = \circ \theta kl(\~\omega ,0, \^p).

With similar arguments it follows that

\^P \^p,\~\omega ( \^fi = J) = \circ bk(\~\omega ,0, \^p).

Moreover, \^fi and \^fj are independent random variables on the sample space (\^\Omega , \^F, \^P \^p,\~\omega ) for
any i \not = j in I. The exact law of large numbers as in Lemma 1 in [15] implies that, under the
scenario of a current distribution \^p and of a realization \~\omega \in \~\Omega , it holds that

\lambda (\{ \alpha 0(i) = k,\pi 0(i) = i, \^\omega 0(i) = l\} ) = \circ \^\rho kJ \cdot \circ \theta kl(\~\omega ,0, \^p)

and

\lambda (\{ \alpha 0(i) = k,\pi 0(i) = i, \^\omega 0(i) = J\} ) = \circ \^\rho kJ \cdot \circ bk(\~\omega ,0, \^p)

for \^P \^p,\~\omega -almost all \omega = (\^\omega 0,A, \^\omega 2)\in \^\Omega and for any k, l \in S, which means that

| \=A\^\omega 0

kl | 
\^M

\simeq \^\rho kJ\theta kl(\~\omega ,0, \^p)\simeq \^\rho lJ\theta lk(\~\omega ,0, \^p)\simeq 
| \=A\^\omega 0

lk | 
\^M

and
| \=B\^\omega 0

k | 
\^M

\simeq \^\rho kJbk(\~\omega ,0, \^p).(B.2)

Let \~\Omega \^p,\~\omega be the set of \^\omega = (\^\omega 0,A, \^\omega 2)\in \^\Omega such that (B.2) holds. Then \^P \^p,\~\omega (\~\Omega \^p,\~\omega ) = 1, and
hence \^P \^p,\~\omega (\~\Omega \^p,\~\omega \cap \Omega )= 1.

Fix any \^\omega = (\^\omega 0,A, \^\omega 2)\in \~\Omega \^p,\~\omega \cap \Omega ; then A=A\^\omega 0 for some A\^\omega 0 \in C \^\omega 0 , so \^\omega 2 \in \^\Omega \^\omega 0,A
\^\omega 0

2 .
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1340 BIAGINI, MAZZON, MEYER-BRANDIS, AND OBERPRILLER

For any k \not = l \in S we have

| A\^\omega 0

kl | 
\^M

=min

\Biggl( 
| \=A\^\omega 0

kl | 
\^M

,
| \=A\^\omega 0

lk | 
\^M

\Biggr) 
\simeq \^\rho lJ\theta lk(\~\omega ,0, \^p) =

| \=A\^\omega 0

kl | 
\^M

and
| A\^\omega 0

kk| 
\^M

\simeq 
| \=A\^\omega 0

kk| 
\^M

\simeq \^\rho lJ\theta kk(\~\omega ,0, \^p),

(B.3)

which also implies that

| B\^\omega 0

k | 
\^M

\simeq \^\rho kJbk(\~\omega ,0, \^p)\simeq 
| \=B\^\omega 0

k | 
\^M

.

For any i \in Ik, i \in A\^\omega 0

kl if and only if \pi (\^\omega 0,A
\^\omega 0 , \^\omega 2) = \^\omega 2(i) \in A\^\omega 0

lk , and i \in B
\^\omega 0

k if and only if
\pi (\^\omega 0,A

\^\omega 0 , \^\omega 2) = \^\omega 2(i) = J . Hence, for fixed \^\omega = (\^\omega 0,A
\^\omega 0 , \^\omega 2), and for any k, l \in S, we can see

that if i\in A\^\omega 0

kl \subseteq \=A\^\omega 0

kl , then

\^f(i, \^\omega ) = \^\omega 0(i) = l= \alpha 0(\^\omega 2(i)) = \^g(i, \^\omega ),

and that if i\in B\^\omega 0

k \subseteq \=B\^\omega 0

k , then

\^f(i, \^\omega ) = \^\omega 0(i) = J = \alpha 0(\^\omega 2(i)) = \^g(i, \^\omega ).

For any i\in I \setminus (\cup k\in SIk), that is, for any i\in I such that \pi 0 \not = i, we have that

\^f(i, \^\omega ) = \alpha 0(\pi 0(i)) = \alpha 0(\pi (i,\omega )) = \^g(i, \^\omega ).

It is clear that

\{ i\in I : \^f(i, \^\omega ) \not = \^g(i, \^\omega )\} \subseteq 
\bigcup 
l\in S

\Bigl( 
\=A\^\omega 0

kl \setminus A
\^\omega 0

kl

\Bigr) 
,

which has \lambda -measure zero by (B.3). By the fact that \^P \^p,\~\omega (\~\Omega \^p,\~\omega \cap \Omega )= 1, we know that

\lambda (i\in I : \^f(i, \^\omega ) = \^g(i, \^\omega )) = 1

for \^P \^p,\~\omega -almost all \^\omega \in \^\Omega .
Since the Loeb product space (I \times \^\Omega , I \boxtimes \^F, \lambda \boxtimes \^P \^p,\~\omega ) is a Fubini extension, the Fubini

property implies that for \lambda -almost all i\in I, \^g(i, \^\omega ) is equal to \^f(i, \^\omega ) for \^P \^p,\~\omega -almost all \^\omega \in \^\Omega .
Hence g satisfies the second part of the lemma. Let \~I be an I-measurable set with \lambda (\~I) = 1
such that for any i\in \~I, \^gi(\^\omega ) = \^fi(\^\omega ) for \^P \^p,\~\omega -almost all \^\omega \in \^\Omega . Therefore, by the construction
of f we know that the collection of random variables \{ \^fi\} i\in \~I is mutually independent in the
sense that any finitely many random variables from that collection are mutually independent.
This also implies point 6 of the proposition.
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