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A B S T R A C T

There is a growing interest in adopting 3D human pose estimation in safety-critical systems, from healthcare
to Industry 5.0. Nevertheless, when applied in such settings, these neural networks may suffer from estimation
inaccuracy. Besides imprecise or inconsistent annotations in the training dataset, the inaccuracy is caused by
poor image quality, rare poses, dropped frames, or heavy occlusions in the scene. In addition, these scenarios
often require the software results to have temporal constraints, such as real-time and zero- or low-latency,
which make many of the filtering solutions proposed in the literature inapplicable. This paper proposes FLK,
a Filter with Learned Kinematics, to refine 3D human motion data in real-time and at zero/low latency.
The temporal core combines a Kalman filter and a low-pass filter, which learns the motion model through a
recurrent neural network. The spatial core takes advantage of the biomechanical constraints of the human body
to provide spatial coherency between keypoints. The combination of the cores allows the filter to adequately
address different types of noise, from jittering to dropped frames. We test the filter on motion data from
multiple datasets and seven 3D human pose estimation backbones, improving accuracy up to 140 mm with
non-Gaussian noise and 53 mm with missing information.
1. Introduction

Human pose estimation (HPE) has mainly been investigated in the
last years, and significant advancements have been achieved thanks
to different and sophisticated deep learning techniques [1,2]. Because
HPE allows for marker-less human motion analysis, there is a growing
interest to adopt such software platforms also to the healthcare [3–5]
as well as industrial domain [6–8].

Nevertheless, the intrinsic inaccuracy of such platforms often leads
to noise in the extrapolated positional information of human keypoints
or periods during which such information is even missing. As a con-
sequence, data filtering for denoising or completion is a fundamental
step before data analysis. Temporal filters based on neural networks
and state observers have shown great potential to denoise HPE. How-
ever, using these techniques in real-world situations is challenging,
especially when the goal is to generate filtering or reconstruction
results with minimal delay. We address this by proposing a real-time
spatiotemporal filter that uses inter-frame (temporal) and intra-frame
(spatial) information to remove jitters, correct wrong 3D poses and
complement dropped frames. Our filter with learned kinematics (FLK)
combines an adaptive Kalman filter, a low-pass filter, and a filter that
implements skeleton adjustments based on biomechanical constraints.
FLK selectively activates the Kalman filter by using the concept of
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keypoint confidence, which allows identifying the keypoints more subject
to jittering (see Fig. 1).

Kalman filters (KF) [9] have shown great potential and broad ap-
plicability for filtering [10,11]. Some variants (e.g., EKF, UKF) extend
the applicability of KF to nonlinear systems by linearization or deter-
ministic sampling [12]. They use dynamic system input/output mea-
surements observed over time, statistical noise, and other inaccuracies
to estimate a system’s unknown inner state. KF consists of two phases:
prediction and correction. In the prediction phase, the filter estimates
the system’s current state based only on the previous observation and
the transition function. The correction phase adjusts the estimated state
closer to the measured state by steering the estimated state toward the
measured values. Several approaches tried to use KF to denoise the
outcome of HPE frameworks. Niu et al. [7] used KF to reduce jitter
and other inaccuracies caused by occlusions, proposing a reliability
index to identify errors in joint detection. Loumponias et al. [13]
applied a non-linear KF to recover sequences from a markerless mocap
system, where occluded keypoints were considered occluded. Tripathy
et al. [14] constrained a KF to maintain the consistent distance between
physically linked joints throughout the motion sequence captured by
an RGB-D camera. Musunuri et al. [15] compared KFs in reducing
nonlinear temporal noise in RGB-D motion capture data. Similarly,
Ahmed et al. [16] filtered the RGB-D camera motion capture output to
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Fig. 1. Pose estimation results: extrapolated by a 3D HPE framework (3D HPE),
with emphasis on confidence values of keypoints (c) and spatial incoherence between
keypoints w.r.t. human biomechanics; After filtering with the proposed approach (FLK);
The ground truth (GT).

avoid inconsistent estimations of the limb lengths. The main limitation
of these approaches is the choice of the transition function. Since hu-
man motion is complex and often unpredictable, the exact knowledge
about the transition function cannot be determined, leading to wrong
predictions.

Another set of approaches is based on autoencoder, which has be-
come popular in recent years due to its ability to learn a compressed
representation of the input data [17,18]. To refine 3D skeleton mo-
tion, Holden et al. [19] proposed a convolutional autoencoder that
projects the motion onto the manifold to remove the error. Bidirectional
recurrent autoencoders (BRA) account for temporal relationships and
dynamics of human motion [20]. In [21], they proposed a bidirec-
tional recurrent auto-encoder that preserves bone-length consistency
by maintaining the distance between keypoints naturally connected
by bone. Nakatsuka et al. [22] proposed a variational autoencoder
with gated recurrent units (GRU) to solve the problems of left–right
switching and missing markers. Zeng et al. [23] proposed SmoothNet,
a Deep Learning network that is HPE-agnostic. They demonstrated its
validity in improving temporal smoothness and precision on 2D HPE,
3D HPE, and SMPL [24]. In the literature, there are also combina-
tions of different approaches, as reported in [25]. Coskun et al. [26]
integrated three LSTMs into a KF to capture the high non-linearity
that characterizes both human motion and noise models. The primary
limitation of learned models lies in their limited ability to generalize.
Retraining those models is essential to achieve optimal results with
different HPE frameworks, necessitating additional datasets.

In the proposed adaptive Kalman filter (AKF) block, the transition
function is learned through a recurrent neural network (RNN), provid-
ing accurate predictions of the body joints’ position. Also, limiting the
use of neural networks to the prediction phase makes the filter inde-
pendent of the training dataset and the HPE backbone. We designed
and compared different RNN models and showed that gated recurrent
units (GRU) allow the Kalman filter to achieve better results than the
long short-term memory (LSTM). We combined AKF with a low-pass
filter to adequately address high-frequency large-error jitters (with the
first) and high-frequency small-error jitters (with the second). We also
implemented a spatial filter to take advantage of the biomechanical
constraints of the human body to guarantee spatial coherency between
keypoints.

The main contributions of the work are the following:

• We present Filter with Learned Kinematics (FLK), a three-step de-
noising and completion algorithm that refines keypoints from
any 3D HPE frameworks. It consists of three blocks. The first is
2

an Adaptive Kalman Filter (AKF), which relies on a transition
function learned through RNN and overcomes the limitation of
traditional Kalman filters by dynamically adjusting only keypoints
more prone to jittering. The second, Biomechanical Constraint
Adjustment (BCA), is a spatial filter that models the keypoints as a
graph and ensures spatial coherency between keypoints. The third
is a low-pass filter (LPF) that eliminates small-error jitters caused
by temporal incoherencies between frames.

• We propose a quantitative evaluation of FLK applied to refine the
3D human poses extrapolated by many state-of-the-art HPE on
three popular datasets. In the analysis, we included further and
different types of pose errors (i.e., Gaussian and random noise),
missing keypoints, and dropped frames.

• We demonstrate the efficiency of the learned transition function
using a Gated Recurrent Unit (GRU) through an ablation study,
compared to Long-Short Term Memory (LSTM) and the identity
function.

The code is publicly available at https://github.com/PARCO-LAB/FLK.

2. Methodology

FLK is a plug-and-play filter that refines the human pose estimated
by any 3D HPE framework. The starting point is the set of keypoints
(i.e., the skeleton 𝑠̂𝑘) representing the 3D coordinates of the human
joints extrapolated from an image at frame 𝑘. The result is the denoised
and completed version of the skeleton, 𝑠̂′′𝑘 . Fig. 2 shows an overview of
the filtering pipeline, which blocks are described in more detail in the
following sections.

2.1. Adaptive Kalman filter

AKF is the first filtering block applied to correct the spatial position
of keypoints estimated by the HPE with high-frequency and large-error
jitter. It takes advantage of the pose information of the previous frame
to identify the target keypoints.

For each keypoint 𝑗 at frame 𝑘, AKF computes a confidence value 𝑐
as in Eq. (1):

𝑐𝑘,𝑗 =
1

𝛼𝑣2𝑘,𝑗 + 1
𝑣𝑘,𝑗 =

||𝑝𝑘,𝑗 − 𝑝̂𝑘−1,𝑗 ||
𝑡𝑘 − 𝑡𝑘−1

(1)

where 𝛼 is a fixed scaling factor, 𝑣 represents the velocity of the
keypoint at frame 𝑘, 𝑝𝑘,𝑗 is the 3D position of the 𝑗th keypoint at
frame 𝑘, 𝑝̂𝑘−1,𝑗 is the refined position of the 𝑗th keypoint at frame
𝑘 − 1, and 𝑡𝑘 is the timestamp of the 𝑘-frame, expressed in seconds.
The confidence of each keypoints depends on its velocity, so that slow
keypoints (i.e., keypoints with position at time 𝑡𝑘 close to their position
at time 𝑡𝑘−1) have higher confidence values than fast keypoints.

In the proposed solution, FLK applies the AKF block to each key-
point with a confidence value below a certain threshold, which we call
Kalman activation threshold (𝛩).

AKF implements a prediction-update approach to correct the key-
point spatial position when activated. Since the 3D position of each
body joint is composed of three values, the inner state vector 𝑥, as the
observation measure 𝑦, represents a single coordinate of a keypoint.

Differently from standard KF, in which the covariance of the process
noise 𝑄 and the covariance of the observation noise 𝑅 are fixed and
found through manual tuning, in the proposed solution 𝑄 and 𝑅 are
calculated at runtime by considering the current velocity of keypoints,
as in Eq. (2):

𝑄𝑘,𝑗 = (𝛼 − 1)𝑒−𝛼𝑣𝑘,𝑗 + 1 𝑅𝑘,𝑗 = 𝛼𝑣2𝑘,𝑗 (2)

Eq. (2) describes the relation between 𝑄𝑘,𝑗 and 𝑅𝑘,𝑗 with the velocity 𝑣
of keypoint 𝑗 at frame 𝑘, so that the covariance of the noise increases
differently along with the velocity.

https://github.com/PARCO-LAB/FLK
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𝑥

𝑥

Fig. 2. Overview of the FLK filtering pipeline, which consists of an adaptive Kalman filter (AKF), a biomechanical constraint adjustment (BCA), and a low-pass filter (LPF). The
input is 𝑠̂𝑘, provided by a 3D HPE framework. The output is the refined version of the estimated skeleton, 𝑠̂′′𝑘 .
Fig. 3. RNN architecture.

Prediction. The prediction phase estimates the keypoint position based
only on the motion model without knowing the actual position pro-
vided by the HPE framework. The critical challenge is to find the
transition function that best approximates the evolution of the system
state. We tested two models: identity and RNN. With the identity model,
we assume that the human body is static. Following this assumption,
we modeled the transition function as in Eq. (3):

̂−𝑘,𝑗,𝑎 = 𝑥̂𝑘−1,𝑗,𝑎 (3)

where 𝑥̂−𝑘,𝑗,𝑎 is the prediction of the 𝑎-coordinate (𝑎 ∈ {𝑥, 𝑦, 𝑧}) of joint
𝑗 at frame 𝑘.

To deal with the complexity and non-linearity of human motion
patterns, we implemented a second transition function that consists
of an RNN with gated recurrent units (GRU), represented in Fig. 3. It
predicts each current pose starting from a sequence of past poses. After
each GRU layer, we applied a dropout layer with a keep probability
of 0.9 to prevent overfitting during the training phase. We included a
fully connected (FC) layer at the network’s end. Since the prediction
involves 12 keypoints, the model tested in experimental results uses an
FC layer of 36 units.

Correction. In this phase, AKF uses the results provided by the HPE
framework to refine the state estimated by the prediction phase. To do
that, FLK compute the correction as in Eq. (4):

̂𝑘,𝑗,𝑎 = 𝐾𝑘,𝑗 ⋅ 𝑦𝑘,𝑗,𝑎 + (1 −𝐾𝑘,𝑗 ) ⋅ 𝑥̂−𝑘,𝑗,𝑎 (4)

where 𝐾𝑘,𝑗 is the Kalman gain. The coordinate position 𝑥̂𝑘,𝑗,𝑎 is obtained
by averaging the prediction 𝑥̂−𝑘,𝑗,𝑎 (given by the identity or RNN model)
with the current noisy position 𝑦𝑘,𝑗,𝑎. This average is weighted by 𝐾𝑘,𝑗 ,
so a higher gain weights more incoming measurements, while a small
gain increases the previous state prediction weight (Fig. 4).

Considering, for example, 𝛩 = 75% and 𝛼 = 10−2, we can derive
from Eq. (1) that the minimum joint velocity to enable the Kalman filter
is 𝑣 = 5.77 m∕s. At this velocity, the resulting refined position of each
joint coordinate is composed of the current measurement for 35.6% and
the prediction for 64.4%.
3

2.2. Biomechanical constraint adjustment

The biomechanical constraint adjustment (BCA) is the second block
of the pipeline. It provides spatial coherency between keypoints that are
biomechanically constrained. BCA uses a directed acyclic graph (DAG)
to represent the human body, where nodes are the joint positions and
edges are links between two adjacent joints. Each edge can be either
flexible, such as the one between shoulder and hip, or fixed, such as
the one between shoulder and elbow.

BCA requires each bone length to minimize the variation in rigid
segments during tracking. During the first iterations, when the size of
the bones is not yet known, the algorithm calculates the Euclidean
distances between all the adjacent keypoints provided by AKF and
stores such values in the DAG.

After a few iterations, when all measured distances converge on the
corresponding consistent average value (i.e., the standard deviation is
below a certain threshold 𝜎), BCA starts to correct the joint positions.
Given a measured bone length bl𝑘,𝑖𝑗 (between keypoints 𝑖 and 𝑗) and
the corresponding reference bone length bl𝐺𝑇 ,𝑖𝑗 , BCA activates only if
bl𝑘,𝑖𝑗 differs from bl𝐺𝑇 ,𝑖𝑗 by a constant threshold 𝜖. When activated, it
adjusts keypoint 𝑗 as in Eq. (5):

𝑝̂𝑘,𝑗 = 𝑝𝑘,𝑖 +
bl𝐺𝑇 ,𝑖𝑗 ⋅ (𝑝𝑘,𝑗 − 𝑝𝑘,𝑖)

bl𝑘,𝑖𝑗
(5)

where 𝑖 and 𝑗 are ordered by following the DAG representation. Eq. (5)
corrects 𝑗 such that the distance between 𝑖 and 𝑗 matches the reference
bone length bl𝐺𝑇 ,𝑖𝑗 .

2.3. Low-pass filter

FLK implements a low-pass filter (LPF) to correct high-frequency
low-error jitters. In particular, we integrated a Butterworth filter [27].
The Butterworth filter, widely utilized in signal processing, is known for
its simplicity and efficacy. With a maximally flat frequency response in
the passband, the Butterworth filter ensures shape preservation without
introducing distortions. Furthermore, it provides a smooth roll-off from
the passband, contributing to a consistently predictable response. The
chosen implementation of the Butterworth filter can be found in [28].

Overall, the LPF block complements the AKF filter by ensuring the
quality and reliability of the skeleton data by eliminating noise and
inconsistencies in the temporal dimension. FLK deactivates this block
to provide zero-latency results.

3. Experimental evaluation

Datasets. We run the FLK evaluation on different datasets, each con-
taining 3D pose annotations assumed as ground truth. Human3.6M [29]
is one of the most extensive and widely adopted benchmarks for HPE.
It comprises 3.6 million frames obtained from four digital cameras
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Fig. 4. Weight of measurement and prediction in the average to obtain the coordinate estimation. The red dotted line represents the Kalman activation threshold 𝛩, set to 75%. As
he joint velocity increases (and the confidence drops), the adaptive filter weighs the model prediction more than the actual measurement.
Table 1
Experimental results on Human3.6M using different HPE frameworks as backbone. Each row corresponds to a refinement method. Each pair of
columns represents a different input. The error is expressed as MPJPE and Accel.
Input Synthetic (25%) GT + FCN OP + FCN GT + Ray3D CPN + Ray3D

Evaluation metrics MPJPE ↓ Acc. ↓ MPJPE ↓ Acc. ↓ MPJPE ↓ Acc. ↓ MPJPE ↓ Acc. ↓ MPJPE ↓ Acc. ↓

3D HPE framework 183.2 551.2 49.2 1.3 78.5 19.0 84.9 2.2 114.6 15.8
+ EMA 105.2 122.7 61.6 0.9 88.4 3.0 94.8 1.0 123.1 2.6
+ Linear KF (0th-order) 105.2 122.8 61.6 0.9 88.4 3.0 94.8 1.0 123.1 2.6
+ Linear KF (1st-order) 107.4 126.8 56.2 0.9 82.6 3.2 91.0 1.1 120.8 2.7
+ Linear KF (2nd-order) 110.0 129.8 54.8 0.9 80.8 3.3 90.4 1.1 119.6 2.8
+ SmoothNet [23] (𝑇 = 64) 78.2 78.8 49.8 0.9 76.7 1.2 85.1 0.9 113.7 1.1
+ FLK (id) 44.2 75.7 47.8 0.9 76.4 1.0 84.4 0.9 113.6 1.0
+ FLK (GRU) 41.0 75.7 47.8 0.9 76.2 1.0 84.4 0.9 113.6 1.0
with a 50 Hz frame rate. In our experiments, we trained the models
included in the comparison on all actions performed by subjects 1, 5,
6, 7, and 8, while we used the first video of each action performed by
subjects 9 and 11 as the test set. AIST Dance Video Database [30] is a
ataset containing 10 389 video clips of different dancers. We trained
n 868 sequences from the first 20 actors during our experiments and
eported results using 470 sequences from the last ten actors, according
o the dataset authors’ recommendations. The 3D People in the Wild
3DPW) dataset [31] is a collection of images captured with a moving
hone camera in outdoor real-world environments. It includes diverse
cenes, clothing, and poses, making it a challenging benchmark for
PE software. For the train/test division, we followed the protocol

uggested by the authors.

valuation metrics. To evaluate the accuracy of FLK, we adopted the
ean per joint position error (MPJPE) expressed in mm. We used the
ean per joint acceleration error (Acc.) expressed in mm/s2 to quantify

he jitter problem, as in [23,32,33].

LK parameters. We set all the parameters of FLK and kept the same
alues throughout the experimental results. In the AKF block, we chose
= 75% and 𝛼 = 10−2 after an offline grid search. For the prediction

hase, we trained the RNN to predict the common keypoint position
mong the evaluated backbones: shoulders, elbows, wrists, hips, knees,
nd ankles. We trained the network by using the Adaptive Moment
stimation (Adam) [34] optimizer, with a learning rate of 10−5. Since

the network predicts the actual joint positions given a sequence of past
skeletons without noise, we used the ground truth of different datasets
for training. We empirically designed a 64-frame-long sequence as it
provides a good trade-off between accuracy and processing time.

In the BCA block, 𝜎 = 2 cm and 𝜖 = 2⋅10−2. In the LPF, the 3𝑟𝑑-order
utterworth filter has a critical frequency of 2 Hz. This last block has
een deactivated to generate the results at zero latency (Table 3).

ompared methods. To assess the performance of the proposed filter,
e performed an extensive comparison using different state-of-the-
rt filtering techniques. For the traditional filters, we implemented a
oving average filter, weighted moving average filter, Savitzky–Golay
4

filter [35], and Butterworth low-pass filter. For the state-observers,
we tested three variants of linear KF with different transition matri-
ces. During the prediction phase, the 0th-order KF assumes that all
keypoints do not move. The 1𝑠𝑡-order KF assumes that all keypoints
keep the velocity constant, while the 2𝑛𝑑-order KF assumes that all
keypoints keep the acceleration constant. For each filter used in the
comparison, we fine-tuned all fixed parameters to achieve the best
results through grid search on the synthetic error dataset. Finally,
we compared FLK with SmoothNet [23], which outperforms all the
previous denoising solutions. We tested SmoothNet by using the pre-
trained models provided by the authors. For this reason, Table 1 reports
four variants of SmoothNet, which differ on the window length required
to clean the data. We tuned each filtering method to obtain the best
results via grid search. For all filters, we set the maximum permitted
latency to 64 frames (1.28 s), which is the latency of the most accurate
version of SmoothNet.

3.1. Comparison with existing solutions

Synthetic noise. The first test consists of a version of the ground truth
corrupted by two noise types: additive white Gaussian noise (with a
signal-to-noise ratio set to 45) and asymmetric noise. The second is an
additive white Gaussian noise of power 8 ⋅10−2 dBW with values below
zero being halved. While the first noise is applied to each dataset value,
the second affects only a pre-determined percentage (i.e., 5% and 25%).
The first two columns on Table 1, i.e., Synthetic (5%) and Synthetic
(25%), show the accuracy of the filters on this type of noise. Both FLK
versions outperform by far all the existing filtering methods, improving
the quality of corrupted input in both precision (up to 77.6%) and
smoothness (up to 87.7%).

Root-relative 3D human pose estimation. For the second test, we con-
sidered the task of improving the root-relative 3D HPE, in which the
position and orientation of the human body are relative to the pelvis
joint. We selected the fully-connected network (FCN) presented in [36]
as relative 3D HPE since all SmoothNet models we used are trained and
tested on FCN. In Table 1, columns GT + FCN and OP + FCN report the

filtering results on FCN using the ground truth and OpenPose [37] as
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Table 2
Experimental results on 3DPW and AIST using different HSE frameworks as backbone. Each row corresponds to a refinement method. Each
pair of columns represents a different input. The error is expressed as MPJPE and Accel.
Input SPIN (3DPW) PARE (3DPW) EFT (3DPW) VIBE (AIST) TCMR (AIST)

Evaluation metrics MPJPE ↓ Acc. ↓ MPJPE ↓ Acc. ↓ MPJPE ↓ Acc. ↓ MPJPE ↓ Acc. ↓ MPJPE ↓ Acc. ↓

3D HPE framework 101.8 37.2 80.0 27.9 92.6 35.3 104.4 31.5 104.5 6.6
+ EMA 105.2 9.0 86.2 7.9 96.9 8.7 114.0 6.8 113.7 4.6
+ Linear KF (0th-order) 105.2 9.0 86.2 8.0 96.9 8.7 113.9 6.8 113.7 4.6
+ Linear KF (1st-order) 104.8 9.4 85.6 8.2 96.7 9.1 114.0 7.2 114.1 4.7
+ Linear KF (2nd-order) 105.0 9.7 85.6 8.5 96.9 9.4 114.3 7.6 114.6 4.7
+ SmoothNet [23] (𝑇 = 32) 102.4 7.0 81.5 6.8 93.0 6.9 123.9 4.4 130.0 4.4
+ FLK (id) 99.3 6.7 77.2 6.5 87.0 6.6 101.7 4.5 103.5 4.3
+ FLK (GRU) 99.2 6.7 77.2 6.5 87.1 6.6 105.9 4.5 104.1 4.3
Table 3
Experimental results with zero-latency filters applied to the output of Ray3D with 2D CPN [38] on Human3.6M. Each row corresponds to a refinement method. Each column
represents an action taken from the Human3.6M dataset [29]. The error is expressed as MPJPE.
No frame missing Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Ray3D [39] (2D CPN [38]) 161.4 84.8 141.7 150.4 119.2 113.2 82.0 73.9 161.5 140.7 121.1 91.8 91.5 93.2 92.2 114.6
+ Linear KF (0th-order) 163.5 89.1 150.9 153.7 126.1 117.8 86.1 81.4 162.1 142.1 126.1 96.2 106.3 128.2 116.8 123.1
+ Linear KF (1st-order) 163.8 88.8 147.4 153.4 123.0 116.5 85.5 79.3 162.5 141.9 124.6 95.0 102.8 117.6 109.7 120.8
+ Linear KF (2nd-order) 163.9 88.8 145.8 153.8 121.8 116.5 85.4 78.9 162.7 142.3 123.8 94.6 101.4 109.5 104.3 119.6
+ SmoothNet [23] 161.6 85.4 142.0 150.2 119.3 113.7 82.7 74.8 161.3 140.8 121.1 92.3 92.4 94.6 93.0 115.0
+ FLK (id) 161.0 84.6 141.6 150.2 118.9 112.8 81.7 73.7 161.6 141.2 120.4 91.4 91.6 91.9 91.2 114.3
+ FLK (GRU) 161.0 84.6 141.6 150.3 118.9 112.8 81.8 73.7 161.7 141.3 120.5 91.4 91.4 91.8 91.1 114.2

30% of frames missing, at least 10 consecutive frames lost per gap.

Ray3D [39] (2D CPN [38]) 163.1 88.9 148.4 155.7 124.9 117.1 85.8 78.6 163.1 141.7 125.8 97.0 103.0 117.4 114.1 121.6
+ Linear KF (0th-order) 166.0 94.5 161.0 161.2 134.0 124.4 91.8 88.3 164.2 144.0 133.0 104.0 123.1 163.5 148.7 133.4
+ Linear KF (1st-order) 166.6 94.6 155.2 160.3 128.5 122.2 91.4 85.7 164.8 144.1 129.8 101.6 115.7 143.0 133.4 129.1
+ Linear KF (2nd-order) 167.4 95.6 153.0 161.3 127.1 123.2 92.1 85.7 165.4 145.4 129.0 101.5 115.0 131.0 124.7 127.8
+ SmoothNet [23] 163.4 89.7 149.8 155.9 125.5 117.6 86.9 79.4 163.0 141.8 126.3 97.9 105.2 122.4 117.9 122.8
+ FLK (id) 163.0 89.0 149.9 156.0 125.3 117.0 85.9 78.7 163.2 142.3 125.8 97.6 107.6 126.4 120.6 123.2
+ FLK (GRU) 162.7 89.4 143.9 153.6 121.4 117.1 86.6 78.0 163.3 143.6 123.0 95.8 98.8 97.0 96.0 118.0

30% of frames missing, at least 20 consecutive frames lost per gap

Ray3D [39] (2D CPN [38]) 166.2 95.6 159.6 165.4 135.4 128.1 95.6 90.1 166.0 148.9 136.6 104.6 125.3 167.6 145.6 135.4
+ Linear KF (0th-order) 168.8 101.4 172.2 173.2 145.3 136.0 101.4 99.7 167.1 151.5 145.0 111.7 146.6 215.6 183.3 147.9
+ Linear KF (1st-order) 171.0 104.5 163.2 171.8 139.3 134.8 103.1 97.7 168.4 152.1 141.7 112.1 141.0 188.6 162.1 143.4
+ Linear KF (2nd-order) 174.2 108.9 161.1 176.6 139.5 138.4 107.0 102.5 170.7 155.2 143.2 114.4 145.0 174.4 151.0 144.1
+ SmoothNet [23] 166.6 96.6 161.5 166.1 136.9 129.2 97.4 91.7 166.0 149.4 137.7 106.3 129.5 176.4 152.4 137.6
+ FLK (id) 166.4 95.9 163.0 166.9 136.4 129.5 95.4 91.1 166.4 150.4 137.6 105.6 134.8 193.4 160.4 139.6
+ FLK (GRU) 168.8 101.4 149.2 162.3 128.7 132.4 103.6 95.8 168.5 155.1 132.3 107.6 119.1 114.0 107.3 129.8
𝑠

t
f
s
f
S
w

2D pose estimator, respectively. Also, in these cases, both FLK versions
outperform SmoothNet and all the other filtering techniques, reducing
the FCN error, on average, by 2.8% and 2.9%, respectively.

Absolute 3D human pose estimation. We evaluated the performance of
FLK on improving ray-based 3d human pose estimation (Ray3D) [39],
which is the state-of-the-art solution for absolute 3D HPE. Differently
from FCN, Ray3D provides the skeletons in the World Coordinate
System. As a two-stage approach, Ray3D needs the 2D poses as input.
Following the authors’ recommendations, we trained Ray3D using the
2D ground truth and Cascaded Pyramid Network (CPN) [38]. Columns
GT + Ray3D and CPN + Ray3D on Table 1 show that FLK improves
Ray3D, in average, of 0.5 mm and 1.0 mm, respectively.

Human shape estimation. We also tested FLK in denoising 3D key-
points from Human Shape Estimation (HSE) backbones. HSE focuses
on predicting human 3D shapes and poses from 2D images, provid-
ing information about the skeletal structure, articulation, and surface
geometry as output. The standard representation for this task is the
Skinned Multi-Person Linear model (SMPL) [24]. It includes the root-
elative 3D positions of a predefined set of anatomical joint locations.
or the experiments presented in Table 2, we used 5 different HSE
ackbones: SPIN [1], PARE [40], EFT [41], VIBE [32], TCMR [42]. FLK
erforms better than the other methods, yielding similar results across
he various datasets. However, it is worth noting that in the 3DPW
ataset, both the GRU and identity versions perform similarly. In con-
rast, when testing on the AIST dataset, the identity version outperforms
5

he GRU version. This is due to the high-velocity movements within the f
AIST dataset, presenting challenges for learning the movement patterns
by the RNN.

3.2. Comparison of 0-latency filters

To simulate a possible application of the denoising solutions on a
real-time system, in Table 3, we consider only 0-latency filters. A filter
is 0-latency if, given a skeleton 𝑠̂𝑘 at time 𝑘, it provides the filtered
̂′𝑘 before 𝑠̂𝑘+1 arrives. SmoothNet, in the original implementation, is
not a 0-latency filter, as when skeleton 𝑠̂𝑘 arrives, the filter output is
the refined skeleton 𝑠̂′𝑘−𝑇 . According to the authors’ suggestions, we
implemented a 0-latency version of SmoothNet by considering only the
last frame in the denoising process. For the sake of space, we present
the results obtained starting from the outputs of Ray3D with CPN. The
first section of Table 3 reports all the actions of the dataset. On average,
FLK with GRU achieves the best results, being the only filter that can
smooth Ray3D without introducing latency.

Gap filling. In many scenarios, occlusions and corrupted frames often
result in total or partial absence of information. To test the robustness
of FLK in such contexts, we randomly removed consecutive frames from
he Human3.6M videos. We discarded 30 percent of the frames in the
irst test with bursts of at least ten successive frames (≥0.1 s) and, in the
econd test, with bursts of at least 20 consecutive frames (≥0.4 s). While
ilters based on KF are designed to handle periods with no information,
moothNet cannot deal with missing data. To compare the solutions,
e replaced each missing frame with a copy of the last available frame
or SmoothNet.
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Fig. 5. Qualitative example of gap filling with the 0-latency constraint. Skeletons in black are estimated by Ray3D [39], with CPN [38] as 2D HPE. For 20 consecutive frames
(from 𝑡11 to 𝑡30) no skeleton is given to the filters. The 0-latency version of SmoothNet [23] (in red) performs poorly since it does not handle the case of missing data, while FLK
(in blue) produces more reliable results, compared to ground truth (in green).
Fig. 6. Displacement of a keypoint coordinate in the presence of gaps. The input (in
black) is the result of Ray3D using CPN. Both SmoothNet (in red) and FLK (in cyan)
are in their best 0-latency versions.

The last two sections of Table 3 show the results of our analysis
in the presence of missing frames. FLK with GRU is the only filter
that can improve Ray3D on average. In particular, the improvement of
FLK is more evident when applied in non-static scenarios (i.e., where
the majority of keypoints have non-zero velocity). Examples of clear
improvements are on WalkD (up to 4.9%), Walk (up to 31.9%), and
WalkT (up to 26.3%). Fig. 5 shows qualitatively the effectiveness of
FLK in recovering missing information while the subject is walking.

Fig. 6 shows how FLK and SmoothNet fill the gaps at the coordinate
level. While SmoothNet tends to maintain the current position, FLK
understands the motion pattern and consequently follows more closely
the correct trajectory (green dotted line).

3.3. Ablation study

We implemented a transition function based on LSTM [26] and
compared the results achieved with our function based on GRU. The
network implements three stacked LSTM layers, each one with 1024
units. A dropout with a keep probability of 0.7 follows all layers. The
network’s end consists of two fully connected layers of 1024 units
with a relu activation function and a final layer with 36 units for the
coordinate regression (i.e., one unit per coordinate of each keypoint).
The optimizator, learning rate, and initialization are the same as in the
GRU model. The only difference is, according to [43], the forget biases,
which were initialized to 1.

To test the advantages of the GRU, we compared the three configu-
rations of FLK: id (i.e., no prediction), LSTM, and GRU. Table 4 shows
6

that, as the gaps increase, the GRU version outperforms the LSTM and
id versions. For example, in the last section of the table, where there
are 30% of missing frames with at least 20 consecutive lost frames per
gap, the GRU version achieves better results (21 mm improvement on
average). This version is the only one that, in this test, enhances the
accuracy of Ray3D.

3.4. Performance analysis

The primary purpose of the filter is to operate in real-time; that
is, the total refinement time required by the FLK pipeline has to be
less than 20 ms (i.e., >50 Hz). We performed all our experiments on a
desktop PC with a CPU Intel i7-7700K, a GPU Nvidia RTX 2070 Super,
and 16 GB RAM. The version of FLK with GRU requires a training time
of 653 s and an average computation time of 14.4 ms. On the other hand,
the identity version of FLK has an average computation time of 1.2 ms.
Regarding the 0-latency versions, SmoothNet has a computation time
comparable to FLK with GRU, while Kalman filters have a computation
time similar to the identity version of FLK. The computation burden
of the other approaches entirely depends on the smoothing window
(e.g., the SMA filter with 32-frame windows has a latency of 320 ms).

4. Future work

We plan to refine the biomechanical model to better capture the
synergies of human motion by incorporating learned spatial informa-
tion into the filtering process. In addition, exploring techniques to
reduce computational overhead and improve efficiency may be useful,
particularly for meeting the real-time requirements of embedded safety-
critical systems. We also plan to incorporate a tracking module into the
filtering pipeline, designing a FLK version that can effectively refine
multi-person 3D HPE frameworks.

5. Conclusion

In this work, we proposed FLK, a spatio-temporal filter to refine 3D
human motion in real-time and at low latency. The filter uses a motion
model learned by an RNN and human anatomical constraints to provide
a denoised estimation. We showed that FLK outperforms other existing
solutions in refining the position of different 3D HPE frameworks. We
also proposed a 0-latency version of FLK that not only improves the
current state-of-the-art method for absolute 3D HPE but is also robust
to periods on which input frames are unavailable.



Signal Processing 224 (2024) 109598E. Martini et al.

f

Table 4
Results of FLK at 0 latency with different transition functions on the results provided by Ray3D [39] with 2D CPN [38]. Each row corresponds to FLK with a specific transition
unction. Each column represents an action taken from the Human3.6M dataset [29]. The error is expressed as MPJPE.
No frame missing Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Ray3D [39] (2D CPN [38]) 161.4 84.8 141.7 150.4 119.2 113.2 82.0 73.9 161.5 140.7 121.1 91.8 91.5 93.2 92.2 114.6
+ FLK (id) 161.0 84.6 141.6 150.2 118.9 112.8 81.7 73.7 161.6 141.2 120.4 91.4 91.6 91.9 91.2 114.3
+ FLK (lstm) 161.1 84.6 141.6 150.3 118.9 113.1 81.7 73.7 161.8 141.5 121.7 91.4 91.4 91.6 90.9 114.4
+ FLK (GRU) 161.0 84.6 141.6 150.3 118.9 112.8 81.8 73.7 161.7 141.3 120.5 91.4 91.4 91.8 91.1 114.2

30% of frames missing, at least 10 consecutive frames lost per gap.

Ray3D [39] (2D CPN [38]) 163.1 88.9 148.4 155.7 124.9 117.1 85.8 78.6 163.1 141.7 125.8 97.0 103.0 117.4 114.1 121.6
+ FLK (id) 163.0 89.0 149.9 156.0 125.3 117.0 85.9 78.7 163.2 142.3 125.8 97.6 107.6 126.4 120.6 123.2
+ FLK (lstm) 165.9 94.6 148.7 161.3 125.6 126.2 91.6 83.5 166.0 146.1 130.3 101.2 105.0 100.6 100.2 123.1
+ FLK (GRU) 162.7 89.4 143.9 153.6 121.4 117.1 86.6 78.0 163.3 143.6 123.0 95.8 98.8 97.0 96.0 118.0

30% of frames missing, at least 20 consecutive frames lost per gap

Ray3D [39] (2D CPN [38]) 166.2 95.6 159.6 165.4 135.4 128.1 95.6 90.1 166.0 148.9 136.6 104.6 125.3 167.6 145.6 135.4
+ FLK (id) 166.4 95.9 163.0 166.9 136.4 129.5 95.4 91.1 166.4 150.4 137.6 105.6 134.8 193.4 160.4 139.6
+ FLK (lstm) 177.0 124.8 165.3 199.6 145.7 159.6 116.6 106.6 180.1 160.6 154.3 123.3 134.8 168.7 128.4 149.7
+ FLK (GRU) 168.8 101.4 149.2 162.3 128.7 132.4 103.6 95.8 168.5 155.1 132.3 107.6 119.1 114.0 107.3 129.8
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