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Abstract: Diabetic cardiomyopathy (DCM) represents one of the typical complications associated with
diabetes. It has been described as anomalies in heart function and structure, with consequent high
morbidity and mortality. DCM development can be described by two stages; the first is characterized
by left ventricular hypertrophy and diastolic dysfunction, and the second by heart failure (HF) with
systolic dysfunction. The proposed mechanisms involve cardiac inflammation, advanced glycation
end products (AGEs) and angiotensin II. Furthermore, different studies have focused their attention
on cardiomyocyte death through the different mechanisms of programmed cell death, such as
apoptosis, autophagy, necrosis, pyroptosis and ferroptosis. Exosome release, adipose epicardial
tissue and aquaporins affect DCM development. This review will focus on the description of the
mechanisms involved in DCM progression and development.

Keywords: diabetic cardiomyopathy; apoptosis; autophagy; pyroptosis; ferroptosis; fibrosis;
exosomes

1. Introduction

Diabetic cardiomyopathy (DCM) represents one of the typical complications associated
with diabetes. It has been described as anomalies in heart function and structure, with
consequent high morbidity and mortality. However, the pathophysiological mechanisms
of DCM can be different according to the type of diabetes. It is important to remember
that the two main types of diabetes are type 1 diabetes (T1D) and type 2 diabetes (T2D).
The first is characterized by insulin deficiency [1], whereas the latter is characterized by
insulin resistance [2]. Consistently, DCM is associated with left ventricular mass increase [3]
that in T1D may be due to the younger age of disease development, whereas in T2D,
DCM is independent of factors such as race and obesity [4]. In the attempt to deepen
the mechanisms, researchers focus on insulin signaling, which involves two interacting
pathways: the MAPK pathway and the insulin receptor substrate 1 (IRS-1) pathway [5].
Obviously, in T2D, insulin resistance alters the balance, shifting it in favor of the MAPK
pathway with consequent effects on cell metabolism and growth leading to cardiac fibrosis
and diastolic dysfunction.

DCM development can be described by two stages; the first is characterized by left
ventricular hypertrophy and diastolic dysfunction, and the second by heart failure (HF)
with systolic dysfunction [6]. The proposed mechanisms involve cardiac inflammation,
oxidative stress, advanced glycation end products (AGEs) and angiotensin II (Ang-II) [7,8].
Furthermore, different studies have focused their attention on cardiomyocyte death through
the different mechanisms of programmed cell death, such as apoptosis, autophagy, necrosis,
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pyroptosis and ferroptosis [9,10]. In this review, we will detail the mechanisms associated
with these processes (Figure 1).
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A key role has also been attributed to intracellular Ca2+ levels, which are important 
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2. Cardiomyocyte Cell Death
2.1. Cardiomyocyte Apoptosis

Cardiomyocyte apoptosis may occur in the initial stage of DCM development and
is linked to myocardial hypertrophy and HF. The mechanisms reported endoplasmic
reticulum (ER) stress as a crucial event for cardiomyocyte apoptosis in DCM. Positive
effects have been reported for chlorogenic acid and hydrogen sulfide to counteract ER
stress using in vitro and in vivo models. Oxidative stress in myocardial ER can be activated
by permanent hyperglycemia, resulting in caspase activation [11–13]. Consistently, high
glucose levels have been linked to caspase-8 and -9 in cardiomyocytes in neonatal rats [14].

An additional factor affecting cardiomyocyte apoptosis in DCM is represented by
chronic inflammation, which leads to the increased production of nitric oxide (NO) and
sustains the expression of proto-oncogenes with the consequent development of ventricular
diastolic dysfunction [15]. The altered levels of glucose in DCM patients’ blood determine
the activation of leukocytes together with the recruitment of activated monocytes, neu-
trophils and macrophages. Consequently, the levels of pro-inflammatory cytokines are
also increased. Consistently, high levels of Interleukin (IL)-1β, IL-6, Tumor Necrosis Factor
(TNF)-α and Tumor Growth Factor (TGF)-β1 lead to cardiomyocyte apoptosis and thus
DCM [16]. Inflammation can be also exacerbated by increased levels of ROS and NLR
family pyrin domain containing 3 (NLRP3) inflammasome. Consistently, the dysregulation
of the latter is associated with an immunomodulatory response in DCM; in contrast, NLRP3
silencing improves cardiac remodeling in diabetes and alters cardiac function [17].

A key role has also been attributed to intracellular Ca2+ levels, which are important for
cardiomyocyte contraction. Interestingly, the abnormal gene transduction of Ca2+-ATPase
has been demonstrated in diabetic rats, which displayed a reduced uptake of Ca2+ in
the sarcoplasmic reticulum together with a reduction in the Na+-Ca2+ transporter in the
cardiomyocyte membrane, leading to an increase in Ca2+ in the cells, with a consequent
increased duration of the action potential and a shortened systolic phase, together with
a prolonged diastolic phase [18–20]. Ca2+ overload is also associated with an increased
uptake by mitochondria, which is linked to cardiomyocyte apoptosis [21].

2.2. Cardiomyocytes Pyroptosis

Pyroptosis and apoptosis represent two distinct types of programmed cell death with
some similarities [22]. In detail, pyroptosis is associated with membrane destruction, cell
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swelling, intact nucleus, inflammation, pore formation, pyroptotic body formation and
the activation of caspase-1, caspase-4, -5, -11 and -12, whereas apoptosis is characterized
by apoptotic body formation and caspase-2, -7 and -10 activation [23–25]. Pyroptosis can
sustain DCM development through the involvement of different pathways, and myocardial
cells can die by pyroptosis to speed up DCM development. Different pathways can be
involved in DCM pyroptosis, such as NF-κB/NLRP3, ROS and Nuclear factor erythroid
2-related factor 2 (Nrf-2) [26–30]. Hyperglycemia leads to elevated ROS production, promot-
ing the binding of TXN1P to NLRP3, and consequently the activation of the inflammasome,
which is also a crucial mediator of DCM progression [31].

2.3. Autophagy

The word autophagy arises from Greek and characterizes the self-degradation and
recycling of cellular components [32]. In heart homeostasis, autophagy represents a dy-
namic process leading to eliminated misfolded proteins, damaged organelles and cellular
debris [33,34]. It is a tightly regulated process fundamental for cellular adaptation, survival
and renewal. Consistently, hyperglycemia impairs autophagy by inhibiting autophago-
some formation and maturation, with the consequent accumulation of unuseful material in
cardiomyocytes, thus impairing cardiac activity in diabetes [35,36]. Oxidative stress also
impairs autophagy through the disruption of redox-sensitive pathways. An additional
modulator of autophagy is represented by inflammation, which contributes to the alteration
of cardiac remodeling dysfunction in DCM [37,38].

A key role in autophagy has been demonstrated by noncoding RNAs, including mi-
croRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs. LncRNAs
have a length of about 200 nucleotides, lack protein-coding properties, and regulate gene
expression and different cellular processes [32,39]. Among these, the lncRNA Diabetic
Cardiomyopathy-Related Factor (DCRF) is involved in DCM pathogenesis [40]. This factor
affects gene expression and cellular activities in the cardiomyocytes of diabetic patients.
Consistently, using a rat model of DCM, it has been demonstrated that DCRF knockdown
led to diminished cardiomyocyte autophagy, ameliorated cardiac function and reduced
myocardial fibrosis. Increased DCRF levels were linked to hyperglycemia [32]. An addi-
tional important lncRNA is represented by H19. Using a rat model, the role of H19 has
been evaluated in DCM. In diabetic rats, overexpression led to reduced cardiomyocyte
autophagy and increased left ventricular performance [41,42].

GAS5 is involved in the regulation of cellular growth and apoptosis. In DCM, GAS5
attenuated myocardial damage by stimulating cardiomyocyte autophagy through the
modulation of the miR221-3p/p27 axis [43,44]. NEAT1 is a lncRNA localized in the nucleus
that participates in nuclear body formation. It is involved in numerous cellular processes,
such as nuclear structure maintenance and gene expression modulation. In diabetic rats,
Neat1 overexpression determined increased serum myocardial enzyme levels, reduced
superoxide dismutase concentration and cardiomyocyte viability, and augmented infarct
size. In diabetic rats, enhanced Neat1 levels affected cardiac ischemia/reperfusion damage
through the induction of autophagy [45,46].

miRNAs have been implicated in different cellular processes, both in health and
disease. Their dysregulation has been implicated in different diseases including DCM. The
role of miR-200a-3p in DCM has been investigated using a model of DCM realized with
db/db mice. These mice displayed reduced levels of miR-200a-3p in the heart. Diabetic
mice displayed the overexpression of this miRNA, with consequent improved autophagy
and decreased myocardial injury, cardiac dysfunction, apoptosis, fibrosis and inflammation.
In this model, the increased levels of miR-200a-3p are linked to DCM in T2D by modulating
the Mst1/Sirt3/AMPK axis acting on the expression of FOXO3 [47].

Another important miRNA is represented by miR-207; its role in T2D has been studied
in DCM animal models. They displayed autophagy malfunction, enhanced cell apopto-
sis and affected miR-207 levels. In cardiomyocytes, miR-207 inhibited autophagy and
enhanced apoptosis. Additionally, in cardiomyocytes, miR-207 targeted LAMP2, an im-
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portant autophagy-related protein, to inhibit autophagy and promote apoptosis, thus
promoting DCM in T2D [48,49].

The role of miR-30d has been evaluated in DCM, showing that it inhibited autophagy
in rats by modulating the KLF9/VEGFA pathway [50].

Other authors reported that miRNA expression can be affected by glycemic manage-
ment but cannot be reversed to control the condition [51].

2.4. Ferroptosis

Ferroptosis is an iron-dependent nonapoptotic cell death associated with lipid-peroxid-
ation accumulation, leading to the release of extremely cytotoxic products such as malondi-
aldehyde and 4-hydroxynonenal, which damage cell membranes, proteins and DNA [52].
Different mediators have been demonstrated to be involved, such as CD36, Nrf2 and Zinc
finger antisense (ZFAS1). In detail, CD36 is a multifunctional receptor involved in lipid
metabolism and transport, energy metabolism reprogramming and inflammatory response.
CD36 expression increases in DCM cardiomyocytes.

The transcription factor Nrf2 modulates the transcription of different factors, such
as scavenger receptors, antioxidant genes, and autophagic and transporter proteins [53].
In vivo, it works as an antioxidant stress regulator. In DCM, Nrf2 is associated with ferrop-
tosis in cardiomyocytes [54]. It has been demonstrated that DCM could activate Nrf2 by
blocking autophagy, as well as Nrf2-mediated iron overload and lipid peroxidation, that in
turn activated ferroptosis in cardiomyocytes [55].

ZFAS1 is a new lncRNA involved in numerous diseases. Its upregulation, together
with miR-150-5p levels and ferroptosis, can be found in high glucose-treated cardiomy-
ocytes and DCM animal models [56]. Interestingly, Cyclin D2 can modulate miR-150-5p.
Cyclin 2 overexpression inhibited ferroptosis, whereas its downregulation stimulated
ferroptosis [56].

3. Aquaporins and DCM

Aquaporins (AQPs) are a ubiquitous family of water channels that mediate the trans-
port of water and other small molecules across cell membranes [57]. The major AQPs in the
human cardiovascular system are AQP1, expressed in arteries, endothelia, myocytes and
vascular smooth muscle cells [58]; AQP3, AQP4 and AQP7, localized in cardiomyocytes;
and AQP9, found in endothelial cells.

Despite the widely recognized role of AQPs in cardiovascular physiology and pathol-
ogy [58–60], very little is known about their role in DCM. AQP1 has been identified as
an emerging protein involved in the pathophysiology of myocardial edema, coronary
atherosclerosis [58] and also DCM, where its expression was found to be detrimentally
reduced in high glucose-evoked cardiomyocyte injury [61]. It has been proven that the
inhibition of miR-1306–5p upregulates AQP1 and ameliorates the derived injury. Similarly,
AQP1 and AQP4 are likely to play a beneficial role in DCM resulting from a pharmacologi-
cal study evaluating the effects of the antidiabetic treatment Empaglifozin (EMPA) in type
2 diabetic rats [61]. In this study, the administration of EMPA was found to be associated
with beneficial cardioprotective effects, such as decreased fibrosis, apoptosis and edema,
likely due to the upregulation of the water channels and, therefore, fine water balance
control [61]. To our knowledge, these are the only studies that provide evidence of the
involvement of water channels in diabetic cardiomyopathy. Further research is needed to
better understand their contribution to this promising field of study.

4. DCM and Exosomes

Exosomes, small extracellular vesicles of 30–100 nm in size, have been studied for
several years in different areas of research from tumors to cardiovascular diseases, prospect-
ing their use in clinical applications [62–68]. Exosomes can carry proteins, RNAs (mRNA,
miRNA and noncoding RNA) and DNA sequences of great interest. Exosomes are studied
for their ability to act in intercellular communication. For example, noncoding RNAs re-
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leased from tumor-derived exosomes induce the polarization of M1 (pro-inflammatory)
macrophages to M2 (anti-inflammatory) phenotypes, enhancing the suppression of immune
cells [69]. Of great interest is the therapeutic potential of exosomes in different diseases
including T2D, cutaneous wound healing, kidney, ocular and Alzheimer’s disease [70–77];
in cancer therapy resistance to chemotherapy agents [78]; in drug delivery [79–81]; and in
autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosus
(SLE), T1D, Sjogren’s syndrome (SS), multiple sclerosis (MS), inflammatory bowel disease
(IBD) and systemic sclerosis (SSc) [82]. Furthermore, exosomes promote rotator cuff tendon–
bone healing [83] and cerebral ischemia repair [84]; improve the repair of diabetic ischemia
of the hind limb [85] and tendinopathy [86]; and promote skin wound healing [70,87].
Moreover, the exosomes’ role in heart disease, including DCM, and related clinical studies
and therapy has been investigated [88–92].

Chaturvedi et al. investigated the benefit of cardiosomes, exosomes released from car-
diomyocytes, during physical exercise on the cardiovascular complications of diabetes [93].
The study focuses on the ability of exercise to reduce the levels of matrix metalloprotease
9 (MMP9) in db/db mice as models of T2D and on the underlying molecular mechanism.
Notably, Chaturvedi hypothesized the release of specific cardiomyosome microRNAs
(mir455, mir29b, mir323-5p and mir466), which, binding to the 3′ region of MMP9, down-
regulated its expression and mitigated extracellular matrix remodelling [93]. Moreover,
Hirai et al. investigated the role of cardiosphere-derived exosomes in myocardial repair
in pediatric cardiomyopathy [94]. Of note, cardiosphere-derived exosomes, enriched with
miR-146a-5p, inhibit myocyte apoptosis and fibrosis, enhancing angiogenesis and cardiac
activity after infarction [94]. Notably, Gan et al. studied the role of circulating extracellular
vesicles isolated from the serum of mice fed either normal or high-fat diets in exacerbating
myocardial ischemia/reperfusion injury [95]. Compared to the control, the intramyocardial
injection of serum vesicles from the animals fed a high-fat diet significantly increased my-
ocardial ischemia/reperfusion (MI/R) injury in mice [95]. This result was confirmed by the
poor recovery of cardiac function, larger infarct size and increased death by apoptosis [95].
In contrast, the injection of vesicles from the animals fed a normal diet had an opposite effect
in reducing myocardial ischemia/reperfusion injury [95]. Moreover, the intramyocardial
injection of diabetic adipocyte vesicles and high glucose/high lipid-challenged nondiabetic
adipocytes exacerbated MI/R damage. Notably, miR-130b-3p levels were significantly
increased in all the above vesicles, and the intramyocardial administration of miR-130b-
3p significantly increased MI/R injury in the nondiabetic mice, whereas miR-130b-3p
inhibitors significantly attenuated MI/R injury in the diabetic mice [95]. Of great interest is
the possibility of using stem cell-derived exosomes in treating cardiovascular diseases and
in promoting cardiac repair, enhancing angiogenesis and reducing apoptosis [96].

Yu et al. reported that exosomes released from mesenchymal stem cells expressing
high levels of GATA4 had cardioprotective capabilities, preserving cardiac contraction and
reducing infarct size. In this regard, miR-19a was higher in cardiomyocytes and myocardia
treated with exosomes derived from mesenchymal stem cells overexpressing GATA-4 than
in those treated with exosomes derived from control mesenchymal stem cells [97].

In addition, it has been shown that exosomes, depending on the content released,
can induce positive or negative effects on the myocardium [98,99]. In diabetic cardiomy-
opathy, high levels of miR-320 have been detected in cardiomyocyte-derived exosomes,
adversely affecting the heart [100]. The use of an exosome secretion inhibitor, such as
GW4869, could be a potential therapeutic strategy to mitigate exosome-mediated cardiac
dysfunction in diabetic hearts [100–102]. Wang and colleagues demonstrated that exo-
somes released from diabetic cardiomyocytes contained detrimental substances, such as
lower levels of Hsp20 than normal ones, implicated as a primary factor contributing to
T1D- and T2D-induced organ damage including ventricular dysfunction, cardiac fibrosis
and cardiomyocyte apoptotic death [101]. In addition to impaired cardiac function, exo-
somes released from diabetic cardiomyocytes can also mediate anti-angiogenesis events
through the exosomal transfer of miR-320 into endothelial cells and embryonic develop-
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ment, since maternal exosomes in diabetes could cross the maternal–fetal barrier, promoting
cardiac developmental deficits [102,103]. In this context, several studies have shown that
cardiomyocyte-derived exosomes contain different mRNAs and miRNAs, proteins, and
lipids, which can be released to adjacent cardiac endothelial cells, positively or negatively
modulating their activity [102,104–106].

Exosomes derived from nondiabetic Wistar rat cardiomyocytes promoted the prolif-
eration and migration of cardiac endothelial cells. In contrast, exosomes isolated from
diabetic Goto–Kakizaki (GK) rat cardiomyocytes reduced the proliferation and migration
of cardiac endothelial cells [107]. The contents of the exosomes isolated from diabetic GK
cardiomyocytes and the exosomes from Wistar rats were investigated. Exosomes from dia-
betic GK cardiomyocytes had higher levels of miRNA-320 and lower levels of miRNA-126
and heat shock protein 20 (Hsp20) than exosomes isolated from nondiabetic Wistar rat
cardiomyocytes [102]. miRNA-320 can be released to cardiac endothelial cells, downregu-
lating the expression of IGF-1, Hsp20 and Ets-2 and negatively affecting the angiogenic role
of the adjacent cardiac endothelial cells. In addition, Garcia and colleagues have shown
that under conditions of glucose deprivation, immortalized H9C2 cardiomyocytes produce
more exosomes whose cargo affects cardiac endothelial cell activity, inducing modification
in the transcription of pro-angiogenic genes [108].

5. Cardiac Fibrosis

DCM is characterized by myocardial hypertrophy and fibrosis in the absence of
coronary artery disease, hypertension, or valvular heart disease [109]. Cardiac fibrosis is a
prominent feature of diabetic cardiomyopathy that increases myocardial stiffness and is
associated with reduced diastolic function and systolic dysfunction that eventually leads to
HF, and may promote arrhythmogenesis and a higher risk of sudden death [110]. Cardiac
fibrosis is the consequence of the accumulation of the extracellular matrix (ECM) produced
by cardiac fibroblasts [111]. Distinct types of myocardial fibrosis have been described, such
as replacement fibrosis, interstitial fibrosis and perivascular fibrosis [111]. Replacement
fibrosis is usually seen in myocardial infarction and refers to the formation of collagen-
rich scar tissue in areas of myocardial necrosis [112]. Replacement fibrosis is the result
of a reparative process following cardiomyocyte injury. Despite the absence of ischemic
injury leading to myocardial necrosis in diabetic cardiomyopathy, abnormal metabolism
represents a chronic myocardial cell injury and may induce cardiomyocyte apoptosis,
leading to replacement fibrosis. Interstitial fibrosis refers to the deposition of the ECM in
the endomysium and perimysium, while perivascular fibrosis indicates the expansion of
periadventitial collagen in the cardiac microvasculature. In contrast to replacement fibrosis,
interstitial and perivascular fibrosis are not related to cardiomyocyte death, but are rather
the results of metabolic alterations, inflammation and oxidative stress. Cardiac fibroblasts
are the main ECM-producing cells [113] and multiple pathways with a complex interplay
are involved in the activation and proliferation of cardiac fibroblasts and the production of
ECM proteins in diabetic cardiomyopathy, such as hyperglycemia, insulin resistance, AGEs,
TGF-β, renin–angiotensin–aldosterone system (RAAS), and the imbalance between matrix
metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) [109].

Hyperglycemia and insulin resistance promote the proliferation of cardiac fibroblasts
and increase the production of ECM proteins. Experimental studies in vitro showed that
a high-glucose environment stimulates cultured cardiac fibroblasts to synthesize large
amounts of ECM proteins such as collagen and fibronectin [114]. Hyperglycemia also
promotes the production of AGEs that bind to specific receptors on the cell membrane,
induce the release of large amounts of reactive oxygen species (ROS) and activate nuclear
factor-κ-gene binding (NF-кB), which is a transcription factor of various inflammatory
factors such as TNF-α and IL-6 and regulates the expression of pro-fibrotic and hypertrophy-
related genes [115]. AGEs also cause the cross-linking of myocardial collagen molecules to
each other, leading to the loss of collagen elasticity, and subsequently to the reduction in
myocardial compliance [116].
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Insulin resistance significantly limits the utilization of glucose by cardiac cells, with a
consequent shift towards the use of fatty acids for energy production [117]. The increased
mitochondrial fatty acid uptake and β-oxidation may induce mitochondrial dysfunction
and the intracellular accumulation of toxic lipids and lipid metabolites that may cause
myocardial necrosis and fibrosis [118].

Hyperglycemia also induces the RAAS activation that contributes to the myocardial
hypertrophy and fibrosis observed in patients affected by diabetic cardiomyopathy [119]. In
patients affected by diabetes, there is an increase in the tissue expression and activity of Ang-
II, which binds to angiotensin receptor-1 present on cardiomyocytes and cardiac fibroblasts
and induces cell proliferation and collagen synthesis, causing cardiac hypertrophy and
fibrosis. In vitro and in vivo studies showed that TNF receptor 1 signaling is necessary
for the Ang-II-induced transcriptional upregulation of several fibrosis- and inflammation-
related genes and the development of cardiac fibrosis [120]. The harmful effects of Ang-II
are counterbalanced by the heptapeptide angiotensin-(1-7) that shows a protective role
in the cardiovascular system by binding to the Mas receptor and inhibiting cardiac cells’
growth [121].

The balance between MMPs and TIMPs is essential for the regulation of ECM degrada-
tion. High glucose stimulation may lead to an imbalance in the synthesis and degradation
of the ECM and collagen, thus promoting cardiac fibrosis. Experimental studies show that
MMP-2 expression is downregulated in streptozotocin-induced diabetic mice, and it is
associated with a reduction in collagen degradation and an increase in TGF-β and myocar-
dial fibrosis [122]. Additionally, the blocking of the AT-1 receptor is associated with the
normalization of MMP activity and the reduction in TGF-β levels and cardiac fibrosis [122].

The TGF-β signaling pathway regulates cell proliferation, differentiation and migra-
tion and gene expression, and is implicated in reparative and fibrotic processes. TGF-β
transduces signaling through a type II receptor (TGFβR2) which is constitutively active on
the cell surface. The binding of TGF-βs to the TGFβR2 recruits and phosphorylates type
I receptor kinases (TGFβR1), which in turn phosphorylates intracellular transcriptional
regulators, namely the receptor-activated Smads (R-Smads) such as Smad2 and Smad3.
Activated R-Smads form complexes with the common Smad, Smad4, and translocate to the
nucleus, where they regulate the transcription of target genes [123]. Smad6 and Smad7 are
TGF-β antagonists, or inhibitory SMADs, that combine with active TGFβR1 and prevent
Smad2/3 binding and activation. Besides the activation of the canonical Smad-dependent
cascade, TGF-βs can also activate the MAPK family, including extracellular signal-regulated
kinase 1/2 (ERK1/2), p38 MAPK and c-Jun amino-terminal kinase (JNK) signaling [124].
Many cell types, including cardiac fibroblasts, produce and secrete TGF-β when they are
exposed to high levels of glucose [125]. TGF-β signaling is also triggered by increased levels
of Ang-II, cytokines and ROS, which are able to activate local stores of TGF-β, promote the
transcription and secretion of TGF-β isoforms, and induce the synthesis and externalization
of TGF-β receptors on the cell surface. TGF-β signaling induces cardiac fibroblast prolifera-
tion and differentiation and ECM accumulation through the canonical Smad-dependent
and Smad-independent pathways that promote the transcription of collagen I, collagen III,
fibronectin, α-smooth muscle actin, TIMP-1 and growth factors such as platelet-derived
growth factor, fibroblast growth factor and angiogenic growth factor [126].

Experimental studies showed that miRNAs exhibit important regulatory effects on
the TGF-β signaling pathway and, conversely, that TGF-β signaling itself may influence
miRNA expression and accelerate miRNA maturation [127]. In vitro studies showed that
hyperglycemia induces the upregulation of miR-21 mRNA levels that, in turn, induce
Smad7 downregulation and a higher phosphorylation of Smad2 and Smad3 in cardiac
fibroblasts, thus promoting myocardial fibrosis [128].

Recent studies demonstrated that miR-155 is also upregulated by high glucose levels
and induces the overexpression of Smad-2 [129]. Conversely, miR-15b and miR-141 exert
anti-antifibrotic effects by targeting TGFβR1 and TGF-β1, respectively, thus preventing
the activation of the fibrotic signaling pathway; miR-15b and miR-141 have been shown
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to be downregulated by hyperglycemia, with the consequent upregulation of TGFβR1
and TGF-β1.

Besides tight glycemic control, the prevention of cardiac fibrosis and remodeling is a
valuable therapeutic strategy in patients with diabetic cardiomyopathy. Pharmacological
drugs such as angiotensin-converting enzyme inhibitors, Ang-II receptor blockers and
aldosterone antagonists have already proven their efficacy in reducing myocardial fibrosis
and improving cardiac function in HF patients. Targeting the TGF- β signaling pathway
and mi-RNAs may represent a promising therapeutic intervention in these patients.

6. Role of Epicardial Adipose Tissue in DCM

Epicardial adipose tissue (EAT) is a complex endocrine organ with functions that
extend beyond just providing warmth and mechanical protection to the heart [130,131].
EAT is a type of visceral fat that is located between the epicardium and the visceral layer
of the pericardium. It covers roughly 80% of the surface of the heart [132–134]. EAT
presents smaller adipocytes that express uncoupling protein 1 (UCP1), typical of brown
adipose tissue (BAT) [134,135]. In T2D patients, the uptake of glucose is reduced in BAT,
decreasing the expression of peroxisome proliferator-activated receptor-gamma coactivator-
1alpha (PGC-1α), which is a key regulator of energy metabolism [136]. Furthermore, EAT
contains anti-inflammatory macrophages [137]; it has been demonstrated that EAT in T2D
patients shows different gene expression, with a higher expression of genes associated
with inflammation and of cytokines. This suggests that diabetes may predispose patients
to detrimental cardiovascular effects by altering the inflammatory response and cytokine
activity in EAT [138]. Numerous cardiovascular imaging studies have shown that patients
with T2D have a significantly increased area/volume of EAT [139–143]. Moreover, studies
using invasive EAT biopsies and histological assessments have indicated that in T2D and
obesity, there is a shift in the balance of adipocytokines within the EAT. This shift favors
pro-inflammatory adipocytokines over anti-inflammatory ones, leading to chronic, low-
grade inflammation. This imbalance may contribute to the development of cardiovascular
disease [138]. Consistently, imaging and histological studies evidence that EAT acts in a
key role in the pathological development of DCM [144].

7. Conclusions

DCM represents one of the major diabetes complications. Different mechanisms have
been discovered to be the causes of DCM (Figure 2). The main mechanisms have been
described in this review, which led to the development of promising therapeutic targets.
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license. Angiotensin II (Ang-II), matrix metalloproteases (MMPs), tissue inhibitors of metallo-
proteinases (TIMPs), mitogen-activated protein kinase (MAPK), nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB), microRNA (miRNA).
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