
PDPAR 2006

Rewrite-Based Satisfiability Procedures for

Recursive Data Structures

Maria Paola Bonacina1 Mnacho Echenim2

Dipartimento di Informatica, Università degli Studi di Verona, Italy

Abstract

If a rewrite-based inference system is guaranteed to terminate on the axioms of a theory T and any set
of ground literals, then any theorem-proving strategy based on that inference system is a rewrite-based
decision procedure for T -satisfiability. In this paper, we consider the class of theories defining recursive
data structures, that might appear out of reach for this approach, because they are defined by an infinite
set of axioms. We overcome this obstacle by designing a problem reduction that allows us to prove a
general termination result for all these theories. We also show that the theorem-proving strategy decides
satisfiability problems in any combination of these theories with other theories decided by the rewrite-based
approach.

Keywords: Rewrite-based inference systems, recursive data structures

1 Introduction

Most state-of-the-art verification tools rely on built-in satisfiability procedures for

specific theories. These satisfiability procedures can be quite complicated to design

and combine, and significant effort is devoted to proving them correct and complete,

and implementing them. A new approach to defining satisfiability procedures was

introduced in [3], where the authors showed that a sound and complete first-order

theorem-proving strategy can be used to solve satisfiability problems for several

theories of data structures. The idea behind this approach is that since such a

strategy is a semi-decision procedure for first-order validity, if one proves that it

terminates on a presentation of the theory of interest T and any set of ground

literals, then it is a decision procedure for T -satisfiability. In [3], this idea was

applied to a standard inference system, the superposition calculus SP, and several

theories, including those of arrays and possibly cyclic non-empty lists.

Since most verification problems involve more than one theory, a significant

advantage of an approach based on generic reasoning is that it makes it conceptually

1 Email: mariapaola.bonacina@univr.it
2 Email: echenim@sci.univr.it

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Bonacina and Echenim

simple to combine theories, by considering the union of their presentations. The

notion of variable-inactive theories appeard in [1], along with several experimental

results that showed the practicality of the rewrite-based approach. This variable-

inactivity condition guarantees that SP terminates on a combination of theories,

provided it terminates on each individual theory. Thus, it was shown in [1] that an

SP-based strategy is a satisfiability procedure for any combination of the theories

considered in [3] and [1].

Several of the theories for which SP has been shown to yield satisfiability pro-

cedures involve lists. The superposition calculus yields satisfiability procedures for

the theories of lists à la Shostak and à la Nelson and Oppen (see [3]), and for the

theory of lists with nil (see [2]). A theory of lists that was not yet examined is that

of acyclic lists, where formulae such as car(x) ' x are unsatisfiable. This theory,

along with that of integer offsets studied in [8,1], belongs to the general class of

theories of recursive data structures, that we denote RDS. Each member of this

class is denoted RDSk, where k represents the number of selectors in the theory.

We shall see that the theory of integer offsets is RDS1 and the theory of acyclic

lists is RDS2. In this paper, we investigate how a rewrite-based inference system

can be used to solve any RDSk-satisfiability problem, for any k. The contributions

of the paper are the following:

• Every theory in the class RDS is presented by an infinite set of axioms, which

cannot be given as an input to a theorem prover. Here, we present a reduction

that conquers this infinite presentation problem.

• We prove that for any fair search plan, the inference system terminates on any

reduced RDSk-satisfiability problem.

• We show that for every k, the theory RDSk can be combined with all the theories

considered in [3,1,2], namely those of lists à la Shostak and à la Nelson and

Oppen, arrays and records with or without extensionality, sets with extensionality,

possibly empty lists and integer offsets modulo.

Related work.

Theories of recursive data structures were studied by Oppen in [10], where he

described a linear satisfiability procedure for the case where uninterpreted function

symbols are excluded. The authors of [11] investigated quantifier-elimination prob-

lems for an extension of the theory considered by Oppen: their setting includes

atoms (constants) and several different constructors. However, their setting also

excludes uninterpreted function symbols. They provided a satisfiability procedure

for this theory that “guesses” a so-called type completion, to determine which con-

structor was used on each term, or whether the term is an atom, and then calls

Oppen’s algorithm. However, this type completion can be expensive in practice as

the number of guesses explodes with the number of constructors. More recently,

the authors of [6] devised an algorithm for a more general class of recursive data

structures: the algorithm is based on a multi-sorted logical framework and solves

T -decision problems for several recursive data structures that may be mutually

recursive, each of which may include several constructors. This algorithm uses a

combination of the techniques of [10,11]: as in [10], it performs congruence and

2

Bonacina and Echenim

Superposition

C ∨ l[u′] ' r D ∨ u ' t

(C ∨ D ∨ l[t] ' r)σ
(i), (ii), (iii), (iv)

Paramodulation

C ∨ l[u′] 6' r D ∨ u ' t

(C ∨ D ∨ l[t] 6' r)σ
(i), (ii), (iii), (iv)

Reflection

C ∨ u′ 6' u

Cσ
(v)

Equational Factoring
C ∨ u ' t ∨ u′ ' t′

(C ∨ t 6' t′ ∨ u ' t′)σ
(i), (vi)

where the notation l[u′] means that u′ appears as a subterm in l, σ is the most general
unifier (mgu) of u and u′, u′ is not a variable in Superposition and Paramodulation, and the
following abbreviations hold:

(i) is uσ 6� tσ,

(ii) is ∀L ∈ D : (u ' t)σ 6� Lσ,

(iii) is l[u′]σ 6� rσ, and

(iv) is ∀L ∈ C : (l[u′] ./ r)σ 6� Lσ.

(v) is ∀L ∈ C : (u′ ' u)σ 6≺ Lσ.

(vi) is ∀L ∈ {u′ ' t′} ∪ C : (u ' t)σ 6≺ Lσ.

Fig. 1. Expansion inference rules of SP: in expansion rules, what is below the inference line is added to
the clause set that contains what is above the inference line.

unification closure, and it handles multiple constructors with a type completion as

in [11]. The algorithm is presented as an elegant combination of standard inference

rules for congruence closure (see, e.g., [5]) and unification closure (see, e.g, [7]), with

more specialized inference rules for type completion or the detection of cycles. In

particular, the inference rules for type completion make this procedure more flexible

and less expensive than that of [11].

In this paper, we consider the recursive data structures as defined in [10], since

our aim is to investigate how to apply the rewrite-based methodology to theories

defined by infinite sets of axioms. Similar to any other theory for which the super-

position calculus can be used as a satisfiability procedure, all these theories can be

combined with the theory of equality with uninterpreted functions. For instance, it

can be used to prove the RDSk-unsatisfiability of a set such as

S = {cons(c1, . . . , ck) ' c, cons(c1, . . . , ck) ' c′, f(c) 6' f(c′)},

where f is an uninterpreted function symbol.

Preliminaries

In the following, given a signature Σ, we consider the standard definitions of Σ-

terms, Σ-literals and Σ-theories. The symbol ' denotes unordered equality and ./

3

Bonacina and Echenim

Strict Subsumption

C D

C
D •> C

Simplification

C[u] l ' r

C[rσ] l ' r
u = lσ, lσ � rσ, C[u] � (l ' r)σ

Deletion

C ∨ t ' t

where D •> C if D •≥ C and C 6•≥ D; and D •≥ C if Cσ ⊆ D (as multisets) for some substitution

σ. In practice, theorem provers also apply subsumption of variants: if D •≥ C and C •≥ D,

the oldest clause is retained.

Fig. 2. Contraction inference rules of SP : in contraction rules, what is above the double inference line is
removed from the clause set and what is below the double inference line is added to the clause set.

is either ' or 6'. Unless stated otherwise, the letters x and y will denote variables,

d and e elements of an interpretation domain, and all other lower-case letters will

be constants or function symbols in Σ. Given a term t, Var(t) denotes the set

of variables appearing in t. If t is a constant or a variable, then the depth of t is

depth(t) = 0, and otherwise, depth(f(t1, . . . , tn)) = 1+max{depth(ti) |i = 1, . . . , n}.

The depth of a literal is defined by depth(l ./ r) = depth(l) + depth(r). A positive

literal is flat if its depth is 0 or 1, and a negative literal is flat if its depth is 0. We

will make use of the following standard result: given a signature Σ and a Σ-theory

T , let S be a finite set of Σ-literals. Then there exists a signature Σ′ obtained from

Σ by adding a finite number of constants, and a finite set S ′ of flat Σ′-literals such

that S′ is T -satisfiable if and only if S is.

A simplification ordering � is an ordering that is stable, monotonic and contains

the subterm ordering : if s � t, then c[s]σ � c[t]σ for any context c and substitution

σ, and if t is a subterm of s then s � t. A complete simplification ordering, or CSO,

is a simplification ordering that is total on ground terms. We write t ≺ s if and only

if s � t. More details on orderings can be found, e.g., in [4]. A CSO is extended

to literals and clauses by multiset extension as usual, and when no confusion is

possible we will mention maximal literals without any reference to �.

The superposition calculus, or SP , is a rewrite-based inference system which is

refutationally complete for first-order logic with equality (see, e.g., [9]). It consists

of expansion rules (see Figure 1) and contraction rules (see Figure 2), and is based

on a CSO on terms which is extended to literals and clauses in a standard way.

Given a CSO �, we write SP� for SP with �. An SP�-derivation is a sequence

S0 `SP�
S1 `SP�

. . . Si `SP�
. . . ,

each Si being a set of clauses obtained by applying an expansion or a contraction

4

Bonacina and Echenim

rule to clauses in Si−1. Such a derivation yields a set of persistent clauses:

S∞ =
⋃

j≥0

⋂

i≥j

Si,

which can of course be infinite. Given a finite set of ground literals S, in order to

prove that the set of persistent clauses obtained by a fair SP�-derivation from T ∪S

is finite, we may impose additional restrictions on the CSO �. Any CSO verifying

these restrictions will be termed as T -good. We also say that an SP�-strategy is

T -good if the CSO � is T -good.

A clause C is variable-inactive for � if no maximal literal in C is an equation

t ' x, where x /∈ Var(t). A set of clauses is variable-inactive for � if all its clauses

are variable-inactive for �. A theory presentation T is variable-inactive for � if the

limit S∞ of any fair SP�-derivation from S0 = T ∪ S is variable-inactive. When

no confusion is possible, we will say that a clause (resp. a set of clauses or a theory

presentation) is variable-inactive, without any mention of �.

2 The theory of recursive data structures

The theory RDSk of recursive data structures is based on the following signature:

ΣRDSk
= {cons} ∪ Σsel ,

Σsel = {sel1, . . . , selk},

where cons has arity k, and the seli’s all have arity 1. The function symbols

sel1, . . . , selk stand for the selectors, and cons stands for the constructor. This theory

is axiomatized by the following (infinite) set of axioms, denoted Ax(RDS k):

seli(cons(x1, . . . , xi, . . . , xk))' xi for i = 1, . . . , k

cons(sel1(x), . . . , selk(x))' x,

t[x] 6' x,

where x and the xi’s are (implicitly) universally quantified variables and t[x] is any

compound Σsel -term where the variable x occurs. The axioms t[x] 6' x are acyclicity

axioms that prevent the theory from entailing equations such as sel1(sel2(sel3(x))) '

x.

For the sake of clarity, we also define

Ac = {t[x] 6' x | t[x] is a Σsel -term},

Ac[n] = {t[x] 6' x | t[x] is a Σsel -term and depth(t[x]) ≤ n}.

Example 2.1 Consider the case where k = 2. If we write car(x) instead of sel1(x)

and cdr(x) instead of sel2(x), then our axioms become:

car(cons(x, y))' x,

cdr(cons(x, y))' y,

cons(car(x), cdr(x))' x,

t[x] 6' x,

and for example, we have:

Ac[2] = {car(car(x)) 6' x, cdr(cdr(x)) 6' x, car(cdr(x)) 6' x, cdr(car(x)) 6' x}.

5

Bonacina and Echenim

We consider the problem of checking the RDSk-satisfiability of a set S of ground

(equational) literals built out of the symbols in ΣRDSk
and a set of finitely many

constant symbols. This is done by checking the satisfiability of the following set of

clauses:

Ax(RDSk)∪S.

According to the methodology of [3,1,2], this problem is solved in three phases:

Flattening: flatten all ground literals in the original problem, thus obtaining an

equisatisfiable set of flat literals,

RDSk-reduction: transform the flattened problem into an equisatisfiable RDS k-

reduced problem consisting of a finite set of clauses,

Termination: prove that any fair SP�-strategy terminates on the RDSk-reduced

problems.

The flattening step is straightforward and we now focus on the RDS k-reduction

step.

3 RDSk-reduction

The aim of a reduction is to transform a formula into another one which is equisat-

isfiable and easier to work on. Here, given a formula S, we want to transform it into

a formula which is equisatisfiable in a theory that does not axiomatize the relation-

ship between the constructor and the selectors. We begin by observing that S can

be transformed by suppressing either every occurrence of cons, or every occurrence

of the seli’s.

Example 3.1 Consider the case where k = 2, and let

S = {cons(c1, c2) ' c, sel1(c) ' c′1}.

If we remove the occurrence of cons, S would become

S1 = {sel1(c) ' c1, sel2(c) ' c2, sel1(c) ' c′1}.

If we remove the occurrence of sel1, S would become

S2 = {cons(c1, c2) ' c, c1 ' c′1}.

We choose to remove every occurrence of cons because it is easier to work with

function symbols of arity 1:

Definition 3.2 A set of ground flat literals is RDSk-reduced if it contains no oc-

currence of cons.

Given a set S of ground flat literals, the symbol cons may appear only in literals

of the form cons(c1, . . . , ck) ' c for constants c, c1, . . . , ck. Negative ground flat

literals are of the form c 6' c′ and therefore do not contain any occurrence of cons.

The RDSk-reduction of S is obtained by replacing every literal cons(c1, . . . , ck) ' c

appearing in S by the literals sel1(c) ' c1, . . . , selk(c) ' ck. The resulting RDSk-

reduced form S ′ of S is denoted RedRDSk
(S) and it is obviously unique.

It is not intuitive in which theory the RDSk-reduced form of S is equisatisfiable

to S, and we need the following definition:

6

Bonacina and Echenim

Definition 3.3 Let (ext) denote the following “extensionality lemma”:

k
∧

i=1

(selk(x) ' selk(y))⇒ x ' y.

Proposition 3.4 The extensionality lemma is logically entailed by the axiom

cons(sel1(x), . . . , selk(x)) ' x.

Proof. We show that the set

{cons(sel1(x), . . . , selk(x)) ' x} ∪ {seli(a) ' seli(b) | i = 1, . . . , k} ∪ {a 6' b}

is RDSk-unsatisfiable. The superposition of literal sel1(a) ' sel1(b) into

cons(sel1(x), . . . , selk(x)) ' x yields cons(sel1(b), sel2(a), . . . , selk(a)) ' a. Then,

the respective superpositions of sel2(a) ' sel2(b), sel3(a) ' sel3(b), etc,

yield cons(sel1(b), . . . , selk(b)) ' a. Finally, a superposition of the latter into

cons(sel1(x), . . . , selk(x)) ' x produces the literal a ' b, which contradicts a 6' b. 2

We can then show that RDSk-reduction reduces satisfiability w.r.t. Ax(RDSk)

to satisfiability w.r.t. Ac ∪ {(ext)}.

Lemma 3.5 Let S be a set of ground flat literals, then Ax(RDS k)∪S is satisfiable

if and only if Ac ∪ {(ext)} ∪ RedRDSk
(S) is.

Proof. (⇒) For i = 1, . . . , k, literal seli(c) ' ci is a logical consequence of

Ax(RDSk) and cons(c1, . . . , ck) ' c. Indeed, it can be generated by a superpo-

sition of the latter into the axiom seli(cons(x1, . . . , xi, . . . , xk)) ' xi. So we have

that Ax(RDSk) ∪ S |= Ac ∪ RedRDSk
(S). By Proposition 3.4, it is also the case

that Ax(RDSk) ∪ S |= {(ext)}, hence the result.

(⇐) Let M = (D, I) be a model for Ac ∪ {(ext)} ∪ RedRDSk
(S). We will build a

model M ′ = (D′, I ′) for Ax(RDSk) ∪ S starting from M . In particular, I ′ must

interpret the function symbol cons in such a way that any sequence d1, . . . , dk of

elements of D′ has an image by cons
I′ . We inductively build a model M ′ = (D′, I ′)

for Ax(RDSk)∪S as follows: first, I ′ and I both interpret the constants appearing in

S the same way; second, for every d ∈ D, we let sel
I′

i (d) = sel
I
i (d) for all i = 1, . . . , k.

Let D0 = D, and consider the k-fold Cartesian product Dk
0 = D0 × . . . × D0.

We start by separating the elements in Dk
0 that can be represented as a tuple

〈selI
′

1 (d), . . . , selI
′

k (d)〉 with d ∈ D0, from those that cannot. Formally, we define the

following partition of Dk
0 :

E0 = {〈selI
′

1 (d), . . . , selI
′

k (d)〉 | d ∈ D0},

F0 = Dk
0 \ E0.

Note that by construction, for every 〈d1, . . . , dk〉 ∈ E0, there exists a d ∈ D0 such

that sel
I′

i (d) = di for all i = 1, . . . , k. Furthermore, since M satisfies axiom (ext), d

is unique. Hence, we can safely define cons
I′(d1, . . . , dk) = d. Therefore, for every

tuple 〈d1, . . . , dk〉 in E0, if d = cons
I′(d1, . . . , dk), then we have

sel
I′

i (d) = di, and cons
I′(selI

′

1 (d), . . . , selI
′

k (d)) = d.

7

Bonacina and Echenim

We now extend the function cons
I′ to the elements in F0. We let D′

0 be a set

disjoint from F0∪D0, such that there exists a bijection η0 from F0 to D′
0. Intuitively,

D′
0 will provide the images cons

I′(d1, . . . , dk) of all the tuples 〈d1, . . . , dk〉 in F0,

and each tuple is associated to its image by η0. Formally, for every element t =

〈d1, . . . , dk〉 in F0, we define sel
I′

i (η0(t)) = di for i = 1, . . . , k, and cons
I(d1, . . . , dk) =

η0(t). Let D1 = D0] D′
0: obviously D0 ⊆ D1, and for every 〈d1, . . . , dk〉 ∈ Dk

0 , the

element d = cons
I′(d1, . . . , dk) is well-defined and verifies

∀i = 1, . . . , k, sel
I′

i (d) = di, and cons
I′(selI

′

1 (d), . . . , selI
′

k (d)) = d.

At this point, since I and I ′ interpret the constant symbols from S and the selector

functions on D0 the same way, it is clear that I ′ satisfies Ac ∪ S, as well as the

other axioms of Ax(RDSk) on D0. However, I ′ may still not be an interpretation,

since the function cons
I′ is not defined on the Cartesian product Dk

1 . This is why

we perform the following induction step.

Suppose that for p ≥ 1, we have constructed a set Dp such that Dp−1 ⊆ Dp,

on which we have defined the sel
I′

i ’s and cons
I′ in such a way that for every

〈d1, . . . , dk〉 ∈ Dk
p−1, there exists a d ∈ Dp such that for all i = 1, . . . , k, sel

I′

i (d) = di,

and cons
I′(selI

′

1 (d), . . . , selI
′

k (d)) = d. Then as previously, we define the sets Ep and

Fp by:

Ep = {〈selI
′

1 (d), . . . , selI
′

k (d)〉 | d ∈ Dp},

Fp = Dk
p \ Ep.

Let D′
p be a set disjoint from Fp ∪ Dp, such that there exists a bijection ηp from

Fp to D′
p. For every element t = 〈d1, . . . , dk〉 in Fp, we define sel

I′

i (ηp(t)) = di for

i = 1, . . . , k, and cons
I′(d1, . . . , dk) = ηp(t). Finally, we let Dp+1 = Dp] D′

p, and it

is clear that Dp+1 satisfies the required property.

Let D′ =
⋃

i≥0 Di, then I ′ is an interpretation on D′. By construction, for

every 〈d1, . . . , dk〉 ∈ D′k, the image cons
I′(d1, . . . , dk) is well-defined. Also by

construction, we have that sel
I′

i (cons
I′(d1, . . . , dk)) = di and for every d ∈ D′,

cons
I′(selI

′

1 (d), . . . , selI
′

k (d)) = d. Thus, M ′ is a model for Ax(RDSk). Furthermore,

since I and I ′ both interpret constants the same way and f I and f I′ are identical

on D for every f ∈ Σsel , M ′ is also a model for S. 2

Example 3.6 Consider the case where k = 1, and let S = {cons(c′) ' c}. The

RDS1-reduced form of S is therefore S ′ = {sel1(c) ' c′}. We consider the model

M = (N, I) of Ac ∪ {(ext)} ∪ S ′, where I interprets c as 0, c′ as 1, and sel1 as the

successor function on natural numbers. Then we have

D0 = N, E0 = N \ {0}, and F0 = {0},

and for every d ∈ E0, cons
I′(d) is the d′ such that sel

I′

1 (d′) = d, hence cons
I′(d) is

the predecessor of d.

We now select a set D′
0 disjoint from F0 ∪ D0 such that there exists a bijection

from F0 to D′
0. We can for example choose D′

0 = {−1}, then define sel
I′

1 (−1) = 0,

cons
I′(0) = −1, and let D1 = N ∪ {−1}. Then F1 = {−1} and we can choose D′

1 =

{−2}, etc. At the end, we obtain M ′ = (D′, I ′), where D′ = Z, I ′ interprets sel1 as

8

Bonacina and Echenim

the standard successor function on integers, and cons as the standard predecessor

function on integers. It is clear that M ′ is a model of Ax(RDSk) ∪ S.

It is also possible to define a notion of RDSk-reduction where every occurrence

of the seli’s is removed. However, no additional property is gained by using this

other alternative, and the corresponding reduction is less intuitive.

4 From Ac to Ac[n]

The set Ac being infinite, SP cannot be used as a satisfiability procedure on any set

of the form Ac∪{(ext)}∪S, where S is an RDSk-reduced set of literals. Thus, the

next move is to bound the number of axioms in Ac needed to solve the satisfiability

problem, and try to consider an Ac[n] instead of Ac. It is clear that for any n and

any set S, a model of Ac ∪ {(ext)} ∪ S is also a model of Ac[n] ∪ {(ext)} ∪ S,

the difficulty is therefore to determine an n for which a model of Ac ∪ {(ext)} ∪ S

is guaranteed to exist, provided Ac[n] ∪ {(ext)} ∪ S is satisfiable. The following

example provides the intuition that this bound depends on the number of selectors

in S.

Example 4.1 Let S = {sel1(c1) ' c2, sel2(c2) ' c3, sel3(c3) ' c4, c1 ' c4}. Then:

Ac[1] ∪ {(ext)} ∪ S and Ac[2] ∪ {(ext)} ∪ S are satisfiable,

Ac[3] ∪ {(ext)} ∪ S and Ac ∪ {(ext)} ∪ S are unsatisfiable.

We will prove that having n occurrences of selectors implies that it is indeed

sufficient to consider Ac[n] instead of Ac. We start by introducing the notion of an

M -path.

Definition 4.2 Let M = (D, I) be a model for an RDSk-reduced set of literals S.

For every m ≥ 2, a tuple p = 〈d1, f1, d2, f2, . . . , dm, fm〉 is called an M -path if for

i = 1, . . . ,m,

(i) fi ∈ Σsel ,

(ii) for all j ∈ {i + 1, . . . ,m}, dj 6= di,

(iii) if i ≤ m − 1, then di+1 = f I
i (di).

The length of p is m, we say that p is cyclic if f I
m(dm) = d1, and acyclic otherwise.

Intuitively, there is an M -path of length m from d to d′ if and only if we have

f I
m(f I

m−1(. . . (f
I
1 (d)) . . .)) = d′. Thus, if d = d′, then I violates one of the axioms

t[x] 6' x, where t is of depth m.

Example 4.3 Consider the case where k = 2, let S = {sel1(c) ' c1, sel2(c) ' c2},

D = {1, 2, 3}, and define:

I(c) = 1, I(c1) = 2, I(c2) = 3,

sel
I
1(1) = 2, sel

I
1(2) = 3, sel

I
1(3) = 1,

sel
I
2(1) = 3, sel

I
2(2) = 3, sel

I
2(3) = 2.

9

Bonacina and Echenim

Then M = (D, I) is a model for S, 〈1, sel1, 2, sel1〉 is an acyclic M -path of length 2,

and 〈1, sel1, 2, sel2, 3, sel1〉 is a cyclic M -path of length 3.

We have the following obvious property:

Proposition 4.4 Let M be a model for a set of literals and l ∈ N, then M |= Ac[l]

if and only if the length of every cyclic M -path is strictly greater than l.

In Lemma 4.8, we will show how to construct a model M ′ for Ac[n + 1]∪{(ext)}∪

S, given a model M for Ac[n]∪{(ext)}∪S. The construction involves breaking cyclic

M -paths while preserving satisfiability, and this preservation will be guaranteed for

M -paths containing selector-free elements.

Definition 4.5 Given a set S of RDSk-reduced literals and M = (D, I) a model

for S, we say that an element d ∈ D is selector-free in S if and only if for no

f(c) ' c′ ∈ S (where f ∈ Σsel), is c interpreted as d.

Example 4.6 In Example 4.3, element 1 is not selector-free in S, since sel1(c) '

c1 ∈ S and I(c) = 1. However, elements 2 and 3 both are.

Intuitively, an element is selector-free if its images by the sel
I
i ’s are not con-

strained to be the images of constants in S. This will allow us in Lemma 4.8 to

define an interpretation I ′ that does not interpret the seli’s as I does, but still

satisfies S.

Proposition 4.7 Let M = (D, I) be a model for a set S containing l occurrences

of selectors, and let p be an M -path of length at least l +1. Then at least one of the

elements appearing in p is selector-free in S.

Proof. Let m = l + k, where k ≥ 1, p = 〈d1, f1, . . . , dm, fm〉, and suppose that

no element appearing in p is selector-free in S. Then by definition, for every j =

1, . . . ,m, there must be a literal fj(cj) ' c′j appearing in S, such that I(cj) = dj .

By hypothesis, since p is an M -path, the dj ’s are all distinct, so there must be

at least m distinct literals in S. This is impossible, since S contains l < m such

literals. 2

We now state the lemma relating the number of selectors in S and the sets Ac[n]

that can safely replace Ac.

Lemma 4.8 Let S be an RDSk-reduced set of ground flat literals and let l be the

number of occurrences of selectors in S. For n ≥ l, suppose that Ac[n]∪{(ext)}∪S

is satisfiable. Then Ac[n + 1] ∪ {(ext)} ∪ S is also satisfiable.

Proof. Let M = (D, I) be a model of Ac[n]∪{(ext)}∪S. We are going to build a

model M ′ of {(ext)} ∪ S, starting from M , such that there are no cyclic M ′-paths

of length smaller or equal to n + 1. Thus, M ′ will also be a model of Ac[n + 1].

Let P = {p | p is a cyclic M -path of length n + 1}. If P is empty, then there

are no cyclic M -paths of length n + 1, so that M |= Ac[n + 1] ∪ {(ext)} ∪ S by

Proposition 4.4. Otherwise let p ∈ P , since there are l occurrences of selectors in

S, by Proposition 4.7 we must have p = 〈. . . , d, f, . . .〉, where d is selector-free in

S, and f ∈ Σsel . Consider a set Ep = {ej | j ≥ 0} disjoint from D, and let Ip

10

Bonacina and Echenim

�

� �

� �

d1d2

d3

d4

d5

�

� �

� �

d1d2

d3

d4
d5

� �

Fig. 3. Breaking cyclic M-paths: d5 is selector-free

be the interpretation on D ∪ Ep which is identical to I, except that f Ip(d) = e0,

and for j ≥ 0 and i = 1, . . . , k, sel
Ip

i (ei) = ei+1 (see Figure 3). By repeating this

transformation on every M -path in P , we obtain a new model M ′ = (D′, J).

We now show that M ′ |= Ac[n + 1] ∪ {(ext)} ∪ S.

M ′ |= Ac[n + 1]: By construction, there is no cyclic M ′-path of length smaller or

equal to n + 1, hence M ′ |= Ac[n + 1] by Proposition 4.4.

M ′ |= {(ext)}: Consider two elements d, d′ such that fJ(d) = fJ(d′) for all f ∈ Σsel .

Note that if fJ(d) ∈ D, then fJ(d) = f I(d) by construction of J . Hence, if for

all f ∈ Σsel , fJ(d) ∈ D, then since M |= {(ext)}, we have d = d′. Otherwise,

there exists a selector f such that e = f J(d) /∈ D, and by construction, d is the

unique element that is mapped to e by f J , so that it must be d = d′.

M ′ |= S: Suppose that f(c) ' c′ ∈ S, since both I and J interpret constants the

same way, we have I(c) = J(c), I(c′) = J(c′), and f I(I(c)) = I(c′). Since

I(c) is not selector-free in S, necessarily f I(I(c)) = fJ(I(c)). We deduce that

fJ(J(c)) = fJ(I(c)) = f I(I(c)) = I(c′) = J(c′), and that M ′ |= S.

2

A simple induction using Lemma 4.8 shows that if S is an RDSk-reduced set

containing n selectors and Ac[n]∪S is satisfiable, then for every k ≥ 0, Ac[n + k]∪S

is also satisfiable. We therefore deduce:

Corollary 4.9 Let S be an RDSk-reduced set of ground flat literals and let n be

the number of occurrences of selectors in S. Then, Ac ∪ {(ext)} ∪S is satisfiable if

and only if Ac[n] ∪ {(ext)} ∪ S is.

5 SP� as a satisfiability procedure

We now show that only a finite number of clauses are generated by the superposition

calculus on any set Ac[n]∪{(ext)}∪S, where S is RDSk-reduced. This will be the

case provided we use an RDSk-good CSO:

Definition 5.1 A CSO � is RDSk-good if t � c for every ground compound term

t and every constant c.

Lemma 5.2 Let S0 = Ac[n]∪{(ext)}∪S, where S is a finite RDSk-reduced set of

ground flat literals. Consider the limit S∞ of the derivation S0 `SP�
S1 `SP�

. . .

11

Bonacina and Echenim

generated by a fair RDSk-good SP�-strategy; every clause in S∞ belongs to one of

the categories enumerated below:

i) the empty clause;

ii) the clauses in Ac[n] ∪ {(ext)}, i.e.

a) t[x] 6' x, where t is a Σsel -term of depth at most n,

b) x ' y ∨

(

∨k
i=1(seli(x) 6' seli(y))

)

;

iii) ground clauses of the form

a) c ' c′ ∨ (
∨m

j=1 dj 6' d′j) where m ≥ 0,

b) f(c) ' c′ ∨ (
∨m

j=1 dj 6' d′j) where m ≥ 0,

c) t[c] 6' c′ ∨ (
∨m

j=1 dj 6' d′j), where t is a compound Σsel -term of depth at

most n − 1 and m ≥ 0,

d)
∨m

j=1 dj 6' d′j, where m ≥ 1;

iv) clauses of the form

c ' x ∨

(

∨j
p=1 selip(c) 6' selip(x)

)

∨

(

∨k
p=j+1 cip 6' selip(x)

)

∨
(

∨m
j=1 dj 6' d′j

)

where i1, . . . , ik is a permutation of 1, . . . , k, 0 ≤ j ≤ k and m ≥ 0;

v) clauses of the form

c ' c′ ∨

(

∨j1
p=1(selip(c) 6' selip(c

′))

)

∨

(

∨j2
p=j1+1(selip(c) 6' c′ip)

)

∨
(

∨j3
p=j2+1(cip 6' selip(c

′))

)

∨

(

∨k
p=j3+1(cip 6' c′ip)

)

∨
(

∨m
j=1 dj 6' d′j

)

where i1, . . . , ik is a permutation of 1, . . . , k, 0 ≤ j1 ≤ j2 ≤ j3 ≤ k, j3 > 0 and

m ≥ 0.

Proof. We prove the result by induction on the length l of the derivations. For

l = 0, the result is trivial: the clauses in S0 are in (ii) or (iii) with m = 0. Now

assume the result is true for l − 1, where l ≥ 1, and that a new inference step is

carried out. The result is obvious if the inference performed is a subsumption or

a deletion, now suppose that the inference is a reflection. This reflection inference

can occur on a clause in (ii.b), in which case a clause containing x ' x is generated,

hence deleted, or in category (iii), in which case the clause generated belongs to the

same category or is the empty clause. We now suppose that the inference is either

a simplification, a superposition or a paramodulation. For the sake of conciseness,

we write “paramodulation” in all cases.

Paramodulation from (iii): any paramodulation from a clause in (iii) generates

a clause in categories (iii), (iv) or (v).

Paramodulation from (ii), (iv) or (v): none applies. For clauses in category

(iv), this is due to the fact that the considered clause contains either a literal

12

Bonacina and Echenim

selip(c) 6' selip(x) or cip 6' selip(x), both of which are greater than c ' x. For

clauses in category (v), this is due to the fact that for the considered clause we

have j3 > 0, hence it necessarily contains a function symbol f ∈ Σsel , and the

literal c ' c′ cannot be maximal.

2

Example 5.3 Consider the case where k = 3, and suppose we want to test the

unsatisfiability of the following set:

S = { sel1(c) ' d1, sel2(c
′) ' d′2, sel2(c) ' d2,

sel1(c
′) ' d′1, sel3(c) ' d3, sel3(c

′) ' d′3,

d1 ' d′1, d2 ' d′2, d3 ' d′3,

c 6' c′ }.

• A superposition of sel1(c) ' d1 into {(ext)} yields a clause in (iv) (with m = 0):

c ' x ∨
(

sel2(c) 6' sel2(x) ∨ sel3(c) 6' sel3(x)
)

∨
(

d1 6' sel1(x)
)

,

• A superposition of sel2(c
′) ' d′2 into the underlined literal of this clause yields a

clause in (v):

c ' c′ ∨
(

sel3(c) 6' sel3(c
′)
)

∨
(

sel2(c) 6' d′2

)

∨
(

d1 6' sel1(c
′)
)

,

• A simplification of this clause by sel2(c) ' d2 yields a clause in (v):

c ' c′ ∨
(

sel3(c) 6' sel3(c
′)
)

∨
(

d1 6' sel1(c
′)
)

∨
(

d2 6' d′2

)

,

• Further simplifications by sel1(c
′) ' d′1, sel3(c) ' d3 and sel3(c

′) ' d′3 yield the

clause

c ' c′ ∨

(3
∨

i=1

di 6' d′i

)

.

• The simplifications by di ' d′i for i = 1, . . . , 3 yield the clause c ' c′, which

together with c 6' c′ produces the empty clause.

Since the signature is finite, there are finitely many clauses such as those enu-

merated in Lemma 5.2. We therefore deduce:

Corollary 5.4 Any fair RDSk-good SP�-strategy terminates when applied to

Ac[n] ∪ {(ext)} ∪ S, where S is a finite RDSk-reduced set of ground flat literals.

We can also evaluate the complexity of this procedure by determining the number

of clauses in each of the categories defined in Lemma 5.2.

Theorem 5.5 Any fair RDSk-good SP�-strategy is an exponential satisfiability

procedure for RDSk.

13

Bonacina and Echenim

Proof. Let n be the number of literals in S, both the number of constants and

the number of selectors appearing in S are therefore in O(n). We examine the

cardinalities of each of the categories defined in Lemma 5.2.

• Category (ii) contains O(n) clauses if k = 1 and O(kn) clauses if k ≥ 2.

• Clauses in categories (iii), (iv) or (v) can contain any literal of the form d 6' d′

where d and d′ are constants, thus, these categories all contain O(2n2

) clauses.

Hence, the total number of clauses generated is bound by a constant which is O(2n2

),

and since each inference step is polynomial, the overall procedure is in O(2n2

). 2

Although this complexity bound is exponential, it measures the size of the sat-

urated set. Since a theorem prover seeks to generate a proof, as opposed to a satu-

rated set, the relevance of this result with respect to predicting the performance of

a theorem prover can be quite limited.

One could actually have expected this procedure to be exponential for k ≥ 2,

since in that case Ac[n] contains an exponential number of axioms. However the

procedure is also exponential when k = 1, and a more careful analysis shows that

this complexity is a consequence of the presence of (ext). In fact, it is shown in [2]

that any fair SP�-strategy is a polynomial satisfiability procedure for the theory

presented by the set of acyclicity axioms Ac when k = 1.

We finally address combination by proving that RDSk is variable-inactive for

SP�.

Theorem 5.6 Let S0 = Ac[n] ∪ S ∪ {(ext)}, where S is an RDSk-reduced set of

ground flat literals, and n is the number of occurrences of selectors in S. Then S∞

is variable-inactive.

Proof. The clauses in S∞ belong to one of the classes enumerated in Lemma 5.2.

Thus, the only clauses of S∞ that may contain a literal t ' x where x /∈ Var(t)

are in class (iv). Since � is a CSO, the literals t ' x cannot be maximal in those

clauses. 2

This shows that the rewrite-based approach to satisfiability procedures can be

applied to the combination of RDSk with any number of the theories considered in

[3,1], including those of arrays and records with or without extensionality.

6 Conclusion

In this paper, we considered a class of theories representing recursive data struc-

tures, each of which is defined by an infinite set of axioms. We showed that the

superposition calculus can be used as the basis of a satisfiability procedure for any

theory in this class, and this result was obtained by defining a reduction that permits

to restrict the number of acyclicity axioms to be taken into account.

A main issue we plan to investigate is complexity, since the basic procedure is

exponential. A linear algorithm for such structures was obtained in [10], but it

excludes uninterpreted function symbols. The setting of [8] includes uninterpreted

function symbols, but the authors gave a polynomial algorithm only for the case

where k = 1 (the theory of integer offsets). We intend to investigate making the

14

Bonacina and Echenim

complexity of the rewrite-based procedure dependent on k, and improving the bound

for k = 1.

From the point of view of practical efficiency, we plan to test the performance

of a state-of-the-art theorem prover on problems featuring this theory, possibly

combined with those of [3,1], and compare it with systems implementing decision

procedures from other approaches. In this context, we may work on designing

specialized search plans for satisfiability problems.

The work of [6] bears some similarity to ours since it is also based on a set

of inference rules, and basic equational reasoning (i.e., congruence closure) is done

by rewriting, as in SP . It would hence be interesting to investigate how their

techniques can be applied to our framework, and in particular whether SP can be

enriched with specialized inference rules to handle acyclicity instead of including the

acyclicity axioms in the satisfiability problems. Another direction for future work

is to examine how the rewrite-based approach applies to recursive data structures

with multiple constructors.

Acknowledgments

The authors wish to thank Silvio Ranise for bringing this class of theories to their

attention.

References

[1] Alessandro Armando, Maria Paola Bonacina, Silvio Ranise, and Stephan Schulz. On a rewriting
approach to satisfiability procedures: Extension, combination of theories and an experimental appraisal.
In Bernhard Gramlich, editor, Proc. 5th FroCoS, volume 3717 of LNAI, pages 65–80. Springer, 2005.
Full version available as [2].

[2] Alessandro Armando, Maria Paola Bonacina, Silvio Ranise, and Stephan Schulz. On a rewriting
approach to satisfiability procedures: Theories of data structures, modularity and experimental
appraisal. Technical Report RR 36/2005, Dipartimento di Informatica, Università degli Studi di Verona,
2006.

[3] Alessandro Armando, Silvio Ranise, and Michaël Rusinowitch. A rewriting approach to satisfiability
procedures. Inf. Comput., 183(2):140–164, 2003.

[4] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[5] Leo Bachmair, Ashish Tiwari, and Laurent Vigneron. Abstract congruence closure. J. Autom.
Reasoning, 31(2):129–168, 2003.

[6] C. Barrett, I. Shikanian, and C. Tinelli. An abstract decision procedure for satisfiability in the
theory of recursive data types. In Proceedings of PDPAR’06, 2006. Full version available at
http://www.cs.nyu.edu/∼barrett/pub.html#tech .

[7] Jean-Pierre Jouannaud and Claude Kirchner. Solving equations in abstract algebras: A rule-based
survey of unification. In Computational Logic - Essays in Honor of Alan Robinson, pages 257–321,
1991.

[8] Robert Nieuwenhuis and Albert Oliveras. Congruence closure with integer offsets. In Moshe Y.
Vardi and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning,
10th International Conference, LPAR 2003, Almaty, Kazakhstan, September 22-26, 2003, Proceedings,
volume 2850 of Lecture Notes in Computer Science, pages 78–90. Springer, 2003.

[9] Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem proving. In John Alan
Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning, pages 371–443. Elsevier
and MIT Press, 2001.

[10] Derek C. Oppen. Reasoning about recursively defined data structures. J. ACM, 27(3):403–411, 1980.

[11] Ting Zhang, Henny B. Sipma, and Zohar Manna. Decision procedures for recursive data structures
with integer constraints. In David A. Basin and Michaël Rusinowitch, editors, Automated Reasoning
- Second International Joint Conference, IJCAR 2004, Cork, Ireland, July 4-8, 2004, Proceedings,
volume 3097 of Lecture Notes in Computer Science, pages 152–167. Springer, 2004.

15

http://www.cs.nyu.edu/~barrett/pub.html#tech

	Introduction
	The theory of recursive data structures
	RDSk-reduction
	From Ac to Ac[n]
	SP as a satisfiability procedure
	Conclusion
	References

