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ABSTRACT

Perinatal malnutrition has been included among the causes of renal disease in adulthood.

Here, we consider the relationships between early supply of specific nutrients (such as protein, fat, vitamins
and electrolytes) and renal endowment. Prenatal and postnatal nutrition mismatch is also discussed.

In addition, this article presents the role of nutrition of both mothers and pre-term infants on nephron
endowment, with final practical considerations.

© 2010 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

The embryonic human kidney develops in three consecutive
structures: the pronephros, mesonephros and metanephros. Perinatal
programming controls nephrogenesis during the developmental stage
up to 34-36 weeks of gestational age. Genes, signalling molecules and
transcription factors establish segmental nephron identity and their
functional differentiation. Finally, the induction of nephron branching
culminates in the final complement of nephrons [1]. In humans, the
completion of nephrogenesis occurs before at-term birth. However, in
pre-term infants, born before 36 weeks of gestation, renal maturation
and nephron endowment is finalised postnatally [2,3].

The causes underlying a reduced number of nephrons are both
genetic and environmental. The final renal potential of an individual
could be modified by the nature, time, duration and severity of a renal
insult before completion of nephrogenesis. Intrauterine stress and
postnatal insults in pre-term infants may result in reduction of
nephron numbers [4]. Moreover, an ongoing interaction between
genes and environment prior to completion of nephrogenesis will
contribute in forming the renal potential of an individual. Several
factors may interact to increase nephron damage and to reduce
nephron endowment [5]. Stressors affecting renal structure and
function include urinary tract malformations such as obstructive
uropathy, infections, and the administration of nephrotoxic drugs
(especially antibiotics, and non-steroidal anti-inflammatory drugs) to
mothers and newborns [6,7]. Moreover, perinatal programming for
hypertension and diabetes may elicit a synergistic effect with the
reduced nephron number leading to the development of chronic
kidney disease [3,8].
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Barker [6,9,10] and Brenner [11] reported on how a modified
embryonic-foetal development resulting in low birth weight (LBW)
may lead to a reduced nephron endowment, hypertension and renal
diseases in adulthood. In extremely low birth weight (ELBW) infants,
nephrogenesis continues after birth only for 40 days, and even less if
acute renal failure occurs in the meantime [12]. A congenital nephron
deficit, as in ELBW infants with intrauterine chronic retardation, can
be exacerbated by perinatal stress (asphyxia, nephrotoxic drugs and
acute renal failure) leading to chronic renal failure [13] starting before
14 years of life [ 14]. The flow of nutrition reaching the foetus provides
an integrated signal of nutrition as experienced by recent matrilineal
ancestors, which effectively limits the responsiveness to short-term
ecological fluctuations during any given pregnancy; this phenomenon
is called intergenerational ‘phenotypic inertia’ [15].

Since perinatal malnutrition has been included among the causes
of renal disease in adulthood, this article discusses the role of nutrition
of both mothers and pre-term infants on nephron endowment.

2. Early calorie supply and renal endowment
2.1. Low maternal calories

The majority of studies investigating the relationship between
nutrition and nephrogenesis have been conducted in animal models.
In a range of animal species, experimental maternal undernutrition or
placental insufficiency has been associated with reduced nephron
numbers [16-26]. When analysing these studies, it must be taken into
consideration that nephrogenesis occurs for up to 8-10 postnatal days
in rats, whereas it is achieved at 34-36 weeks of gestation in humans.

2.1.1. Studies in animals

2.1.1.1. Foetal undernutrition in rats. Placental restriction is likely to
have an impact on early nephrogenesis, reducing nephron
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endowment at birth. At 2 weeks of age, newborn rats with
intrauterine growth restriction (IUGR) born from mothers with
uterine artery ligation showed a nephron deficit of about 30% and a
large compensatory hypertrophy of the nephrons. Moreover, clear-
ance experiments and morphometric studies indicated that overall
renal function was impaired and not fully compensated after birth
[17]. Furthermore, pregnant rats with nutrient restriction during
the critical window in which nephrogenesis occurs delivered
newborns with a reduced number of glomeruli per kidney [27],
with hypertension in later life [18,28,29] and progression towards
glomerulosclerosis [30]. Pregnant rats subjected to a prenatal multi-
deficient diet and treated with sodium overload gave birth to
newborns with higher values for glomerular filtration rate and
filtration fraction compared with controls [31].

A decrease in glomerular number has been related to increased
blood pressure in rats [19,32]. Previous studies have shown the
importance of the renin-angiotensin system (RAS) in foetal renal
development. Factors in the perinatal environment that suppress the
intrarenal RAS in the developing foetus/newborn rats lead to impaired
renal development, glomerular enlargement and fewer nephrons at
birth, leading to adult hypertension [33,34]. Severe nutritional
restriction in pregnant rats leads to altered vascular reactivity and
suppression of the newborn's intrarenal RAS [1,18,35]. In intrauterine
undernourished rats, a reduced number of nephrons was associated
with chymase overactivity, increased intrarenal angiotensin type II
(Ang II) production and hypertension [36].

2.1.1.2. Foetal undernutrition in ovines. Maternal nutrient restriction
during early midgestation alters the trajectory of renal organogenesis
and renal maturation in the ovine foetus. Decreased glomerular
number has been related to increased blood pressure in sheep [23].
Maternal nutrient restriction showed growth hormone-insulin-like
growth factor and prostaglandin axis deregulation. These changes
may be important in the nutritional programming of renal functioning
of sheep and in adult blood pressure control [37]. Nutrient restriction
during early midgestation increased renin in the late-gestation of
ovine foetal kidney, an event that may presage later hypertension in
these animals [2]. Therefore, these changes seem to be sex related.
Female gender appears to protect against maternal restriction,
although with more severe maternal dietary restriction, female
offspring are also affected [38].

2.1.1.3. Postnatal undernutrition in rats. Nephrogenesis continues after
birth in the rat and may be influenced by postnatal nutrition and
growth. Postnatal food restriction in the rat leads to a reduced
nephron endowment with compensatory enlargement. In rats, a 25%
reduction of glomerular number is observed after postnatal food
restriction compared with control rats. Mean glomerular volume was
increased by 35% in the growth-restricted rats [39]. Reduced size at
birth, with the associated compromised nutrition and growth in the
early postnatal period, not only induces a nephron deficit in adult
male offspring, but also results in elevated blood pressure. Neverthe-
less, renal development in the rat can be profoundly affected by
postnatal events. [40]

2.1.1.4. Postnatal compensation of foetal undernutrition in rats.
Emerging data support the view that, along with fewer nephrons,
nutritional programming actively induces a propensity for accelerated
postnatal growth via enhanced appetite. More recently, studies of
foetal undernutrition have also shown increased appetite and
enhanced deposition of more fat than lean tissue [41]. A rat model
of severe maternal caloric restriction throughout pregnancy showed
increased food intake in offspring well into adulthood; central obesity,
hypertension and insulin resistance were also present [41]. A
prenatally induced nephron deficit can be restored by correcting
growth restriction during lactation. It is important to stress that

nutrition is relevant also in the immediate postnatal period [40] when,
in the rat, nephrogenesis is almost 80% complete. Although the
prevention of a reduced number of nephrons and hypertension seems
possible with adequate postnatal feeding, the development of
hypertension is shown in subjects with normal birth weight who
are fed with inadequate maternal milk and have subsequent high
growth rates after lactation. An increase in expression of type 1
angiotensin receptor (AT1R) suggests that inadequate lactation can
have an impact on the long-term regulation of the renal RAS [42].

Both prenatal and postnatal periods are important in the
programming of hypertension in the rat, acting through distinctly
different mechanisms. Still, restriction of both perinatal and early
postnatal growth increases blood pressure in male offspring rats. The
early postnatal period is another critical time for nephron endowment
in the rat [40].

2.1.2. Studies in humans

Human IUGR is often associated with uteroplacental insufficiency
and a decline in nutrient and oxygen supply to the foetus. IUGR is
associated with reduced nephron number in human infants [43].
Autopsy studies in humans have shown that premature birth before
34-36 weeks of gestation is associated with arrested or impaired
nephrogenesis, which may contribute to the development of
cardiovascular and renal disease in adulthood [12]. In both human
and experimental [UGR, nephron number is commonly reduced by
about 25-30%, suggesting the possibility that a finite fraction of total
nephrons is subject to nutritional modulation [43]. One possible
preventive action is to improve the nutrition of pregnant women: this
strategy might decrease the frequency of hypertension in susceptible
offspring during their adult lives [1].

Maternal nutrition may have an important influence on renal
programming. It is very difficult to find studies in humans that
demonstrate maternal hyponutrition as a sole cause of IUGR. Recent
studies on the long-term outcomes in children born to pregnant
women during the ‘Dutch famine’ demonstrated microalbuminuria
when hyponutrition was present in the second part of gestation
[44,46]. Different results emerged from the Leningrad carestia,
wherein the population studied was borderline in terms of nutrition
[46].

3. Specific nutritional factors and renal endowment
3.1. Protein intake

3.1.1. Studies in animals

Prenatal low-protein exposure reduces nephron number, leading
to an age- and gender-related difference in postnatal angiotensin
receptor expression. However, the RAS is upregulated in maternal
low-protein female offspring during postnatal life, including both
upregulation of AT1R, which mediates the classic pressor responses to
Ang II, and downregulation of the counter-regulatory type 2 receptor
(AT2R) [35,47]. In agreement with this, increased Ang II sensitivity
has been observed in maternal low-protein offspring rats at 4 and
7 weeks of age [21,48,49]. Maternal low-protein diet decreased AT2R
expression at 4 weeks of age in female offspring rats and increased it
at 20 weeks of age [49], thus playing a critical role in determining
blood pressure and overall disease risk in a subsequent generation
[50].

Rats that were growth restricted in utero by maternal protein
restriction underwent rapid weight gain when suckled by control-fed
dams and died earlier than animals whose mothers were fed the
control diet throughout pregnancy and lactation. Mitochondrial
abnormalities and DNA damage occurred in the kidney of offspring
who died prematurely. Direct measurement in vitro supplementation
showed that mitochondrial abnormalities occur because of a
functional deficit of the mitochondrial cofactor coenzyme Q9 [51].
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Protein restriction during lactation confers nephroprotective
effects in the male rat and is associated with increased antioxidant
expression [52]. Varied protein intakes of 50%, 100% or 130% of the
normal protein content in rat milk from the seventh to 15th day of life
led to differences in total body weight but not kidney mass [53].

Combined prenatal and postnatal protein restriction in the mouse
reduced nephron endowment similarly in both sexes [54].

Protein synthesis rates in kidney and other organs of pigs were
greater in the fed than in the food-deprived state. Feeding stimulates
protein synthesis, modulating the activation of initiation factors that
regulate mRNA binding in the ribosomal complex. Therefore, a high-
protein diet does not further enhance protein synthesis or translation
initiation factor activation [55].

3.1.2. Studies in humans

Alterations in intrauterine nutrition, especially protein-calorie
restriction, may ‘programme’ the foetus for later susceptibility to
hypertension, cardiovascular disease and stroke [10]. Nutritional
factors, such as protein intake and calories, can reduce nephron
number, cause glomerular hypertrophy and subsequently increase
postnatal glomerular fibrosis [16,56]. Support for the hypothesis that
variation in foetal and placental development may result from a low
ratio of animal protein to carbohydrate came from observational
studies of maternal nutrition in pregnancy [57]. Malnutrition caused
by a low protein-calorie diet during intrauterine and neonatal life,
history of LBW and IUGR may have adverse implications for renal
outcome, reduced nephron numbers and perhaps for increased
numbers of obsolete glomeruli and provides early objective evidence
for future hypertension and renal risk [3,58].

3.2. Fat intake

3.2.1. Studies in animals

Glomeruli from rats fed with fish oil produced lower levels of
prostaglandins compared with glomeruli from rats fed with beef
tallow [59]. A diet containing various amounts of n-3 and n-6 fatty
acids had different affect on the concentration of atrial natruretic
peptide (ANP) and alpha-1 receptors. In particular, n-3 increased the
ANP receptors and decreased the density of the alpha-1 receptors
[60]. However, dietary fat induced alterations in lipid composition of
rat glomeruli and changes in affinity but not density of glomerular
AT2R compared with normally fed rats [61].

Administration of a diet rich in animal lard in the rat during
breastfeeding programmes the development of increased blood
pressure, insulin resistance, dyslipidaemia, obesity and mesenteric
artery endothelial dysfunction in adult offspring. Renal stereology
showed no differences in kidney weight, glomerular number or
volume in maternal-diet fat-rich offspring compared with controls,
but renal renin and Na*, K*-ATPase activity were significantly
reduced [62].

3.3. Vitamin A deficiency

3.3.1. Studies in animals

Vitamin A and its analogues (retinoids) are important regulators of
cell proliferation, differentiation, immune function and apoptosis.
However, vitamin A is the determinant in foetal renal programming of
rats in view of its capacity to modulate nephron number and vascular
supply of the kidney [63]. Several genes expressed during renal
organogenesis that are regulated by retinoic acid have been identified.
Transcription factors, such as the Hox family, hepatic nuclear factor
1b, lim-1, RARa2 and b2, are potential targets of retinoic acid. In
addition, c-ret, epidermal growth factor receptor and transferrin
receptor, which are important for nephron formation, are regulated
by vitamin A [64-67]. In 21-day-old rats, the number of nephrons was
directly correlated with plasma vitamin A level. The role of c-ret in

renal formation is considered essential since null mice for this gene
exhibited renal agenesis or rudimental kidneys [68]. In conditions
of vitamin A deprivation, proto-oncogene c-ret expression was
decreased in the metanephron. However, vitamin A supply restored
nephron endowment to normal in offspring of rat mothers exposed
to protein restriction [69].

3.3.2. Studies in humans

Indirect evidence has emphasised the role of vitamin A in kidney
development in humans. Vitamin A has been found to be lacking in
cord and maternal blood in IUGR neonates. However, low circulating
levels were common in women who were smokers, abused alcohol or
had inadequate dietary practices - all situations associated with IUGR
delivery [63]. Finally, maternal vitamin A deficiency accounted for
subtle renal hypoplasia in Indian newborns [70].

Experimental designs are lacking because retinoic acid can be
teratogenic at high doses. Consequently, vitamin A is not adminis-
tered during pregnancy to women at risk of giving birth to a LBW
infant [69].

3.4. Calcium

Decreased maternal calcium intake during pregnancy promotes
pre-term delivery and adult hypertension [71]. A follow-up study of
children whose mothers had calcium supplementation in pregnancy
showed a lowering of the offspring's blood pressure in childhood.
However, calcium supplementation was not associated with any
change in birth weight [72].

3.5. Potassium

Potassium-depleted environments showed an in vitro inhibition of
nephron induction [73].

3.6. Iron

Maternal iron restriction in rats caused hypertension in the adult
offspring, perhaps due in part to a deficit in nephron numbers [74].

3.7. Maternal overfeeding

3.7.1. Studies in animals

Different nutritional conditions (IUGR, overfeeding, and IUGR plus
overfeeding) were investigated in 4-month-old rats to evaluate the
amount of urinary protein excretion as a marker of glomerular
damage. Early postnatal overfeeding in rats improved postnatal
nephron number. Improved postnatal nutrition was associated with
an enhanced number of formed nephrons by an average of 20%
compared with control offspring. Therefore, enhanced nephron
number was associated with further elevated arterial pressure and
glomerulosclerosis [75]. Whether such findings may be extrapolated
to the postnatal ongoing formation of nephrons in premature human
infants remains a matter of speculation.

3.8. Prenatal and postnatal nutrition mismatch

The foetus is ‘normally programmed’ in physiological conditions
and during hypernutrition. An unfavourable ‘lifestyle’ is not expected.
Thus, the passage from unfavourable environment to a ‘too favour-
able’ environment may predispose to pathologies in adulthood [15]. In
agreement with this, a mismatch between pre- and postnatal nutrient
environments induced altered cardiovascular function in adult male
sheep that was not seen in controls where environments were similar
between the two periods of life. In particular, an increased blood
pressure response to a bolus of Ang Il was observed in postnatally
undernourished sheep with a normal prenatal diet but not in those
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with a restricted prenatal diet. Hence, adult cardiovascular function
can be determined by developmental responses to intrauterine
nutrition made in expectation of the postnatal nutritional environ-
ment. If these predictions are not met, the adult may be maladapted
and at greater risk of cardiovascular disease [76].

4. Discussion
4.1. Intrauterine growth restriction

There is a strong association between LBW and reduced nephron
endowment. Low nephron endowment in LBW infants has been
associated with arterial hypertension and/or altered renal function in
adulthood in both rodents and humans [7,9,11,77-80]. LBW infants
may have a higher risk of developing hyperfiltration, microalbumi-
nuria and accelerated loss of renal function in adulthood. Thus, a
kidney with a reduced nephron number has less renal reserve and
adaptation to dietary excesses or compensation to renal injury [8].
Hence, nephron endowment seems to be particularly sensitive to
IUGR. If rapid somatic growth occurs subsequent to prenatal growth
restriction, the kidney may not be able to respond with an increase in
nephron number [81].

Although LBW may be one indication of reduced nephron
endowment, a normal birth weight does not necessarily indicate a
normal nephron number. Similarly, a low nephron endowment,
although a risk factor, is not essential for the development of
hypertension and is probably only one of a number of mechanisms
contributing to the onset and progression of hypertensive disease
[82].

4.2. Maternal undernutrition

The association between LBW and impaired nephrogenesis caused
by intrauterine malnutrition was already reported long ago [83].
There is strong evidence of foetal adaptations when the materno-
placental nutrient supply fails to match the foetal nutrient demand
[84]. Maternal undernutrition generates a permanently low nephron
number and increased appetite, the latter ensuring elevated body
mass via growth acceleration when postnatal food is available.
Therefore, when body mass exceeds the fixed lower excretory
capacity, postnatal renal adaptations enhance excretion by mechan-
isms that create additional disease risk. Maternal and/or foetal
undernutrition activates multiple compensatory foetal responses
that persist postnatally, promoting later development of hypertension
and renal disease in adulthood [85,86]. According to the Barker
hypothesis, when resources in utero are restricted, their allocation to
the development of the kidney and other organs is lacking in favour of
the brain and heart. In other terms, according to the ‘life history
theory’, if the total amount of energy to an animal is limited, then
increased allocation of energy to one organ system must reduce
allocation to one or more other organ systems [87]. Thus, the
undernourished foetus protects its brain development by diverting
more blood to the brain at the expense of blood supply to other organ
systems. Several cellular and molecular mechanisms have been
suggested as contributing to the consequent impaired nephrogenesis.
The underlying epigenetic mechanisms involve modification of gene
expression by altered DNA methylation, histone acetylation and
allocation of stem cells [88]. Table 1 summarises the major topics
discussed in the literature concerning changes in renal endowment.

4.3. Practical considerations

In a recent survey in a developing country of Africa, about 40% of
children with chronic renal failure had an uncertain aetiology and
environmental factors were advocated [89]. Close monitoring of renal
function of children exposed to intra utero undernutrition emphasised

Table 1
Topic Observation Reference
IUGR and nephron number  Term newborn with IUGR: [42,90,91]
low nephron number and
nephrogenesis completed.
Pre-term newborn with [UGR:
low nephron number and
nephrogenesis uncompleted
Flow of nutrition reaching Recent matrilineal ancestors [15]
the foetus effectively limit the responsiveness
to short-term ecological fluctuations
during any given pregnancy:
intergenerational “phenotypic inertia”
Undernutrition during Permanent reduced number of [87]
gestation and early life nephrons: the “life history theory”
Protein restriction in Has a critical role in intergenerational [48]
pregnant rats programming of impaired nephrogenesis
Mismatch between prenatal The passage from an unfavourable [45]
demand and postnatal environment to a “too favourable”
nutrition supply environment predisposes
to pathologies in adulthood
Supposed cellular and p53 gene family, hepatocyte nuclear [5,87,88]

molecular mechanisms
of renal foetal programming

factor-1(3, Notch, Brn1, IRX, KLF4,

Foxil, PAX2 genes and angiotensin
converting enzyme gene

insertion/deletion.

Epigenetic changes, telomere

shortening, fewer stem cells, higher

levels of renal apoptosis, mytochondrial
dysfunction

Female gender is relatively protective [8]
against these prenatal insults
Diabetes, vesicoureteral reflux,
pyelonephritis, nephrotoxins,
nephrotoxic drugs, IGA, partial
renal ablation, etc.

Gender

Postnatal aggravating events
of low nephron endowment

[3-8]

the importance of nutritional programmes in populations with high
risks of undernutrition [90]. In newborns at term experiencing IUGR,
nephrogenesis is completed. They probably have a reduced global
number of nephrons compared with healthy newborns [41,91]. The
future of these infants may include a peculiar vulnerability to a
different spectrum of noxae [92]. Adequate postnatal nutrition is
essential [90].

* In VLBW infants, nephrogenesis is not completed and it is not
possible to reach the final number of nephrons of at-term healthy
newborns with normal birth weight [90]. From a practical
perspective, the following procedures in pre-terms are essential:

— adequate parenteral nutrition, and
— cautious start of nutrition with fortified maternal milk or formula
in the absence of maternal milk.

These interventions will allow the prevention of extrauterine
growth restriction, which would otherwise add to the risks of low
weight, and gestational age and extreme prematurity at birth. A delay
in the start of extra milk feeding will prevent an excess of weight gain
after the catch-up growth, lowering the risks associated with the low
number of nephrons.
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