Learning-Enabled CPS for Edge-Cloud Computing

Luigi Capogrosso*, Shengjie Xuf, Enrico Fraccaroli*f, Marco Cristani*, Franco Fummi*, Samarjit Chakraborty

*University of Verona, Verona, Italy

TUniversity of North Carolina at Chapel Hill, USA

Email:* {luigi.capogrosso, enrico.fraccaroli, marco.cristani, franco.fummi}@univr.it, T{sxunique, samarjit} @cs.unc.edu

Abstract—Many Cyber-Physical System (CPS), such as au-
tonomous vehicles and robots, rely on compute intensive Machine
Learning (ML) algorithms, especially for perception processing.
A growing trend is to implement such ML algorithms in the
cloud. However, the data transfer overhead and the delay
introduced in the process necessitate some form of edge-cloud
solution. Here, a part of the processing is done locally and the
rest on the cloud, and how to do this partitioning is being explored
in the body of work referred to as Split Computing (SC). In this
position paper, we explore different SC architectures and discuss
their implications on controller design for CPS. In particular, we
discuss the delay and state estimation accuracy of these different
SC architectures and how they would impact the design of the
feedback controllers using them.

Index Terms—Split Computing, Early Exit, Deep Neural Net-
works, Cyber-Physical Systems, Edge Devices.

I. INTRODUCTION

Any Cyber-Physical System (CPS), by definition, involves
a tight interaction between physical systems and software
running on an embedded computing platform [1]. The software
in such systems typically involves a feedback controller that
(1) senses the state of the system, (ii) estimates the value
of the system state using the sensed information, (iii) com-
putes the control input using the estimated value, and finally
(iv) actuates the system using the control input. The steps
(i) — (iv) are carried out in an infinite loop to impose a
desired behavior on the overall system (the physical system
and the controller). In other words, the goal is to ensure
that the system’s state evolves in a particular manner, e.g.,
it follows a desired trajectory in the state space, or avoids
some states/region of the state space, or stays within a certain
region of the state space [2], [3].

As a concrete example of such a CPS, let us consider an
autonomous vehicle that should follow a specified trajectory
and not collide with vehicles in front of it. Using sensors
such as cameras or lidar, the vehicle senses its environment.
The output from such sensors — such as images from the
camera or a point cloud from the lidar — is fed into a
neural network that, e.g., estimates the distance between the
vehicle and the one in its front. The control algorithm uses
this estimated distance to adjust the vehicle’s acceleration to
maintain a safe distance between the two vehicles. Similarly,
the output from the neural network could be an estimate of
the distance between the center of the vehicle and two-lane
boundaries (left and right), with the goal of the controller
being to keep the vehicle in the center of the lane. While
the neural network for such applications can reside on the
computational platform of the vehicle, for more complex

Network

D\

T Y
.\”\ -
Encoder/Decoder
. -
Embedded device Cloud
(Head) (Tail)

Figure 1: SC architecture — Head & Tail components.
autonomous features, the computational bandwidth available
on the vehicle might not be sufficient. In such cases, a Deep
Neural Network (DNN) is implemented on a cloud computing
platform. While this enables implementing powerful DNNss,
they are also associated with significant delays that impact
control performance, i.e., the dynamics or behavior of the
system. A middle ground is to use Split Computing (SC), as
shown in Figure 1. Here, a DNN is partitioned into “Head”
and “Tail” components, with the former being implemented
locally on an embedded computing platform and the latter
on the cloud. While such DNN [4] architectures have been
studied in the past, how they should be designed when used
in conjunction with feedback controllers in a CPS has not been
investigated.

It is evident that the partitioning between the head and the
tail of a DNN in SC will determine the delay as well as the
classification or estimation accuracy of the DNN. However, it
remains unclear how these partitions should be “connected”
to the performance of a feedback controller. Additionally,
the impact of different types of connections on the resulting
dynamics of the closed-loop system is not well understood.
In this position paper, we present a few of these connections
between SC architectures and feedback controllers and discuss
their implications on the behavior of the closed-loop dynamics
of the system. We believe that this discussion will trigger
useful research and open up a potentially new field — “Split
Computing CPS” — that has not been explored until now.

II. OVERVIEW OF SPLIT COMPUTING AND EARLY EXIT

We start by introducing different distributed deep learning
application architectures. We focus on architectures operating
through a DNN model M(-), whose task is to produce the
inference output y from an input z. We can identify four
major types of architectures used for distributed deep learning
applications in the literature: Local-only Computing (LoC),
Remote-only Computing (RoC), SC, and Early Exit (EE).
Their structures are shown in Figure 2.

Copyright © 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

A. Local-only computing

Under this policy, the entire computation is performed on
the edge device. As shown in Figure 2a, the edge device en-
tirely executes the inference function M (z). Its advantage lies
in offering low latency due to the proximity of the computing
element to the sensor/controller in our setup [S]. However,
it may not be compatible with DNN-based architectures that
demand robust hardware capabilities. Usually, simpler DNN
models M(z) that use specific architectures (e.g., depth-wise
separable convolutions) are used to build lightweight networks,
such as MobileNetV3 [6]. Besides designing lightweight neu-
ral models, in the last few years, significant progress has
been made in the area of DNN compression. Compression
techniques, such as network pruning and quantization [7], or
knowledge distillation [8] achieve a more efficient representa-
tion of one or more layers of the neural network, but with a
possible quality degradation.

B. Remote-only computing

As shown in Figure 2b, here the input z is transferred
from the edge device through a communication network and
then is processed remotely through the function M(x). This
architecture preserves full accuracy considering the higher
power budget of the remote system, but it leads to high latency
and bandwidth consumption due to the input transfer.

C. Split computing

A typical SC scenario is discussed in [9], where it is shown
that neither LoC nor RoC approaches are optimal, and a split
configuration performs better. The general structure of SC
is shown in Figure 2c, which shows how the SC paradigm
divides the DNN model into a head, executed by the edge
device, and a tail that is executed by the remote system. It
combines the advantages of both LoC and RoC, thanks to
the lower latency and, more importantly, reduced transmission
bandwidth requirements. Such reduction may also be obtained
by compressing an input x to be sent through the use of an
autoencoder [10]. We define the encoder and decoder models
as z; = F(z) and T = G(z;), which are executed at the edge,
and remotely, respectively. The distance d(x,Z) defines the
performance of the encoding-decoding process. One of the
earliest works on SC [11] shows that the initial layers of a
DNN are the most suitable candidates for partitioning, as they
optimize both latency and energy consumption. Additionally,
latency reduction is usually achieved through quantization, as
explored in [12], and by using lossy compression techniques
before data transmission, as investigated in [13]. In addition
to lossy compression techniques, lossless techniques to encode
intermediate results without modifying the machine learning
model have also been studied [14]. Finally, the concept of
employing autoencoders to compress the data further to be
transferred is discussed in [15].

The prevalent methods for identifying potential splitting
points have evolved from architecture-based techniques to
more refined neuron-based methods. Within the domain of
architecture-based approaches, candidate split locations can be

Sensor ()

Edge

(a) With LoC, the edge device entirely executes the model inference.

Sensor (x)

Edge
t

(b) With RoC, the input is transferred to the remote device, where it is
processed, and the result is then sent back to the edge device.

Remote

Sensor ()

Remote

(c) With SC, the computation is split between the edge and the remote devices.
The transmission bandwidth is reduced by compressing it using encoder and
decoder models.

Sensor (x)

Remote

(d) When combining SC and EE, the computation is split between the edge
and the remote devices; however, we have intermediate classification branches,
producing an estimate y.e of the desired output y.

Figure 2: Comparing the four major types of architectures used for
distributed deep learning applications, i.e., LoC, RoC SC, and EE.

where the size of the DNN layers decreases [16]: the ratio-
nale is that compressing information by autoencoders, where
compression would still occur due to the shrinking of the
architecture, seems reasonable. Instead, I-SPLIT demonstrates
that the architecture of the layers and the saliency of individual
layers is a crucial factor [17]. Specifically, a neuron’s saliency
is determined by its gradient in relation to the accurate
decision. Along similar lines, [18] introduces Split-Et-Impera,
a fast and user-friendly framework that eases the design of a

distributed architecture executing one or more DNNs. Split-
Et-Impera not only accurately mimics diverse communication
protocols and application requirements but also offers a unique
capability. It suggests the proper configuration to match the
application’s Quality of Service (QoS) requirements, ensuring
optimal performance in terms of accuracy and latency. Since
manipulating diverse SC configurations may require days of
computation, Split-Et-Impera allows the elimination of several
configurations through communication-aware simulations.

At the same time, current state-of-the-art approaches in
different deep learning applications rely on advanced learning
procedures, such as Multi-Task Learning (MTL). In particular,
MTL is a paradigm in which multiple related tasks are
jointly learned to improve the general applicability of a model
by using shared knowledge across different aspects of the
input. In [19], a method to partition multi-tasking DNNs for
deployment within an SC framework is discussed. The pro-
posed MTL-Split design handles multiple tasks concurrently,
shifting the focus from Single-Task Learning (STL) in SC,
and through MTL, increases task performance, overcoming
the challenge of preserving only the performance of the main
task. Moreover, in [20], the effect of predefined sparsity within
the SC paradigm is presented. This approach, demonstrably
practical for the first time in an SC scenario, significantly
reduces computational, storage, and energy demands during
training and inference, regardless of the hardware platform.

D. Split computing and early exit

This scenario adds an EE branch to a standard SC archi-
tecture, as depicted in Figure 2d. Formally, we can define
B;, i=1...N (with N = L, and L is the number of layers
of the DNN) as the branch model that takes as input 2; and
produces an estimate of the desired output y. In practice, the
EE architecture modifies an existing neural network by adding
one or more classification branches, where the confidence of
the intermediate result is checked before the computation of all
network layers. If the confidence is sufficient, the intermediate
result is considered the final output [21].

The EE architecture can be leveraged in distributed deep
learning applications, where the intermediate result can either
be directly transmitted, as in local computing, or further re-
fined on the remote side, as in SC. In this scenario, the level of
transmission traffic depends on the input, thus varying stochas-
tically. Therefore, the interdependencies between computation
and communication cannot be analytically modeled, and real
experiments are needed to validate a given implementation.

III. BASICS OF CONTROLLER DESIGN

When neural networks are used for sensor data processing
before the data is fed into a controller in a CPS, the overall
system performance is impacted not only by the latency
and accuracy of the neural network, but also the underlying
dynamics of the physical system. This section introduces the
basics of feedback control systems used in the rest of the
paper. One common representation of control systems is the
state-space model, where the state of the system is represented

by a state vector x(t) € RP and the input to the system by
u(t) € RY. For simplicity, we discuss Linear Time-Invariant
(LTT) control systems here, but the principles discussed in
this work apply to any type of control system with learning-
enabled components.

The state-space model of a continuous LTI system is:

(t) = Agz(t) + Boul(t) , (1)

where A, € RP*P_ and B, € RP*Y are matrices encoding the
system’s dynamics. Equation (1) shows that the rate of change
of the system state ©(¢) depends both on the current state x(t)
and the control input u(t). To enable feedback control, the
control input u(t) is computed by a periodic real-time task
running on a processor. Computing u(t) requires discretizing
the continuous state-space model with a constant sampling
period h. Assuming periodic sampling, i.e., tp+1 — tx = h,
matrices A and B can be derived from Equation (1) such
that:
x(tey1) = Ax(ty) + Bu(ty) -

For simplicity, we denote x(t) as xz[k] and u(t) as u[k] to
obtain the discrete state-space model:

z[k + 1] = Az[k] + Bulk] . (2)
In the simplest case, the control input u[k] is computed by:
ulk] = Kz[k] , 3)

where K € R7%? is the feedback gain. Many methods exist
to design the feedback gain K with various stability, energy,
and complexity considerations.

IV. CYBER-PHYSICAL SYSTEMS SAFETY

Multiple issues mentioned in Section III impact the safety
of a CPS. For example, the choice of the sampling period h
affects the response time of the control system to external
disturbances. A sampling period that is too large leads to
unstable systems, while a period that is too small induces
unnecessary load on the processor and may cause other
control tasks utilizing the same processor to become unsafe.
Furthermore, the system state x[k] in Equation (3) is usually
unknown and requires some form of sensing and estimation,
i.e., the control input u[k] is computed by:

ulk] = KZz[k], 4)

where Z[k] is an estimation of the ground truth state x[k].
While some sensors used for state estimation can be fairly
accurate, e.g., speed and temperature sensors, other sensing
methods, especially ones involving neural networks, can have
non-negligible uncertainties in their estimation. Changes in the
sampling period and errors in state estimation can both lead to
deviation from the intended behavior of a system, potentially
violating its safety requirements.

Here, we introduce two quantitative measures of CPS safety
over a finite time horizon H. First, assuming a nominal (ideal)
behavior of the system .., (e.g., defined by the trajectory
of the system in its state space), the safety of the system can

be expressed in terms of the maximum deviation D from that
ideal behavior:

D= kgf(?,);{] d(z[k], Tnomlk]),)
for any defined distance metric d (such as the Euclidean
distance) between two points in the state space. A smaller
deviation D from the nominal behavior implies a safer system.
Second, if the nominal behavior is not known or not applicable,
we measure the safety of the system in terms of the maximum
diameter of reachable states over the time horizon H. Starting
from an initial set of states X[0], the reachable sets can be
calculated by extending Equations (2) and (4):

Xk+1= |J AxeBKx, (6)
XEX[K]

where X denotes the set of possible estimations of y, and
@ denotes the Minkowski sum of two sets. The maximum
diameter Diam can then be calculated as:

max _d(z, y)) . @)

Diam = max
ke[0,H] \z,yeX[K]

Similar to the safety measure with maximum deviation, a
smaller maximum diameter of reachable sets implies a safer
system. Given different SC architectures, our aim is to use
such safety measures to evaluate their suitability in a CPS. In
addition, we propose to use the above safety metrics to drive
suitable splitting decisions in DNNs between edge and cloud
computing resources.

V. SPLITTING DECISIONS AND ILLUSTRATIVE RESULTS

This section shows how the split point is usually determined
and which factors impact these decisions, providing experi-
mental results based on the current state-of-the-art methods. As
an example, we focus on the image classification task, and as
DNN, we use the PyTorch implementation of the VGG16 [22].
We train our model on the CIFAR-10 dataset [23] up to 20
epochs with a learning rate of 5 x 10~2, using Adam [24] as an
optimizer. CIFAR-10 has to be considered as a placeholder for
more extensive datasets (e.g., ImageNet [25]); nonetheless, the
focus here is to discuss how different SC options will influence
control performance in a CPS and not beat the state-of-the-art
in a specific computer vision challenge.

All experiments have realized the split point by placing an
autoencoder with a 50% compression rate. For the training
of the encoder/decoder, we run up 50 epochs with a learning
rate of 5 x 1074, always using Adam as the optimizer. In
the experiments in which we evaluated the communication
network aspects, we always simulated a 1 GB/s Full-Duplex
network channel.

A. Model-based split point selection

Figure 3 shows the results following both, the architecture-
based [16] and the neuron-based split point search. In this
figure, the so called Cumulative Saliency CS [18] is a function
of the layer compared with the accuracy of the DNN split in
that layer [17]. The peaks in the CS curve correspond to the

Y S — E— 75
Cumulative Saliency X
-10.0
——- Accuracy 70
PARN
-10.5 =</
N N {)
So AN /) >
~~L_ 65—
—-11.0 - o \\ ///\\ II >
)) SN ©
-115 >
+* 60;25
-12.0
55
-12.5
50
5 6 7 8 9% 10 11 12 13* 14 15 16

Layer

Figure 3: Cumulative Saliency (CS) as a function of the layer
compared with the accuracy of the DNN split in that layer [18].

points where accuracy is preserved despite split injection. As
such, the layers in which CS has a local maximum are the
best candidates for splitting. Layers marked with an asterisk
(*) represent VGG 16 max-pooling layers, i.e., down-sampling
layers, which reduce the spatial dimensions of the input data.

In Figure 3, the architecture-based approach identifies can-
didate split points (red dots) layers 5, 9, and 13 (dense data),
corresponding to block2_pool, block3_pool and block4_pool.
Instead, the neuron-based approach also identifies two ad-
ditional points (red stars) at layers 11 and 15 (informa-
tive data), corresponding to block4_conv2 and block5_conv2,
respectively. It is worth noting how layers with the same
dimensionality, i.e., convolutional layers belonging to the same
VGG16 block, do not express the same importance, as shown
by the CS curve. Given the model-based split point selection
results, due to the lack of space, in the next section, we present
the communication network-based results only after splitting
the DNN at layers 11 and 15.

B. Communication network-based split point selection

Figure 4 shows the results on the impact of the communica-
tion network on the split point selection, using the simulation
framework for SC and EE in [18]. In this experiment, we
assumed that we have a real-time application with a constraint
on the maximum frame latency of 0.05 seconds (i.e., runs at
20 FPS). Figure 4 highlights how the latency increases with the
packet loss rate due to TCP re-transmission in case of packet
loss. However, this preserves the maximum accuracy of the
application. Specifically, the dashed curve shows that splitting
at layer 15, the application requirements are always satisfied
independently of the packet loss rate. The dotted curve shows
that with the split at layers 11, the 20 FPS constraint cannot
be satisfied when the packet loss rate is more than 3%. This
behavior meets expectation, i.e., by splitting the network at
layer 11, the amount of transmitted data is more significant
than the one obtained by splitting the network at layer 15,
and because of the retransmissions, the latency increases, up
to a point that violates the application constraints represented
by the dashed red line.

m
€ —— Requirements loss vs latency ..“*
c 607 === VGG16 with splitting point at layer 11 -
-% ——+ VGG16 with splitting point at layer 15
(%] .
£ 50 A
= .
C
E 40
=
[e]
<30
o K
3
20 * . ¢
[} -
c -
I T Y S *~
%10 —=—K

> p-
2 | k- x
<0

1 2 3 4 5

Packet loss (%)

Figure 4: Evaluation of the impact of the communication network on
split point selection [18].

=80 mm TCP
S uDP
o
8 70
=}
|9}
<60
1S
g
§50
%)

40 5

Packet Ioss (%)
(a) Accuracy comparison between TCP and UDP.

56| mmm TCP
Yy ubDP
>
o
52
2
T
=50
o
Q48
(@]

46

5

Packet Ioss (%)
(b) Latency comparison between TCP and UDP.
Figure 5: Comparison between the TCP and the UDP protocols [18].

C. Latency-based communication network protocol selection

Based on the experiments in [18], in Figure 5, we show a
comparison between system accuracy and the overall latency
using the TCP and UDP protocols. Figure 5a shows that
application accuracy does not depend on the packet loss rate
when using TCP. Figure 5b shows that this, however, feature
comes at a price: with TCP, the overall latency is much
greater, so it is required to ensure that this is compatible
with the application requirements. UDP protocol shows a dual
behavior: the latency is minimized and kept independent of
the packet loss rate, but the accuracy decreases in case of loss
since no error checking and recovery services are provided.
Finally, Figure 6 shows the bandwidth utilization comparing
the SC (blue curve) and EE scenarios (gray curve), both

(o]
o

—— Split Computing (SC) with TCP protocol
—— Early Exit (EE) with TCP protocol

i

100 150 200 250 300
Packet Index

Figure 6: Network bandwidth utilization over time, comparing the

SC (blue) and EE scenario (gray), both using the TCP protocol.

(0]
o

~
o

[@)]
o

(S
o

Bandwidth occupancy (byte)
N
o

w
o

using the TCP protocol. The curves show that SC consumes a
constant bandwidth while EE consumes less bandwidth when
inference is stopped early.

D. Split computing and cyber-physical systems safety

We have seen how different SC configurations yield varying
trade-offs between accuracy, latency, and resource require-
ment. Their effects on the safety of CPSs are many and must
be investigated considering the properties of the specific CPS
at hand. As a case study, we selected two control systems —
a simplified F1/10 car model derived from [26] and a cruise
control model derived from [27] — and measured the maximum
diameter of reachable sets as introduced in Section IV. For
each control system, we evaluated four SC configurations:
(1) splitting at layer 11 using TCP, (2) splitting at layer
15 using TCP, (3) splitting at layer 11 using UDP, and
(4) splitting at layer 15 using UDP. We used the latency of each
configuration as the sampling period h for the control systems.
We assumed that the neural network accuracy a € [0, 1],
translates to a state estimation error of (1 — a)2.

Figure 7 shows the maximum diameters of reachable sets
for the above two control systems using these four SC con-
figurations, with packet loss rates ranging from 1% to 5%.
Figure 7a reports the maximum diameters of reachable sets for
the F1/10 car model, while Figure 7b reports the maximum
diameters of reachable sets for the cruise control model. A
key observation is that for the F1/10 car model, the maximum
diameter of the reachable set using the configuration L11
TCP (i.e., splitting at layer 11 and using TCP) increased
significantly between packet loss rates 3% and 4%, making
it the worst configuration at a loss rate of 4% or higher. In
contrast, for the cruise control model, the maximum diameter
using the same configuration (L11 TCP) does not change
much between packet loss rates of 3% and 4%. In fact, for
the cruise control model, L11 TCP yields lower maximum
diameters than both UDP configurations at all packet loss rates.

As shown in Figure 4, increasing the packet loss rate
from 3% to 4% causes a latency increase of more than

—e— F1/10, split at L11, with TCP

F1/10, split at L15, with TCP
—e— F1/10, split at L11, with UDP
—e— F1/10, split at L15, with UDP

2.28

2.26

2.24

N
N
N

Max diameter of reachable sets (m)

1 2 3 4
Packet loss (%)

[6,]

(a) Max. diameters of reachable sets for F1/10 (lower is better).

€65

—

% 6.4

0
263
Q

©
S6.2

©

g
« 6.1 -

(0]
o
=)

—e— CC, splitat L11, with TCP

CC, split at L15, with TCP
—e— CC, splitat L11, with UDP
—e— CC, split at L15, with UDP

3 4 5
Packet loss (%)

u
©

Max diameter
u
©

=
N

(b) Max. diameters of reachable sets for cruise control (lower is better).

Figure 7: Maximum diameters of reachable sets for two control
systems with neural network components, with latency and accuracy
values from Figure 5.

20ms for the L1l TCP configuration. This difference in
behavior reveals that the F1/10 car model is more sensitive
to control period changes than the cruise control model and
highlights the necessity of considering the properties of the
CPS when assessing different split-computing configurations,
as the latency and accuracy of the neural networks alone can
not tell a complete story about the overall system safety.

VI. CONTROLLER DESIGN FOR SPLIT COMPUTING

We now discuss multiple SC-augmented feedback controller
architectures. These are shown in Figure 8. From their descrip-
tions, it will become clear that these are not exhaustive and
variations of these architectures are possible. As mentioned
earlier, our goal in this position paper is not to conduct an
exhaustive study of this topic but to initiate the first discussion.

Figure 8a shows the most basic scenario, where the entire
DNN is implemented locally on an embedded system. Any
embedded platform’s relatively low computational bandwidth
will restrict the DNN’s size, compromising its classification
or estimation accuracy. As shown in Section V, a higher state
estimation error results in a more extensive reachable set,
thereby compromising system safety.

Plant ——
Embedded
Device

¢ T

(a) Basic Edge Computing only scenario.

Controller

ZT

—> Plant —
Embedded
u Device > Server
——__Controller | _ _ _____ &z ________ |
(b) Edge-Cloud (or Split) Computing scenario.
—> i
Plant "
Embedded
u2 [u1 Device > Server
Controller :+1_"| Cxa |

(c) SC and EE scenario.

Figure 8: SC architectures for a feedback controller.

Figure 8b shows a typical SC architecture. A part of the
inference is done on a neural network running locally on
an embedded platform, and the subsequent inference is done
on a server in the cloud. By using the cloud — and thereby
supporting a bigger DNN — the inference accuracy will be
higher, and therefore, the state estimation error will be lower
than in the case shown in Figure 8a. However, a higher delay
will be involved in communicating to and from the cloud,
resulting in a higher sensor-to-actuator delay. Depending on
the communication protocol used, as shown earlier, there
might also be data loss, which will also impact the size of the
reachable set and, therefore, the system’s safety. The research
question is to determine an appropriate split point to minimize
the size of the system’s reachable set and maximize safety.
What is important to note here is that because of the sensor-
to-actuator delay associated with each splitting point, the DNN
architecture with SC that maximizes inference accuracy will
not necessarily be the optimal SC architecture for maximizing
system safety, motivating a study of SC for CPS.

Finally, Figure 8c shows a scenario, where if sufficient
inference accuracy is reached using the local DNN then early
exit may be used, where x; is used to compute a control
input ;. This results in a lower sensor-to-actuator delay and
avoids any communication with the cloud. But if the inference
accuracy using a local-only DNN is not deemed sufficient, then
the additional computation is conducted in the cloud, and -
is instead used by the controller to compute us.

However, there could be several additional possibilities
here. First, irrespective of the inference accuracy achieved
locally using the edge DNN, a “preliminary” state estimate,
henceforth referred to as x1, can be used to compute an earlier
control input u;. A more accurate state estimates xo using the
cloud DNN may be used later to apply a second control input
ug. Such a controller addresses the importance of lower delays
and the need for more accurate state estimates. The controller
needs to be appropriately designed, since it might be that the

control input us is applied during a later sampling period than
the one in which w; is applied. Either the entire £ may be
sent to the cloud, or as shown in Figure 8c, the data sent to
the cloud might be first processed by the edge DNN.

As yet another possibility, some components of the sensed
state & may be processed by a local DNN on edge to compute
x1, and the remaining components of £ may be computed by
the DNN on the cloud to compute x5. The set of £ components
sent to the edge and the cloud need not be disjointed. How
to partition state components between the edge and the cloud,
and how to design the resulting controller to maximize system
safety, are again open questions that need to be studied.

VII. CONCLUDING REMARKS AND OUTLOOK

This paper introduced “Split Computing CPS”, a topic that
we believe has not been studied before. Although there exists
a rich literature on implementing DNNs on edge devices,
and more recently on split computing, the focus has almost
exclusively been on maximizing inference accuracy of the
DNN. However, we have argued in this paper that an optimal
DNN implementation architecture when evaluated in isolation
might no longer be optimal when used as a part of a larger
system, e.g., a CPS. We used autonomous systems [28] that
increasingly use DNNs for perception processing as examples
to illustrate this. Here, we have used the size of the reachable
set of a feedback controller as a measure of system safety
and showed that different SC architectures result in different
degrees of system safety. Finally, we introduced different CPS-
SC architectures and showed a large design space that needs
to be studied by the CPS and SC research communities.

The research direction discussed in this paper is related to
the problem of control/architecture co-design [29], [30] that
has lately attracted considerable attention. Such co-design is
motivated by control strategies being designed with simplistic
assumptions on the implementation platform that are not valid
in reality. As a result, verification or certification [31], [32]
results at the model level fail to carry over to an imple-
mentation. While techniques such as progressively refining
a controller by introducing more implementation details and
simulating after each such refinement step [33], [34] are
common, they come with significant overheads. Alternatively,
co-design approaches start with a partial specification of a set
of controllers and their implementation options, and attempt
to explore different implementation choices and the corre-
sponding optimal parametrizations of the controllers [35]-[37].
Here, the implementation choices could involve task map-
ping and task and communication scheduling [38]-[42]. Each
of these implementation choices is associated with different
delays experienced by the control tasks, for which optimal
control parameters may be synthesized [43]-[45]. Taking such
co-design a step further, recent work has considered different
notions of system-level safety (such as those discussed earlier
in this paper) and studied scheduling and controller design
techniques that allow non-ideal timing behaviors such as dead-
line misses [46]-[49]. As CPS implementation platforms and
their communication architectures — such as in the automotive

domain — become more complex, distributed, and increasingly
wireless [50], [51], there is also a need for new timing analysis
techniques [52], [53] to support such co-design.

This paper extends such co-design for CPS to consider
machine learning components [54], [55]. With increasing
design complexity, in the future, co-design techniques need to
be extended to consider the design space of not only control
strategies and the implementation of control tasks and sig-
nals [56], but also the design space of machine learning com-
ponents, and CPS security mechanisms [57], [58]. Such holis-
tic co-design approaches can focus on system-level safety [2]
and performance metrics instead of following current design
methods that attempt to optimize individual components (such
as machine learning, real-time schedulers, or security) and as-
semble multiple individually-optimized components. Focusing
on such system-level metrics will allow more design flexibility
and help design better resource provisioned and more cost-
effective CPS and autonomous systems.

VIII. ACKNOWLEDGMENTS

This study was carried out within the PNRR research
activities of the consortium iNEST (Interconnected North-
Est Innovation Ecosystem) funded by the European Union
Next-GenerationEU (Piano Nazionale di Ripresa e Resilienza
(PNRR) - Missione 4 Componente 2, Investimento 1.5 —
D.D. 1058 23/06/2022, ECS_00000043), and by the Euro-
pean Union’s Horizon Europe research and innovation pro-
gramme under the Marie Sklodowska-Curie grant agreement
No. 101109243. This manuscript reflects only the Authors’
views and opinions. Neither the European Union nor the
European Commission can be considered responsible for them.
This work was also partially supported by the US NSF grant
2038960.

REFERENCES

[1] D. Goswami et al., “Challenges in automotive cyber-physical systems
design,” in International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS), 2012.

[2] C. Hobbs er al., “Quantitative safety-driven co-synthesis of cyber-
physical system implementations,” in /5th ACM/IEEE International
Conference on Cyber-Physical Systems (ICCPS), 2024.

, “Safety analysis of embedded controllers under implementation
platform timing uncertainties,” IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst., 2022.

[4] Y. Matsubara, M. Levorato, and F. Restuccia, “Split computing and early
exiting for deep learning applications: Survey and research challenges,”
ACM Computing Surveys, 2022.

[5] L. Capogrosso et al., “A machine learning-oriented survey on tiny
machine learning,” IEEE Access, 2024.

[6] A. Howard et al., “Searching for MobileNetv3,” in IEEE/CVF Interna-
tional Conference on Computer Vision, 2019.

[71 T. Liang et al., “Pruning and quantization for deep neural network
acceleration: A survey,” Neurocomputing, 2021.

[8] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A
survey,” International Journal of Computer Vision, 2021.

[91 A. E. Eshratifar er al., “JointDNN: An efficient training and inference
engine for intelligent mobile cloud computing services,” IEEE Transac-
tions on Mobile Computing, 2019.

[10] Y. Matsubara et al., “Distilled split deep neural networks for edge-
assisted real-time systems,” in Workshop on Hot Topics in Video An-
alytics and Intelligent Edges, 2019.

[3]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” ACM SIGARCH Computer Architecture News,
2017.

G. Li et al., “Auto-tuning neural network quantization framework for
collaborative inference between the cloud and edge,” in 27th Intl. Conf.
on Artificial Neural Networks (ICANN). Springer, 2018.

H. Choi and 1. V. Baji¢, “Deep feature compression for collaborative
object detection,” in 25th IEEE International Conference on Image
Processing (ICIP), 2018.

D. Carra and G. Neglia, “DNN split computing: Quantization and run-
length coding are enough,” in IEEE Global Communications Conference
(GLOBECOM), 2023.

A. E. Eshratifar et al., “Bottlenet: A deep learning architecture for
intelligent mobile cloud computing services,” in JEEE/ACM Intl. Symp.
on Low Power Electronics and Design (ISLPED), 2019.

M. Sbai et al., “Cut, distil and encode (CDE): Split cloud-edge deep
inference,” in /8th Annual IEEE International Conference on Sensing,
Communication, and Networking (SECON), 2021.

F. Cunico et al., “I-split: Deep network interpretability for split comput-
ing,” in 26th Intl. Conference on Pattern Recognition (ICPR), 2022.

L. Capogrosso et al., “Split-Et-Impera: A framework for the design of
distributed deep learning applications,” in 26th Intl. Symp. on Design
and Diagnostics of Electronic Circuits and Systems (DDECS), 2023.
L. Capogrosso, E. Fraccaroli, S. Chakraborty, F. Fummi, and M. Cristani,
“Mtl-split: Multi-task learning for edge devices using split computing,”
arXiv preprint arXiv:2407.05982, 2024.

L. Capogrosso, E. Fraccaroli, G. Petrozziello, F. Setti, S. Chakraborty,
F. Fummi, and M. Cristani, “Enhancing split computing and
early exit applications through predefined sparsity,” arXiv preprint
arXiv:2407.11763, 2024.

C. Lo et al., “A dynamic deep neural network design for efficient work-
load allocation in edge computing,” in IEEE International Conference
on Computer Design (ICCD), 2017.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” 2009. [Online]. Available: https://www.cs.toronto.edu/~kriz/
learning-features-2009-TR.pdf

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

J. Deng et al., “Imagenet: A large-scale hierarchical image database,”
in IEEE conference on computer vision and pattern recognition, 2009.
M. O’Kelly et al., “Fltenth: An open-source evaluation environment
for continuous control and reinforcement learning,” in NeurlPS 2019
Competition and Demonstration Track. PMLR, 2020.

K. Osman, M. F. Rahmat, and M. A. Ahmad, “Modelling and controller
design for a cruise control system,” in 5th International Collogquium on
Signal Processing & Its Applications, 2009.

U. D. Bordoloi et al, “Autonomy-driven emerging directions in
software-defined vehicles,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2023.

D. Roy et al., “Multi-objective co-optimization of FlexRay-based dis-
tributed control systems,” in IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2016.

D. Goswami, R. Schneider, and S. Chakraborty, “Co-design of cyber-
physical systems via controllers with flexible delay constraints,” in /6th
Asia South Pacific Design Automation Conference (ASP-DAC), 2011.
P. Kumar et al., “A hybrid approach to cyber-physical systems verifica-
tion,” in 49th Annual Design Automation Conference (DAC), 2012.

G. Georgakos et al., “Reliability challenges for electric vehicles: from
devices to architecture and systems software,” in 50th Annual Design
Automation Conference (DAC), 2013.

G. Tibba et al., “Testing automotive embedded systems under X-in-
the-loop setups,” in 35th International Conference on Computer-Aided
Design (ICCAD), 2016.

J. Oetjens et al., “Safety evaluation of automotive electronics using
virtual prototypes: State of the art and research challenges,” in The 51st
Annual Design Automation Conference (DAC). ACM, 2014.

L. Zhang et al., “Task- and network-level schedule co-synthesis of
Ethernet-based time-triggered systems,” in /9th Asia and South Pacific
Design Automation Conference (ASP-DAC), 2014.

D. Roy et al., “Tool integration for automated synthesis of distributed
embedded controllers,” ACM Trans. Cyber Phys. Syst., 2022.

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

(51]

[52]

(53]

[54]

[55]

[56]

(571

(58]

R. Schneider et al., “Constraint-driven synthesis and tool-support
for Flexray-based automotive control systems,” in 9th International
Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2011.

F. Sagstetter et al., “Schedule integration framework for time-triggered
automotive architectures,” in 51st Annual Design Automation Conference
(DAC), 2014.

D. Roy, S. Ghosh, Q. Zhu, M. Caccamo, and S. Chakraborty, “Good-
spread: Criticality-aware static scheduling of CPS with multi-qos re-
sources,” in 41st IEEE Real-Time Systems Symposium (RTSS), 2020.
S. Chakraborty and L. Thiele, “A new task model for streaming
applications and its schedulability analysis,” in Design, Automation and
Test in Europe Conference and Exposition (DATE), 2005.

M. Lukasiewycz et al., “Modular scheduling of distributed heteroge-
neous time-triggered automotive systems,” in /7th Asia and South Pacific
Design Automation Conference (ASP-DAC), 2012.

H. Voit et al., “Optimizing hierarchical schedules for improved control
performance,” in [EEE Fifth International Symposium on Industrial
Embedded Systems (SIES), 2010.

D. Goswami, R. Schneider, and S. Chakraborty, “Re-engineering cyber-
physical control applications for hybrid communication protocols,” in
Design, Automation and Test in Europe (DATE), 2011.

W. Chang, D. Goswami, S. Chakraborty, and A. Hamann, “Os-aware
automotive controller design using non-uniform sampling,” ACM Trans.
Cyber Phys. Syst., 2018.

D. Roy et al., “Tighter dimensioning of heterogeneous multi-resource
autonomous CPS with control performance guarantees,” in 56th Annual
Design Automation Conference (DAC), 2019.

S. Xu et al., “Safety-aware flexible schedule synthesis for cyber-physical
systems using weakly-hard constraints,” in 28th Asia and South Pacific
Design Automation Conference (ASP-DAC), 2023.

B. Ghosh et al., “Statistical verification of autonomous system con-
trollers under timing uncertainties,” Real Time Syst., 2024.

S. Xu et al., “Safety-aware implementation of control tasks via schedul-
ing with period boosting and compressing,” in 29th IEEE International
Conference on Embedded and Real-Time Computing Systems and Ap-
plications (RTCSA), 2023.

A. Yeolekar, R. Metta, C. Hobbs, and S. Chakraborty, “Checking
scheduling-induced violations of control safety properties,” in 20th
International Symposium on Automated Technology for Verification and
Analysis (ATVA), ser. Lecture Notes in Computer Science. Springer,
2022.

P. H. Kindt et al., “Energy modeling for the bluetooth low energy
protocol,” ACM Trans. Embed. Comput. Syst., 2020.

P. H. Kindt, M. Saur, M. Balszun, and S. Chakraborty, “Neighbor
discovery latency in ble-like protocols,” IEEE Transactions on Mobile
Computing, 2017.

E. Fraccaroli et al., “Timing predictability for SOME/IP-based service-
oriented automotive in-vehicle networks,” in Design, Automation & Test
in Europe Conference (DATE), 2023.

D. Roy et al., “Timing debugging for cyber-physical systems,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2021.
Z. Wang, C. Huang, Y. Wang, C. Hobbs, S. Chakraborty, and Q. Zhu,
“Bounding perception neural network uncertainty for safe control of au-
tonomous systems,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2021.

S. Xu et al., “Neural architecture sizing for autonomous systems,” in
15th ACM/IEEE International Conference on Cyber-Physical Systems
(ICCPS), 2024.

D. Roy et al, “Semantics-preserving cosynthesis of cyber-physical
systems,” Proc. IEEE, 2018.

P. Mundhenk et al., “Security in automotive networks: Lightweight
authentication and authorization,” ACM Trans. Design Autom. Electr.
Syst., 2017.

H. Liang, Z. Wang, D. Roy, S. Dey, S. Chakraborty, and Q. Zhu,
“Security-driven codesign with weakly-hard constraints for real-time
embedded systems,” in 37th IEEE International Conference on Com-
puter Design (ICCD), 2019.

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

	Introduction
	Overview of split computing and early exit
	Local-only computing
	Remote-only computing
	Split computing
	Split computing and early exit

	Basics of Controller design
	Cyber-physical systems safety
	Splitting decisions and illustrative results
	Model-based split point selection
	Communication network-based split point selection
	Latency-based communication network protocol selection
	Split computing and cyber-physical systems safety

	Controller design for split computing
	Concluding remarks and Outlook
	Acknowledgments
	References

