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Abstract

Background: Accurately predicting the risk of clinically relevant postoperative pancreatic fistula after pancreatoduodenectomy before 
surgery may assist surgeons in making more informed treatment decisions and improved patient counselling. The aim was to evaluate 
the predictive accuracy of a radiomics-based preoperative-Fistula Risk Score (RAD-FRS) for clinically relevant postoperative pancreatic 
fistula.

Methods: Radiomic features were derived from preoperative CT scans from adult patients after pancreatoduodenectomy at a single 
centre in the Netherlands (Amsterdam, 2013–2018) to develop the radiomics-based preoperative-Fistula Risk Score. Extracted 
radiomic features were analysed with four machine learning classifiers. The model was externally validated in a single centre in 
Italy (Verona, 2020–2021). The radiomics-based preoperative-Fistula Risk Score was compared with the Fistula Risk Score and the 
updated alternative Fistula Risk Score.

Results: Overall, 359 patients underwent a pancreatoduodenectomy, of whom 89 (25 per cent) developed a clinically relevant 
postoperative pancreatic fistula. The radiomics-based preoperative-Fistula Risk Score model was developed using CT scans of 
118 patients, of which three radiomic features were included in the random forest model, and externally validated in 57 patients. 
The model performed well with an area under the curve of 0.90 (95 per cent c.i. 0.71 to 0.99) and 0.81 (95 per cent c.i. 0.69 to 0.92) in 
the Amsterdam test set and Verona data set respectively. The radiomics-based preoperative-Fistula Risk Score performed similarly 
to the Fistula Risk Score (area under the curve 0.79) and updated alternative Fistula Risk Score (area under the curve 0.79).

Conclusion: The radiomics-based preoperative-Fistula Risk Score, which uses only preoperative CT features, is a new and promising 
radiomics-based score that has the potential to be integrated with hospital CT report systems and improve patient counselling before 
surgery. The model with underlying code is readily available via www.pancreascalculator.com and www.github.com/PHAIR- 
Consortium/POPF-predictor.
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Introduction
Clinically relevant postoperative pancreatic fistula (CR-POPF) is a 
feared complication following pancreatoduodenectomy that 
negatively impacts short- and long-term outcomes1,2. Accurate 
risk stratification of CR-POPF in the preoperative setting can 
assist in determining the best surgical approach for high-risk or 
frail patients. In the perioperative interval, high-risk patients for 
CR-POPF may be candidates for prophylactic treatment such as 
somatostatin analogues3. In patients with cystic lesions of the 
pancreatic head, accurate risk stratification of CR-POPF can help 

decide whether to proceed with a pancreatoduodenectomy or 
consider alternative approaches4. A recent study demonstrated 
improved postoperative outcomes for high-risk patients who 
underwent a total pancreatectomy compared with those who 
underwent a pancreatoduodenectomy5.

Previous research has introduced several CR-POPF prediction 
models for pancreatoduodenectomy, including the Fistula Risk 
Score (FRS) and the updated alternative Fistula Risk Score 
(ua-FRS)6,7. These risk models are commonly used but have 
limitations, including their reliance on subjective intraoperative 
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assessments (for example the texture of the pancreas) and their 
inability to provide predictions before surgery.

Radiomics is an approach for extracting features from medical 
images. It enables objective approaches for texture analysis and 
can uncover new parameters, some invisible to the human eye8. 
Previous studies have investigated the use of computed 
tomography (CT)-based-radiomics models to predict CR-POPF9–13. 
However, radiomics-based models which are publicly available 
and externally validated are currently lacking. The objective of 
this study was to develop and externally validate a publicly 
available radiomics preoperative-Fistula Risk Score (RAD-FRS) in 
patients undergoing pancreatoduodenectomy using radiomic 
features from preoperative CT scans. Such a model could lead to 
automatic CR-POPF risk prediction in CT reports.

Methods
The Medical Ethics Review Committee of the Amsterdam 
University Medical Center (UMC) approved this study protocol 
and waived the need for informed consent. The Ethics 
Committee of Verona and Rovigo Provinces approved the 
utilization of data from the validation cohort (PAD-R, 1101CESC). 
The study adhered to the STROBE guidelines14. All patients were 
managed per institutional practices. At the Amsterdam UMC, it 
was standard procedure to insert an abdominal drain after 
resection, and the routine administration of somatostatin 
analogues was not performed. The levels of drain fluid amylase 
were measured on postoperative days 1 and 3. At Verona 
University Hospital, an assessment of the risk associated with 
CR-POPF was carried out intraoperatively using the FRS. In 
instances where a drain was employed, the levels of drain fluid 
amylase were measured on both postoperative days 1 and day 5.

Patients
For model design, adult patients after pancreatoduodenectomy in 
one of the two locations of the Amsterdam UMC (Vrije Universiteit 
Medical Center) were included from the Dutch Pancreatic Cancer 
Audit (January 2013–December 2018). Exclusion criteria were 
patients with a poor quality CT scan or CTs with slice thickness 
>3.0 mm. A poor quality CT scan was defined as a poor scan due 
to artefacts (for example respiratory motion artefacts). For 
external validation of the model, adult patients after 
pancreatoduodenectomy in the Verona University Hospital were 
included (January 2020–January 2021). The same eligibility 
criteria were applied. These data sets will be referred to as the 
Amsterdam and Verona data sets respectively.

Data acquisition and outcome
The following patient demographics and tumour characteristics 
were retrospectively obtained from electronic health records: age 
(years), sex, BMI (kg/m2), ASA classification, pre-existing diabetes, 
application of neoadjuvant therapy, surgical approach (that is 
open/laparoscopic/robotic surgery), pancreatic duct size, pancreatic 
texture, intraoperative blood loss, length of surgical procedure, 
pathology. The pancreatic duct size was measured intraoperatively 
with a ruler. The pancreatic texture was assessed subjectively by 
the surgeon feeling intraoperatively and in minimally invasive 
surgery, the texture of the resected pancreatoduodenectomy 
specimen was determined. Contrast-enhanced CT scans were 
obtained from the picture archiving and communication systems. 
The primary outcome was a clinically relevant POPF, defined as 
grade B or C according to the 2016 International Study Group on 
Pancreatic Surgery (ISGPS) definition15.

Data sets
Two full data sets (the Amsterdam and Verona data sets) were 
used. The Amsterdam data set was further divided into three 
subdata sets as follows. First, the Amsterdam data set was 
divided into two sets: the Amsterdam development set, 
comprising 90 per cent of the Amsterdam data set, and the 
Amsterdam test set, comprising the remaining 10 per cent of the 
data. Within the Amsterdam development set, there was a 
further division, creating Amsterdam training and validation 
sets using five-fold cross-validation. The models were trained on 
the Amsterdam development set and evaluated on both the 
Amsterdam test set and the Verona data set. The data splits of 
the Amsterdam and Verona data sets are visualized in Fig. 1.

Image segmentation and radiomic analysis
We constructed a radiomics workflow consisting of the 
segmentation of the volume of interest (VOI) and radiomic 
feature extraction, feature selection and model construction on 
the Amsterdam development set, and performance evaluation 
on the Amsterdam test set and Verona data set.

A PhD candidate specializing in the field of radiology and surgery 
(E.I.) and a resident in radiology (I.V.) manually pre-segmented the 

Fig. 2 An example of a contrast-enhanced CT scan in the early arterial 
phase of the abdomen, showing the contoured pancreatic tissue (pink), 
pancreatic duct (light blue), splenic artery (red) and the superior 
mesenteric vein (dark blue) in an axial image  
The vertical yellow line indicates the midline of the superior mesenteric 
vein, with the pancreas annotated on the left side. The volume of 
interest consisted of the pancreatic tissue and pancreatic duct. CT, 
computed tomography.

Development set

Amsterdam test set Verona data set

Test sets

Training Validation

Fig. 1 The Amsterdam data set (n = 118) was split into the Amsterdam 
development (90 per cent, n = 106) and test set (10 per cent, n = 12). The 
Amsterdam development set was further split into the Amsterdam 
training and validation set using five-fold cross-validation. The best out 
of 25 models with regards to the AUROC on the Amsterdam test set was 
evaluated on the Verona data set (n = 57).  
AUROC, area under the curve—receiver operating characteristic.
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VOI in either the (late) arterial or portal venous phase using 3D slicer 
version 4.11.20210226 (www.slicer.org)16. Subsequently, an 
experienced abdominal radiologist (Y.N. or F.S. in the Amsterdam 
data set and R.R. in the Verona data set), who was blinded to the 
patient’s outcome, finalized the segmentation. The VOI represented 
the pancreatic remnant, segmented distal/lateral (that is towards 
the tail) from the midline of the superior mesenteric vein, 
considering that all patients underwent a pancreatoduodenectomy. 
The segmentation encompassed both pancreatic tissue and the 
pancreatic duct. The surrounding vessels (that is splenic artery, 
splenic vein, superior mesenteric vein and portal vein) were 
segmented to prevent their inclusion in the pancreatic 
segmentation mask but were not part of the final VOI (Fig. 2). If both 
the arterial and portal venous phases were available, the pancreas 
was segmented in the (late) arterial phase. If the arterial phase was 
unavailable, the pancreas was segmented in the portal venous phase.

Radiomic features were extracted from each VOI of patients in the 
Amsterdam data set using PyRadiomics version 3.0 (http://github.com/ 
radiomics/pyrdiomics)17. Subsequently, 25 Amsterdam development 
test splits were created for final model selection. For each split, 90 
per cent of the Amsterdam data set was allocated to training and 10 
per cent to testing. The features of each Amsterdam development 
and test set were normalized independently using the MinMax 
scaler. Two feature reduction methods were serially applied to the 
Amsterdam development sets to select the most predictive features 
for each split: removing of features with a variance of less than 0.001 
and with an importance near zero using least absolute shrinkage 
and selection operator (LASSO) feature selection.

Four machine-learning (ML) classifiers were fitted to the 
Amsterdam development sets: support vector machine, logistic 
regression, k-nearest neighbour and random forest. Before 
training, the minority classes in the Amsterdam development sets 

were oversampled with a sampling strategy of 0.9, and 
subsequently, the majority classes were undersampled. To create 
more equally sized groups based on the presence or absence of 
CR-POPF, the data was manually undersampled. Finally, random 
Gaussian noise with a mean of zero and a variance of 0.2 was 
added to the Amsterdam development sets. A five-fold 
cross-validation grid search optimizing area under the curve— 
receiver operating characteristic (AUROC) was used to find the 
hyperparameters and fit all four ML classifiers on the Amsterdam 
development sets. All four ML classifiers were optimized, fitted 
and evaluated on all 25 Amsterdam development-test splits. The 
best-performing ML classifier with regards to AUROC on the 
Amsterdam test set was validated on the Verona data set. The 
performance of this model on both the Amsterdam test set and 
Verona data set was evaluated using the AUROC, sensitivity, 
specificity, positive predictive value (PPV), negative predictive 
value (NPV) and calibration plots.

Statistical analysis
Statistical analysis was conducted using Python version 3.7 
(Python Software Foundation, Wilmington, DE, USA) and 
R-Studio version 2022.07.1 (R Studio Team (2018), RStudio: 
Integrated Development for R. RStudio Inc., Vienna, Austria). 
The AUROC of the RAD-FRS, FRS and ua-FRS was reported with 
a 95 per cent confidence interval (95 per cent c.i.). The 
maximum Youden’s J value from the AUROC was used to 
identify the cut probability where prediction discrimination was 
maximum according to sensitivity and specificity. The AUROC of 
the RAD-FRS was compared with the AUROC of the FRS and 
ua-FRS in the Verona data set using DeLong’s test. Calibration 
curves were used to compare the observed and estimated 
probability of the models. A P value <0.050 was considered 

No POPF
n = 170 (75.9%)

Analysed n = 68

Excluded n = 2
Poor image quality n = 1
Slice thickness >3 mm n = 1

No POPF n = 70

Random exclusion n = 100

POPF
n = 54 (24.1%)

Analysed n = 50

Excluded n = 4
Poor image quality n = 2
Slice thickness >3 mm n = 2

Total PD 2013–2018
n = 224

Fig. 3 Flow chart of the Amsterdam data set  
Flow chart showing the selection process of the Amsterdam data set. A total of 100 patients were excluded in the group without CR-POPF to create 
more equally sized groups based on the presence or absence of CR-POPF. Further exclusion criteria were: poor image quality (n = 3) and slice thickness 
above 3 mm (n = 3). A total of 50 patients with CR-POPF and 68 without CR-POPF were found eligible for analysis. PD, pancreatoduodenectomy; 
CR-POPF, clinically relevant postoperative pancreatic fistula; CT, computed tomography.
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statistically significant. Continuous variables were reported as 
mean with a standard deviation (s.d.) or median with an 
interquartile range (i.q.r.) if the distribution was skewed. 
Dichotomous, ordinal, and nominal variables are presented as 
numbers and percentages.

Results
Overall, 224 patients underwent a pancreatoduodenectomy at 
UMC Amsterdam in the Netherlands and 135 at the Verona 
University Hospital in Italy. A total of 89 (25 per cent) developed 
CR-POPF. In the Amsterdam data set, a total of 106 patients 
were excluded: 100 patients without CR-POPF were randomly 
excluded for the analysis as a result of undersampling, three 
patients were excluded because of a poor quality CT scan, and 
three did not have slices ≤3.0 mm, resulting in 118 patients that 
were included in the Amsterdam data set. Of those, 50 
developed CR-POPF (Fig. 3). In the Verona data set, 135 patients 
underwent a pancreatoduodenectomy between January 2020 
and January 2021, with CR-POPF occurring in 22 patients (Fig. 4). 
As a result of undersampling, 60 patients without CR-POPF were 
randomly excluded from the analysis. Another 18 patients were 
excluded, 6 due to poor CT scan quality, and 12 did not have 
slices ≤3.0 mm. In total, 57 patients were included in the Verona 
data set, of whom 22 developed CR-POPF.

Characteristics of the Amsterdam and Verona 
data sets
The clinical characteristics of both the Amsterdam and Verona data 
sets are shown in Table 1. The data sets differed in sex (36 per cent 
female in the Amsterdam data set versus 45 per cent in the Verona 

Total PD 2020–2021
n = 135

No POPF
n = 100 (74%)

Analysed n = 35

Excluded n = 5
Poor image quality n = 3
Slice thickness >3 mm n = 2

No POPF n = 40

Random exclusion n = 60

POPF
n = 35 (26%)

Analysed n = 22

Excluded n = 13
Poor image quality n = 3
Slice thickness >3 mm n = 10

Fig. 4 Flow chart of the Verona data set  
Flow chart showing the selection process of the Verona data set. A total of 60 patients were excluded in the group without CR-POPF to create more 
equally sized groups based on the presence or absence of CR-POPF. Further exclusion criteria were: poor image quality (n = 6) and slice thickness above 
3 mm (n = 12). A total of 22 patients with CR-POPF and 35 without CR-POPF were found eligible for analysis. PD, pancreatoduodenectomy; CR-POPF, 
clinically relevant postoperative pancreatic fistula; CT, computed tomography.

Table 1 Baseline characteristics of the Amsterdam and Verona 
data sets

Amsterdam 
data set (n = 118)

Verona data 
set (n = 57)

Age (years), median (i.q.r.) 68 (59–79) 68 (61–75)
Sex (female), no. (%) 43 (36%) 25 (45%)
BMI (kg/m2), mean(s.d.) 26(3.9) 25(4.1)
ASA classification, no. (%)

I & II 91 (77%) 42 (74%)
III & IV 27 (23%) 15 (26%)

Diabetes mellitus, no. (%) 20 (17%) 10 (18%)
Neoadjuvant therapy, no. (%) 16 (14%) 33 (58%)
Preoperative biliary drainage, 

no. (%)
35 (29.6%) 17 (29.8%)

Laparoscopic procedure, no. (%) 18 (15%) 0
Pancreatic duct size in mm, 

median (i.q.r.)
3 (2–4) 4 (3–5)

Soft pancreas, no. (%) 76 (64%) 32 (55%)
Intraoperative blood loss in ml, 

median (i.q.r.)
400 (380–420) 480 (350–792)

Length of surgical procedure 
(minutes), median (i.q.r.)

325 (233–379) 390 (327–465)

Pathology, no. (%)
PDAC 56 (48%) 38 (67%)
Distal cholangiocarcinoma 22 (19%) 3 (5.3%)
Ampullary carcinoma 13 (11%) 3 (5.3%)
Duodenal carcinoma 10 (8.5%) 4 (7.0%)
Cystic neoplasm (IPMN, serous 
cysts, MCN)

7 (5.9%) 3 (5.3%)

Inflammation/pancreatitis 5 (4.2%) 0
NET 4 (3.4%) 6 (10.5%)
Chronic pancreatitis 1 (0.8%) 0

Administration of prophylactic 
somatostatin analogues, no. (%)

18 (15.3%) 18 (31.2%)

Data are n (%) unless otherwise stated. i.q.r., interquartile range; PDAC, 
pancreatic ductal adenocarcinoma; IPMN, intraductal papillary mucinous 
neoplasm; MCN, mucinous cystic neoplasm; NET, neuro-endocrine tumour.
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data set), the application of neoadjuvant therapy (14 per cent in the 
Amsterdam data set versus 58 per cent in the Verona data set), 
surgical approach (15 per cent of patients in the Amsterdam data 
set underwent a laparoscopic pancreatoduodenectomy versus 0 
per cent in the Verona data set), and application of a prophylactic 
somatostatin analogue (15.3 per cent in the Amsterdam data set 
versus 31.2 per cent in the Verona data set). The Amsterdam data 
set comprised 118 patients with a median age of 68 years (i.q.r. 
59–79 years) and a mean BMI of 25.7 kg/m2 (s.d. 3.9 kg/m2). The 
Verona data set included 57 patients with a median age of 68 
years (i.q.r. 61–75) and a mean BMI of 25 kg/m2 (s.d. 4.1 kg/m2). 
Reconstruction and acquisition parameters used to obtain the CT 
scans of the Amsterdam and Verona data sets are listed in Table S1.

Amsterdam data set
In the Amsterdam data set, 103 (87 per cent) CT scans were 
segmented in the (late) arterial phase and 15 (13 per cent) in the 
portal venous phase. A total of 120 radiomic features were 
extracted. These features are listed in Table S2. The final 
RAD-FRS model included three radiomic features: one grey level 
dependence matrix feature (grey level non-uniformity) and two 
3D shape-based features (voxel volume and minor axis length). 
The grey level non-uniformity feature quantifies grey level 
dependencies in an image and measures the variability in 
intensity values in the image. This feature corresponds to 
pancreatic texture. The 3D shape-based features include 
descriptors of the three-dimensional size and shape of the VOI. 
The voxel volume feature corresponds to the volume of the VOI 
and thus the remnant of the pancreas volume. The minor axis 
length yields the second largest axis length of the VOI and could 
correlate to the pancreatic thickness. The random forest model 
performed best with an area under the curve (AUC) of 0.90 (95 
per cent c.i. 0.71 to 0.99) in the Amsterdam test set (n = 12). This 
model had a sensitivity of 1.00, specificity of 0.67, PPV of 0.71 
and NPV of 1.00 in the Amsterdam test set. For the calibration 

Table 2 Predictive performances of the four machine learning 
models on the Amsterdam test set

AUC Sensitivity Specificity

Random forest 0.90 0.99 0.67
Logistic regression 0.86 0.90 0.62
Support vector machine 0.81 0.98 0.53
K-nearest neighbour 0.80 0.80 0.75

AUROC, area under the curve–receiver operating characteristics.
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Fig. 6 Comparison of the ROC curves for RAD-FRS, ua-FRS and FRS in 
predicting CR-POPF in the Verona data set  
The reference line represents the performance of a random guess. ROC, 
receiver operating characteristics; AUC, area under the curve; RAD-FRS, 
radiomics preoperative-Fistula Risk Score; ua-FRS, updated alternative 
Fistula Risk Score; FRS, Fistula Risk Score; CR-POPF, clinically relevant 
postoperative pancreatic fistula.
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Fig. 5 A calibration plot of the RAD-FRS in the Amsterdam test set and 
Verona data set  
The black dots represent the quintiles of the observed probabilities by 
quintiles of the predicted probabilities of the Amsterdam test set, while 
the white triangles represent the same for the Verona data set. The 
dashed line represents the ideal performance of the score. RAD-FRS, 
radiomics preoperative-Fistula Risk Score.

Table 3 Comparison of the performance of the RAD-FRS model 
with other published studies that have used radiomic features 
derived from preoperative CT scans to predict the occurrence of 
CR-POPF

All risk AUROC Sensitivity Specificity

RAD-FRS
Amsterdam test set 0.90 0.99 0.67
Verona data set 0.81 0.96 0.66

Capretti et al.9

Internal test set 0.81 0.82 0.57
External test set Missing Missing Missing

Kambakamba et al.10

Internal test set 0.78 0.76 0.64
External test set Missing Missing Missing

Lin et al.11

Internal test set 0.79 0.63 0.78
External test set Missing Missing Missing

Zhang et al.12

Internal test set 0.76 Missing Missing
External test set Missing Missing Missing

CR-POPF, clinically relevant postoperative pancreatic fistula; CT, computed 
tomography; RAD-FRS, radiomics preoperative-Fistula Risk Score; AUROC, area 
under the curve–receiver operating characteristics.
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curve of the Amsterdam test set, see Fig. 5. The results of the other 
three machine learning models are listed in Table 2.

Verona data set
In the Verona data set, 52 (91 per cent) CT scans were segmented in 
the (late) arterial phase and 5 (9.1 per cent) in the portal venous 
phase. The AUC of the random forest model on the Verona data set 
(n = 57) was 0.81 (95 per cent c.i. 0.69 to 0.92), with a sensitivity of 
0.96, specificity of 0.66, PPV of 0.64 and NPV of 0.96. The calibration 
curve indicated that the model’s performance was consistent with 
the observed data in the Verona data set and demonstrated an 
improvement in the consistency between estimated and observed 
probabilities compared with the Amsterdam test set (Fig. 5).

Comparison with the FRS and ua-FRS
The AUC of the RAD-FRS was 0.81 (95 per cent c.i. 0.60 to 0.92) on 
the Verona data set, which was comparable with that of the FRS 
(AUC 0.79, 95 per cent c.i. 0.67 to 0.91, DeLong test: P = 0.850) 
and ua-FRS (AUC 0.79, 95 per cent c.i. 0.66 to 0.91, DeLong test: 
P = 0.870) (Fig. 6).

Discussion
The RAD-FRS is the first externally validated and publicly 
available prediction model for CR-POPF using radiomic features 
of preoperative CT scans, which performed well with similar 
external validity to two commonly used risk models for CR-POPF 
(AUC 0.81), the FRS (AUC 0.79) and ua-FRS (AUC 0.79)6,7. Such a 
radiomics-based model could assist surgeons in counselling 
patients and making more informed treatment decisions in the 
preoperative setting. Moreover, accurate risk stratification of 
CR-POPF in the preoperative setting can assist in determining 
the best surgical approach for high-risk or frail patients.

Four previous studies used radiomic features from the 
preoperative CT scan to predict CR-POPF9–13. These studies included 
a comparable number of patients after pancreatoduodenectomy, 
ranging from 100 to 250. In these studies, the AUC, sensitivity and 
specificity were also comparable to the present study, with the AUC 
ranging from 0.76 to 0.81 in the Amsterdam test set (Table 3). 
However, these studies lacked external validation and did not 
include patients who received neoadjuvant or induction therapy. 
The present study did include patients with neoadjuvant therapy. 
However, its use was still relatively limited during the examined 
study interval, especially in the Amsterdam data set (14 per cent 
and 58 per cent of all patients and 27 per cent and 75 per cent of 
patients with pancreatic cancer, in the Amsterdam data set and 
Verona data set respectively).

Although the RAD-FRS has the advantage over the FRS and 
ua-FRS in that it predicts CR-POPF before surgery, it is currently 
less convenient to use than the FRS and ua-FRS due to the need 
for time-consuming manual segmentation of the pancreatic 
parenchyma. To make the RAD-FRS clinically applicable, 
auto-segmentation is required. Future work will involve 
developing an auto-segmentation model using deep learning 
techniques to fully automate the segmentation of the pancreatic 
parenchyma. Such a fully automated CR-POPF prediction model 
has the potential to be integrated into commonly used hospital 
radiology systems and CT scanners allowing for predictions at 
scanning time. These risk assessments could facilitate 
personalized treatment decisions by aiding surgeons in deciding 
on mitigation strategies and whether to proceed with a 
pancreatoduodenectomy. The initial results of a fully automatic 
CR-POPF prediction model developed by our group are promising. 

Another area of future work should involve the combination of 
radiomic features with preoperative clinical data, as 
demonstrated in a model developed by Lin et al., which exhibited 
excellent predictive performance11. Bhasker et al. also 
incorporated mesh-based volume to this combination model and 
demonstrated a significant improvement of the predictive 
performance with this addition13. However, both the combination 
models developed by Lin et al. and Bhasker et al. require external 
validation and are currently not publicly available.

Several limitations of this study should be addressed. First, 
patients included in this study were managed following 
institutional practices. Therefore, differences in the perioperative 
management, including drain management and the administration 
of somatostatin analogue, between both centres were conceivable. 
Despite these potential differences, the RAD-FRS performed well on 
the Verona data set, showing its potential across heterogeneous 
populations. Second, this is a retrospective study with all its 
inherent limitations. A prospective study is needed to investigate 
the true value of the tool and to assess whether it can influence 
clinical decision-making. Third, most patients in both data sets 
underwent open surgery, and a subgroup analysis of open and 
minimally invasive pancreatic surgery is therefore lacking. As 
minimally invasive pancreatoduodenectomy is more commonly 
performed, future studies will need to validate the usefulness of 
the model in such patients for future applications18. Fourth, 
manual undersampling was used to create more equally sized 
groups based on the presence or absence of CR-POPF. However, 
manually annotating patients without CR-POPF would be futile, 
considering that undersampling would be one of the first 
preprocessing steps. Fifth, we did report calibration, but for clinical 
use, this would require correction for the undersampling. The 
discriminative ability of the RAD-FRS was promising as evaluated 
on the Verona data set. Future work should enable absolute risk 
estimations in the total population.

The RAD-FRS can potentially improve patient prognosis and 
could eventually assist surgeons in making tailored treatment 
decisions. The externally validated RAD-RFS model and the code 
used for training, validation and evaluation are provided at 
www.pancreascalculator.com and www.github.com/PHAIR- 
Consortium/POPF-predictor.
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