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Abstract—This article presents a methodology to formal-
ize the behavior of the machines composing a production
line, and to automatically generate their virtual prototypes
for efficient and correct plant simulation. The approach
exploits assume-guarantee reasoning through contracts to
model the interaction between the different components of
a production line. The approach is guided by a well-known
taxonomy of industrial machines and associated manufac-
turing processes to identify each elementary action related
to a specific machine. Contracts enable to build executable
models of all the machines available in the production line
by using automatic synthesis. The generated models can
be integrated into a state-of-the-practice industrial plant
simulation software to estimate and validate the produc-
tion line’s behavior. The presentation of the methodology is
supported by a running example based on a real production
line, showing the step-by-step application of the approach
to a concrete scenario.

Index Terms—Advanced manufacturing, design automa-
tion, simulation and validation, virtual prototyping.

I. INTRODUCTION

THE RECENT introduction of key-enabling technologies
such as cyber-physical system, cloud computing, and inter-

net of things into manufacturing processes have brought to life a
new trend identified by the term Industry 4.0 [1]. These technolo-
gies co-operate to improve production efficiency. Among these
novel concepts, digital twins have been introduced to replace
expensive physical prototyping [2]. A digital twin is a model of
the production plant used to simulate the manufacturing process
before it is physically built, to early predict possible errors or
production bottlenecks.

In this context, manufacturing plants are becoming every
day more complex, involving different processes, requiring a
high degree of reconfigurability and little to no-human pres-
ence directly working on machines. Furthermore, programmable
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Fig. 1. Summary of the contribution: the production line is formalized
by a set of contracts under the guidance of the DIN 8580 Standard. The
contracts are used for the automatic synthesis of a virtual prototype of
the production line.

devices technologies have matured enough to be integrated
easily into manufacturing processes [1]. Additive and subtractive
manufacturing are now efficient and cost-effective practices [3].

With such diversified scenarios of production requirements
and production chains, it becomes fundamental to develop new
methodologies for designing, verifying and simulating the man-
ufacturing line to be built. Such methodologies imply the adop-
tion of formal specifications, thus increasing the computational
complexity involved in the design process: problem decompo-
sition becomes mandatory to tackle such issues. The Assume-
Guarantee (A/G) Contracts theory provides formal support to
problem representation and decomposition, and to composi-
tional reasoning about system design [4]. A/G contracts allow
decomposing the problem of designing a system into smaller
sub-problems representing different components or aspects of
the complete design problem.

This article presents an approach, summarized in Fig. 1,
exploiting a contract-based representation to build virtual pro-
totypes of production lines. The behavior of each production
machine available in the line is represented by a set of A/G con-
tracts, whose assumptions and guarantees are expressed by using
the linear temporal logic (LTL). The formalization is guided
by the Deutsches Institut für Normung (DIN) standard 8580
on industrial machinery [5], in order to identify the granularity
of the base actions considered in our approach. Each contract
defined to model the system is synthesized into a finite state
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machine (FSM) implementing the behavior specified by the con-
tract. This step relies on state-of-the-art synthesis techniques [6],
[7], and it produces a C++ implementation of the contract. The
machine’s executable model is transformed into a block to be
imported into a commercial industrial plant simulator [8]. Then,
the plant simulator can be used to simulate the entire system. The
virtual prototypes generated by the proposed methodology may
be used to perform system-level validation through simulation.
The advantage of creating system simulations from the formal
specification of its sub-components is the possibility to formally
validate the behavior of the single components. Thus, leaving to
simulation only the burden to validate the composition.

The methodology presentation is paired with its application
for the formalization of a robotic arm manipulator, and in par-
ticular to the “Turn” operation provided by the robot. Then, we
apply the methodology to the entire production line comprising
the robotic arm and we report the obtained results.

II. BACKGROUND

A. State-of-the-Art and Contribution

Several tools have been developed in order to model and sim-
ulate industrial production systems that simplify the validation
and the optimization of a manufacturing plant [9]. System-level
simulation may rely on models at different abstraction levels and
using diverse models of computations [10]. Such abstractions
may go from the physical level, where every mechanical detail of
each production machine is modeled by a set of differential equa-
tions, to the functional level, where the system is modeled as a set
of machine actions and interactions between multiple machines.
Indeed, the more detailed is a model, the more complex will be its
simulation. As such, the choice of model’s abstraction level must
be based on the model’s purpose. Discrete-event models [11]
represent systems as the set of events occurring throughout its
life. As such, they provide a high-level of abstraction while
representing the essential details of the system behavior. For
this reason, they are widely used to simulate manufacturing
systems, and many commercial simulation tools relying on
the event-based paradigm are available [12]. Different system
stakeholders aim at evaluating various features of the manufac-
turing system using simulation. For instance, a designer may be
interested in the validation of the production process, whereas
a system engineer may aim at evaluating whether an already
deployed production line could be optimized to increase the
manufacturing line throughput. For this reason, each simulator
can simulate different aspects of a manufacturing system.

In most cases, simulators are equipped with placeholder com-
ponents depicting generic manufacturing processes. However,
they usually provide extension mechanisms to precisely define
the machine’s behaviors by constructing and importing new cus-
tom models. Most of the available simulators provide interfaces
to a well-known programming language (e.g., C/C++), thus
allowing the definition and the import of custom models into
the simulator. Tecnomatix Plant Simulation [8] is an industrial-
grade tool [13], widely popular among industrial actors being
also recognized as one of the most versatile tools available for

the simulation of industrial processes [14]. It provides many
interfaces to external tools and languages.

In order to simulate a manufacturing plant, it is necessary
to produce its model first. While this is reasonably doable
when designing a line from scratch, creating models of already
existing machines may be an error-prone process that may lead
to inaccurate models [10]. Discrete-event models may be also
derived automatically by analyzing the system behavior [15].
However, the quality of the produced models will be constrained
by the quality of the executed scenarios. As such, it may be ideal
to start from formal specifications of systems and components
when aiming at producing the executable models used for sim-
ulation. A formalization for manufacturing control systems has
been developed for verification purposes in [16]. The authors
developed a framework to automatically translate specifications
to Linear Temporal Logic (LTL) formulas and using model
checking techniques to verify the plant consistency. In [17],
a method to formally specify industrial component behaviors
has been proposed: It focuses on control logic components, the
sensor/actuator behaviors and it presents how to build a formal
specification to verify their correctness. However, none of these
approaches relies on simulation but only on formal methods
that usually lead to complexity issues. System execution is
used to perform runtime verification of industrial systems [18].
However, this is usually applied to the control systems, rather
than on the actions physically performed by the production line.
Furthermore, it usually does not consider the state of the product
and its evolution.

A combination of formal methods with simulation is de-
scribed in [19]. The authors developed a formalism to specify
properties over the system while being expressive enough to
be translated into an Finite State Machine (FSM) useful to
simulate the system. Spellini et al. [7] combined automatic
synthesis from LTL specifications with simulation to design and
validate a robotic transportation system. However, the proposed
formalization is specifically tailored for robotics applications.

In this work, we extend the state-of-the-art by proposing a
systematic (e.g., guided by the DIN 8580 standard) formalization
of the production machines features. Then, we present a method-
ology producing the digital-twin of a manufacturing system from
its formalization.

B. DIN 8580 Standard for Industrial Machinery

The DIN 8580 standard [5] defines a wide set of processes,
products, activities, and facilities connected to the industrial
domain. A manufacturing process is the production or the
transformation of a workpiece. A process can be divided into
multiple subprocesses, each of them changing or forming a
different property or shape of the processed product. The DIN
states that every manufacturing process can be classified into
five main groups, according to the type of material transfor-
mation they provide, in particular: Primary shaping, Forming,
Cutting, Joining, and Coating. These main groups are divided
into subgroups, further characterizing processes by delineating
elementary actions associated to the concept of manufacture, i.e.,
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the Joining group is divided into operations such as assembling,
fastening, soldering, etc.

The DIN 8580 taxonomy allows defining the granularity to
use to describe a process. In particular, we consider the transfor-
mations defined in the taxonomy as the “atomic” actions of the
considered manufacturing process, even if these transformations
may be further decomposed into subactions. For instance, the
“Turn” action performed by a robotic arm can be further decom-
posed into a set of rotations. However, the proposed modeling
approach will consider the “Turn” transformation as an atomic
action.

C. (A–G) Contracts for Reactive Systems

A contract C for a component M is a triplet (V,A,G), where
V is the set of the component variables, and A and G are
assertions, each representing a set of behaviors over V [4]. A are
the contract’s assumptions: The behavior of the environment of
M assumed by the model. G are the guarantees: The behaviors
guaranteed by M whenever the assumptions hold.

A componentM implements a contractC wheneverM andC
are defined over the same set of variables, and all the behaviors of
M satisfy the guarantees of C in the context of the assumptions.
Moreover, a component E can also be associated with a contract
C as an environment for the contract. E is said to be a legal
environment of C, whenever the behaviors implemented by E
are a subset of A. The A/G contract theory [4] defines a set
of operations, such as composition, compatibility, consistency,
and refinement, useful to manipulate the models throughout the
design phases.

Behaviors described by assumptions or guarantees of a con-
tract may be expressed using different formalisms [20]. Tem-
poral contracts often rely on LTL formulas to describe reactive
system [21]. However, the realizability of an LTL contract is
an intractable problem due to its double exponential complex-
ity [22].

Reducing the expressiveness of the formal language used for
specification is a viable solution to reduce the complexity. In
particular, the realizability of a specification belonging to the
general reactivity of rank 1[GR(1)] fragment of the LTL can be
solved in polynomial time [23]. A General Reactivity of rank 1
(GR(1)) formula is structured as follows [24]:

⎛
⎝θe ∧�ρe ∧

∧
0<i≤j

�♦Je
i

⎞
⎠ →

⎛
⎝θs ∧�ρs ∧

∧
0<i≤j

�♦Js
i

⎞
⎠

where θe and θs are the environment’s and system’s initial
conditions; ρe and ρs are the environment’s and system’s safety
properties; Je and Js are the environment’s and system’s live-
ness properties. Each of them is a boolean formula defined
over a set of environment and system variables. However, the
“next” operator (i.e., ©) can be used within the formulas, being
the operator considered “sugar syntax” expressing a relation
between a pair of boolean variables. In the abovementioned
formula, the premises of the logical consequence represents
the assumptions, whereas the conclusion represents a guarantee.

Fig. 2. Overview of the presented approach: Starting from a taxonomy
of industrial machines, elementary actions associated with this machine
are defined. Then, a A/G contracts library defining each action is assem-
bled and synthesized, generating a plant simulation-compatible model
that can be imported and simulated.

Thus, GR(1) specifications are intrinsically implementing a as-
sume/guarantee mechanisms. As such, GR(1) is extremely suit-
able to express contracts. Indeed, it does not allow representing
certain valid LTL formulas, still it allows specifying safety and
liveness properties that are usually sufficient to express systems
behaviors for validation and verification purposes [25].

III. METHODOLOGY OVERVIEW

The proposed methodology builds a formal representation of
a production line through executable models of manufacturing
machines, and it composes them into its virtual prototype. The
models are meant to be simulated for evaluating the feasibility
and correctness of the production line before building, deploy-
ing, and assembling the real plant. Fig. 2 summarizes the steps
of the proposed approach to validate a production line.

Initially, the components are classified according to the DIN
8580 standard, cataloguing actions and industrial processes
associated with production machines. For each machine, the
DIN standard identifies and details a set of actions that the
machine is built to execute. Each action identified in the standard
is formalized as a A/G contact. An action describes a specific
behavior of the component defining a set of guarantees (e.g., the
ability to perform a certain modification to the worked material
shape), and assumptions that specify the conditions necessary
to perform the action (e.g., the presence of the worked material
within the action’s range of the component). Each manufacturing
machine is represented by a contract that is the composition
of the contracts modeling the machine’s actions. This allows
representing a manufacturing machine as the composition of its
actions. As such, it would be possible to verify the consistency
of the machine formally. However, verifying the consistency
of the composition is affected by computational complexity
issues [21]. For this reason, a coordination contract is specified
to model the machine coordinating the actions identified. The
coordination contract assumes the actions’ behaviors, while
it guarantees the possibility to perform all the actions. Such
formalization of a manufacturing machine leads to a two-layer
hierarchy of contracts: the first layer being composed by the
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Fig. 3. Schematic of the ICE laboratory production line.

actions contract, while the second layer is the coordination
contract. Such hierarchical decomposition allows verifying each
action separately and then to verify the coordination between
actions. Thus, it allows decomposing the verification problem
both horizontally (i.e., over the different actions), and vertically
(i.e., over the two different layers of the contracts hierarchy).

All the contracts are specified using the GR(1) fragment
of LTL. This allows keeping the check of consistency com-
putationally tractable. The methodology goes on by checking
the consistency of each contract. Then, for each contract, it
synthesizes a control strategy, i.e., an implementation of the
guarantees given the assumptions. This allows producing an
FSM implementing the specification expressed by the contract.

The final step of the methodology creates the digital-twin of
each machine and then the one for the entire manufacturing
line to be executed within Tecnomatix Plant Simulation. It
generates a Plant Simulation “stations,” a simulator-specific
object simulating the behavior of a machine’s controller. Plant
Simulation adopts the concept of mobile unit (MU) to represent
an abstraction of every physical object that moves throughout
the production plant. Thus, each station describes the processing
of a Mobile Unit (MU), outlining the variation of the object’s
properties. In other words, each station simulates the behavior of
a machine manipulating the working material. The stations are
instantiated within a plant model in the simulator according to
the manufacturing line’s initial specifications, thus assembling
the plant’s complete digital-twin from the component manu-
facturing machines models. Finally, simulating the plant model
allows validating the production line.

The following of the article describes each step of the
methodology applied to the case study presented hereby.

A. Case Study: Additive Manufacturing and Assembly

The case study used throughout the article is based on the
industrial computer engineering (Industrial Computer Engineer-
ing (ICE)) laboratory,1 a research facility focused on advanced
manufacturing and equipped with a full-size configurable pro-
duction line. Fig. 3 shows the structure of the manufacturing
system, as depicted in the plant simulation tool used in this
work. The production plant is composed (from right to left)
of a milling machine, a plastic fused deposition modeling 3-D
printer, a collaborative robotic assembly cell composed of two

1University of Verona, Department of Computer Science, Computer Engi-
neering for Industry 4.0: http://icelab.di.univr.it/

Fig. 4. Three-dimensional representation of the parts that compose
the final product of the case study. The (1) and (2) pieces are gathered
from the warehouse, whereas (3) has to be 3-D printed.

robotic arms composing an assembly station, and a quality check
(QC) station. The transportation of final products or workpieces
toward different stations is implemented through a complex
system of conveyor belts. Raw materials, the components, as
well as the final products, are stored in an automated warehouse.

The system is used to produce the object depicted in Fig. 4.
The first operation is the 3-D printing of a small plastic LEGO-
like brick (i.e., piece number (3) in Fig. 4). Once printed, the
piece is checked for defects by using the Quality Check (QC)
station. Meanwhile, two plastic bricks (i.e., pieces (1) and (2) of
Fig. 4) are gathered from the warehouse to be assembled by the
robotic assembly station. Finally, the printed piece is assembled
to the ensemble of the other two pieces. The final product is
verified in the QC cell for assembly defects. Finally, the product
is transported to the warehouse.

The analysis of the actions in the DIN 8580 taxonomy high-
lights that some of these can be implemented by the composition
of more elementary actions. In the abovementioned example, the
identified actions can be decomposed as follows:

1) Dismantle: Decompose.
2) Emptying: Pick, Turn, Place.
3) Shift one into another: Pick, Move, Place.
4) Screw: Turn.
5) Clamp: Pick, Move, Turn, Place.
6) Embedding: Pick, Move, Place.

Therefore, we identify the elementary actions of the collabo-
rative manipulators.

1) Compose: constitute or make up a piece.
2) Decompose: separate into two elements the piece.
3) Pick: collect the piece from a specific location.
4) Place: drop the piece to a specific location.
5) Move: move a piece.
6) Turn: rotate the piece to a specific angle.

In the following, the description of the formalization will
be paired with its exemplification of the “Turn” operation,
performed by the manipulator robot.

IV. COMPONENTS FORMALIZATION

In the following, we assume that the same concepts can be
applied to different machines, while we will concentrate on
the formalization of the functionality associated to the robotic
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TABLE I
SKETCH OF THE COORDINATOR AND TURN OPERATION CONTRACTS

assembly cell (i.e., the collaborative manipulators). The two col-
laborative robots can manipulate objects and precisely assemble
multiple pieces of material into a single product. The actions
identified in the previous section can be further divided into two
subgroups: those requiring a single manipulator arm, and those
actions performing an assembly or disassembly procedure, thus
requiring both manipulator arms to be active. The proposed for-
malization specifies a sequential behavior of the system and its
components, enforcing its constrained evolution in discrete-time
steps. At the chosen abstraction, action’s specification differ due
to the MU characteristics and whether to model the behavior
of the manipulators. A cooperative action (e.g., Compose) is
specified to happen at a synchronization point in space.

An elementary action is the specification of a process onto
a work-material (i.e., a transformation defined in the DIN
taxonomy). Its contract-based specification aims to model the
modifications applied to the MU. The level of abstraction used to
represent the work-material depends on the action. For instance,
an appropriate abstraction of the MU to model a subtractive (or
additive) manufacturing process should rely on a 3-D grid. The
grid abstracts through discretization the shape of the working-
material. Meanwhile, in the contract representing the “Turn”
action, the MU can be represented by its rotation only. Thus, the
MU is specified as a 2-D projection of its 3-D shape.

For each machine, the proposed methodology creates a con-
tract for each elementary action and a coordinator contract. Each
action contract assumes the action’s environment and, as such,
describes the type of processing and desired shape, place, or
orientation of the MU. The contract guarantees the component’s
behavior, by discretizing the movement of the machine and,
therefore, the transformation of the MU. On the other hand, the
coordinator contract assumes the whole set of elementary actions
the machine is capable of. It also assumes additional properties to
represent the shape and position of the product after the machine
processing. The position specification is used to guarantee that
the processed work-piece is placed in a specific cell of the 2-D
grid spatial representation, as well as its orientation and its shape
(in case of a composition or separation operation).

The scenario considered in the case study outlines the rotation
action of the MU performed by the manipulator arm. Two
contract-based specifications are created to represent such an

action: The coordinator contract and the “Turn” action contract.
Both contracts are depicted in the Table I. The manipulator
coordinator contract assumes that the machine is always even-
tually available to perform the required action. Furthermore, a
variable shared between components may be controlled by the
environment in at least one of the contracts, creating a circular
dependency. Thus, the environment may trivially control the
variable to satisfy the assumptions even when the guarantees
are falsified. This troublesome condition may be overcome by
adding a liveness assumption that forcing the environment to
avoid trivial assignments of variables. For example, the action
completion (e.g., the assumption on turn_executed in the
coordinator) is the liveness property solving such an issue for the
coordinator contract. On the other hand, the contract guarantees
that whenever an action has completed its execution (in this case,
the “Turn” action), the machine becomes available in the next
discrete-time step. Another safety guarantee is in place to model
that whenever the “Pick” action is completed, the grip variable
becomes true. Contrariwise, another safety guarantee states
that whenever “Place” action is completed, the grip variable
becomes false. The last safety guarantee property states that
the “Turn” command is produced whenever the actual angle of
rotation of the MU is not equal to the desired one and, at the
same time, the gripper has the material in its claws.

The contract modeling the “Turn” action assumes that the
manipulator has already completed a “Pick” action: A safety
assumption requires that whenever the coordinator issues a
“Turn” action, the gripper has the work material in its clamps.
The action contract also assumes that the command is set to
the constant “Turn” (i.e., the turn action is requested by the
coordinator) infinitely often: This liveness property is necessary
to manage the same circular dependency issue as the coordinator
contract. The first safety guarantee of the action contract ensures
that the turning variable is true if and only if the command
received is “Turn”. This variable represents the turning mode
of the component and it is useful for defining the status of the
system. In fact, the second guarantee assures that the MU is
actually rotated of a certain angle (at discrete time-steps) while
the turning status is active and while the actual angle is less
than the desired angle. The last two safety guarantees model
the finished action status, signaling that when the actual angle is
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Fig. 5. Interactions between the coordinator contract and the turn
action contract, implemented by a set of input/output variables.

equal to the desired one, theturn_executedvariable become
true.

Among the set of variables defined in each contract, a subset
is related to the system while another subset is related to the
environment. As such, system variables are controlled by the
system and, therefore, can be viewed as the system’s output
or internal variables. On the other hand, environment variables
act as input variables for the system. Fig. 5 represents the
interactions between the coordinator contract and the turn con-
tract, by outlining the input and output variables between each
contract. In particular, the coordinator produces the command
enabling the execution of an action. In addition, it provides
the grip variable required for the initialization of the specific
turn action. The “Turn” contract provides to the coordinator the
turn_executed variable, that signals that the execution of
such action is terminated.

Once completed the formalization of each action and machine,
the contracts can be synthesized individually into its functional
implementation.

V. CODE GENERATION AND APPLICATION

In this section, we show the application of the abovemen-
tioned formalization for the virtual prototyping of the production
system. In particular, we show the steps necessary to generate
the code implementing the contracts modeling the system, their
interfacing with a commercial simulator of industrial production
systems. Finally, we report the main results about the synthesis
and code generation of the virtual prototype of the case study.

A. Executable Models Generation

The mealy machine synthesized by GR1C is represented
by using a JSON format. We developed an automatic tool to
generate the equivalent executable C++ code starting from each
of the mealy machines synthesized from contracts. It translates
the JSON model of each machine into an intermediate represen-
tation. Then, the tool generates a C++ class implementing the
machine by exploiting automatic homogeneous code generation
techniques [10]. This allows creating, for each A/G contract, an
executable specification emulating the behavior of the compo-
nent specified by the contract.

Listing 1: Sketch of the Simulate C-Interface Function that
Performs a Property Abstraction Operation Over MU Physi-
cal Properties, Then it Calls the Simulate of the Synthesized
Controller and Finally Back-Propagates Time, Power and
MU Properties to the Simulator

1: extern "C" __declspec(dllexport)
2: void simulate (UF_Value* ret, UF_Value*

arg) {
3: UF_Value &mu=arg[0]; UF_Value

&station=arg[1];
4: int operation=arg[2].value; //Pick,

Place, ...
5: double angle = MU_READ_ANGLE(mu);
6: // ... other properties
7: bool end;
8: do {
9: manipulator->simulate(angle,...);

10: end = manipulator->end;
11: } while(end);
12: ST_WRITE_TIME(station, calcTime

(operation));
13: ST_WRITE_POWER(station, cal-

cPower(operation));
14: MU_WRITE_ANGLE(mu,toAngle

(manipulator->angle));
15: // ... other changed properies
16: }

The integration relies on the interface provided by the simula-
tor. In this article, we focus on the C-Interface provided by Tec-
nomatix Plant Simulation, which allows loading custom shared
libraries into the simulator, and SimTalk, the Plant Simulation
internal scripting language. However, many other simulators
provide conceptually similar interfaces [26].

The simulator provides a C interface that cannot call C++
methods and neither instantiate classes. Because of this limi-
tation, instantiate and deinstantiate methods need
to be implemented separately. Their purpose is to initialize and
destroy the C++ class before and after the simulation execu-
tion. The UF_Value structure is defined in the cwinfunc.h
header file and it is used to perform data exchange between
the component implementation and the simulator environment.
Each UF_Value contains two values: the data to exchange
and its datatype. Each simulator datatype is mapped to the least
bit-consuming C data-type providing enough bits: for example,
time and acceleration are mapped to double, string
to char* and so on. The C-Interface requires that each function
expects an UF_Value to use as an argument and another
one to bring its return value. To interact with the C++ class
a simulate method is then added. It performs the following
operations:

1) a property abstraction translates the MU physical features
into a boolean representation (Listing 1, line 5);

2) the C++ controller is simulated with the provided inputs
till the end output is raised indicating the operation com-
pletion (Listing 1, lines 8–11);
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3) time and power consumption are calculated according
to the simulation, and exported to the Plant Simulation
station object (Listing 1, lines 12and 13);

4) the simulation results are converted into physical proper-
ties which are back-propagated to the MU (Listing 1, line
14).

Such a set of operations allows the product state to be kept
consistent between machines, by storing it in the MU object.

Finally, the C++ strategy enriched with C-Interface head-
ers and the previously defined functions are compiled into
a shared library. The compiled file can be loaded by Plant
Simulation.

B. Plant Simulation C-Interface Import

Listing 2 Sketch of the EntranceControl of the Manip-
ulatorsStation Object in Plant Simulation (Written Using
SimTalk Language).

1: – load dll
2: var fd := loadLibrary (".\printer.dll")
3: if fd > 0 – check loading phase
4: – simulate the controller
5: callLibrary(fd, "simulate", @, ?)
6: – unload dll
7: freeLibrary(fd)
8: else
9: – stop the station

10: ?.Failed := true

Plant Simulation strongly relies on object-oriented concepts.
Each simulator object is an instance of a class with its properties
and methods. The import phase generates special station objects
that uses the previously generated shared library functions to
simulate their operation.

TheManipulatorsStation object is created by deriving
the Station class and editing its EntranceControl method.
The method written using the SimTalk language and it is automat-
ically called by the simulator whenever an MU enters the station.
Its purpose is to call the simulate function of the synthesized
C++ controller. The code is sketched in Listing 2 and it relies
on the SimTalk methods loadLibrary, callLibrary, and
freeLibrary, which are the ones developed to handle exter-
nal libraries. The loadLibrary method (Listing 2, line 2) opens
the provided file path and returns its file descriptor, or a number
lower than zero when an error occurs. Such an eventuality is
checked in Listing 2 at line 3 and sets the station to a Failed
state (in this state the object cannot process any MU), leading
to the end of simulation. The callLibrary method calls a
function into the provided library file descriptor by name. It is
used to execute the external code (Listing 2, line 5). Two special
arguments are provided.

1) @ represents the current MU;
2) ? indicates the ManipulatorsStation.

The freeLibrarymethod unloads a previously loaded file
(Listing 2, line 7). The ManipulatorsStation object is
finally saved and made available to the simulator libraries.

TABLE II
TIME REQUIRED TO PERFORM THE CONSISTENCY CHECKING AND

SYNTHESIS STEP, AND THE CODE GENERATION FOR THE NONDECOMPOSED
(I.E., HOLISTIC) SYSTEM SPECIFICATION, AND FOR THE DIFFERENT ACTIONS
OF THE ROBOTIC ASSEMBLING STATION. THE NUMBERED COLUMNS REFER
TO THE MACHINE’S ELEMENTARY ACTIONS: (1) COMPOSE, (2) DECOMPOSE,

(3) PICK, (4) PLACE, (5) MOVE, (6) TURN. THE LAST COLUMN REPORTS
THE TIME REQUIRED TO OBTAIN THE MACHINE COORDINATOR

C. Experimental Results

We build a tool-chain implementing the proposed method-
ology: the consistency checking and synthesis of the contracts
is performed by using GR1C [27]. Meanwhile, we develop a
tool receiving as input the JSON specifications produced by
GR1C, and implementing the code generation described above-
mentioned. We applied the tool-chain to build a virtual prototype
of the ICE laboratory case study. Then, we used the prototype
to validate the system through simulation, and to evaluate the
power consumption of the different machines involved in the
production system.

Table II reports the time necessary to generate the virtual
prototype of the collaborative robotic assembly machine. It
reports distinctly the time required to perform the synthesis
from contracts, that also incorporates the time required for
the consistency checking, and the time required for the code
generation. The holistic system column refers to the machine
specified by a single A/G contract: it specifies all the operations
of a single machine and their coordination. Therefore, it is
specified using a different modeling approach. The same reactive
synthesis tools and algorithms are used for both the decomposed
and the nondecomposed scenarios. The decomposed system
columns report the synthesis and code generation time required
when using the decomposed system specification, as proposed
in this article. The nondecomposed (i.e., holistic) system speci-
fication leads to complexity issues, as its consistency check and
synthesis reaches the time-out we set to 6 h: this contract is
characterized by a much higher number of LTL properties and,
consequently, is harder to consistency check and synthesize. On
the other hand, decomposing the system specification into mul-
tiple subproblems allows keeping the required time extremely
limited.

Table III reports the results for all the machines in the
production line. It is reported both the time required for the
synthesis from the A/G contracts and the time required for the
code generation. Each column refers to a machine. For instance,
Column (4) refers to the robotic assembly station. As such, its
values are the sum of the values in Table II. For all the machines,
the processing time is minimal. The most time-consuming spec-
ification is the QC cell. This is due to the fact that the cell
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TABLE III
TIME REQUIRED TO PERFORM THE CONSISTENCY CHECKING AND

SYNTHESIS STEP FOR ALL THE MACHINES IN THE PRODUCTION LINE.
MACHINES ARE IDENTIFIED BY THE FOLLOWING NUMBERS: (1) 3-D
PRINTER, (2) CONVEYOR BELTS, (3) QUALITY CHECK, (4) ROBOTIC

ASSEMBLY, (5) MILLING MACHINE. THE LAST COLUMN REPORTS THE TOTAL
TIME REQUIRED FOR THE ENTIRE PRODUCTION LINE

Fig. 6. ICE case study being simulated into Plant Simulation.

relies on cameras. Thus, its specification has to model multiple
2-D spaces to represent the signals analyzed by the cameras.
The last column reports the total synthesis and code-generation
time. It shows the efficiency of our methodology that allows
generating virtual prototypes for production lines from their
specifications.

The validation of a production line consists of verifying that
the composition of each manufacturing step fulfills the produc-
tion requirements, following the components specifications. The
process validation is obtained by simulating the manufacturing
plant agents with appropriate inputs and verifying that each com-
ponent produces expected outputs. To perform such a simulation,
we load into Plant Simulation the components generated by our
methodology, and we build the simulation scenario, as depicted
in Fig. 6.

VI. CONCLUSION

In this article, we presented a methodology to build the virtual
prototype of a production line through the formalization of its
specifications and automatic code generation. We showed the
effectiveness of the proposed methodology by applying it to
a real production line. We were able to generate its virtual
prototype, and used the generated virtual prototype to analyzed
the correctness of the line.

The experiments showed that the virtual prototypes for pro-
duction machines were generated in a few seconds, after having
formalized the production line specification as temporal con-
tracts. This could be particularly hard for untrained designers,
but it sensibly reduced its complexity starting from a library of
predesigned contracts associated to each action of a taxonomy,
like the DIN 8580.

REFERENCES

[1] R. Drath and A. Horch, “Industrie 4.0: Hit or Hype?,” IEEE Ind. Electron.
Mag., vol. 8, no. 2, pp. 56–58, Jun. 2014.

[2] J. Vachalek et al., “The digital twin of an industrial production line within
the industry 4.0 concept,” in Proc. 21st Int. Conf. Proc. Control. Jun. 2017,
pp. 258–262.

[3] L. Hao et al., “Enhancing the sustainability of additive manufacturing,” in
Proc. 5th Int. Conf. Responsive Manufacturing—Green Manuf., Jan. 2010,
pp. 390–395.

[4] A. Benveniste et al., “Contracts for system design,” Found Trends Electron.
Des. Autom., vol. 12, no. 2/3, pp. 124–400, 2018.

[5] German Institute for Standards, DIN Standard 8580, 2003. [Online].
Available: https://www.din.de/en

[6] R. Bloem et al., “Synthesis of reactive (1) designs,” J. Comput. Syst. Sci.,
vol. 78, no. 3, pp. 911–938, 2012.

[7] S. Spellini et al., “Compositional design of multi-robot systems control
software on ROS,” ACM Trans. Embedded Comput. Syst., vol. 18, no. 5s,
p. 71, 2019.

[8] “Tecnomatix Plant Simulation,” Siemens, Munich, Germany, 2017.
[9] D. Mourtzis et al., “Simulation in manufacturing: Review and challenges,”

Procedia Cyclic Inventory Routing Prob., vol. 25, pp. 213–229, 2014.
[10] M. Lora et al., “Translation, abstraction and integration for effective smart

system design,” IEEE Trans. Comput., vol. 68, no. 10, pp. 1525–1538,
Oct. 2019.

[11] J. Banks et al., Discrete-Event System Simulation. London, U.K.: Pearson,
2005.

[12] L. Dias et al., “Discrete simulation software ranking—a top list of the
worldwide most popular and used tools,” in Proc. Winter Simul. Conf.,
Dec. 2016, pp. 1060–1071.

[13] L. Büth et al., “Introducing agent-based simulation of manufacturing
systems to industrial discrete-event simulation tools,” in Proc. IEEE Int.
Conf. Ind. Informat., Jul. 2017, pp. 1141–1146.

[14] “Simulation software survey,” 2017. [Online]. Available: https:
//www.informs.org/ORMS-Today/OR-MS-Today-Software-Surveys/
Simulation -Software-Survey

[15] M. V. Moreira and J.-J. Lesage, “Fault diagnosis based on identified
discrete-event models,” Control Eng. Pract., vol. 91, 2019, Art. no. 104101.

[16] S. Preuße and H. Hanisch, “Verifying functional and non-functional prop-
erties of manufacturing control systems,” in Proc. 3rd IFAC Workshop
Dependable Control Discrete, 2011, pp. 41–46.

[17] O. Ljungkrantz et al., “Formal specification and verification of industrial
control logic components,” IEEE Trans. Autom. Sci. Eng., vol. 7, no. 3,
pp. 538–548, Jul. 2010.

[18] R. Savolainen et al., “A framework for runtime verification of industrial
process control systems,” in Proc. IEEE 15th Int. Conf. Ind. Informat.,
2017, pp. 687–694.

[19] A. Yacoub et al., “A method for improving the verification and validation
of systems by the combined use of simulation and formal methods,” in
Proc. IEEE/ACM 18th Int. Symp. Distrib. Simul. Real Time Appli., 2014,
pp. 155–162.

[20] P. Nuzzo et al., “A platform-based design methodology with contracts
and related tools for the design of cyber-physical systems,” Proc. IEEE,
vol. 103, no. 11, pp. 2104–2132, Nov. 2015.

[21] P. Nuzzo et al., “CHASE: Contract-based requirement engineering
for cyber-physical system design,” in Proc. IEEE/ACM DATE, 2018,
pp. 839–844.

[22] R. Rosner “Modular synthesis of reactive systems,” Ph.D. dissertation,
Dept. Appl. Math. Comput. Sci., Weizmann Inst. Sci., Rehovot, Israel,
1991.

[23] I. Filippidis and R. M. Murray, “Symbolic construction of GR (1)
contracts for synchronous systems with full information,” in Proc.
Amer. Control Conf. (ACC), Boston, MA, USA, 2016, pp. 782–789,
doi: 10.1109/ACC.2016.7525009.

[24] S. Maoz and J. O. Ringert, “GR (1) synthesis for LTL specification pat-
terns,” in Proc. 10th Joint Meeting Found. Softw. Eng., 2015, pp. 96–106.

[25] A. P. Sistla, “Safety, liveness and fairness in temporal logic,” Formal
Aspects Comput., vol. 6, no. 5, pp. 495–511, 1994.

[26] M. Lora et al., “Automatic integration of Cycle-accurate descriptions with
continuous-time models for cyber-physical virtual platforms,” in Proc.
IEEE/ACM DATE, 2018, pp. 676–681.

[27] I. Filippidis et al., “Control design for hybrid systems with TuLiP: The
temporal logic planning toolbox,” in Proc. IEEE Conf. Control Appl., 2016,
pp. 1030–1041.

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on January 26,2025 at 15:21:44 UTC from IEEE Xplore.  Restrictions apply. 

https://www.din.de/en
https://www.informs.org/ORMS-Today/OR-MS-Today-Software-Surveys/Simulation ignorespaces -Software-Survey
https://dx.doi.org/10.1109/ACC.2016.7525009


6302 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 9, SEPTEMBER 2021

Stefano Spellini (Student Member, IEEE) re-
ceived the B.S. and M.E. degrees in computer
science and engineering in 2016 and 2018,
respectively, from the University of Verona,
Verona, Italy, where he is currently working to-
ward the Ph.D. degree in computer science with
the Department of Computer Science.

He is a member of the Electronic System De-
sign Research Group, working on methodolo-
gies for the design automation and verification
of cyber–physical production systems.

Roberta Chirico received the B.Sc. degree in
computer science and the M.E. degree in com-
puter science and engineering from the Univer-
sity of Verona, Verona, Italy, in 2016 and 2019,
respecively.

She is a Research Assistant with the ICE
Laboratory of the Department of Computer Sci-
ence, University of Verona. Her research focus
on methodologies for the design of advanced
manufacturing systems.

Marco Panato received the B.Sc. and M.E.
degrees in computer science and engineering
from the University of Verona, Verona, Italy,
2016 and 2018, respectively.

He is currently with the Department of Com-
puter Science, the University of Verona. As a
Research Assistant with the ICE Laboratory, he
focuses on the design and the administration of
smart manufacturing systems.

Michele Lora (Member, IEEE) received the
Ph.D. degree in computer science from the Uni-
versity of Verona, Verona, Italy, in 2016.

He currently is a Marie Skłodowska Curie Fel-
low with the University of Verona. His research
focuses on design automation methodologies
for modeling, integration and efficient simulation
of heterogeneous embedded systems, contract-
based requirement engineering, and verification
for cyber–physical systems.

Franco Fummi (Member, IEEE) received the
Ph.D. degree in electronic engineering from Po-
litecnico di Milano, Milano, Italy, in 1995.

Since 2000, he is a Full Professor with the
Department of Computer Science, University of
Verona, Italy, and where he became an As-
sociate Professor in computer architecture in
1998. Since 1995, he has been with the Depart-
ment of Electronics and Information, Politecnico
di Milano, as an Assistant Professor. He is a
Co-Founder of EDALab, an EDA company de-

veloping tools for the design of networked embedded systems. His
current research interests include electronic design automation method-
ologies for modeling, verification, testing, and optimization of cyber–
physical production systems.

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on January 26,2025 at 15:21:44 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


