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Abstract: Background: Sepsis is characterized by an atypical immune response to infection and is
a dangerous health problem leading to significant mortality. Current diagnostic methods exhibit
insufficient sensitivity and specificity and require the discovery of precise biomarkers for the early
diagnosis and treatment of sepsis. Platelets, known for their hemostatic abilities, also play an
important role in immunological responses. This study aims to develop a model integrating machine
learning and explainable artificial intelligence (XAI) to identify novel platelet metabolomics markers
of sepsis. Methods: A total of 39 participants, 25 diagnosed with sepsis and 14 control subjects,
were included in the study. The profiles of platelet metabolites were analyzed using quantitative
1H-nuclear magnetic resonance (NMR) technology. Data were processed using the synthetic minority
oversampling method (SMOTE)-Tomek to address the issue of class imbalance. In addition, missing
data were filled using a technique based on random forests. Three machine learning models, namely
extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and kernel
tree boosting (KTBoost), were used for sepsis prediction. The models were validated using cross-
validation. Clinical annotations of the optimal sepsis prediction model were analyzed using SHapley
Additive exPlanations (SHAP), an XAI technique. Results: The results showed that the KTBoost
model (0.900 accuracy and 0.943 AUC) achieved better performance than the other models in sepsis
diagnosis. SHAP results revealed that metabolites such as carnitine, glutamate, and myo-inositol are
important biomarkers in sepsis prediction and intuitively explained the prediction decisions of the
model. Conclusion: Platelet metabolites identified by the KTBoost model and XAI have significant
potential for the early diagnosis and monitoring of sepsis and improving patient outcomes.

Keywords: sepsis; platelet metabolomics; biomarkers; machine learning; explainable artificial intelligence

1. Introduction

Sepsis, a life-threatening illness defined by a dysregulated systemic inflammatory
response to infection, continues to be a worldwide health concern with catastrophic mor-
tality rates [1]. This acute disease creates excessive and non-specific immune activation,
potentially resulting in multiple organ failure and septic shock [2]. Despite continuous
improvements in critical care medicine, the intricate biology of sepsis remains incompletely
understood. Early identification and the fast start of adequate therapy are crucial for
improved survival outcomes [1,2]. However, conventional diagnostic approaches often
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lack the needed sensitivity and specificity, particularly in the early stages of sepsis [3].
This demands the development of trustworthy biomarkers for early and accurate sepsis
diagnosis, disease severity categorization, and therapeutic response tracking.

Clinicians have significant difficulties in diagnosing, treating, and managing pa-
tients with sepsis due to its many manifestations. Biomarkers are crucial in the timely
detection and classification of sepsis, aiding in the selection of appropriate antibiotics,
evaluation of disease severity and prognosis, and assessment of treatment effectiveness.
Over 170 biomarker groups have been discovered for evaluating sepsis, encompassing
indicators like PCT, CRP, TNF-α/IL-6, MCP-1, and miRNA. However, each biomarker
serves a distinct role in the pathophysiology of sepsis, and incorrect utilization of specific
biomarkers can result in excessive diagnosis and unnecessary administration of drugs
such as antibiotics. As blood cultures have limited ability to detect pathogenic germs,
several molecular biodiagnostic disciplines now depend on identifying sepsis by detecting
bacterial DNA in the blood. This novel methodology has the potential to result in excessive
diagnosis of sepsis by incorrectly recognizing a temporary presence of bacteria in the blood-
stream that lacks clinical importance and specific biological traits. There is a pressing need
for a novel biomarker to aid in the early detection and treatment of sepsis patients. The
evidence demonstrates that during sepsis, the body experiences a condition of heightened
metabolism, leading to structural alterations in the three primary nutrients: carbohydrates,
proteins, and lipids. However, no one biomarker is considered optimal for diagnosing
sepsis or determining its prognosis [4].

Despite the emergence of new technologies, conventional methods remain essential
tools for detecting and identifying microbes in sepsis patients. Real-time PCR can identify
pathogens in neonatal early-onset sepsis that conventional cultures may miss, potentially
enhancing diagnosis and improving treatment outcomes [5]. However, it faces challenges
such as high costs, contamination risks, and the inability to detect resistance genes [6].
MALDI-TOF MS is a valuable tool for the rapid identification of bacterial and fungal
pathogens in septic patients, providing accurate results in a significantly shorter time frame
compared with standard methods [7].

Nevertheless, platelet biomarker-based analysis has the potential to significantly im-
prove the specificity and sensitivity of sepsis diagnosis over conventional methods. By de-
tecting early immune responses, offering greater sensitivity in low-bacterial-load situations,
reducing false positives, and providing prognostic information, platelet biomarkers can en-
hance the speed and accuracy of sepsis diagnosis [8]. This approach is particularly valuable
in cases where conventional methods fall short, such as in early or culture-negative sepsis.

Platelets, historically recognized for their hemostatic and thrombotic capabilities, are
increasingly acknowledged for their crucial engagement in inflammatory and immunologi-
cal responses [9]. Platelets have essential functions in fighting infection and are engaged in
multiple pathways to enhance the immune response and activate coagulation. Thrombo-
cytopenia is frequently observed in the intensive care unit (ICU) in patients with sepsis.
Several factors contribute to this condition, and a low platelet count is associated with a
negative prognosis. Gaining a more comprehensive comprehension of the processes that
activate platelets and the communication between endothelial cells, immune cells, and
pathogens would offer insights into how to specifically target harmful pathways in sepsis,
especially those related to platelet activation. Accumulating data show that variations in
platelet function contribute considerably to the development and duration of sepsis [10].

Metabolomics, the entire analysis of small-molecule metabolites inside a biological
system, offers an effective tool for discovering metabolic irregularities connected with
different disorders [11]. Quantitative 1H-nuclear magnetic resonance (NMR) metabolomics
has emerged as a particularly promising tool for discovering the distinct metabolic patterns
associated with sepsis. This method allows for the comprehensive investigation of a diverse
range of metabolites inside platelets, providing a comprehensive understanding of their
metabolic state. Through the analysis of these metabolic profiles, researchers may obtain a
more comprehensive understanding of the functional changes that occur in platelets during
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sepsis. Moreover, platelet are better depicted by platelet metabolites rather than total blood
metabolites or the interactions of metabolites in biofluids [12].

Metabolomics has been extensively used to investigate the pathogenic processes and
biomarkers linked to sepsis. Previous studies have found possible biomarkers that might
be used to diagnose sepsis. These biomarkers include metabolites such as 3-phenyl lactic
acid, N-phenylacetylglutamine, and phenylethylamine [4]. Recent research has shown that
metabolomics analysis may identify distinct metabolic indicators in individuals who do
not survive sepsis. Amino acids, mitochondrial metabolism, and eicosanoids are impor-
tant pathways that are linked to predicting mortality in sepsis cases [13]. Moreover, the
combined analysis of untargeted metabolomics and proteomics has revealed abnormalities
in inflammation-related pathways and amino acid metabolism as significant factors in
sepsis. This offers valuable information about the underlying mechanisms and potential
treatment targets for this condition [14]. In a modeling search in the literature at the multi-
omics level, including metabolomics, the authors reported sepsis-associated biomarkers,
including neutrophil CD10, PTX3, and lysoPC [15]. McBride et al. reported in a review that
sepsis-induced mitochondrial dysfunction in leukocytes leads to increased susceptibility to
secondary infections in septic patients [16]. Mickiewicz et al. identified 186 metabolites
using NMR technology using serum samples from their patients in the ICU. This suggests
that metabolomics can predict death in cases of septic shock. In addition, a separate investi-
gation discovered two metabolites that may distinguish between severe sepsis and systemic
inflammatory response syndrome. The results emphasize the importance of metabolomics
data in predicting and comprehending sepsis outcomes [17,18].

Explainable artificial intelligence (XAI) is a technique used to understand the decision-
making process of sophisticated machine-learning models, which are often referred to
as black boxes. XAI is particularly effective in analyzing high-dimensional data, such as
metabolomics, and it offers improved abilities in generalization and differentiation. This
is especially valuable in assessing patient health and identifying issues. The utilization
of XAI-based models can not only clarify previously ambiguous biomarkers, but also
substantially enhance diagnostic sensitivity and lead to more efficient, individualized
treatment options [19].

Although the existing literature has investigated biomarkers of sepsis using metabolomics
data and developed predictive models for sepsis detection, no studies have integrated XAI
approaches with a specific focus on platelet metabolomics. This study aims to develop an
interpretable predictive model in sepsis by identifying candidate metabolomics biomarker
compounds derived from platelets based on XAI that may be indicative of sepsis. We strive
to study the biological mechanisms underlying sepsis and improve clinical applications by
creating a transparent and robust model with a hybrid methodology based on XAI. The
results of this research may enable timely and precise antimicrobial treatments and early
interventions, ultimately improving patient outcomes and facilitating the use of identified
biomarkers in clinical settings to reduce sepsis-related mortality rates.

Literature Review

The study by McCann et al. [12], using the relevant dataset, used metabolomics to
estimate mitochondrial oxygen consumption rates in sepsis patients with multivariate
statistical approaches. The study used a predictive methodology of mitochondrial oxygen
consumption in sepsis patients. In the current study, we did not consider mitochondrial
function; but, unlike using only traditional statistical methods, integrating ML with XAI
has the dual advantage of high prediction accuracy and interpretability to distinguish
sepsis. We proposed an innovative methodology and developed an explainable predic-
tion model. The inclusion of XAI techniques allowed us to clarify the contribution of
individual metabolites to the diagnostic model, thus increasing the clinical relevance and
applicability of our findings. Studies have carefully studied the safety and effectiveness
of therapies like carnitine or acylcarnitine supplements, which address the metabolic ab-
normalities in sepsis. Carnitine plays a vital function in mitochondrial transport and the
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β-oxidation of long-chain and medium-chain fatty acids. In animal models of endotoxemia,
carnitine treatment has been demonstrated to reduce circulation levels of tumor necrosis
factor (TNF)-α and boost survival rates [20,21]. Small-scale clinical studies have indi-
cated that carnitine infusion may enhance systemic lipid utilization in sepsis and decrease
mortality [22–24]. Furthermore, Jennaro et al. indicated that the pharmacokinetic response
to high-dose carnitine in patients with septic shock is influenced by renal function, and that
pre-treatment metabolites might significantly impact the drug’s effectiveness [25]. Keshani
et al. reported that administering a high daily dose of 3000 mg of carnitine could poten-
tially decrease inflammation and oxidative stress, thereby improving mortality rates in
critically ill patients with sepsis, owing to its anti-inflammatory and antioxidant properties.
Recent research has demonstrated that elevated glutamate concentrations are common in
neuronal inflammatory illnesses and may be caused by an activated immune system and
microglial responsiveness during neuroinflammation [26–28]. Impaired glutamate excito-
toxicity promotes central nervous system dysfunction and is linked to a variety of diseases,
including Alzheimer’s disease [29], epilepsy [30], ischemic disease [31], and traumatic
brain injury [32]. Zhenxing et al. [33] found that ferroptosis production in sepsis-associated
encephalopathy (SAE) might cause glutamate excitotoxicity and cell death, which can lead
to cognitive and behavioral problems. In this study, we confirmed glutamate levels as
a potential biomarker for sepsis using SHAP, an XAI technique. Myo-inositol has been
thoroughly explored in numerous medical settings, indicating probable linkages to several
health issues. Studies show that myo-inositol may be effective in resolving infertility in
both men and women [34]. Additionally, its therapeutic potential has been studied in the
treatment of cardiac dysfunction generated by sepsis, a disorder recognized for its high
fatality rates [35]. Another research has also focused on the use of myo-inositol in preterm
newborns, particularly addressing respiratory distress syndrome (RDS), where inositol
levels could indicate the illness severity and affect neonatal outcomes [36]. Moreover, the
role of myo-inositol in modifying the PI3K/Akt signaling pathway has shown promise
in mitigating septic shock by lowering sepsis-induced cardiac dysfunction, hence empha-
sizing its power to affect sepsis-related morbidity and mortality [37]. The literature has
revealed that septic patients have elevated levels of blood ATP and ADP, together with
heightened ATPase/ADPase activities, which are connected to the diagnosis of sepsis and
are considered possible indicators [38]. Research indicates that ADP, in addition to its role
in the dysregulated inflammatory response characteristic of sepsis, along with purines such
as ATP, play critical roles in immune and inflammatory responses during sepsis and septic
shock [39,40]. Furthermore, inhibiting PARP, an essential enzyme in cellular processes
and inflammatory mediator regulation, has been shown to decrease cell apoptosis and
cardiac injury during sepsis, underscoring the significance of ADP-related pathways in
the pathophysiology of sepsis [40]. Formate, a molecule involved in energy metabolism,
has been identified as an important component in sepsis. A study employing NMR-based
metabolomics techniques has indicated that formate levels are changed in septic rats, es-
pecially in those that do not survive, indicating its potential as a prognostic marker for
sepsis [41]. Furthermore, research on septic patients indicated that formate levels were
lowered in calves with diarrhea-induced sepsis, indicating its relevance in separating septic
conditions from healthy states [42]. These results demonstrate that formate, along with
other metabolites, might be a viable biomarker for the early prognostic evaluation of sep-
sis, emphasizing its significance in understanding the metabolic effects and pathogenic
processes of the condition [13,43].

Studies in the literature are based on classical statistical approaches or machine learn-
ing methods when examining sepsis biomarkers. The current study is the first to examine
metabolomics biomarkers of sepsis based on XAI. The findings of this study will provide
important information based on metabolomics biomarkers, especially for the treatment of
sepsis in addition to its detection.
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2. Materials and Methods
2.1. Study Design and Participants

The open access data used in this study are available on the NIH Joint Fund’s
National Metabolomics Data Repository (NMDR) website, Metabolomics Workbench
(www.metabolomicsworkbench.org), where the project ID is designated as ST001294. The
Inonu University Health Sciences Non-Interventional Clinical Research Ethics Commit-
tee approved this study (approval number: 2024/6097). A total of 39 cases, 25 sepsis
patients and 14 controls, were evaluated in this study. The necessary sample size for this
investigation was determined using MetSizeR (https://cran.r-project.org/web/packages/
MetSizeR/index.html accessed on 8 December 2023), utilizing the probabilistic principal
component analysis (PPCA) model. The calculation was performed by specifying a false
discovery rate of 0.05. Consequently, it was determined that a minimum sample size of
14 patients, with 7 patients in each group, was necessary. Although it was challenging to
recruit patients with SRC and healthy controls who satisfied the specific inclusion criteria
outlined in this investigation, the sample size surpassed the estimate generated using
MetSizeR [A], a method commonly employed to evaluate sample size in metabolomics
studies [44]. This study examined the importance of isolated platelet metabolites in predict-
ing sepsis using quantitative 1H-NMR technology. Sepsis and non-sepsis control patients
who were admitted to the emergency department (ED) were included in the study. Platelet
samples were collected from each participant at a single time in the ED. The control group
was selected to match the sepsis cohort in terms of gender and age [12,45]. The median
sequential organ failure assessment (SOFA) score in the sepsis group was 4.5 (3.0–8.5).

Inclusion and Exclusion Criteria

− Sepsis Group:

1. Suspected/proven infection (Organ dysfunction was identified as an acute
change SOFA score ≥ 2 points consequent to the infection.) [1].

2. Any two of the four systemic inflammatory response criteria present in the
ED [46].

3. Must be at least eighteen years old.
4. At least 2.0 mmol/L of lactate.
5. Enrollment started two hours after a quantitative resuscitation protocol was started.

− Control Group:

1. Admitted to the ED.
2. No medical problems requiring chronic treatment impacting platelet function

(e.g., aspirin, P2Y12 inhibitors).

− Exclusion Criteria:

1. Apart from sepsis as the primary diagnosis.
2. Declared the status of “Do Not Resuscitate.”
3. Transfer with previous sepsis treatment from another hospital.
4. Cardiopulmonary resuscitation before enrollment.

2.2. Sample Collection

Whole blood samples (12 mL each) were drawn into tubes containing K2 EDTA using
an indwelling line or by direct venipuncture. Centrifugation was used in two steps to
remove platelets:

1. Centrifugation at 200× g for 6 min at room temperature to separate platelet-rich
plasma.

2. A further centrifugation at 4500× g for 5 min at 4 ◦C to pellet the platelets.

After the nearly cell-free plasma was moved to another tube, around 0.25 mL of plasma
remained to resuspend the platelet pellet and create ultra-rich plasma. After two freeze–
thaw cycles in the presence of methanol, platelet pellets were extracted using methanol and

www.metabolomicsworkbench.org
https://cran.r-project.org/web/packages/MetSizeR/index.html
https://cran.r-project.org/web/packages/MetSizeR/index.html
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chloroform. This approach ensured the effective extraction of metabolites for NMR analysis.
Details regarding platelet isolation, sample extraction for metabolomics, and NMR analyses
are included in the Supplementary Materials [1,12,46–49].

NMR is a spectroscopic method employed to identify organic molecules. NMR spec-
troscopy can be used to determine the molecular structure of metabolites. Unlike most
other metabolomics platforms, NMR has the advantage of not being restricted to the in-
vestigation of biofluids or tissue extracts. It is highly appropriate to examine undamaged
tissues, organs, and other solid or semisolid samples using solid-state NMR and magic
angle sample spinning. This technology is capable of capturing NMR spectra of a variety
of nuclei, including 1H, 13C, 15N, and 31P, individually or simultaneously. This allows for
the examination of distinct categories of metabolites, such as those containing nitrogen or
phosphorus. Multi-dimensional NMR approaches can be used to investigate correlations
between two or even three distinct nuclei. NMR spectroscopy is a nondestructive tech-
nique that enables easy measurement of fragments without the need for chromatographic
separation, sample processing, or chemical derivatization. It facilitates the routine isola-
tion of novel compounds. NMR is extensively automated and very consistent, making it
more suitable for high-throughput, large-variance metabolomics research compared with
liquid chromatography–mass spectrometry (LC-MS) or gas chromatography–MS (GC-MS).
Furthermore, NMR is especially well-suited for identifying and isolating images that are
not easily analyzed by LC-MS, such as sugars, organic acids, alcohols, polyols, and other
highly polar images [50–54].

2.3. Data Preprocessing and Machine Learning Modeling

Missing data were addressed using a random-forest-based imputation approach pro-
vided via the miceforest package. This approach effectively imputes missing values by
utilizing the links between observable data elements [55]. To handle the issue of class
imbalance and prevent biased prediction outputs, the synthetic minority oversampling
technique (SMOTE)-Tomek technique was utilized. SMOTE generates synthetic samples
for the minority class by interpolating between instances and their nearest neighbors, in-
creasing minority class representation. Tomek links identify and remove pairs of nearest
neighbor instances from different classes, cleaning noisy and borderline data points. By
first applying SMOTE to balance the class distribution and then using Tomek links to refine
the dataset, SMOTE-Tomek achieves improved class balance and clearer decision bound-
aries [56–58]. To guarantee the robustness of sepsis predictions and prevent overfitting,
a 5-fold cross-validation approach was performed. This approach separates the dataset
into five subgroups, employing four for training and one for validation, rotating through
each subset to guarantee full model assessment [59]. In addition to the extreme gradient
boosting (XGBoost) and light gradient boosting machine (LightGBM) algorithms for omics
data, used due to their efficiency and ability to process high-dimensional data [60–62],
the kernel-tree boosting (KTBoost) algorithm [63], which offers an important alternative
with its hybrid approach and provides potentially good performance in capturing complex
patterns, was also used. XGBoost builds an ensemble of decision trees where each tree
corrects the errors of its predecessors, incorporating regularization and parallel processing
for enhanced performance. LightGBM constructs trees leaf-wise rather than level-wise,
optimizing speed and memory usage, and directly handles categorical features [62,64].
KTBoost combines boosting and kernel methods, leveraging the strengths of both to capture
complex, non-linear relationships within the data [63]. The aforementioned techniques
were chosen because of their capacity to handle extensive feature spaces, scalability, and
appropriateness for high-dimensional omics datasets, guaranteeing resilient and precise
predictive modeling. We used a number of indicators to assess the effectiveness of the
XGBoost, LightGBM, and KTBoost models. The percentage of true positives and true nega-
tives among all the cases examined that were accurately predicted is known as accuracy.
Specificity measures the model’s ability to reliably detect negative cases, while sensitivity,
often known as recall, measures the model’s ability to properly identify positive situations.
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AUC, which measures the model’s performance across all classification thresholds, is an-
other useful tool that offers a thorough evaluation of the discriminatory capacity of the
model [65,66].

2.4. Explainable Artificial Intelligence Approach and Interpretation of Sepsis Biomarkers
and Prediction

We used the XAI approach to understand the prediction judgments produced by the
models. XAI seeks to provide transparency and reliability in AI applications by making the
sophisticated machine learning models’ choices and behavior understandable to people.
XAI techniques can find important traits, expose biases, and improve the dependability
of AI systems by offering insights into how models create predictions. This is especially
useful in vital domains like bioinformatics and healthcare. Based on this information, the
SHapley Additive exPlanations (SHAP) method was applied to determine the importance
of biomarker candidate metabolites in predicting sepsis and to explain the outputs of the
model from a clinical perspective. SHAP values are based on cooperative game theory and
provide a unified measure of feature importance by considering the contribution of each
feature to the prediction. This technique determines the average marginal contribution
of each characteristic over all possible combinations, guaranteeing a consistent and fair
assignment of significance. By displaying SHAP values, we can comprehend the influence
of each feature on individual predictions and the entire model, providing a better under-
standing of the model’s decision-making process and boosting interpretability [67–70]. The
flow chart for the proposed methodology is presented in Figure 1.
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2.5. Biostatistical Analysis

Normal distribution was evaluated with the Kolmogorov–Smirnov test. Normally
distributed quantitative data were summarized using the mean and standard deviation
(SD), and non-normally distributed quantitative data were summarized using the median
and interquartile range (IQR). The existence of a statistically significant difference in terms
of input variables and the relationship between the “positive” and “negative” groups, which
are the categories of the output variable, were examined using the t-test and Mann–Whitney
U test in independent groups, respectively, for normally distributed and non-distributed
quantitative data. For the concentration levels of the five most significant metabolites
identified by the XAI method, they are presented in boxplots along with the median and
interquartile range. In correlation analyses, the Spearman rho coefficient was calculated to
examine the relationships between quantitative variables that did not meet the parametric
conditions (normal distribution). p values < 0.05 were considered statistically significant.
American Psychological Association (APA) 6.0 style was used to report statistical differences.
All statistical analyses were performed using IBM SPSS Statistics for Windows version 28.0
(New York, NY, USA) software and Python version 3.9 software.

3. Results

Table 1 outlines the characteristics of the participants in the study, detailing their gen-
der distribution and ages. Among men, the control group comprised 8 individuals (57.1%),
while the sepsis group included 15 individuals (60%). The difference in representation
between the two groups did not show significance (p = 0.862). In terms of women, the
control group had 6 individuals (42.9%) whereas the sepsis group had 10 individuals (40%).
The average age of those in the control group was 44 years (with a deviation of 14), while
those in the sepsis group had an age of 55 years (with a standard deviation of 17). The age
gap between the groups neared significance, with a p-value recorded at 0.056.

Table 1. Patient demographic characteristics of the study participants.

Variable
Group p-Value

Control Sepsis

Gender *
Male 8 (57.1) 15 (60)

0.862Female 6 (42.9) 10 (40)

Age ** 44 (14) 55 (17) 0.056
*: The variable is summarized as frequency (percentage), and the chi-square test was used; **: The variable is
summarized as mean (standard deviation, SD) and the t-test was used in independent groups.

Table 2 presents a comparative univariate analysis of metabolite levels between the
control and sepsis groups, summarized by median and IQR. While several metabolites ex-
hibit notable trends, few show statistically significant differences. ADP and carnitine levels
trend toward lower values in the sepsis group, with near-significant p-values of 0.058 and
0.067, respectively. Conversely, O-acetylcholine (p = 0.027) and O-phosphoethanolamine
(p = 0.047) levels are significantly lower in the sepsis group, highlighting their potential
as biomarkers for sepsis. The other metabolites, AMP, ATP, alanine, choline, creatine,
formate, GTP, glucose, glutamate, glutamine, glycine, lactate, O-phosphocholine, taurine,
and Myo-inositol, display no significant differences between the groups (p > 0.05) (Table 2).
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Table 2. Comparative analysis of metabolite level changes between control and sepsis groups.

Metabolite Name *
Group p-Value

Control Sepsis

ADP 41.95 (16.875) 27.8 (25.8) 0.058
AMP 8.75 (3.825) 7 (3.8) 0.429
ATP 57.2 (29.15) 47.7 (36) 0.183

Alanine 11.9 (5.5) 12.2 (5.1) 0.781
Carnitine 3.33 (1.075) 1.9 (2) 0.067
Choline 4.725 (1.9) 4.1 (3.6) 0.446
Creatine 3.25 (2.225) 4.1 (2.82) 0.379
Formate 19 (6.6) 18 (5.7) 0.693

GTP 16.05 (2.347) 16.93 (5.3) 0.507
Glucose 56.47 (17.65) 56.47 (15.6) 0.426

Glutamate 83.2 (19.225) 85.7 (61.6) 0.988
Glutamine 34.95 (8.68) 36.83 (16.6) 0.669

Glycine 12 (5.35) 8.6 (6.9) 0.183
Lactate 64.5 (19.85) 65.6 (48.4) 0.965

O-acetylcholine 3.95 (2.65) 3.1 (1.9) 0.027
O-phosphocholine 9.55 (4.85) 6.6 (6.1) 0.224

O-phosphoethanolamine 54.435 (17.9) 38.2 (32.3) 0.047
Taurine 578.3 (239.225) 443.2 (344.5) 0.141

myo-Inositol 22.9 (9.05) 32.21 (29.4) 0.377

*: Metabolites are summarized by median with interquartile range (IQR). ADP: adenosine diphosphate;
AMP: adenosine monophosphate; ATP: adenosine triphosphate; GTP: guanosine triphosphate

Table 3 compares the performance of three classification models—KTBoost, XGBoost,
and LightGBM—in predicting sepsis, evaluated through accuracy, F1-score, sensitivity,
specificity, and AUC. KTBoost demonstrates the strongest performance across all metrics,
with the highest accuracy (0.900), F1-score (0.894), sensitivity (0.840), specificity (0.960),
and AUC (0.943). XGBoost consistently ranks second, with an accuracy of 0.860, F1-score
of 0.851, sensitivity of 0.800, specificity of 0.920, and AUC of 0.914. LightGBM shows
the lowest performance, with an accuracy of 0.800, F1-score of 0.792, sensitivity of 0.760,
specificity of 0.840, and AUC of 0.861. Although few significant differences in metabolite
levels were detected between sepsis and control in the univariate statistical approach,
KTBoost, a machine-learning-based multivariate classification approach, showed strong
performance in distinguishing sepsis from healthy controls. These results indicate that
KTBoost is the most effective model for sepsis prediction, achieving the best balance
between accurately identifying true positive and negative cases (Table 3).

Table 3. Performance results of classification models in predicting sepsis.

Metric/Model KTBoost XGBoost LightGBM

Accuracy 0.900 (0.817–0.983) 0.860 (0.764–0.956) 0.800 (0.689–0.911)
F1-score 0.894 (0.808–0.979) 0.851 (0.752–0.950) 0.792 (0.679–0.904)

Sensitivity 0.840 (0.639–0.955) 0.800 (0.593–0.932) 0.760 (0.549–0.906)
Specificity 0.960 (0.796–0.999) 0.920 (0.740–0.990) 0.840 (0.639–0.955)

AUC 0.943 (0.900–0.987) 0.914 (0.860–0.968) 0.861 (0.800–0.923)

AUC: Area under the curve; KTBoost: kernel-tree boosting; XGBoost: extreme gradient boosting; LightGBM: light
gradient boosting machine.

Figures 2–4 present the SHAP summary plot for the KTBoost, XGBoost, and LightGBM
models, respectively, describing the impact of biomarker candidate metabolites on sepsis
prediction. The X-axis represents SHAP values, which indicate how much each metabolite
contributes to the model’s prediction. Positive SHAP values mean that the metabolite
increases the likelihood of sepsis, while negative SHAP values mean it decreases the
likelihood. The SHAP plot was created to examine the effect of biomarkers on the risk
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of positive class (sepsis). The colors of the dots in the SHAP summary plot represent the
value of the metabolite, with red indicating high metabolite values and blue indicating low
metabolite values. Each dot in the plot corresponds to an individual instance (a patient)
within the dataset, and the position of the dot along the X-axis indicates the SHAP value for
a specific metabolite in that instance. Specifically, in this context, each dot represents one
metabolite’s contribution to the model’s prediction for a particular patient. For example,
metabolites like carnitine and glutamate show a wide range of SHAP values, indicating their
impact on the model’s prediction varies significantly across different instances. Carnitine
is a vital metabolite essential for fatty acids’ transport into mitochondria, where they
undergo beta-oxidation to generate energy. In sepsis, marked fluctuations in carnitine
levels may reflect disturbances in energy metabolism and mitochondrial function, both
critical components of the host’s response to severe infection. The significant difference in
carnitine levels between septic patients and healthy individuals underscores the disruption
of energy metabolism in the complex pathophysiology of sepsis. This disparity likely
reflects mitochondrial dysfunction and energy deficiency, which are central to the organ
dysfunction characteristic of sepsis.
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This plot highlights the metabolites with the highest influence on the model, pro-
viding insights into their roles in sepsis prediction and emphasizing the variability in
their contributions among the patients. When evaluated with comprehensive performance
measures, KTBoost was chosen as the optimal prediction model because it achieved the
best performance in sepsis prediction. According to the KTBoost model SHAP annotations,
it was determined that low levels of glutamate, myo-Inositol, glucose, GTP, and glutamine
metabolites, in addition to low levels of carnitine, ADP, formate, AMP, and O-acetylcholine
metabolites, increased the risk of sepsis.
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Figure 5 presents the correlation graphs expressing the relationships between the three
most important biomarker candidate metabolites for sepsis (carnitine, glutamate, and myo-
inositol) and other metabolites. Since parametric conditions (normal distribution) could
not be provided, the Spearman rho coefficient was calculated to examine the relationships
between the metabolites. The results show that carnitine has a positive correlation with
compounds such as O-phosphocholine, creatine, and alanine, and a negative correlation
with lactate and GTP. It highlights that glutamate is positively correlated with glucose,
formate, and glycine but negatively correlated with choline and lactate. Furthermore, it
shows that myo-inositol is positively correlated with ATP, O-acetylcholine, and glutamine
and negatively correlated with glutamate and formate. Correlation plots highlight the
interconnected roles of biomarker candidate metabolites in sepsis, which is important for



J. Clin. Med. 2024, 13, 5002 12 of 19

understanding their interactions and potential effects on sepsis pathophysiology at a more
molecular level (Figure 5).
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itive correlation; Blue: negative correlation.
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4. Discussion

Sepsis is a systemic inflammatory response syndrome induced by the infiltration of
bacteria and other pathogenic microorganisms into the bloodstream. It often occurs as a
secondary complication to other severe illnesses and significant infections of organs or
tissues. Currently, there are no reliable biomarkers for the early detection and diagnosis
of sepsis, which can rapidly become fatal, making the development of new identification
methods critical [71]. Recent models, both in use and under development, based on patient
vital signs and routine clinical and laboratory data, have shown promising results for the
early detection and prediction of sepsis [72,73]. Studies on gene expression, inflammatory
responses, and metabolomics in non-routine datasets have further enhanced these analyses,
providing significant insights into treatments such as steroids [74–77].

In this study, we evaluated platelet metabolomics panel data from patients with sepsis
and healthy individuals to identify platelet metabolomics biomarkers with diagnostic
potential. Platelets play crucial roles in combating infection and contribute to various
pathways that bolster the immune response and trigger coagulation. Thrombocytopenia
is a common occurrence in ICU patients with sepsis. In addition, platelets are more
accurately represented by platelet metabolites rather than total blood metabolites and
the components of metabolites in biofluids [7]. Thus, the present study was centered
on platelet metabolomics. To our knowledge, this is the first study to examine platelet
metabolomics biomarkers in sepsis patients using XAI approaches. Following extensive
data preprocessing, we employed XGBoost and LightGBM, two high-performing tree-based
algorithms for omics data, as well as KTBoost, a novel approach combining kernel and tree
methods. The KTBoost model outperformed the other models in sepsis detection, achieving
sensitivity (0.840), specificity (0.960), and AUC (0.943) values. High sensitivity indicates
a low false negative (FN) rate. False positive and false negative errors are common in
comparative biological research; thus, determining the likelihood of a true effect being
significant is crucial. A lower FN rate is particularly important in sepsis cases, as minimizing
missed diagnoses (false negatives) is a primary objective of this research.

Using SHAP values and SHAP plots, we demonstrate that our approach effectively
highlights the key features and interprets the machine learning results. The SHAP analysis
reveals that the ten most significant biomarker candidate platelet metabolites associated
with sepsis and crucial for the model’s decision are glutamate, myo-inositol, glucose, GTP,
glutamine, carnitine, ADP, formate, AMP, and O-acetylcholine metabolites. SHAP values
measure the relevance of each output by evaluating all feature combinations, delivering
consistent and locally accurate values for each feature in the prediction model. This anno-
tation approach is used with KTBoost’s black-box tree-integration model, enabling users
to better understand the algorithm’s decision-making process. The precise information
on biomarker candidate metabolites received from the findings and annotations boosts
doctors’ faith in the algorithm or model and assists in making more informed judgments.
Furthermore, domain-specific cumulative feature importance and visualized explanations
of feature significance help physicians’ intuitive grasp of the KTBoost model’s essential
features and its prediction results. Our approach, given key platelet metabolomics biomark-
ers, can intuitively explain to clinicians which specific characteristics of sepsis patients
increase their disease risk. This predictive approach holds potential in clinical practice by
personalizing disease prevention and improving treatment strategies.

The research has shown the significant potential of machine learning approaches in
predicting sepsis outcomes when applied to omics data. According to reports, the most
effective machine learning model for predicting transcriptomics and sepsis risks is the com-
bination of CatBoost and SHAP [78]. Furthermore, accurate predictions of sepsis survival
were made possible by combining metabolomics data with machine learning techniques
like support vector machine, naive Bayes, k-nearest neighbors, decision tree, random forest,
and artificial neural networks. Of these, artificial neural networks demonstrated the high-
est accuracy rates [79]. However, these studies were not based on platelet metabolomics
biomarkers and XAI for the interpretable prediction of sepsis.
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The observed connections among metabolites in our research, including those involv-
ing glutamate, carnitine, and myo-inositol, indicate a synchronized metabolic response that
is closely linked to the underlying causes of sepsis. These metabolites play essential roles in
vital processes like energy metabolism, oxidative stress, and immunological signaling, all of
which are disturbed during sepsis. For example, increased levels of glutamate are related to
the inflammation of neurons and encephalopathy associated with sepsis, whereas carnitine
plays a crucial role in the functioning of mitochondria, which is a major area of malfunction
in individuals with sepsis. The relationships seen among these metabolite families are not
just accidental, but rather provide an indication of the intricate metabolic network that is
responsible for sepsis pathophysiology. Gaining an understanding of these linkages allows
us to place these biomarkers in the larger context of sepsis processes, emphasizing the
possibility of developing more focused diagnostic and treatment approaches [80].

Tang et al. (2018) utilized a community method to find biomarkers that might enhance
mortality forecasts by evaluating gene expression patterns. Cano-Gamez et al. (2022)
established a stratified immune dysfunction score based on whole-blood gene expression
for acute infection patients. This score predicts patient outcomes and shows how immune
system dysregulation progresses sepsis. These papers demonstrate the usefulness of gene
expression analysis to improve sepsis prognosis and therapy [81,82].

Our study has a few limitations. First, this is a single-center study, and specific metabo-
lites should be investigated further and confirmed in multicenter trials before widespread
implementation. The study’s cross-sectional approach hampered its ability to assess time-
dependent platelet metabolomics alterations. Future research may look into the effects
of these metabolites on sepsis throughout time. Another limitation was that the control
group was small compared with the sepsis group, and in this case, synthetic samples
were generated for the control group with the SMOTE-Tomek approach to avoid biased
results of the ML approaches. The results can be strengthened with more control sam-
ples in future studies. Another limitation is that the study did not differentiate between
severe, moderate, and mild sepsis. Although our current model was designed to differ-
entiate between septic and non-septic (healthy controls) patients, the potential for further
stratification of sepsis severity should be investigated in future studies. In addition, for
platelet metabolite analysis, concentrations in the range of 107 to 108 platelets per sample
are often necessary. This equates to a volume of around 500 µL to 1 mL of platelet-rich
plasma (PRP) or platelet lysates. While there is no strict threshold for the minimum platelet
concentration, ensuring a high enough concentration to achieve a good result is critical for
effective NMR analysis and reliable machine-learning model performance. Low platelet
levels can introduce significant challenges, including poor data quality, model overfitting,
and biased metabolite detection. In the current study, the results related to inflammatory
cytokines such as IL-1B, IL-18, IL-10, p-selectin, PF4, and RANTES were not examined,
and the effect of platelet metabolomics was examined. In the future, studies using data
related to these cytokines together with omics technologies are needed. Future studies will
aim to include a larger cohort with groups stratified according to sepsis severity. This will
include detailed clinical data collection to accurately classify patients into mild, moderate,
and severe sepsis categories. We plan to further develop our model to distinguish between
different sepsis severities by integrating additional clinical parameters and expanding the
metabolomics dataset. This will involve advanced ML techniques and possibly integra-
tion of other omics data (proteomics, transcriptomics) to capture a more comprehensive
biosignature of sepsis severity.

5. Conclusions

This research offers many important future applications. Combining these applications
with routine clinical and biological information can increase early diagnosis and accuracy,
improve clinical outcomes, suggest physiological pathways and treatment targets, inform
targeted clinical trial participation, and optimize clinical management. In conclusion, XAI is
promising for its potential to better target the response to sepsis through precision medicine.
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