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ABSTRACT The emergence of Tiny Machine Learning (TinyML) has positively revolutionized the field
of Artificial Intelligence by promoting the joint design of resource-constrained IoT hardware devices
and their learning-based software architectures. TinyML carries an essential role within the fourth and
fifth industrial revolutions in helping societies, economies, and individuals employ effective AI-infused
computing technologies (e.g., smart cities, automotive, and medical robotics). Given its multidisciplinary
nature, the field of TinyML has been approached from many different angles: this comprehensive survey
wishes to provide an up-to-date overview focused on all the learning algorithms within TinyML-based
solutions. The survey is based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) methodological flow, allowing for a systematic and complete literature survey. In particular,
firstly, we will examine the three different workflows for implementing a TinyML-based system, i.e., ML-
oriented, HW-oriented, and co-design. Secondly, we propose a taxonomy that covers the learning panorama
under the TinyML lens, examining in detail the different families of model optimization and design, as well
as the state-of-the-art learning techniques. Thirdly, this survey will present the distinct features of hardware
devices and software tools that represent the current state-of-the-art for TinyML intelligent edge applications.
Finally, we discuss the challenges and future directions.

INDEX TERMS TinyML, edge intelligence, efficient deep learning, embedded systems.

I. INTRODUCTION
Over the past decades, a prodigious amount of research
has been invested in improving embedded technologies to
enable real-time solutions for many complex and safety-
critical applications [1]. In this regard, hardware-specific
(e.g., Edge TPUs) and Micro-Controller Unit (MCU)-based
embedded systems have earned a lot of attention, primarily
due to their low power requirements and high performance,
and secondarily for their maintainability, adaptability, and
reliability [2]. Their integration with sensors enables the
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perception of the external world, their connection with
activators allows different kinds of interventions, and their
interconnection unlocks distributed intelligence.

Embedded technologies are essentially the pillars of the
Internet of Things (IoT) [3] and the associated smart-X appli-
cations: smart buildings [4] and cities [5], smart metering [6],
agriculture [7] and environment [8], smart health [9], smart
logistics [10], and smart retail [11]. More recent advances in
the Industrial Internet of Things (IIoT) [12] have facilitated
the real-time intelligent processing of massive amounts of
data, promoting fields such as autonomous driving [13],
smart factories [14], anomaly detection [15], and predictive
maintenance [16].
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FIGURE 1. A glance at the latest hardware developed for TinyML reveals a notable trend: recent advances focus on minimizing power
consumption. This implies that the primary emphasis is enabling ML to run on devices with limited resources.

When we talk about the intelligence of onboard embedded
technologies, we mean the learning algorithms that allow
devices to make reasoned decisions based on acquired data.
Unfortunately, Machine Learning (ML) on tiny devices is
substantially hard due to severe architectural, energetic, and
latency constraints [17]: the available memory averages a few
kilobytes, the accessible power is in the order of milliwatts,
and often real-time responses must be guaranteed [18], as in
safety-critical systems like health care devices, autonomous
driving, or human-robot collaboration in industrial envi-
ronments, where delayed decisions may have disastrous
consequences, ranging from compromised patient well-being
and increased road safety hazards, to operational disruptions.

From these premises, since 2018, the notion of Tiny
Machine Learning (TinyML) has begun to take shape
with the following acknowledged definition: TinyML is a
paradigm that facilitates running ML on the edge devices
with minimal processor andmemory requirements; hence, the
power consumption of such systems is expected to be within a
few milliwatts or less [19]. Based on our literature search, the
hardware requirements formemory footprint are below 1MB,
mostly between 64 KB and 256 KB of memory. In terms of
performance, the computing units on board of such devices
are usually in the range of 40 to 400 MHz.

The challenges for TinyML practitioners are formidable:
e.g., in modern neural networks, among the best currently
available technologies, the number of required parameters
have skyrocketed to the order of billions [20], with larger
networks having better results and broader applicability.
Unfortunately, the energy required to run these networks
is proportional to their size, making this trend of scaling
up neural networks energetically unsustainable at large

scales [21]: another reason why TinyML has to be considered
as a necessary, other than promising, research direction.
In this sense, TinyML allows developers to deploy complex
algorithms in really constrained devices that are limited but
also cheap, frugal, and portable, making them attractive for
many use cases. Recent market trends (see Figure 1) confirm
this rationale: priority has been given to deploying hardware
that is less power-hungry and constraining: truly, TinyML has
to be tinier.

When it comes to developing a TinyML solution, there
are two main classical workflows, namely ML-oriented and
HW-oriented, and a third more recent approach, co-design.
The classical workflows are widely adopted and separate
the ML framework design from its hardware incarnation [1],
[22]. In the first approach, ML experts create, train, and
test a suitable model for the problem domain, optimize its
parameters, and then deploy this solution on a satisfactory
device. In the second one, the hardware platform is not
prearranged, and development aims to produce optimized
hardware by employing specially reduced models and
techniques.

The novel workflow is named co-design because ML
experts and hardware engineers are involved together from
the start in the solution design and actively exchange
operational knowledge [23]. Hardware engineers approach
the mathematical notions underlying the ML algorithms and
propose suitable hardware components for efficient transla-
tions. Meanwhile, ML researchers examine the cutting-edge
resources they can exploit and potentially re-design their
algorithms to seamlessly integrate hardware and software,
where the form and content are malleable and shape each
other. Here is where shape and content are mixed together,
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FIGURE 2. The number of papers on TinyML published so far and the surveys on the topic. As evident, there is an exponential growth in
the number of research papers, and it’s worth noting that our survey not only stands as the most recent but also uniquely concentrates on
the ML perspective, distinguishing it from all other existing surveys in the field.

with a blended recipe that constitutes the state-of-the-art of
contemporary TinyML. Specifically, in Section IV, we will
detail each of these workflows.

A. MOTIVATION AND CONTRIBUTIONS
We offer two contributions with this survey: we first provide
an up-to-date overview of the rapidly evolving state-of-the-
art in the field of TinyML. Since the number of research
articles published on TinyML is increasing exponentially (see
Figure 2), the number of surveys and papers on the subject
is following suit. Specifically, we catalog the literature up to
January 2024.

As a further and unique contribution, this survey empha-
sizes the ML point of view, not only reporting the very
latest in TinyML frameworks but also suggesting recent
variations and advancements in the ML technologies that a
TinyML practitioner may want to explore to improve on the
state-of-the-art: e.g., topics like meta-learning [24], Rational
Activation Functions (RAFs) [25], and Versatile Learned
Optimizers (VeLO) [26]. In this regard, we provide insights
into these ML methodologies and address the most recent
developments as potential TinyML future breakthroughs.

Readers will learn principles around designing TinyML
model architectures, hardware-aware training strategies,
effective inference optimizations, and benchmarkingmethod-
ologies. This unique combination equips readers in both
academic and industrial spheres with universal concepts
essential for implementing TinyML in production settings.

B. ARTICLE ORGANIZATION
The survey is organized as follows. Section II provides
an extensive overview of the existing surveys on TinyML,
indicating the differences with this work, while Section III
describes the article selection criteria used in creating this
systematic review. Section IV clarifies what it means to

design a TinyML solution in terms of workflows, as we
briefly explained in the previous subsection. Section V is
the survey’s core and presents the collection of algorithms
and techniques to enable efficient ML on tiny devices.
Section VI reports several state-of-the-art hardware specifi-
cations, libraries, and software platforms for TinyML appli-
cation development. Section VII summarizes the overview
and proposes potential future directions. Finally, Section VIII
concludes the survey.

II. EXISTING SURVEYS
In this section, we provide discussions with the most recent
surveys [1], [22], [27], [28], [29], [30], [31], [32], [33], [34],
[35], [36], [37], [38], [39], [40], [41], [42], [43].

A. HARDWARE PERSPECTIVE
From the point of view of hardware technologies, we can
distinguish TinyML solutions based on Application-Specific
Integrated Circuits (ASICs), MCUs, and Field Pro-
grammable Gate Arrays (FPGAs), in increasing order of
power consumption (see Figure 1). Specific surveys exist for
each one of these technologies.
ASIC is the focus of [42]. The RISC-V, i.e., the

fifth generation of the Berkeley Reduced Instruction Set
Computer (RISC) architecture, has been widely adopted
by many researchers and commercial users, with several
openly available implementations to choose from. Selecting
the appropriate combination of RISC-V processor cores,
architectures, configurations, andML software frameworks is
not trivial. To facilitate this process, the survey discusses the
various RISC-V-based hardware implementations in terms of
available cores and System-On-Chip (SoC) in conjunction
with the software frameworks and software stacks for
SoC generation. It includes a review of the latest released
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frameworks supporting open hardware integration for ML
applications.
MCU and TinyML are the subjects of [28], [33], and

[34]. In [28], the authors analyze the TinyML frameworks
for integrating ML algorithms within MCUs and present a
real-world case study. They first give a small overview of
the ecosystem of applications in which TinyML techniques
can be applied and then highlight the opportunities in various
sectors currently undergoing a digital transformation. Finally,
they propose a Multi-Radio Access Network (Multi-RAT)
architecture for smart frugal objects: i.e., sporadically mes-
saging interconnected devices with constrained resources.

In [33], the authors survey, compare, and evaluate seven
different recent and popular MCUs on a face recognition
task based on a Convolutional Neural Network (ConvNet)
workload. Their evaluation considers four key metrics
(power efficiency, energy per inference, inference efficiency,
and inference time) that can be used to benchmark ML
applications on MCU-based devices.
FPGA is considered in [41]. The authors present ‘‘CFU

Playground’’, a full-stack open-source framework that
enables the rapid and iterative design of ML accelerators
for embedded ML systems through Custom Function Units
(CFU), i.e., hardware that augments the standard functions
of a CPU. This toolchain integrates open-source software,
register transfer level generators, and FPGA tools for
synthesis, place, and route. To illustrate their approach, they
apply their methodology to two common TinyML use cases:
image classification and keyword spotting. In the first case,
they show how to easily obtain iterative hardware-software
improvements and, in the second, how to co-optimize the
CPU and the CFU together in severely resource-constrained
environments.

B. APPLICATION PERSPECTIVE
In relation to applied TinyML, we review surveys in the fields
of IoT, environmental challenges, predictive maintenance
(PdM), anomaly detection, and healthcare.

In [1], the authors provide background information on the
benefits that TinyML can offer to the IoT panorama, such
as low latency, effective bandwidth utilization, strengthened
data safety, and enhanced privacy. Then, they show how
to implement TinyML-as-a-service, i.e., an IoT device that
concretely takes part in the execution of intelligent services.
In [35], the authors explore the integration of TinyML with
network technologies such as 5G and LPWAN. Ultimately,
we anticipate that this analysis will serve as an informational
pillar for the IoT/cloud research community and pave the way
for future studies.

Of particular interest in recent years, TinyML has been
applied to environmental challenges [38] such as global
warming, climate change, natural resource scarcity, and
pollution monitoring. With their ability to deploy intelligent
analysis together with sensing devices, TinyML provides
the natural evolution to data gathering in the environmental
domain to protect our societies and the natural world. This

survey elaborates on the role of TinyML devices and their
limit in this context.

In [32], the authors investigate techniques used to optimize
TinyML-based PdM systems. They describe PdM and how
TinyML can provide an alternative to cloud-based PdM,
showing commonly used libraries, hardware, datasets, and
models. Furthermore, they show known techniques for
optimizing TinyML models.
Anomaly detection focuses on detecting abnormal behavior

in the equipment by analyzing the historical data. In [29],
the authors highlight the current state-of-the-art works on
TinyML for anomaly detection, providing suggestions on the
research direction and introducing potential future endeavors.

An essay on TinyML approaches for healthcare is
presented in [30]. The authors collect references related to
i) the selection of patients for investigation, monitoring, and
protocol adherence, ii) the collection, processing, analysis,
and management of data, and iii) drug validation trials,
followed by the solutions they bring, especially using
wearable devices.

Finally, in [43], the authors present an overview of
many TinyML applications and related research efforts.
Specifically, the survey builds a taxonomy of TinyML
techniques that have been used so far to bring new solutions
to various domains, such as healthcare, smart farming,
environment, and anomaly detection.

C. FIELD VIEWPOINT
In [27], the authors discuss the challenges and directions
toward developing a fair and useful TinyML benchmarking
suite. The group has selected four target use cases: audiowake
words, visual wake words, image classification, and anomaly
detection. For each use case, reference datasets and baselines
were also selected. The benchmarking suite provides results
regarding the model’s accuracy, inference latency, and energy
consumption. Notably, this is one of the few literature reviews
that presents datasets that can be particularly useful for the
benchmarking and design of TinyML systems.

In [31] and [37], the authors present the background of
TinyML, list the tool for supporting TinyML, and the key
enablers (e.g., model compression and quantization) for the
improvement of TinyML systems. However, neither of them
is focused on advanced learning aspects for TinyML, as well
as establishedHW-SWco-design support to enhance TinyML
systems, making our survey clearly distinct from these two.

In [36], the authors aggregate the key challenges reported
by TinyML developers and identify state-of-art Software
Engineering (SE) approaches that can help address key
challenges in TinyML-based IoT embedded vision. These
challenges include the lack of curated datasets derived from
IoT-embedded vision sensors, the application portability
across different devices and vendors, and the compiler
choices, since embracing sophisticated compilers can help
optimize for specific MCU targets. However, this affects
portability, and hence, it challenges large-scale deployment
under availability constraints.

VOLUME 12, 2024 23409



L. Capogrosso et al.: Machine Learning-Oriented Survey on TinyML

FIGURE 3. PRISMA-based flowchart of the retrieval process. The image
has been changed from the standard flowchart solely for aesthetic
purposes.

In [39], the authors focus on edge training and edge infer-
ence. This paper provides a survey of existing architectures,
technologies, frameworks, and implementations in these two
areas and discusses existing challenges, possible solutions,
and future directions.

Finally, in [40], a review of deployment techniques for
TinyML devices are provided, with also numerical insights
to prove which deployment workflow is more promising
given the constraints of the models and input data (e.g.,
sparsity, compression, etc.). They also inspect the engineering
of reducing the computation and memory footprint for the
inference of already existing models. Furthermore, they set
up some case studies to present the deployment of several
famous models with and without various techniques (such as
compression and feature projection), with numerical results
to highlight the benefits of each technique.

Most of the previously listed works assume that TinyML
can only run inference on data. Despite this, growing interest
in TinyML has led to work that makes them reformable, i.e.,
work that permits TinyML to learn from new data points once
deployed. This originates from the need to combat model drift
– the inevitable degradation of a model’s performance due to
the ever-changing nature of data. In [22], the authors provide
a survey on reformable TinyML solutions.

It should be noted that the majority of these works are
not conducted based on a well-defined and widely known
Systematic Literature Review (SLR), e.g., using Preferred
Reporting Items for Systematic reviews and Meta-Analyses
(PRISMA) [44], except [36] and [43].

III. SELECTION CRITERIA
This section describes the selection criteria of this systematic
review, i.e., how the papers that were considered were
selected.

Only publications in the English language were consid-
ered, and all studies had to be published in peer-reviewed
journals or conference proceedings. The search strategy and

selection criteria were developed in consultation with all
authors through the Rayyan software tool for systematic
literature reviews. Any disagreements between authors were
resolved through discussion and consensus. To gather up-
to-date knowledge from a broad spectrum of information
sources, this comprehensive ML-oriented survey on TinyML
was conducted following a widely known SLR methodology
based on the PRISMA guidelines, the golden standard
for improving transparency, accuracy, and completeness in
documented systematic reviews and meta-analyses.

The included studies were extracted from the following
five databases: Web of Science, Scopus, IEEE Xplore,
ScienceDirect, and Google Scholar, from January 2018 to
January 2024. All searches included the following terms:
‘‘TinyML’’, ‘‘efficient machine deep learning’’, ‘‘neural net-
work optimization’’, ‘‘iot machine deep learning’’, ‘‘embed-
ded machine deep learning’’, ‘‘edge machine deep learning’’
and ‘‘mcu machine deep learning’’. These concepts form the
basis of the inclusion criteria for selecting studies considered
by the systematic review. Therefore, all the cited papers in
this work were found using the above keyword combination.

Our keywords produced a total of 1,047 records. Figure 3
illustrates the PRISMAflowchart, which serves as a transpar-
ent and replicable means of reporting the systematic review’s
search and selection process. First, we removed all duplicate
papers (739 excluded). Next, we excluded all the papers
marked as ineligible by the automation tool (71 excluded)
and not accessible papers (e.g., requiring paid access) (23
excluded). After the title and abstract screening process,
97 articles were selected (117 excluded). The number of
records not found is 11. As a result, 86 were eligible.

Finally, out of the 86 reviewed papers, none of them were
found to be survey papers on ML-oriented techniques for
TinyML. As a result, we claim that this is the first systematic
review to address this topic.

IV. TinyML WORKFLOWS
This section presents an overview of how TinyML-based
systems are built. The two intrinsic ingredients of such
systems are the ML model and the hardware platform.
Therefore, the natural approach for developers in the field
is to start working from the most familiar component.
Amore efficient but challenging alternative is to develop both
sides from the beginning and create an integrated solution.
As anticipated in Section I, the two traditional workflows for
TinyML solutions areML-oriented and HW-oriented, while
the holistic methodology is called co-design.
In theML-orientedworkflow (see Figure 4.a), the majority

of the expertise is in the design, adaptation, training, and
evaluation of ML models, while the choice of hardware
platforms is fixed or limited, due to necessity or specific
industrial requirements [45], [46], [47]. A typical example
of this workflow is the porting of modern neural network
models to embedded devices [48]. This requires extensive
experimental investigations for the implementation to be
efficient in terms of power consumption, latency, andmemory
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FIGURE 4. The three workflows for implementing a TinyML-based system: (a) ML-oriented, (b) HW-oriented, and
(c) co-design. In the latter, two separate working groups, G1 (ML specialists) and G2 (HW specialists), collaborate together.

usage, all resources in short supply on such devices compared
to cloud solutions.

In particular, we identify the following stages in the
ML-oriented workflow:

• Model design: ML practitioners formulate, train, and
validate a comprehensive model suitable for the problem
domain. This stage is highly dependent on the nature of
this domain but disregards on purpose the specifics of
the hardware platform to achieve maximum generaliza-
tion and performance.

• Model optimization: This stage consists of different
strategies to compromise performance for efficiency,
discussed in more detail in Section V.

• On-host evaluation: The optimized model is evaluated
against the performance parameters required in the
specifications, and if found lacking, it is re-designed.

• Target deployment: Specialized optimizations are
applied to the model to increase the inference efficiency
by leveraging specific hardware device features.

• Target evaluation: The final system evaluation in
production is performed.

On the other hand, in the HW-oriented approach (Fig-
ure 4.b), the developers are mainly focusing on designing
enhanced hardware platforms that are optimized for embed-
ded applications in order to run current and future state-
of-the-art ML algorithms. This often involves investigating
the bottlenecks in an existing architecture with regard to
computations within anML framework, like neural networks,
and the design of hardware accelerator modules to improve
throughput and consumption: e.g., reducing computational

complexity in convolution layers [49], [50], efficient, low-
power and feature-rich perceptrons [51], enhanced data
caches [52]. In other cases, the developers design new
hardware platforms optimized for embedded applications
with extended digital signal processing capabilities already
integrated [53]. These, in turn, require the development of
optimized computing libraries [54], [55] to extract the most
performances.

A HW-oriented workflow may have the following stages:

• Hardware design: Hardware practitioners create the
design for an architecture, or accelerator module in an
architecture, that improves performances for a given
class of computing problems or signal processing
algorithms.

• Target deployment: Assessment of the performance of
the optimized hardware on benchmarks of the given
computing problems, mostly in simulated environments.
In case of unsatisfying results, return to the design stage.

• Target evaluation: Production and evaluation of the
physical hardware devices.

Finally, in the co-design workflow (Figure 4.c), the
approach is to integrate both sides of the development
from the start to gain further improvements in perfor-
mance and resource consumption. In particular, while model
optimization and hardware design are separate steps in
the previous workflows (Figure 4.a and Figure 4.b), here
they are intertwined and co-optimized: in some cases to
create bespoke architectures for specific ML algorithms on
FPGAs [41], in other cases to allow neural network compu-
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FIGURE 5. Our proposed taxonomy covers the learning panorama under the TinyML lens and includes three key domains:
model optimization, model design, and learning algorithms.

tations on customized accelerators using analog Compute-
in-Memory (CiM) hardware through HW-informed training
methodologies [56].

The co-design workflow may be described with the
following steps:

• Problem design brief: Two separate working groups,
G1 (ML specialist) and G2 (HW specialist), define the
capabilities and requirements of the target device.

• Problem analysis: The two groups specify their state-
of-the-art architecture after exploring the possible alter-
natives.

• Co-design (i.e., feasibility, prototype, and evaluation)
step: In a cooperative and concurrent design process,
specific hardware and software components for selected
sections of an application must be chosen with a global
view of the system.

• Target evaluation: Final evaluation of the model-
specific and target-specific optimizations for the device
in production.

V. LEARNING PANORAMA UNDER THE TinyML LENS
To leverage the full potential of TinyML, exploring and
understanding the complexities involved in designing and
optimizing ML models for specifically resource-limited
devices is essential. This is true for traditional ML algo-
rithms but is particularly relevant for approaches based on
representation learning, such as those of Deep Learning (DL)
algorithms. As a subset of ML, DL is increasingly used for
many real-world applications, and there is a growing number
of research papers on TinyML involving DL.

Thus, the learning techniques presented in the following
sections are usually applied to reduce the complexity of
the ML and DL algorithms so that they can run on

TABLE 1. Popularity over the years of model optimization techniques in
terms of research contributions reviewed in this survey.

resource-limited hardware. Since TinyML hardware has
serious limitations concerning performance and every aspect
of implementation, learning techniques become crucial for
effectively implementing TinyML algorithms. We propose
the taxonomy shown in Figure 5, which covers the learning
panorama under the TinyML lens. In the following sections,
we will delve into the macro-areas of model optimization,
model design, and learning algorithms.

A. MODEL OPTIMIZATION
Model optimization techniques tailored for TinyML gener-
ally produce smaller memory footprints, lower energy con-
sumption, and reduced inference latency. While ML typically
requires significant computational resources, TinyML-based
systems are instead limited in memory, processing power, and
energy. The following paragraphs explore techniques such as
pruning, quantization, knowledge distillation, and Hyper-
Parameter Optimization (HPO), that enable efficient model
deployment. Table 1 provides an overview of the popularity
of these techniques within the TinyML field, considering the
referenced research contributions.

1) PRUNING
This process eliminates weight connections within a network
to accomplish different goals like reduced model footprint
and accelerated inference speed [64]. Despite a lack of
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standardized benchmarks and metrics due to differences
in goals favoring different design choices and evaluations,
pruning is effective at compressing models while keeping (or
sometimes increasing) accuracy [62]. Pruning techniques can
be applied during the training process or after the model has
been trained. During training, pruning regularizes the model,
mitigating the risk of overfitting [59]. Instead, Post-training
pruning is employed to eliminate redundant connections and
parameters from the model, enhancing its efficiency and
accelerating its execution [61]. We identified in the current
literature three main approaches: weight pruning, neuron
pruning, and structured pruning.

Specifically, weight pruning is a technique that eliminates
connections or weights in a model falling below a given
threshold for weight size [60]. Approaches based on this
technique are gaining interest due to their immediate appli-
cability [65], [66]. Similarly, neuron pruning discards entire
neurons based on a given threshold of importance [57] and
structured pruning removes entire structures or sub-networks
from a model [58].

2) QUANTIZATION
This involves performing computations and storing tensors at
lower bit widths compared to floating point precision [73].
By utilizing fewer bits to represent data, such as 16-
bit floats or 8-bit integers instead of 32-bit floating-
point numbers, quantization enables more compact model
representations and the utilization of efficient vectorized
operations on various hardware platforms [69]. This tech-
nique is particularly beneficial during inference, significantly
reducing computation costs while maintaining inference
accuracy [67]. Quantization can be achieved through two
approaches: Quantization-Aware Training (QAT), which
involves re-training the model, and Post-Training Quantiza-
tion (PTQ), which applies quantization without re-training.
QAT involves quantizing a pre-trained model and subse-

quently performing a fine-tuning step to recover any accuracy
loss caused by quantization-related errors, which may impact
model performance [74]. The QAT process consists of two
stages: pre-training and fine-tuning. In the pre-training stage,
the network is trained using standard techniques in a full-
precision floating-point format (32-bit) to learn data patterns
and develop robust feature representations. In the fine-tuning
stage, the network is converted to a quantized representation,
combining fixed-point and floating-point arithmetic. This
adjustment allows the network to adapt to the quantized
representation while preserving accuracy. QAT encompasses
different methods, including hybrid [70], layer-wise [94], and
adaptive approaches [95].
PTQ reduces memory usage and computational costs

by converting model weights and activations from high-
precision floating-point to low-precision numbers [68].
Initially, the model is trained using floating-point repre-
sentation, followed by quantization of weights and activa-
tions using techniques like k-means clustering or vector

quantization [71]. Adopting low-precision numbers, such as
8-bit integers, significantly reduces memory requirements,
enabling more efficient model execution and suitability for
resource-constrained environments [72]. These techniques
are also known as Dynamic Range Quantization (DRQ) or
Full-Integer Quantization (FIQ), depending on whether only
the weights or also the inputs and activation functions are
being quantized to 8-bit integers.

Like in the case of pruning, the application of quantization
techniques allows for immediate deployment of already
existing models to resource-constrained devices in various
fields like computer vision [76], [77] and healthcare [78].

3) KNOWLEDGE DISTILLATION
This technique transfers knowledge from a large, complex
model (teacher) to a smaller, simpler model (student) [84].
This process is important for various reasons, such as reduc-
ing computational demands or enhancing model performance
on specific tasks. Knowledge types, distillation strategies,
and teacher-student architectures are vital factors in student
learning during knowledge distillation. The subsequent
paragraphs introduce the key categories of knowledge types
and distillation strategies.

The extraction of knowledge from teachers and its utiliza-
tion for training student networks can be classified into three
categories: response-based, feature-based, and relation-
based. Specifically, response-based knowledge distillation
involves mimicking the final predictions of the teacher model
by capturing the neural response in the last output layer [87].
Feature-based knowledge expands upon this approach by
using both the outputs of the last layer and intermediate
layers to train thinner networks [81]. Finally, relation-based
knowledge takes a step further by exploring the relationships
between different layers or data samples in addition to the
outputs of specific layers in the teacher model [86].

The distillation schemes are also crucial for the student
learning process. Depending on the training strategy, the
following three different categories are presented: offline
distillation, online distillation, self-distillation. Offline dis-
tillation is a two-stage strategy, where the teacher model
is first trained on a set of training samples, and then the
trained teacher model is used to guide the student model by
extracting intermediate features or logits [80]. On the other
hand, online distillation is an end-to-end approachwhere both
the teacher and student models are updated simultaneously,
making it suitable when the teacher model is not significantly
larger or higher performing [85]. Finally, self-distillation is
a special case of online distillation where the teacher and
student networks have the same architecture [79].
In general, knowledge distillation is used to achieve a

good trade-off between small model size and an acceptable
accuracy [88]. For this reason, it is widely adopted in
several fields where existing models are well-performing
but unable to be deployed ‘‘as they are’’ in resource-
constrained hardware. This is the case with large scaling
requirements [89], bandwidth-limited domains [82], and
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TABLE 2. Popularity over the years of model design techniques in terms
of research contributions reviewed in this survey.

healthcare applications, where the trade-off between accuracy
and model size needs to produce a high accuracy model that
can fit the hardware requirements [83].

4) HYPER-PARAMETER OPTIMIZATION (HPO)
This technique automates the search for the optimal
hyper-parameter values of a model to enhance its perfor-
mance on a specific task [90]. Hyper-parameters, such as
learning rate, batch, and network size, are predetermined
parameters that influence model behavior [92].
HPO utilizes search algorithms, such as Grid Search,

Random Search, and Bayesian Optimization, to explore the
hyper-parameter space and identify the combination that
yields the best performance [91]. By automating the tuning
process, HPO reduces the effort and time required while
improving the model’s performance.

B. MODEL DESIGN
Unlike traditional ML models, TinyML models require
careful design considerations to balance accuracy and
efficiency. This section investigates techniques in model
architecture exploration, model simplification, and architec-
tural modifications that provide lightweight models capable
of delivering acceptable performances for their intended
applications. In the following paragraphs we explore Neural
Architecture Search (NAS), Rational Activation Functions
(RAFs), depth-separable convolution, and the attention
mechanism. Table 2 provides an overview of the popularity
of these techniques within the TinyML field, considering the
referenced research contributions.

1) NEURAL ARCHITECTURE SEARCH (NAS)
Neural architecture design plays a crucial role in data repre-
sentation and performance but heavily relies on researchers’
knowledge and experience. NAS automates the process
of discovering optimal architectures for specific needs,
replacing manual tweaking with an automated exploration of
more complex architectures.

NAS utilizes search algorithms, such as reinforcement
learning, evolutionary algorithms, and gradient-based
methods, to identify architectures that maximize performance
on a given task. Moreover, in [102], the authors argue that
it is beneficial to NAS approaches for resource-constrained
systems to also search for appropriate data granularity.
Specifically, data granularity refers to the concept that data
can be fed into an ML model at various levels of detail (e.g.,
an audio sample can be presented to an ML model using

different sample rates). By automating the search process,
NAS reduces the time and effort required for network design
and optimization, leading to improved task performance [99],
[100], [101], [103].
For example, in these works [97], [98], [104], NAS

algorithms targeted specifically to microcontrollers are
investigated, demonstrating that NAS promises to help design
accurate ML models that meet the tight MCU memory,
latency, and energy constraints [96].

2) RATIONAL ACTIVATION FUNCTIONS (RAFs)
Activation functions play a central role in DL since they
form an essential building stone of neural networks. Thus,
identifying new activation functions that can potentially
improve the results is still an open field of research.
Recently, RAFs have awakened interest because they were
shown to perform on par with state-of-the-art activations on
image classification [105]. They are trainable in an end-to-
end fashion using backpropagation and can be seemingly
integrated into any neural network in the same way as
common activation functions (e.g., ReLU). In other words,
the key idea is to involve the activation functions in the
learning process together (or separately) with the other
parameters of the network, such as weights and biases.

RAFs have several advantages over standard activation
functions [106]. For example, they can provide better approx-
imation capabilities, which can improve the performance of
the neural network [25]. Additionally, RAFs can have more
flexible shapes, making them better suited for modeling a
wider range of data distributions.

Thus, by exploring RAFs, which can potentially strike
a balance between accuracy and computational cost,
we could unlock new avenues for creating compact yet
high-performing models ideal for resource-constrained
contexts. Despite the scarcity of previous research on the
subject, examining RAFs might lead to ground-breaking
findings and innovative insights in refining TinyML models
for real-world applications.

3) CONVOLUTIONAL LAYERS
In the convolution operation, each filter convolves over the
input’s spatial and channel dimensions. The filter size is
typically denoted as sx×sy×inch. Standard convolutions have
a high computational cost, depending on the kernel and input
sizes. To optimize this process, depth-separable convolution
was introduced. Specifically, depth-separable convolution
involves two steps:

1) Performing a point-wise convolution with 1× 1 filters,
resulting in a feature map with a depth of outch.

2) Conducting a spatial convolution with sx × sy filters in
the x and y dimensions.

By stacking these two operations without intermediate non-
linear activation, the output shape remains the same as that of
a regular convolution but with significantly fewer parameters.
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This technique is utilized in models like MobileNet [107]
and MobileNetV2 [109], designed for mobile and embedded
devices. Using depth-wise separable layers instead of regular
convolutions, MobileNet reduces the number of parameters
and multiply-add operations, enabling efficient deployment
on mobile devices for computer vision tasks.

Furthermore, in [110] Tiny-Sepformer is presented, a tiny
time-domain transformer network that uses Convolution-
Attention (CA) block into the masking network to split the
layer into convolution path and attention path parallelly.
In particular, to further reduce the computation, the convo-
lution part of CA is a 1D depthwise separable convolution.

Finally, in [108] Xception is presented, an interpretation
that considers Inception modules in convolutional neural
networks as an intermediate step between regular convolution
and the depthwise separable convolution operation (a depth-
wise convolution followed by a pointwise convolution).

4) ATTENTION MECHANISM
While commonly associated with notable contributions to
machine translation tasks, this technique has been adapted
and adopted for a wide range of applications [115]. Its
fundamental purpose remains unchanged: allow the model
to focus on relevant input parts while generating outputs.
This enables the model to selectively attend to different
regions or features, thereby facilitating the extraction of
salient information from complex and high-dimensional data.
Beyond translation tasks, the attention mechanism has been
successfully employed in natural language processing [113],
image captioning [112], speech recognition [111], and more.
By incorporating attention into these tasks, models can
effectively handle long-range dependencies, capture context-
specific information, and improve overall accuracy and
robustness.

The beauty of the attention mechanism lies in its ability
to dynamically assign importance to different parts of the
input based on their relevance to the current context. This
adaptability allows models to prioritize relevant information
and disregard noise or irrelevant details, resulting in more
precise and context-aware predictions. Hence, attention
can be particularly useful in TinyML applications, where
resource-constrained devices require efficient and compact
models. In [114], the authors introduce AttendNets, a deep
self-attention architecture based on visual attention con-
densers, to deploy on-device visual perception tasks like
image recognition.

C. LEARNING ALGORITHMS
Among the many taxonomies covering the whole disci-
pline of ML, we focus first on the standard paradigms
of supervised, unsupervised, Self-Supervised (SSL), and
deep reinforcement learning. Moreover, for the particular
case of optimal usage of resources, we review weakly-
supervised learning, meta-learning and continual learning
techniques, detailing how these are useful for TinyML.
Also in this case, Table 3 provides an overview of the

popularity of these techniques within the TinyML field,
considering the referenced research contributions. Moreover,
for each technique, it also examines its application across
various domains. This analysis aims to underscore the most
promising approaches within each application domain.

1) SUPERVISED LEARNING
In this paradigm, a model learns from labeled training data
to make predictions. It involves training a model on input-
output pairs, where the input data is fed into the model, and
the corresponding desired output or label is provided. This
training process allows for robust models but at the cost
of requiring a large number of annotated data. Supervised
learning generally guarantees good performances when a lot
of training data is available, which usually also requires big
models with a high number of parameters capable of learning
the patterns present in the data.

In this sense, there are TinyML approaches that perform
supervised learning on big models and then distill the knowl-
edge on small models, leveraging the knowledge learned
from the big supervised models. This can be performed
by compressing a previously trained model (teacher) to
a smaller one (student) as in [118], in a process that is
similar to the knowledge distillation process (as explained
in Section V-A3), or by learning directly from a big model
leveraging parallel computation, as proposed by [119].
As stated before, supervised learning requires a lot of

annotated data to be effective. Despite that, some TinyML
works try to compensate for the lack of annotation on the
data. In this regard, in [120], the authors implement a method
for generating missing samples during training in the context
of human action recognition, where missing samples could
lead to inaccurate classifications. In [121], they propose to
take into account the uncertainty of future samples in a power
consumption management implant. This is performed by
trying to capture the underlying seasonal and daily changes
from some annotated data and then forecast the uncertainty
of future energy consumption.

2) UNSUPERVISED LEARNING
In this paradigm, a model learns from unlabeled data, striving
to discover patterns, structures, or relationships in the data.

Anomaly detection is one of the most common use cases
for the unsupervised learning approach. This makes anomaly
detection particularly interesting for TinyML, given the need
to process raw data streams as close to their origins in
their early stages. Specifically, the industrial environment
is where most of the research and development related to
anomaly detection is concentrated [123]. This is due to
the unique challenges encountered in such environments,
including limited or unreliable communication with the
cloud, uninterrupted connectivity, and potential obstacles
to accessing systems. In this sense, TinyML becomes of
necessary importance.

Besides the industrial environment, other real-world sce-
narios are interested in unsupervised anomaly detection, such

VOLUME 12, 2024 23415



L. Capogrosso et al.: Machine Learning-Oriented Survey on TinyML

TABLE 3. Popularity over the years of learning algorithms in terms of research contributions reviewed in this survey. For each technique, the distribution
of application domains highlights the most common use cases.

as physiological disorders [122] and climate conditions [124],
in which classic machine and DL models are proposed.

Specifically regarding DL approaches, in [125], a model
based on autoencoders has been engineered to be executed
on a microcontroller for detecting anomalies of top-load
industrial washing machines. The model has been ported to
an Arduino Nano microcontroller, achieving high accuracy
and recall performances with remarkably low power usage.

Finally, related to the empirical data analysis approach,
in [126], the authors propose an unsupervised TinyML
approach to detect anomalies on roads based on the concept
of Typicality and Eccentricity of Data (TEDA). Similar work
is presented in [127], where the focus lies on monitoring the
release of greenhouse gases from urban vehicles. Specifically,
a TinyML unsupervised methodology is employed to quan-
tify CO2 emissions for the evaluation of air quality within
urban environments.

3) SELF-SUPERVISED LEARNING (SSL)
Supervised learning is currently facing a bottleneck due to
its significant dependence on expensive manual labeling,
leading to issues such as generalization errors and spurious
correlations [128]. SSL has emerged as a highly promising
technique to address the aforementioned challenges, offering
a solution that eliminates the need for costly and expensive
manual annotations [130].
In SSL, the model is trained to predict certain aspects of

the input data without relying on external annotations. This
can be achieved by creating surrogate tasks such as, in the
case of image-based tasks, predicting missing parts of an
image, reconstructing an image from a corrupted version,
and predicting the relative position of image patches. In this
manner, the model is encouraged to capture the underlying
structure and semantics of the data.

The synergy between SSL and anomaly detection is
evident: by reconstructing or predicting parts of the data
without explicit labels, the model learns to capture the
inherent structure of the majority class, making it more

sensitive to deviations and anomalies. Furthermore, it is
particularly advantageous when labeled anomaly data is
scarce or expensive to obtain, as it enables the model
to generalize better and identify anomalies effectively in
diverse and complex datasets. Since anomaly detection faces
a scarcity of labeled anomaly examples, SSL leverages
unlabeled data to learn features that capture the underlying
structure of the data, effectively utilizing the abundance of
unlabeled data available.

Specifically, in [129], an SSL method for anomaly
detection on IoT devices is proposed. Their method is
based on a multivariate Long Short-Term Memory (LSTM)
autoencoder. The self-supervision is performed by detecting
data that significantly deviates from the learned distribution
and using them as anomalous data to enhance the detection
of such anomaly types.

4) DEEP REINFORCEMENT LEARNING
Reinforcement Learning (RL) is an ML technique that trains
a model (usually an agent) to take actions (policies) based
on the input. The way the model learns is usually based
on rewards assigned to a good policy that the model needs
to maximize in the form of a Markov Decision Process
(MDP) [131]. Integrated with DL, i.e., deep reinforcement
learning, the optimal policies are efficiently obtained. This
is useful because, in real-world applications, the space
state is high-dimensional, and the use of traditional RL
algorithms is not effective [151]. Specifically, in the case
of TinyML, the challenge is to embed the neural networks
implemented with deep reinforcement learning approaches
on small, constrained devices such as MCUs.

Transferring trained deep reinforcement learning mod-
els on constrained devices is possible using several
general-purpose techniques usually designed to alleviate
the system resource bottlenecks, as proposed by [132] in
their framework suite, making deep reinforcement learning
feasible for TinyML platforms. Moreover, in [133], the
authors propose the framework TinyRL to transfer the
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deep reinforcement learning knowledge into resource-limited
devices.

Cheap off-the-shelf MCU devices are particularly inter-
esting for deep reinforcement learning as they are widely
adopted in robotics. Deploying a DRL model on an
MCU-powered intelligent agent for autonomous driving, for
instance, is what the authors of [134] propose to achieve.
They present a deterministic policy gradient algorithm that
takes into consideration the computation energy and caching
costs jointly. This significantly reduces the energy cost of
the final model. Moreover, in the efforts of allowing deep
reinforcement learning on MCU, [135] proposes to train a
tiny ConvNet that can be easily deployed on an MCU, with
the aim of solving a physical, electrically actuated tilting
maze with repositionable walls.

5) WEAKLY SUPERVISED LEARNING
This paradigm lies between supervised and unsupervised
learning. It involves training a model using partially labeled
or noisy labeled data, with only limited or incomplete
supervision. Since collecting large amounts of accurately
labeled data can be expensive and time-consuming, weakly
supervised learning allows for training models with fewer
labeled samples, reducing the labeling costs associated with
data collection. This cost-efficiency is clearly advantageous
for TinyML applications, where resource constraints often
limit the availability of labeled training data.

For example, in [136], the authors propose a weakly
supervised learning solution for improving anomaly detection
performances. In particular, the training phase of the model
is improved by some labels in the dataset: in fact, a part of
the dataset is labeled, playing the role of ‘‘domain expert’’,
which allows weakly supervised learning. The ML model
used is an Isolation Forest, and these labels are used to remove
unnecessary trees and keep the most informative ones, i.e.,
those that give the best results.

In [137], another TinyML-based system for anomaly
detection in industrial environments is presented. In this
case, an ensemble of ML classifiers detects if a sample is
anomalous or not. This allows the system to be scalable w.r.t.
the size of the ensemble, with a predictable impact on the
memory footprint and delay in inference mode.

6) META LEARNING
Unlike traditional methods that solve tasks independently
using a fixed learning algorithm, meta-learning enhances
the learning algorithm itself based on experiences from
multiple learning episodes [24]. While various perspectives
on meta-learning exist, our focus here is on the optimization
approach known as neural-network meta-learning, which is
particularly relevant for TinyML applications. The neural-
network meta-learning design should take into account three
independent axes that represent the current meta-learning
landscape: meta-representation, meta-optimizer, and meta-
objective.

In particular, the concept of meta-representation [138]
involves learning a high-level representation that captures
the commonalities and patterns across different tasks. This
meta-representation is a knowledge base from which the
model can quickly adapt to new tasks with limited data.
For example, in [143] MetaLDC is proposed, a system
that meta-trains ultra-efficient low-dimensional computing
classifiers to enable fast adaptation on tiny devices with
minimal computational costs. Specifically, during the meta-
training stage, MetaLDC meta-trains a representation offline
by explicitly taking into account that the final (binary) class
layer will be fine-tuned for fast adaptation for unseen tasks
on tiny devices; during the meta-testing stage, MetaLDC
uses closed-form gradients of the loss function to enable fast
adaptation of the class layer.

On the other hand, the meta-optimizer [139] learns to opti-
mize the model’s parameters to facilitate fast adaptation and
generalization across tasks. Specifically, the meta-optimizer
tunes the learning algorithm itself, enabling it to update
the model based on task-specific information efficiently.
TinyReptile, a simple but efficient meta-optimizer-based
algorithm to collaboratively learn a solid initialization for a
neural network across tiny devices, is presented in [47].
Lastly, the meta-objective [140] guides the meta-learning

process by defining a criterion for evaluating the performance
of the meta-learner. It provides a signal for learning to adapt
and generalize, encouraging the acquisition of task-agnostic
knowledge that can be applied to new tasks. To the best
of our knowledge, the two closest works in this area
are [141], in which the authors propose an Adaptation-aware
Network Pruning (ANP), a novel pruning scheme that works
with existing meta-learning methods for a compact network
capable of fast adaptation, and [142], in which it is shown
that the application of Lottery Ticket Hypothesis (LTH)
to meta-learning enables the adaptation of meta-trained
networks on various IoT devices.

7) CONTINUAL LEARNING
This research field aims to develop algorithms that enable
models to continuously learn from new data while preserving
previously acquired knowledge. This is essential because
conventional MLmodels typically struggle to learn from new
data while retaining previously acquired knowledge, often
leading to catastrophic forgetting [144].

Recently, there has been a significant development in the
field, with several promising algorithms and architectures
being proposed and showing improved performance in vari-
ous continual learning benchmarks. These approaches can be
classified into the following three categories: regularization-
based, replay-based, and dynamic architectures.
Specifically, regularization-basedmethods introduce regu-

larization terms into the loss function to encourage the model
to maintain its prior knowledge while learning new tasks.
On the other hand, replay-basedmethods involve storing past
data and replaying it during training to prevent forgetting.
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Finally, dynamic architectures adjust their capacity to accom-
modate new information.

The significance of this research area has increased due
to the surging demand for TinyML models in several appli-
cations, including healthcare, wearables, and IoT devices.
Recent research in this domain has focused on developing
efficient algorithms that can manage the restrictions of
TinyML devices, such as limited memory and processing
power. One of the promising methods in a TinyML scenario
is to use regularization-based approaches that add penalties
to the loss function to prevent overfitting and catastrophic
forgetting. Another effective approach is to use dynamic
architectures that can adapt their structure to accommodate
new tasks. For instance, in [149], a regularization-based
approach for an IoT scenario is presented, in which MCUs
are exploited as edge devices for data processing considering
two tasks: gesture recognition based on accelerometer data
and image classification.

Replay-based methods, on the other hand, are well adopted
in real-world scenarios as the general replay approach is very
intuitive. In [147], the authors leverage the quantization of
the frozen stage of the model, allowing for 8-bit execution
and replays in the latent space to reduce their memory
cost with minimal impact on accuracy. The results show
that by combining these techniques, continual learning can
be achieved in practice using less than 64MB of memory,
an amount compatible with embedding in TinyML devices.
In [148], the authors propose Train++, an incremental
replay-based training algorithm that trains ML models
locally at the device level (e.g., on MCUs) using the
full n-samples of high-dimensional data. Train++ enables
resource-constrainedMCU-based IoT edge devices to locally
build their own knowledge base on the fly using the live
data, thus creating smart self-learning and autonomous
problem-solving devices. The authors of [150] propose
TyBox, a toolbox for the automatic design of on-device
TinyML classification models, with the idea of automatically
generating the ‘‘incremental’’ version of an initial (static) pre-
trained model using replays.

Lastly, regarding the dynamic architectures approaches
for continual learning, in [145], a pioneering contribu-
tion in the form of Tiny-Transfer-Learning (TinyTL) is
presented. In their work, the authors propose a novel
approach that achieves memory efficiency by selectively
freezing the network weights while solely focusing on
learning the bias modules, thereby obviating the need
to store intermediate activations. A new memory-efficient
bias module, referred to as the lite residual module,
is introduced to ensure the model’s adaptability. Through
extensive experimentation, it is demonstrated that TinyTL
yields substantial memory savings with minimal sacrifice
in accuracy compared to the conventional fine-tuning
approach applied to the entire network. Finally, in [146], the
authors propose TinyOL (TinyML with Online Learning),
which enables incremental on-device training with streaming
data.

VI. TinyML DEVICES AND TOOLS
TinyML heavily depends on hardware devices to enable
efficient training and inference for its applications. Based on
our literature research [28], [33], [33], [34], [41], [42], in this
section, we will examine processors for TinyML workloads
spanning from general-purpose Central Processing Units
(CPUs) to more programmable and adaptable architectures
with discussions on Graphics Processing Units (GPUs),
FPGAs, andTensor ProcessingUnits (TPUs). By structuring
the analysis along this range, we aim to illustrate the
fundamental trade-offs between efficiency, programmability,
and flexibility. The optimal balance point depends on
the constraints and requirements of the target application.
This perspective provides a framework for reasoning about
hardware choices for ML and the capabilities required
at each level of specialization. Table 4 compares these
different hardware devices, outlining their advantages and
disadvantages.

A. CENTRAL PROCESSING UNIT (CPU)
The primary objective of TinyML is to optimize ML
workloads to allow them to be executed on microprocessors
with extremely low power consumption, often just a few
milliwatts. Microprocessors, particularly the Arm Cortex-
M family, are an ideal platform for implementing ML due
to their widespread usage [152]. This versatility is due
to their standardized instruction sets and mature compiler
ecosystems. Additionally, their minimal power requirements
make them suitable for deployment in environments where
replacing batteries is challenging or inconvenient [153].

However, despite their advantages, microprocessors
exhibit several drawbacks. Their wide-ranging applicability
leads to the inclusion of unnecessary operations and logic
checks, which might degrade computational performance.
In addition, this fails to fully exploit the potential parallelism
offered by DL algorithms.

B. GRAPHICS PROCESSING UNIT (GPU)
Originally designed for accelerating computer graphics,
GPUs differ from CPUs in their composition. While CPUs
consist of a few Arithmetic Logic Units (ALUs) optimized
for sequential processing, GPUs are equipped with thousands
of ALUs that enable parallel execution of numerous simple
operations. This architecture makes GPUs highly suitable
for ML tasks since they can rapidly perform many parallel
computations. For example, ML algorithms often involve
extensive matrix and vector operations, which can be
efficiently parallelized and executed on GPUs, as we can see
in [154]. In particular, modern GPUs have evolved to include
specialized hardware support for essential AI operations,
such as Generalized Matrix Multiplication (GEMM), native
support for quantization, and native support for pruning.

In recent years, NVIDIA has introduced multiple gen-
erations of GPU microarchitectures, such as the NVIDIA
Jetson family, with a growing emphasis on enhancing DL
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TABLE 4. Comparison between the different hardware devices for a TinyML-based system.

performance. Additionally, NVIDIA has introduced Tensor
Cores [155], specialized execution units within their GPUs
specifically designed for DL applications.

Furthermore, GPUs are specifically designed to efficiently
handle large datasets and facilitate rapid data transfer between
the main system memory and processing units, a significant
attribute since ML typically operates on extensive real-time
data [156]. Hence, the combination of parallel computing
capabilities, many cores, and high-bandwidth memory access
collectively establish GPU microarchitecture as a good
choice for TinyML-based applications.

C. FIELD-PROGRAMMABLE GATE ARRAY (FPGA)
An FPGA offers a high-performance, efficient, and scalable
solution that can be reconfigured for different applications.
Their customizable nature provides advantages for han-
dling the intricate mathematical computations demanded
by ML [157]. The key advantage of FPGAs is the ability
to reconfigure the underlying fabric to implement custom
architectures optimized for different models.

The fundamental building block of an FPGA’s architecture
is the fabric layer, comprising Configurable Logic Blocks
(CLBs) and programmable interconnects. CLBs can flexibly
be configured by users to perform various digital functions,
including the complex mathematical operations essential for
ML algorithms. Through programmable interconnects, CLBs
can be interconnected in different configurations, enabling
customization to suit diverse ML applications [158].
Aside from the fabric layer, an FPGA designed for

ML often incorporates additional specialized hardware
blocks, such as Digital Signal Processing (DSP) blocks
and high-performance memory blocks. DSP blocks enhance
the execution speed of intricate mathematical operations
like convolutions and dot products, which are commonly
employed in ML models. High-performance memory blocks
also facilitate rapid access to the extensive datasets [159].

To summarize, an FPGA aims to deliver high performance,
efficiency, and scalability, catering to the complex compu-
tational requirements of ML tasks. Consequently, FPGAs
emerge as an ideal choice for a broad spectrum of applications
in the TinyML domain.

D. TENSOR PROCESSING UNIT (TPU)
A specialized processor, known as the TPU, has been
developed by Google explicitly for ML tasks, with a specific
emphasis on tensor operations [160]. TPUs comprise several
parts, including a high-bandwidth memory system, a systolic

array of processing units, and an interconnected network that
facilitates communication between these components.

The systolic array represents the core of the TPU, which
is responsible for executing tensor operations. It consists
of numerous processing elements arranged in a two-
dimensional grid, each interconnected to neighboring ones.
This arrangement enables efficient communication between
processing elements, facilitating the parallel execution of
complex tensor operations. The high-bandwidth memory
system ensures swift access to data necessary for tensor
operations. Finally, the interconnect network links the TPU
with other system components, such as the host processor
and other TPUs, promoting efficient communication and
coordination. Google has released Edge TPUs using the Coral
platform in various form factors, ranging from a Raspberry-
Pi-like Dev Board to stand-alone solderable modules [161].

In summary, the architecture of an Edge TPU is specifically
designed to provide high performance, efficiency, and scala-
bility in handling tensor operations, making it an excellent
choice for TinyML applications.

E. SOFTWARE TOOLS
As the demand for implementing ML on various hardware
devices continues to grow, the software layer emerges as
one of the essential components in developing TinyML-
based systems. To date, prevalent frameworks heavily rely
on vendor-specific operator libraries, demonstrating the
significant potential for driving advancements in TinyML
research. Below, we provide an overview of the main
frameworks utilized in this domain:

• TensorFlow Lite Micro [162]: Is an open-source
framework that empowers microcontrollers and similar
devices with limited memory capacity to execute ML
models. It operates efficiently without relying on an
operating system, standard C (or C++ libraries),
or dynamic memory allocation. Developed in C++11,
this framework necessitates a 32-bit platform and
exhibits compatibility with most Arm Cortex-M Series
processors.

• uTensor [163]: Is a remarkably lightweight, open-
source framework for ML inference. It is built upon
TensorFlow and meticulously optimized for Arm tar-
gets. By converting ML models into readable and self-
contained C++ source files, uTensor greatly simplifies
integration with embedded projects.

• Edge Impulse [164]: Is a service that facilitates the
development of TinyML models specifically tailored
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for edge devices. The training takes place on a cloud
platform, and the resulting trained model can be easily
exported to an edge device. Additionally, Edge Impulse
simplifies the collection of actual sensor data, enables
live signal processing from raw data to neural networks,
and streamlines testing procedures.

• Embedded Learning Library [165]: The Microsoft
Embedded Learning Library (ELL) empowers users
to design and implement intelligent ML models on
resource-constrained platforms. Conceptually, the ELL
can be seen as a cross-compiler for intelligence embed-
ding, where the compiler operates on the laptop and
generates machine code that can be executed on the
embedded device.

• X-CUBE-AI [166]: Is an STM32Cube expansion pack-
age. Allows an automatic conversion of pre-trained arti-
ficial intelligence algorithms, including neural networks
and classical ML models, for STM products. It also
integrates an optimized library for STM32 ARM Cortex
M-based boards.

• uTVM [167]: Is a compiler that offers graph-level and
operator-level optimizations, enabling DL workloads to
achieve performance portability across a wide range
of hardware back-ends. It addresses optimization chal-
lenges specific to DL, including high-level operator
fusion, mapping to various hardware primitives, and
effectively mitigating memory latency.

• MinUn [168]: Is a framework jointly developed by
Microsoft Research in India, ETH Zurich, and UC
Berkeley, designed explicitly for TinyML applications.
It presents a comprehensive solution to three critical
sub-problems. Firstly, it addresses the challenge of
utilizing number representations that approximate 32-
bit floating point numbers using fewer bits without
compromising accuracy. Secondly, it offers heuristic
techniques to optimize bandwidth assignment, ensuring
minimal memory usage while preserving accuracy.
Lastly, it tackles the memory management issue on
devices with limited resources, mitigating potential
problems related to memory fragmentation.

VII. DISCUSSION
In the recent five years, as shown by our search strategy, there
has been a notable surge in studies investigating TinyML
methods, optimizations, and applications. This trend reflects
the growing recognition of the importance of real-time
solutions for many complex and safety-critical real-world
applications. This paper presents a comprehensive analysis
from the ML point of view of TinyML. We aim to provide
not just an updated guide on the current state-of-the-art but
also to pinpoint areas that have yet to be explored. By doing
so, we hope to lay the foundation for future research and
investigations in this field.

From the proposed taxonomy in Figure 5, the area of model
optimization, based on referenced research contributions,
is the one that has received the most extensive exploration.

Indeed, within TinyML, we come across several cutting-edge
works that explore techniques such as pruning [63], quantiza-
tion [75], and knowledge distillation [88]. On the contrary, the
scarcity of research focusing on HPO [93] can be attributed
to its complexity, the lack of awareness about the importance
of HPO and its potential to enhance the performance of
ML models significantly, and the resource requirements,
which can be a limiting factor for researchers with restricted
access to high-performance computing infrastructure. Table 1
summarizes this inquiry.

Regarding the model design area, most of the work is
focused on NAS [97]. Secondly, it’s worth noting that
another significant portion of the existing research in
this area is related to attention mechanisms [116], [117]
and depth-separable convolutions since these techniques
enhance model efficiency, accuracy, and real-time inference
capabilities, making them essential for resource-constrained
edge devices. Therefore, we expect research in these areas
to grow significantly in the coming years. However, despite
the numerous advancements made in ML by applying RAFs
or VeLO, no such method has been found in any works
related to TinyML. We believe that pursuing research in this
direction could potentially lead to further enhancements in
the quality of the produced models, and Table 2 summarizes
this information.

Related to the learning algorithms, we have encountered
a significant body of research focused on unsupervised
and continual learning. Additionally, considerable efforts
have been made in supervised learning, meta-learning,
and deep reinforcement learning. However, we note that
self-supervised and weakly-supervised learning fields still
require effort before they can be widely used in TinyML-
based works. Hence, we firmly believe that directing research
efforts toward these two areas holds immense potential for
significant advancements in the years to come. Unsurpris-
ingly, following the trend in the ML community at large,
many works use DL models to tackle real-world problems.
Table 3 sums up this direction.
In the field of TinyML applications, most efforts focus

on addressing the challenges of anomaly detection. This
is consistent with the previous statement emphasizing the
use of unsupervised and continual learning strategies. It is
worth noting that within the TinyML landscape, most
methodologies used to tackle various tasks lean toward DL
paradigms. Non-DL algorithms are used sporadically in this
context, with notable exceptions being approaches based on
the TEDA framework, as demonstrated in [126].
Regarding hardware choices, there isn’t a one-size-fits-all

solution among CPUs, GPUs, FPGAs, and TPUs. Therefore,
selecting the most suitable hardware for a specific application
is essential. Each comes with its own advantages and
disadvantages, as summarized in Table 4. Specifically,
Table 5 reports TinyML off-the-shelf hardware and the range
of devices adopted by the different techniques. This table
shows a clear pattern in adopting specific low-power MCU
devices, i.e., Arduino Nano 33 BLE (and its variants), and
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TABLE 5. TinyML off-the-shelf hardware and their usages in current literature. The devices are in order of popularity (decreasing). (*) unavailable values
due to missing information in the original works or derived by the board producer datasheet.

the STM32 family of microcontrollers. However, we expect
that the co-design approach will significantly focus further
advancements in this research field since the early work
seems extremely promising, making it the primary direction
of future developments.

RISC-V has gained significant attention recently due to
its versatility and scalability. We believe that RISC-V will
significantly impact future TinyML research in several areas
related to hardware and software development [42]. One
of the key advantages of RISC-V in the realm of TinyML
is its open nature, allowing researchers and developers
full access to the architecture specifications and offering
a more flexible and optimized solution than proprietary
architectures. Furthermore, the architecture of RISC-Vmakes
it easier to include custom instructions designed for ML
workloads, like extending the instruction set for efficient
neural network inference. Thus, researchers can selectively
include only the necessary instructions, reducing the overall
complexity of the processor and minimizing the memory
footprint. In addition to hardware implications, RISC-V
significantly impacts TinyML’s software ecosystem. The
availability of open-source toolchains and compilers for
RISC-V simplifies the development process for TinyML
applications.

Aligning ML with human desiderata and ethics aims
to make ML systems embody human principles. ‘‘AI for
Good’’ initiatives support AI development for Sustainable
Development Goals (SDGs). Although ML is crucial in
advancing the SDGs, its adoption is hindered by high energy
consumption, connectivity requirements, and cloud deploy-
ment costs. In this regard, TinyML presents a tremendous
opportunity to harness the power of ML to advance the
SDGs and drive social impact globally. Using TinyML,
we can circumvent barriers like poor infrastructure, limited
connectivity, and high costs that often exclude developing
communities from emerging technology.

Despite the promising applications and growing scientific
literature in the field of TinyML, further research is needed
to fully comprehend its advantages and limitations. In this
context, we draw other additional unresolved issues that
require dedicated research to drive future advancements in
the field. In particular:

• Benchmarking: The lack of a recognized benchmark,
due to the challenges posed by low power, limited mem-
ory, hardware heterogeneity, and software heterogeneity,
is an important impediment that may hamper TinyML
services [27]. In this context, the IoT community has
shown an increasing interest in benchmarking as a way
to scientifically compare the performance of various
TinyML solutions, both for training benchmark [169],
for inference benchmark [170], and specifically for
TinyML systems [171].

• Memory Constraints: The insatiable demand for
computation and high accuracy has continued to push
innovations in ML algorithms. However, the extremely
small size of SRAM and flash memory makes the task
of DL on edge devices very challenging today.

• Data-driven engineering: Understanding data quality
thoroughly is critical because relying solely on accuracy
can be misleading when predicting model behavior.
We will need a large amount of relevant real-world
data to accomplish this. This information will assist
us in identifying specific instances where the model
fails to detect or behaves incorrectly. Furthermore, post-
processing techniques will be required to improve the
model’s performance in these areas. In essence, we need
tools and processes that prioritize ‘‘data excellence’’ to
assess data quality comprehensively.

• Lack of accepted models: Many DL models are widely
accepted for conventional infrastructure. For example,
MobileNet is the baseline for benchmarking deep neural
networks in mobile edge computing devices. However,
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no such popular model can be adopted for the TinyML
on the MCUs ecosystem.

• Lack of public datasets: Despite some datasets specif-
ically designed for TinyML being available (such as
for on-device online training [148]), to date, TinyML
is mainly concerned with sensor processing in general,
so the question that emerges is. . . ‘‘What’s the Ima-
geNet [172] of TinyML’’?

VIII. CONCLUSION
The prodigious amount of research invested over the past
decades in improving embedded technologies to enable
the use of real-time solutions for many complex and
safety-critical applications led to the birth of TinyML
(Section I). As summarized in Figure 3, this paper presents a
systematic review of TinyML from January 2018 to January
2024 (Section III). For the first time ever, we formalize
the three different workflows to implement a TinyML-based
system (Section IV). As an additional and distinct contri-
bution, this survey strongly emphasizes the ML perspective.
It not only presents the most current TinyML frameworks but
also recommends recent variations and advancements in ML
technologies that TinyML practitioners may consider explor-
ing to enhance the state-of-the-art capabilities (Section V).
In Section VI, we examine the advantages and disadvantages
of different hardware devices that can be used to develop
TinyML-based applications. Finally, Section VII highlights
the fields that hold themost promise for further research in the
upcoming years. Additionally, we provide a list of unresolved
problems that must be addressed to propel the field forward.
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