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Abstract. Several optimal control problems in \BbbR d, like systems with uncertainty, control of flock
dynamics, or control of multiagent systems, can be naturally formulated in the space of probability
measures in \BbbR d. This leads to the study of dynamics and viscosity solutions to the Hamilton--
Jacobi--Bellman equation satisfied by the value functions of those control problems, both stated in
the Wasserstein space of probability measures. Since this space can be also viewed as the set of
the laws of random variables in a suitable L2 space, the main aim of the paper is to study such
control systems in the Wasserstein space and to investigate the relations between dynamical systems
in Wasserstein space and their representations by dynamical systems in L2, both from the points of
view of trajectories and of (first-order) Hamilton--Jacobi--Bellman equations.
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Introduction. During the last years, there has been an increasing interest in the
control of the so-called multiagent systems. Such systems modelize dynamics where
the number of interacting agents is so huge that only a statistical description is avail-
able. Under an assumption of indistinguishability of the agents, instead of studying
the evolution of each invidual agent, it is preferable to consider the macroscopic evo-
lution of a probability measure describing the fraction of the total number of agents
belonging to every set of the state space at each time. Such dynamics of measures
naturally appear, for instance, in control systems or differential games with uncer-
tainty [39], [19], [20], [22], [35], [36], in mean field games [7], [38], [21], [24], [29], [32],
in flock dynamics (see, e.g., [41]), and in pedestrian and vehicle dynamics (see, e.g.,
[1] and references therein for an overview of the models).

We consider a multiagent controlled dynamical system at two levels:
\bullet The microscopic scale. Every agent whose instantaneous position at time t is

x(t) \in \BbbR d can choose his velocity in a set which depends on its own position and on
a probability measure \mu t on \BbbR d, which describes the current distribution of all the
other agents. For every (Borel) subset A \subset \BbbR d, \mu t(A) represents the fraction of the
total number of agents that are present in A at time t. In particular, the trajectory
x(\cdot ) satisfies an equation of the form

\.x(t) = f(t, x(t), u(t), \mu t) for almost every t\in [0, T ],
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5920 C. JIMENEZ, A. MARIGONDA, AND M. QUINCAMPOIX

where f : [0, T ] \times \BbbR d \times U \times P2(\BbbR d) \rightarrow \BbbR d, u(\cdot ) : [0, T ] \mapsto \rightarrow U is the control function,
U is a subset of some finite-dimensional space, and P2(\BbbR d) denotes the set of Borel
probability measures on \BbbR d with finite second-order moment.

Notice that the case where f is independent on the \mu -variable reduces to classical
control dynamics. It is worth pointing out that in this model the indistinguishability
assumption is encoded in the fact that, as expressed by the dynamics, each agent at po-
sition x(t) does not interact individually with all other agents, which are indistinguable
for him, but he interacts only with the total crowd of all the agents as an aggregate
represented by the measure \mu t. Throughout the paper, we do not need an explicit form
of the control, so we introduce the set-valued map F (t, \mu ,x) := \{ (f(t, x,u,\mu ), u\in U\} ,
and we consider the microscopic dynamic satisfied by the trajectory x(\cdot ):

\.x(t)\in F (t, \mu t, x(t)) for almost every t.(0.1)

\bullet The macroscopic scale. The probability measure t \mapsto \rightarrow \mu t evolves according the
so-called continuity equation

\partial t\mu t +div(vt\mu t) = 0 in the sense of distributions,(0.2)

which expresses that the total mass of the measure \mu t is preserved during the evolution
(so the curve t \mapsto \rightarrow \mu t remains in the space of probability measures) and vt(\cdot ) :\BbbR d \mapsto \rightarrow \BbbR d

is a time-dependent vector field. The above continuity equation must be understood
in the sense of distributions.

\bullet The link between the macroscopic and the microscopic evolution is given by the
vector field vt(\cdot ), which has to satisfy

(0.3) vt(x)\in F (t, \mu t, x) for \mu t-almost every x\in \BbbR d and for almost every t,

which is constructed by taking the weighted average of the velocies of all the agent
concurring in time t at position x. Roughly speaking, this relation means that every
point of the support of macroscopic variable \mu t has to evolve according to the mi-
croscopic scale equation. A different approach to dynamics in Wasserstein space is
discussed in Remark 2.12.

Together with the above dynamical system, we consider an optimization problem
of Bolza type, i.e., the minimization of a functional

(0.4)

\int T

s

\scrL (\mu t)dt+ G (\mu T )\in \BbbR \cup \{ +\infty \} ,

on trajectories satisfying the above dynamical system with an initial datum \mu s = \mu .
It is natural to associate to this optimal control problem a value function obeying a
dynamic programming principle, and one can expect to characterize it as the unique
solution of a first-order Hamilton--Jacobi--Bellman equation (HJB in short) in the
space of probability measures. Of course, since the value function is not smooth in
general, a convenient notion of viscosity solution is needed to study this problem.

The study of a first-order PDE like HJB on the space of probability measures,
which is not a normed space, is not an easy task. We focus now on two main ways.
A direct approach requires to define suitable derivatives and sub/superdifferentials
for real value functions defined on the Wasserstein space; we refer the reader to vari-
ous concepts in [3], [19], [4], [33], [37], [39]. Another possibility, commonly used, for
instance, in the mean field theory, relies on the fact that any probability measure
\mu \in P2(\BbbR d) could be represented as the law of a random variable X \in L2

\BbbP (\Omega ,\BbbR d)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/1

0/
23

 to
 1

76
.2

00
.2

2.
14

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



DYNAMICAL SYSTEMS AND H.-J.-B. EQUATIONS ON P 2 5921

defined on some atomless probability space (\Omega ,B(\Omega ),\BbbP ) equipped with its Borel
\sigma -field (or, equivalently, \mu is the image measure of the probability \BbbP by the func-
tion X : \Omega \mapsto \rightarrow \BbbR d: We will denote this by X\sharp \BbbP = \mu ). This allows to study deriva-
tives and sub/superdifferential for real-valued functions defined on the Hilbert space
L2
\BbbP (\Omega ,\BbbR d) because a function u : P2(\BbbR d) \mapsto \rightarrow \BbbR is immediately ``lifted"" to a function

U :L2
\BbbP (\Omega ,\BbbR d) \mapsto \rightarrow \BbbR defined by U(X) := u(X\sharp \BbbP ). We refer the reader to [21], [24], [33],

[38]. By construction, U(X) depends only on the law of X. A general function from
L2
\BbbP (\Omega ,\BbbR d) to \BbbR having this property is called rearrangement invariant.

In the framework of multiagent control problems, the above ``representation"" of a
measure of P2(\BbbR d) by random variables in L2

\BbbP (\Omega ,\BbbR d) leads to several questions. An
immediate observation lies in the fact that the representation of the measure by an
L2 function is not unique: Even if we fix from the beginning the probability space
(\Omega ,B(\Omega ),\BbbP ), the same measure has multiple representatives in L2

\BbbP (\Omega ). One important
contribution of the mean field approach lies in the fact that when the lift U is smooth
enough, the derivative at X of U depends only on the law X\sharp \BbbP of random variable
X (cf., e.g., [21], [24], [33]). However, the general validity of an analogous result for
sub/super-subdifferential of nonsmooth function is not yet fully clear. Consequently,
the comparison between viscosity solutions defined on P2(\BbbR d) and viscosity solutions
defined on L2

\BbbP (\Omega ,\BbbR d) appears to be not straightforward. Another important question
concerns the properties of the absolutely continuous curves in the two spaces: Can
any absolutely continuous trajectory in the Wasserstein space be represented by an
absolutely continuous curves in L2

\BbbP (\Omega ,\BbbR d)? Conversely, do the laws of any absolutely
continuous curve of random variables in L2

\BbbP (\Omega ,\BbbR d) provide an absolutely continuous
trajectory in the Wasserstein space? Is it possible to establish quantitative estimates
on the distance between a given absolutely continuous curve in P2(\BbbR d) and the set
of admissible trajectories of the dynamics in P2(\BbbR d)?

The goal of the present paper is to investigate the previous questions.
Before going further, we give an academic example of a multiagent evolution in

the Wasserstein space which is not easily represented by an evolution in the L2
\BbbP space.

We define its microscopic dynamic as

(0.5) \.x(t)\in F (\mu ) :=B(0, \phi (\mu t)) for almost every t,

where \phi :P2(\BbbR d) \mapsto \rightarrow [0,+\infty [ is given by

\phi (\mu ) = 1 if \delta \leq \mu 

L d
\leq 1 and \phi (\mu ) = 0 otherwise,

\mu 
L d denotes the density (when it exists) of the measure \mu with respect to the Lebesgue
measure L d on \BbbR d, and \delta > 0 is a fixed real number. The multiagent system is
described by the above microscopic dynamics together with the macroscopic one (0.2)
and the coupling (0.3). This could model, for instance, dynamics which are ``frozen""
as soon as the ``density"" becomes too big or not big enough, preventing the point to
move in these cases. Clearly, this kind of dynamics cannot easily be represented by a
dynamics in L2

\BbbP as we will discuss later on; see Remark 2.14.
From the point of view of trajectories in the Wasserstein and in the L2

\BbbP spaces, our
first main result says that an absolutely continuous curve in the Wasserstein space
provides an absolutely continuous curve in L2

\BbbP and conversely. We prove also that
the L2

\BbbP representation obeys an ODE in L2
\BbbP related to the vector field v appearing in

(0.2). In the framework of the multiagent control problems, the last one is a result
of independent interest. However, given the above curve satisfying the above ODE
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5922 C. JIMENEZ, A. MARIGONDA, AND M. QUINCAMPOIX

in L2
\BbbP , if we take another curve in L2

\BbbP the points of which have the same law for
any time, the second curve does not satisfy in general the differential equation. This
somehow explains the limitations of representing trajectories of a dynamical system
in the Wasserstein space by a dynamical system in L2

\BbbP .
From the point of view of optimal control of the multiagent system, an impor-

tant issue is to prove a minimal regularity result (Lipschitz continuity) for the value
function. This is usually done by a Gr\"onwall--Filippov result. We provide a result
of the Filippov type, showing that any absolutely continuous curve t \mapsto \rightarrow \mu t in the
Wasserstein space can be approached by a trajectory of the multiagent system with
a suitable quantitative estimate by adapting a similar result holding for curves in the
L2
\BbbP space.

Concerning HJB equations, the value function associated to the multiagent system
is expected to satisfy an HJB in a viscosity sense. As usual in control theory, a
proper definition of viscosity solution must allow to prove a comparison theorem and,
consequently, to characterize the value function as the unique solution of an HJB
equation. Indeed, the relevance of the notion of a solution to an HJB lies precisely
in the possibility of obtaining a comparison theorem. There are several available
notions of viscosity solution defined directly in the Wasserstein space [3], [4], [19],
[37], [39]. Other approaches consider a concept of viscosity solution through the
representation in an L2

\BbbP space [21], [33]: The nice structure of L2
\BbbP allows to use the

viscosity theory in Banach spaces [27], [28], where a definition of viscosity solution
with smooth test functions is available. Both in Wasserstein and in L2

\BbbP spaces, some
comparison theorems for HJB equations have been obtained in the quoted literature
(an analysis of these comparison theorems is outside the scope of the present paper).

In analogy with the classical theory, given u : P2(\BbbR d) \rightarrow \BbbR and \varepsilon > 0, it is
possible to introduce a concept of \varepsilon -super/subtangent test function to u(\cdot ) at \mu 0 \in 
P2(\BbbR d); namely, v :P2(\BbbR d)\rightarrow \BbbR is an \varepsilon -supertangent to u(\cdot ) at \mu 0 if v is continuous,
differentiable at \mu 0, v(\mu 0) = u(\mu 0) and u(\nu )\leq v(\nu )+ \varepsilon W2(\nu ,\mu 0) in a neighborhood of
\mu 0 (an analogous definition holds for \varepsilon -subtangent).

Applying the same idea to the lifted version U(\cdot ) of u(\cdot ), we can consider \varepsilon -
super/subtangent test functions V (\cdot ) to U(\cdot ) at X0 \in L2

\BbbP (\Omega ) with X0\sharp \BbbP = \mu 0. Of
course, a natural requirement for the consistency of the construction is to ask that
V (\cdot ) is rearrangement invariant.

As usual, the notion of \varepsilon -sub/supertangency can be used as an alternative way
to give a notion of viscosity solution for HJB equations in P2(\BbbR d) and in L2

\BbbP (\Omega ),
respectively. Thus, it is a natural question to compare this notion with the other ones
defined by using sub/superdifferentials.

Our second main results says that, under minimal assumptions of the Hamil-
tonian, the first notion of viscosity sub/supersolutions provided by using \varepsilon -
sub/supertangent in P2(\BbbR d), the second one provided by lifting HJB and using
smooth rearrangement-invariant \varepsilon -sub/supertest functions in L2

\BbbP (\Omega ), and the third
one provided in [39] and [37] using a notion of \varepsilon -intrinsic sub/superdifferential, are all
equivalent.

Throughout the paper, we make the following simplification: Although the value
function associated with (0.4) and the dynamics (0.1), (0.2), (0.3) clearly depends both
on the initial time s and on the initial measure \mu , we consider only the dependence
in the \mu variable. We will proceed as if the value would depend on \mu only. This
makes many expositions simpler. Also we consider the HJB equation as if it were
stationary.
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DYNAMICAL SYSTEMS AND H.-J.-B. EQUATIONS ON P 2 5923

The paper is organized as follows: In section 1, we give some notation and back-
ground. Section 2 is devoted to trajectories of the multiagent control problem in the
Wasserstein space and their L2

\BbbP counterpart. Section 3 concerns viscosity solution to
the HJB equations. In the last section, we discuss the relevance to study an HJB
equation either in P2 or in L2. We postpone to Appendix A some basic results and
technical proofs to maintain the flow of the paper.

1. Preliminaries.

1.1. Definitions and notations. We will use the following notation.

B(x, r) (or Br(x)) the open ball of radius r of a metric space (X,dX);

K the closure of a subset K of a topological space X;

IK(\cdot ) the indicator function of K,
i.e., IK(x) = 0 if x\in K, IK(x) =+\infty if x /\in K;

\chi K(\cdot ) the characteristic function of K,

i.e., \chi K(x) = 1 if x\in K, \chi K(x) = 0 if x /\in K;
dK(\cdot ) the distance function from a subset K of a metric space (X,d),

i.e., dK(x) := inf\{ d(x, y) : y \in K\} ;
C0

b (X;Y ) the set of continuous bounded function from a Banach space X to Y ,
endowed with \| f\| \infty = supx\in X | f(x)| (if Y =\BbbR , Y will be omitted);

C0
c (X;Y ) the set of compactly supported functions of C0

b (X;Y ),
with the topology induced by C0

b (X;Y );

C\infty 
c (X;Y ) the space of smooth real functions with compact support in \BbbR d;

\Gamma I the set of continuous curves from a real interval I to \BbbR d;
\Gamma T the set of continuous curves from [0, T ] to \BbbR d;

et the evaluation operator et :\BbbR d \times \Gamma I ,

defined by et(x,\gamma ) = \gamma (t) for all t\in I;
P(X) the set of Borel probability measures on a Banach space X,

endowed with the weak\ast topology induced from C0
b (X);

M (\BbbR d;\BbbR d) the set of vector-valued Borel measures on \BbbR d with values in \BbbR d,
endowed with the weak\ast topology induced from C0

c (\BbbR d;\BbbR d);

| \nu | the total variation of a measure \nu \in M (\BbbR d;\BbbR d);

\ll the absolutely continuity relation between measures;
m2(\mu ) the second moment of a probability measure \mu \in P(X);

r\sharp \mu the push-forward of the measure \mu by the Borel map r;

\mu \otimes \pi x the product measure of \mu \in P(X) with the Borel family of measures
\{ \pi x\} x\in X \subseteq P(Y ) (see (A.1));

pri the i-th projection map pri(x1, . . . , xN ) = xi;

\Pi (\mu ,\nu ) the set of admissible transport plans from \mu to \nu ;
\Pi o(\mu ,\nu ) the set of optimal transport plans from \mu to \nu ;

W2(\mu ,\nu ) the 2-Wasserstein distance between \mu and \nu ;
P2(X) the subset of the elements P(X) with finite second moment,

endowed with the 2-Wasserstein distance;
L d the Lebesgue measure on \BbbR d;
\nu 

\mu 
the Radon--Nikodym derivative of the measure \nu w.r.t. the measure \mu ;

Lip(f) the Lipschitz constant of a function f .

Given a metric space (X,dX), an interval I of \BbbR , p\geq 1, we define

ACp(I;X) :=

\Biggl\{ 
\gamma : I\rightarrow X : There exists m(\cdot )\in Lp(I) such that for all s, t\in I

with s\leq t, it holds that dX(\gamma (t), \gamma (s))\leq 
\int t

s

m(\tau )d\tau 

\Biggr\} 
.
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5924 C. JIMENEZ, A. MARIGONDA, AND M. QUINCAMPOIX

Given \gamma \in ACp(I;X), the metric derivative of \gamma at \tau is defined as

| \.\gamma | (\tau ) := lim
h\rightarrow 0

dX(\gamma (\tau + h), \gamma (\tau ))

| \tau | 
.

By the Lebesgue theorem, this limit exists at a.e. \tau \in I. Moreover, | \.\gamma | (\cdot ) is the
smallest function m(\cdot ) such that the inequality

dX(\gamma (t), \gamma (s))\leq 
\int t

s

m(\tau )d\tau 

holds for every s, t\in I, s\leq t (see [3] for further properties of metric derivative).
Given Banach spaces X,Y , we denote by P(X) the set of Borel probability mea-

sures on X endowed with the weak\ast topology induced by the duality with the space
C0

b (X) of the real-valued continuous bounded functions onX with the uniform conver-
gence norm. The second moment of \mu \in P(X) is denoted by m2(\mu ) =

\int 
X
\| x\| 2X d\mu (x),

and we set P2(X) = \{ \mu \in P(X) : m2(\mu ) < +\infty \} . For any Borel map r : X \rightarrow Y
and \mu \in P(X), we define the push-forward measure r\sharp \mu \in P(Y ) by setting
r\sharp \mu (B) = \mu (r - 1(B)) for any Borel set B of Y . The Wasserstein space P2(\BbbR d) is
equipped with the quadratic Wasserstein distance defined by for \mu ,\nu \in P2(\BbbR d),

W2(\mu ,\nu ) := min
\pi \in \Pi (\mu ,\nu )

\Biggl\{ \biggl( \int 
\BbbR d\times \BbbR d

| y - x| 2 d\pi (x, y)
\biggr) 1/2

\Biggr\} 
,

where \Pi (\mu ,\nu ) = \{ \pi \in P(\BbbR d \times \BbbR d), pr1\sharp \pi = \mu , pr2\sharp \pi = \nu \} is the set of transport
plans between \mu and \nu . We also denote by \Pi o(\mu ,\nu ) the set of optimal transport plans
between \mu and \nu , namely, the set of \pi \in \Pi (\mu ,\nu ) achieving the mininimum in the
above definition of W2(\mu ,\nu ). Recall that P2(\BbbR d) endowed with the W2-distance is a
complete separable metric space.

1.2. Basic facts on the Wasserstein space and an L2 representation.
We fix some probability space (\Omega ,B(\Omega ),\BbbP ) with \Omega a Polish (metrizable, complete,
separable) space, B(\Omega ) its Borel \sigma -field, and \BbbP a probability measure with no atom.
We denote by L2

\BbbP (\Omega ,\BbbR d) (or L2
\BbbP in short) the space of square integrable functions

X : \Omega \mapsto \rightarrow \BbbR d on the probability space (\Omega ,B(\Omega ),\BbbP ).
We recall that for any \mu in P2(\BbbR d), there exists X \in L2

\BbbP (\Omega ,\BbbR d) such that X\sharp \BbbP = \mu 
(cf., e.g., [42]) and

(1.1) W2(\mu ,\nu ) =min
\Bigl\{ 
\| X  - Y \| L2

\BbbP (\Omega ,\BbbR d) : X\sharp \BbbP = \mu , Y \sharp \BbbP = \nu 
\Bigr\} 
.

The space (P2(\BbbR d),W2) can be identified with the quotient (L2
\BbbP (\Omega ,\BbbR d)/\sim ) equipped

with the quotient topology for the following equivalence relationship (cf. Appendix A):

X \sim Y \leftrightarrow X\sharp \BbbP = Y \sharp \BbbP .

We will make a constant use of the following.

Lemma 1.1 (Lemma 5.23 in [24]). Let X,Y \in L2
\BbbP (\Omega ,\BbbR d) be such that X\sharp \BbbP = Y \sharp \BbbP .

Then for any \varepsilon > 0, there exists \tau : \Omega \rightarrow \Omega bijective satisfying
(i) \tau and \tau  - 1 are measure-preserving that is \tau \sharp \BbbP = \tau  - 1\sharp \BbbP = \BbbP ;
(ii) \| Y  - X \circ \tau \| L\infty 

\BbbP (\Omega ,\BbbR d) \leq \varepsilon .

To a function u :P2(\BbbR d)\rightarrow \BbbR , we associate its lift on L2
\BbbP given by [38], [21], [24]

U :X \in L2
\BbbP (\Omega ,\BbbR d)\rightarrow u(X\sharp \BbbP )\in \BbbR .
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DYNAMICAL SYSTEMS AND H.-J.-B. EQUATIONS ON P 2 5925

By Corollary A.5, u is continuous if and only if U is continuous. Moreover, U is
rearrangement invariant or law dependent. More precisely, a map V : L2

\BbbP (\Omega ,\BbbR d)\rightarrow \BbbR 
is said to be rearrangement invariant if

for all (X,Y )\in (L2
\BbbP (\Omega ,\BbbR d))2, it holds that X\sharp \BbbP = Y \sharp \BbbP \Rightarrow V (X) = V (Y ).

1.3. About curves in the Wasserstein space. We give some basic statements
related to the dynamics of the macroscopic evolution.

Given a Borel vector field (t, x) \mapsto \rightarrow vt(x)\in \BbbR d such that

(1.2)

\int T

0

\int 
\BbbR d

| vt(x)| 2 d\mu t(x) dt <+\infty ,

a continuous curve \mu t : [0, T ]\rightarrow P2(\BbbR d) is a solution to the continuity equation

(1.3) \partial t\mu t +div(vt\mu t) = 0 in \BbbR d\times ]0, T [

if and only if it holds in the sense of distributions on [0, T ]\times \BbbR d, namely,\int T

0

\int 
\BbbR d

(\partial t\varphi (t, x) + vt(x) \cdot \nabla x\varphi (x, t)) d\mu t(x) dt= 0 \forall \varphi \in C\infty 
c (\BbbR d\times ]0, T [))

or equivalently, in the sense of distributions in [0, T ] (see equation (8.1.3) in [3]),

d

dt

\int 
\BbbR d

\varphi (x)d\mu t(x) =

\int 
\BbbR d

\langle \nabla \varphi (x), vt(x)\rangle d\mu t(x) for all \varphi \in C1
c (\BbbR d).

According to Theorem 8.3.1 in [3], a continuous \bfitmu = \{ \mu t\} t\in [0,T ] \in AC2([0, T ];P2(\BbbR d))
if and only if there exists a Borel vector field v= vt(x) satisfying (1.2) such that (1.3)
holds.

We first recall the following useful result concerning solutions to the continuity
equation (0.2) and their equivalent representation by a probability measure on \BbbR d\times \Gamma T ,
where \Gamma T denotes the set of continuous functions from [0, T ] to \BbbR d.

Proposition 1.2 (superposition principle; cf. Theorem 8.2.1 of [3]). Consider
\mu t : [0, T ] \rightarrow P2(\BbbR d) a continuous solution of (1.3) for a Borel vector field (t, x) \mapsto \rightarrow 
vt(x) satisfying (1.2). Then there exists a probability measure \eta on \BbbR d\times \Gamma T such that

(i) \eta is concentrated on the set of pairs (x,\gamma )\in \BbbR d \times W 1,2([0, T ],\BbbR d) such that

(1.4) \.\gamma (t) = vt(\gamma (t)) for a.e. t\in ]0, T [ with \gamma (0) = x;

(ii) we have \mu t = et\sharp \eta for all t\in [0, T ] with et defined by

et : (x,\gamma )\in \BbbR d \times \Gamma T \mapsto \rightarrow \gamma (t)\in \BbbR d.

Conversely, if some \eta \in P(\BbbR d \times \Gamma T ) satisfies (i) with\int T

0

\int 
\BbbR d\times \Gamma T

| vt(\gamma )| 2 d\eta (x,\gamma )dt <+\infty ,

then t \mapsto \rightarrow \mu t := et\sharp \eta solves the continuity equation (1.3) for some v satisfying (1.2).

1.4. Assumptions on the multiagent control system. Throughout the pa-
per, we suppose that the set valued map F : \BbbR + \times P2(\BbbR d) \times \BbbR d \rightrightarrows \BbbR d is Lipschitz
continuous, with compact and convex images.

Now we give the precise definition of a trajectory of the multiagent system driven
by F on the time interval I = [a, b].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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5926 C. JIMENEZ, A. MARIGONDA, AND M. QUINCAMPOIX

Definition 1.3 ([37]). A continuous curve \bfitmu = \{ \mu t\} t\in I \subseteq P2(\BbbR d), is an ad-
missible trajectory driven by F on I if there exists \bfitnu = \{ \nu t\} t\in I \subseteq M (\BbbR d;\BbbR d) such
that

\bullet | \nu t| \ll \mu t for a.e. t\in I;
\bullet vt(x) :=

\nu t
\mu t

(x) \in F (t, \mu t, x) for a.e. t \in I and \mu t-a.e. x \in \BbbR d (moreover. the

map (t, x) \mapsto \rightarrow vt(x) is Borel measurable);
\bullet \partial t\mu t +div \nu t = 0 in the sense of distributions on I \times \BbbR d.

From the definition, it follows that \bfitmu \in AC2(I,P2(\BbbR d)); i.e., there exists m \in 
L2(I; [0,+\infty [) such that

W2(\mu t, \mu s)\leq 
\int t

s

m(\tau )d\tau for all t, s\in I with s\leq t.

Given \mu \in P2(\BbbR d), we denote by AF
I (\mu ) the set of admissible trajectories on I such

that \mu a = \mu . In [37], we have proved that the set AF
I (\mu ) is nonempty, compact w.r.t.

the natural uniform convergence metric on C0(I;P2(\BbbR d)) defined as

dC0(\bfitmu (1),\bfitmu (2)) = sup
t\in I

W2(\mu 
(1)
t , \mu 

(2)
t )

for every \bfitmu (i) = \{ \mu (i)
t \} t\in I \in C0(I;P2(\BbbR d)), i = 1,2, and that any admissible trajec-

tory can be equivalently represented by a probability measure on \BbbR d \times \Gamma I (cf. also
Theorem A.7 in Appendix A).

2. Curves and trajectories in P2(\BbbR \bfitd ) and \bfitL 2
\BbbP (\Omega ,\BbbR \bfitd ). A natural question

that arises is whether a dynamic in the Wasserstein space can be expressed as a
dynamic in L2

\BbbP . We answer this question both for absolutely continuous curves and
for trajectories of the multiagent system.

We denote by \Gamma T the set of continuous curves from [0, T ] to \BbbR d. Given a compact
interval I \subseteq \BbbR , we endow C0(I;P2(\BbbR d)) with the structure of a complete metric space
by defining the uniform convergence metric

dC0(\bfittheta (1),\bfittheta (2)) = sup
t\in I

W2(\theta 
(1)
t , \theta 

(2)
t )

for every \bfittheta (\bfiti ) = \{ \theta (i)t \} t\in I \in C0(I;P2(\BbbR d)), i = 1,2. For any \mu \in P2(\BbbR d), the map
W 2

2 (\mu , \cdot ) is convex: Given \nu i \in P2(\BbbR d) and \bfitpi i \in \Pi o(\mu ,\nu i), i = 0,1, \lambda \in [0,1], we set
\mu \lambda := \lambda \mu 0 + (1 - \lambda )\mu 1 and \bfitpi \lambda := \lambda \bfitpi 0 + (1 - \lambda )\bfitpi 1 \in \Pi (\mu ,\mu \lambda ). Hence,

W 2
2 (\mu ,\mu \lambda )\leq 

\int 
\BbbR d\times \BbbR d

| x - y| 2 d\bfitpi \lambda (x, y) = \lambda W 2
2 (\mu ,\mu 0) + (1 - \lambda )W 2

2 (\mu ,\mu 1).

So W2-balls are convex, and dC0-balls around a curve \bfittheta are convex.

2.1. Absolutely continuous curves and trajectories. Now we state the
main result of this section comparing trajectories and curves in P2(\BbbR d) and L2

\BbbP .

Theorem 2.1 (representation theorem).
(i) Let \bfitmu : [0, T ]\rightarrow P2(\BbbR d) be a continuous solution of (1.3) for a Borel vector field

(t, x) \mapsto \rightarrow vt(x) such that (1.2) holds true, and let Y0 \in L2
\BbbP (\Omega ,\BbbR d) such that \mu 0 = Y0\sharp \BbbP .

Then for all \varepsilon > 0, there exists an absolutely continuous Z\cdot \in W 1,2([0, T ],L2
\BbbP ) satisfying

Zt\sharp \BbbP = \mu t for all t\in [0, T ], \.Zt = vt(Zt) for a.e. t, \BbbP -a.s. and \| Z0  - Y0\| L\infty 
\BbbP (\Omega ,\BbbR d) \leq \varepsilon .
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(ii) Conversely, fix X\cdot \in W 1,2([0, T ];L2
\BbbP (\Omega ,\BbbR d)). Set \mu t := Xt\sharp \BbbP and \nu t \in 

\scrM (\BbbR d,\BbbR d) defined as

(2.1)

\int 
\BbbR d

\Phi (x) \cdot d\nu t(x) =
\int 
\Omega 

\Phi (Xt(\omega )) \cdot \.Xt(\omega )d\BbbP (\omega ) \forall \Phi \in C0(\BbbR d,\BbbR d).

Then | \nu t| is absolutely continuous with respect to \mu t, and setting vt(\cdot ) := \nu t

\mu t
(\cdot ) for a.e.

t \in ]0, T [, \mu t-a.e, the curve \mu t : [0, T ]\rightarrow P2(\BbbR d) is a continuous solution of (1.3) with
vt(x) satisfying (1.2).

(iii) Let \mu t : [0, T ]\rightarrow P2(\BbbR d) be a solution of the multiagent system driven by F
associated with the Borel vector field vt(x) (namely, \{ \mu t\} t satisfying Definition 1.3
on [0, T ]) and Y0 \in L2

\BbbP (\Omega ,\BbbR d) such that \mu 0 = Y0\sharp \BbbP . Then there exists an absolutely
continuous curve Z\cdot \in W 1,2([0, T ],L2

\BbbP ) satisfying Zt\sharp \BbbP = \mu t (constructed in (i)) such
that

(2.2) \.Zt(\omega )\in F (t,Zt\sharp \BbbP ,Zt(\omega )) for \BbbP - a.e \omega and for a.e. t with \| Z0  - Y0\| L\infty 
\BbbP 
\leq \varepsilon .

(iv) Conversely, if X\cdot \in W 1,2([0, T ];L2
\BbbP (\Omega ,\BbbR d)) satisfies (2.2), then there exists a

Borel vector field vt(x) such that t \mapsto \rightarrow Xt\sharp \BbbP is an absolutely continuous curve satisfying
(1.3). So \{ Xt\sharp \BbbP \} t\in [0,T ] \in AF

[0,T ](X0\sharp \BbbP ).

Before proving this theorem, we start by defining, for every given X \in L2
\BbbP , the

following subspace of L2
\BbbP :

(2.3) HX := \{ \Phi \circ X \in L2
\BbbP (\Omega ,\BbbR d) : \Phi \in L2

X\sharp \BbbP (\BbbR d,\BbbR d)\} .

The space HX is isometric to some L2
\BbbP space.

Lemma 2.2 (Lemma 5.10 in [37]). HX is a closed linear subspace of L2
\BbbP . More-

over, the map X\ast :L
2
X\sharp \BbbP (\BbbR d)\rightarrow HX defined as X\ast (\phi ) = \phi \circ X is a linear isometry.

We denote by prHX
:L2

\BbbP (\Omega ,\BbbR d)\rightarrow HX the projection on HX .
The following result gives a characterization of the projection on HX .

Lemma 2.3. Let Z,X \in L2
\BbbP . We have

prHX
(Z) = p \circ X with \gamma = (X,Z)\sharp \BbbP and p(x) :=

\int 
zd\gamma x(z).

Proof. (of Lemma 2.3). Indeed, for all \phi \in L2
X\sharp \BbbP (\BbbR d,\BbbR d),\int 

\Omega 

(\phi \circ X) \cdot (p \circ X)d\BbbP =

\int 
\BbbR d

\phi (x) \cdot p(x) d(X\sharp \BbbP )(x)

=

\int 
\BbbR d

\phi (x) \cdot 
\biggl[ \int 

zd\gamma x(z)

\biggr] 
d(X\sharp \BbbP )(x)

=

\int 
\BbbR d\times \BbbR d

\phi (x) \cdot z d\gamma x(z)d(X\sharp \BbbP )(x)

=

\int 
\BbbR d\times \BbbR d

\phi (x) \cdot z d\gamma (x, z) =
\int 
\Omega 

(\phi \circ X) \cdot Z d\BbbP .

Remark 2.4. Another expression of p can be given by disintegrating \BbbP with respect
to X (see Theorem A.1). Indeed, \BbbP can be written \BbbP (\omega ) = (X\sharp \BbbP )\otimes \BbbP x, and then it
can be proved that

p(x) =

\int 
X - 1(x)

Z(\omega ) d\BbbP x(\omega ).
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Proof of Theorem 2.1.
Proof of (i). Consider \eta \in P(\BbbR d\times \Gamma T ) associated with \{ \mu t\} t\in [0,T ] by the superpo-

sition principle (Proposition 1.2). Since \BbbP has no atoms, there exists T\eta : \Omega \rightarrow \BbbR d\times \Gamma T

a Borel map such that T\eta \sharp \BbbP = \eta (cf. [42]). Set Xt = et \circ T\eta for all t. Then

Xt\sharp \BbbP = (et \circ T\eta )\sharp \BbbP = et\sharp (T\eta \sharp \BbbP ) = et\sharp \eta = \mu t, \| Xt\| 2L2
\BbbP 
=

\int 
| x| 2 d\mu t <+\infty ,

so Xt \in L2
\BbbP . Moreover, for all Y \in L2

\BbbP and all 0\leq s\leq t\leq T , setting \pi = (T\eta \times Y )\sharp \BbbP \in 
\Pi (\eta ,Y \sharp \BbbP ), using the superposition principle, we get

\langle Xt, Y \rangle =
\int 
\Omega 

et(T\eta ) \cdot Y d\BbbP =

\int 
(\BbbR d\times \Gamma T )\times \BbbR d

et(x,\sigma ) \cdot y d\pi ((x,\sigma ), y)

=

\int 
(\BbbR d\times \Gamma T )\times \BbbR d

\sigma (t) \cdot y d\pi ((x,\sigma ), y)

=

\int 
(\BbbR d\times \Gamma T )\times \BbbR d

\biggl( 
\sigma (s) +

\int t

s

\.\sigma (\tau ) d\tau 

\biggr) 
\cdot y d\pi ((x,\sigma ), y)

=

\int 
\sigma (s) \cdot y d\pi ((x,\sigma ), y) +

\int \biggl( \int t

s

v\tau (\sigma (\tau )) \cdot y d\tau 
\biggr) 
d\pi ((x,\sigma ), y)

=

\int 
es(x,\sigma ) \cdot y d((T\eta \times Y )\sharp \BbbP )(x,\sigma , y) +

\int t

s

\biggl( \int 
v\tau (\sigma (\tau )) \cdot y d\pi ((x,\sigma ), y)

\biggr) 
d\tau 

(using Fubini)

=

\int 
\Omega 

es(T\eta ) \cdot Y d\BbbP +

\int t

s

\biggl( \int 
\Omega 

v\tau (e\tau \circ T\eta ) \cdot Y d\BbbP 
\biggr) 
d\tau 

=

\int 
\Omega 

Xs \cdot Y d\BbbP +

\int t

s

\langle v\tau (X\tau ) \cdot Y \rangle d\tau = \langle Xs +

\int t

s

v\tau (X\tau )d\tau Y \rangle 

using again Fubini. As this is true for any Y \in L2
\BbbP , we get for all 0\leq s\leq t\leq T

Xt =Xs +

\int t

s

v\tau (X\tau ) d\tau .

So we can conclude that \{ Xt\} t is in W 1,1([0, T ];L2
\BbbP (\Omega ,\BbbR d)) and that \.Xt = vt(Xt) a.e.

t, \BbbP -a.s. We also have that \{ Xt\} t is in W 1,2([0, T ];L2
\BbbP (\Omega ,\BbbR d) because\int T

0

\int 
\Omega 

| \.Xt| 2 d\BbbP dt=

\int T

0

\int 
\BbbR d

| vt(x)| 2 d\mu t(x) dt <+\infty .

Now take Y0 \in L2
\BbbP and \varepsilon > 0 fixed such that Y0\sharp \BbbP =X0\sharp \BbbP . By Lemma 1.1, there

exists \alpha measure preserving \| X0 \circ \alpha  - Y0\| L\infty (\Omega ,\BbbR d) \leq \varepsilon . Setting Zt =Xt \circ \alpha , we have

\| Z0  - Y0\| L\infty (\Omega ,\BbbR d) \leq \varepsilon , Zt\sharp \BbbP = (Xt \circ \alpha )\sharp \BbbP =Xt\sharp \BbbP = \mu t.

Moreover, repeating the same argument done for Xt, for all Y \in L2
\BbbP (\Omega ,\BbbR d) and all

0\leq s\leq t\leq T , replacing \pi by \pi \alpha = ((T\eta \circ \alpha )\times Y )\sharp \BbbP \in \Pi (\eta ,Y \sharp \BbbP ) leads to

\langle Zt, Y \rangle =
\int 
(es \circ T\eta \circ \alpha ) \cdot Y d\BbbP +

\int t

s

\biggl( \int 
v\tau (e\tau \circ T\eta \circ \alpha ) \cdot Y d\BbbP 

\biggr) 
d\tau 

=

\biggl\langle 
Zs +

\int t

s

v\tau (Z\tau )d\tau Y

\biggr\rangle 
.
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Again, this implies that \{ Zt\} t \in W 1,2([0, T ];L2
\BbbP (\Omega ,\BbbR d)) and \.Zt = vt(Zt) a.e. t, \BbbP -a.s.

Proof of (ii). From the definition of \nu t, we get that | \nu t| is absolutely continuous
with respect to \mu t. By (2.1), we deduce that

(2.4) vt(Xt) = prHX
( \.Xt), \BbbP -a.e., a.e. t.

Then, since \{ Xt\} t is in W 1,2([0, T ];L2
\BbbP ), one easily deduces (1.2). Since W2(\mu s, \mu t)\leq 

\| Xs  - Xt\| , the curve \{ \mu t\} t is also continuous. To prove (1.3), taking \varphi \in 
C\infty 

c (\BbbR d\times ]0, T [)), we have, because of (2.4),\int T

0

\int 
\BbbR d

(\partial t\varphi (t, x) + vt(x) \cdot \nabla x\varphi (x, t)) d\mu t(x) dt

=

\int T

0

\int 
\Omega 

(\partial t\varphi (t,Xt) + vt(Xt) \cdot \nabla x\varphi (Xt, t)) d\mu t(x) dt

=

\int T

0

\int 
\Omega 

\Bigl( 
\partial t\varphi (t,Xt) + \.Xt \cdot \nabla x\varphi (Xt, t)

\Bigr) 
d\mu t(x) dt

=

\int 
\Omega 

\int T

0

d

dt
\varphi (Xt, t)dtd\BbbP =

\int 
\Omega 

\varphi (Xt, T ) - \varphi (Xt,0)dtd\BbbP = 0.

Proof of (iii). Consider the curve \{ Zt\} t given by (i) associated to \{ \mu t\} t\in [0,T ].
Then\int T

0

\int 
\Omega 

IF (t,Zt\sharp \BbbP ,Xt(\omega ))(vt(Zt(\omega )))d\BbbP (\omega )dt=
\int T

0

\int 
\BbbR d

IF (t,\mu t,x)(vt(x)) d\mu t(x) dt= 0

from Definition 1.3. Hence, Z\cdot satisfies (2.2).
Proof of (iv). Consider the continuous curve t \mapsto \rightarrow \mu t :=Xt\sharp \BbbP and v associated to

X\cdot as in (ii). Since we already know that vt(Xt) = prHX
( \.Xt), setting \gamma t := (Xt, \.Xt)\sharp \BbbP 

a.e. t, by Lemma 2.3, it holds that vt(x) =
\int 
\BbbR d y d\gamma 

x
t (y) for \mu t-a.e. x. Then, because

X\cdot satisfies (2.2), using the convexity of the images of F , we get, by Jensen's inequality,

0\leq 
\int T

0

\int 
\BbbR d

IF (t,\mu t,x)(vt(x)) d\mu t(x) dt=

\int T

0

\int 
\BbbR d

IF (t,\mu t,x)

\biggl( \int 
\BbbR d

y d\gamma xt (y)

\biggr) 
d\mu t(x) dt

\leq 
\int T

0

\int 
\BbbR d\times \BbbR d

IF (t,\mu t,x)(y) d\gamma t(x, y) dt=

\int T

0

\int 
\Omega 

IF (t,Xt\sharp \BbbP ,Xt(\omega ))( \.X(t))d\BbbP = 0.

This proves that \{ \mu t\} t\in [0,T ] \in AF
[0,T ](X0\sharp \BbbP ).

Remark 2.5. Part (i) of the previous theorem is a generalization of a result
contained in [34] in dimension d= 1. In [34], the authors build each Zt as a unique map
optimal such that Zt\sharp \BbbP = \mu t with \BbbP absolutely continuous with respect to the Lebesgue
measure on [ - 1/2,1/2]. The result holds for such choice of Zt. Nevertheless, it is very
specific to dimension 1. Indeed, for any \nu , \mu in P2(\BbbR ), denoting by X\mu and X\nu the
optimal transport maps from \BbbP to \mu and \nu , it holds that W2(\mu ,\nu ) = \| X\mu  - X\nu \| L2

\BbbP (\Omega ).
This equality is no longer true in higher dimension.
Tudorascu studied the results of [34] in dimension d > 1 (see [45]). Part (ii) of the
above theorem can be related to Proposition 3.3. of [45]. The author assumes again
that \BbbP is absolutely continuous with respect to the Lebesgue measure on \BbbR d and
takes Xt the optimal transport map from \BbbP to \mu t. Then it is proved that, under an
additionnal assumption, it exists a Borel vector field (t, x) \mapsto \rightarrow vt(x) such that

\.Xt = vt(Xt) for a.e. t, \BbbP -a.s.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Remark 2.6. After the submission of the present paper, we discovered the work of
Cavagnari et al. [25], which is very much related to the previous theorem in a slightly
different setting. Thanks to [25], we understood that our first version of the proofs of
(ii) and (iv) of Theorem 2.1 was not complete, and [25] helped us to fix the proof. We
emphasize that [25] contains powerful results about the relation between Lagrangian
and Eulerian formulations of the problem.

Remark 2.7. Observe that the fact that the curve \{ Xt\} t solves (2.2) does not imply
that another curve \{ \=Xt\} t with the same law \=Xt\sharp \BbbP =Xt\sharp \BbbP solves (2.2). Consequently,
the multiagent dynamical system cannot in general be studied in the space L2

\BbbP .
We already noticed that (P2(\BbbR d),W2) is identified with (L2

\BbbP / \sim ). Easily, the
equivalence classes are closed for the strong topology of L2

\BbbP . Nevertheless, they are
neither convex nor closed for the weak topology of L2

\BbbP . So one needs to be very careful
with the choice of the topology used when comparing continuity properties of curves
in P2(\BbbR d) and L2

\BbbP .

2.2. Approximation of curves in P2(\BbbR \bfitd ) by trajectories of the multia-
gent system. The goal of this section is to construct a trajectory of the multiagent
system which approximates a given trajectory in P2(\BbbR d). This is a crucial property
to obtain regularity of the value of the control problem. So we obtain the following
Gr\"onwall--Filippov type of result.

Proposition 2.8. Take I = [0, T ]. Let \=\mu \in P2(\BbbR d) be given and F : I\times P2(\BbbR d)\times 
\BbbR 2 \rightrightarrows \BbbR d be a Lipschitz continuous set-valued map with nonempty compact convex
values. Let \bfitmu = \{ \mu t\} t\in I \subseteq AC2(I;P2(\BbbR d)) satisfying (1.3) for a Borel vector field
(t, x) \mapsto \rightarrow vt(x) such that

\int 
I
\| vt(\cdot )\| 2L2

\mu t

dt < +\infty . Then there exists a trajectory \~\bfitmu =

\{ \~\mu t\} t\in I \in AF
I (\=\mu ) such that for all t\in I,

(2.5) W2(\mu t, \~\mu t)\leq eL
\prime t

\biggl( 
W2(\mu 0, \=\mu ) +

\int t

0

\int 
\BbbR d

dF (s,\mu s,x)(vs(x))d\mu s(x)ds

\biggr) 
for some constant L\prime depending only on F , I, and \=\mu .

This section is devoted to the proof of this proposition, according to the following
outline:

1. For a given curve \bfittheta = \{ \theta t\} t\in I \in Lip(I;P2(\BbbR d)), define the set \Upsilon F,\bfittheta 
I (\=\mu ) of

solutions to the multiagent system associated to (t, x) \mapsto \rightarrow F (t, \theta t, x), namely,
the set of \bfitmu = \{ \mu t\} t\in I satisfying (1.3) for a Borel vector field (t, x) \mapsto \rightarrow vt(x)
such that vt(x)\in F (t, \theta t, x) for \mu t-a.e. x\in \BbbR d and a.e. t\in I.

2. We obtain a Filippov estimate for solutions in \Upsilon F,\bfittheta 
I (\=\mu ) (see Proposition 2.10

below) by using our Theorem 2.1 for the map G\bfittheta : I\times L2
\BbbP (\Omega )\rightrightarrows L2

\BbbP (\Omega ) defined
by

(2.6) G\bfittheta (t,X(\cdot )) := \{ Y (\cdot )\in L2
\BbbP (\Omega ) : Y (\omega )\in F (t, \theta t,X(\omega )) for a.e. \omega \in \Omega \} 

with a Filippov theorem in L2
\BbbP .

3. We build the desired trajectory \~\bfitmu as a fixed point of some submap of \theta \mapsto \rightarrow 
\Upsilon F,\bfittheta 

I (\=\mu ) whose values satisfy (2.5).
We will need the following technical lemma proved in Appendix A.

Lemma 2.9. Fix \bfittheta = \{ \theta t\} t\in I \in Lip(I;P2(\BbbR d)). Then G\bfittheta : I \times L2
\BbbP (\Omega ) \rightrightarrows L2

\BbbP (\Omega ),
defined in (2.6), is LipF \cdot (1 + Lip\bfittheta )-Lipschitz continuous with closed images.
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Proposition 2.10. In the assumptions of Proposition 2.8, fix \varepsilon > 0 and \bfittheta =
\{ \theta t\} t\in I \in Lip(I;P2(\BbbR d)). Then there exists \~\mu \bfittheta = \{ \~\mu \bfittheta 

t \} t\in I \in \Upsilon F,\bfittheta 
I (\=\mu ) such that

(2.7)

W2(\mu t, \~\mu 
\bfittheta 
t )\leq et\cdot LipF \cdot (1+Lip\bfittheta )

\biggl( 
W2(\mu 0, \=\mu ) +

\int t

0

\int 
\BbbR d

dF (s,\theta s,x)(vs(x))d\mu s(x)ds

\biggr) 
.

Proof of Proposition 2.10. Set L := LipF \cdot (1 + Lip\bfittheta ).
Step 1. Fix \varepsilon > 0. We first prove that there exists \~\mu \bfittheta such that

(2.8) W2(\mu t, \~\mu 
\bfittheta 
t )\leq eLt

\biggl( 
W2(\mu 0, \=\mu ) +

\int t

0

\int 
\BbbR d

dF (s,\theta s,x)(vs(x))d\mu s(x)ds+ \varepsilon + \varepsilon t

\biggr) 
.

Take \~X0, \~Y0 \in L2
\BbbP (\Omega ) such that ( \~X0, \~Y0)\sharp \BbbP \in \Pi o(\mu 0, \=\mu ). By Theorem 2.1(i), there exists

t \mapsto \rightarrow Xt such that \.Xt = vt \circ Xt, \| X0  - \~X0\| L2
\BbbP 
\leq \varepsilon , and Xt\sharp \BbbP = \mu t for all t \in I. By

Theorem 1.2 in [30] applied1 to G\bfittheta , there exists t \mapsto \rightarrow Yt(\cdot ) absolutely continuous such
that Y0 = \~Y0, Y0\sharp \BbbP = \=\mu , \.Yt(\omega )\in F (t, \theta t, Y (\omega )) for a.e. \omega and for all t:

\| Xt(\cdot ) - Yt(\cdot )\| L2
\BbbP 
\leq etL

\biggl( 
\| X0(\cdot ) - Y0(\cdot )\| L2

\BbbP 
+

\int t

0

dG\bfittheta (s,Xs(\cdot ))(vs \circ Xs(\cdot ))ds+ \varepsilon t

\biggr) 
\leq etL

\biggl( 
\| \~X0(\cdot ) - \~Y0(\cdot )\| L2

\BbbP 
+

\int t

0

dG\bfittheta (s,Xs(\cdot ))(vs \circ Xs(\cdot ))ds+ \varepsilon + \varepsilon t

\biggr) 
= etL

\biggl( 
W2(\mu 0, \=\mu ) +

\int t

0

dG\bfittheta (s,Xs(\cdot ))(vs \circ Xs(\cdot ))ds+ \varepsilon + \varepsilon t

\biggr) 
.

Set \~\mu \bfittheta 
t := Yt\sharp \BbbP for all t. Notice that W2(\mu s, \~\mu 

\theta 
s)\leq \| Xt(\cdot ) - Yt(\cdot )\| L2

\BbbP 
and that

dG\bfittheta (s,Xs(\cdot ))(vs \circ Xs(\cdot )) = dF (s,\theta s,\cdot )(vs(\cdot )) \circ Xs(\cdot ).

Therefore, after integrating in \BbbP and having switched the integrals in ds and in d\omega ,
we obtain (2.8). In particular, by Theorem 2.1(iii), we have that \bfitmu \theta = \{ \~\mu \bfittheta 

t \} t\in I obeys
the continuity equation

\partial t\~\mu 
\bfittheta 
t +div(wt\~\mu 

\bfittheta 
t ) = 0,

where (t, x) \mapsto \rightarrow wt(x) is a measurable selection of (t, x) \mapsto \rightarrow F (t, \theta t, x).
Step 2. We claim that the map \bfittheta \mapsto \rightarrow \Upsilon F,\bfittheta 

I (\=\mu ) from \{ \bfittheta \in Lip(I;P2(\BbbR d)) : Lip\bfittheta \leq 
L\} to C0(I;P2(\BbbR d)) is Lipschitz continuous with compact convex images and that
its Lipschitz constant is less than e(b - a)\cdot (1+L)LipF \cdot (b - a)LipF .

Without loss of generality, we assume that I = [0, T ]. Set L\prime = (1 + L)LipF .

Let \varepsilon > 0, \bfittheta (\bfiti ) \in Lip(I;P2(\BbbR d)) with Lip\bfittheta \leq L for i = 1,2 and \bfitmu (1) = \{ \mu (1)
t \} t\in I \in 

\Upsilon F,\bfittheta (\bfone )

I (\=\mu ). In particular, \bfitmu (1) solves the continuity equation with a Borel vector field

(t, x) \mapsto \rightarrow vt(x) satisfying vt(x) \in F (t, \theta (1)t , x) for \mu t-a.e. x \in \BbbR d and a.e. t \in I. By the

arguments of Step 1, there exists \bfitmu (2) = \{ \mu (2)
t \} t\in I \in \Upsilon F,\bfittheta (\bftwo )

I (\=\mu ):

W2(\mu 
(1)
t , \mu 

(2)
t )\leq etL

\prime 
\biggl( \int t

0

\int 
\BbbR d

d
F (s,\theta 

(2)
s ,x)

(vs(x))d\mu 
(1)
s (x)ds+ \varepsilon + \varepsilon t

\biggr) 
,

\leq etL
\prime 
\biggl( \int t

0

\int 
\BbbR d

LipF \cdot W2(\theta 
(1)
s , \theta (2)s )d\mu (1)

s (x)ds+ \varepsilon + \varepsilon t

\biggr) 
,

\leq eTL\prime 
\cdot 
\Bigl( 
TLipF \cdot dC0(\bfittheta (1),\bfittheta (2)) + \varepsilon + \varepsilon T

\Bigr) 
.

1Note that [30] concerns mild solutions which appear to be absolutely continuous solutions be-
cause the infinitesimal generator is A= 0 in our context.
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5932 C. JIMENEZ, A. MARIGONDA, AND M. QUINCAMPOIX

Thus,

d
\Upsilon F,\bfittheta (\bftwo )

I (\=\mu )
(\bfitmu (1))\leq eTL\prime 

\cdot 
\Bigl( 
TLipF \cdot dC0(\bfittheta (1),\bfittheta (2)) + \varepsilon + \varepsilon T

\Bigr) 
.

By letting \varepsilon \rightarrow 0+ and interchanging \bfittheta (1) and \bfittheta (2), we obtain the Lipschitz continuity
of \bfittheta \mapsto \rightarrow \Upsilon F,\bfittheta 

I (\=\mu ).

We show the convexity of \Upsilon F,\bfittheta 
I (\=\mu ). Given \lambda \in [0,1], \bfitmu (i) = \{ \mu (i)

t \} t\in I \in \Upsilon F,\bfittheta 
I (\=\mu ),

i= 0,1, define \bfitmu (\lambda ) = \{ \mu (\lambda )
t \} t\in I := \lambda \bfitmu (0) + (1 - \lambda )\bfitmu (1). By linearity, we have

\partial t\mu 
(\lambda )
t +div

\Bigl( 
\lambda v

(0)
t \mu 

(0)
t + (1 - \lambda )v

(1)
t \mu 

(1)
t

\Bigr) 
= 0,

where v
(i)
t (x)\in F (t, \theta t, x) for \mu (i)

t -a.e. x and a.e. t. Noticing that \mu 
(i)
t \ll \mu 

(\lambda )
t ,

\partial t\mu 
(\lambda )
t +div

\Bigl( 
v
(\lambda )
t \mu 

(\lambda )
t

\Bigr) 
= 0,

where for \mu 
(\lambda )
t -a.e. x\in \BbbR d and a.e. t\in I, it holds that

v\lambda t (x) : =
\lambda v

(0)
t \mu 

(0)
t + (1 - \lambda )v

(1)
t \mu 

(1)
t

\mu 
(\lambda )
t

(x)

= v
(0)
t (x)

\lambda \mu 
(0)
t

\lambda \mu (0) + (1 - \lambda )\mu (1)
(x) + v

(1)
t (x)

(1 - \lambda )\mu 
(1)
t

\lambda \mu (0) + (1 - \lambda )\mu (1)
(x).

Therefore, v\lambda t (x)\in F (t, \theta t, x) by convexity of the images of F . Thus, \bfitmu (\lambda ) \in \Upsilon F,\bfittheta 
I (\=\mu ).

We notice that there exists C\bfittheta 
1 ,C

\bfittheta 
2 > 0 such that F (t, \theta t, x) \subseteq B(0,C\bfittheta 

1 +C\bfittheta 
2 | x| ).

Indeed, take M\bfittheta =max\{ m1/2
2 (\theta s) : s\in I\} . Since

F (t, \theta t, x)\subseteq F (0, \delta 0,0) +B(0,1) \cdot LipF \cdot (T +M\bfittheta + | x| ),

we can take

C\bfittheta 
2 := LipF \cdot (T +M\bfittheta + 1), C\bfittheta 

1 :=max\{ | v| : v \in F (0, \delta 0,0)\} +C\bfittheta 
2 .

Thus,

| \gamma (t)| \leq | \gamma (0)| +
\int t

0

(C\bfittheta 
1 +C\bfittheta 

2 | \gamma (s)| )ds.

Hence, for the trajectories of \.\gamma (t)\in F (t, \theta t, \gamma (t)), we have by the Gr\"onwall inequality

| \gamma (t)| \leq (| \gamma (0)| + TC\bfittheta 
1 )e

C\bfittheta 
2 T .

So F (t, \theta t, \gamma (t)) \subseteq B
\bigl( 
0,C\bfittheta 

1 +C\bfittheta 
2 (| \gamma (0)| + TC\bfittheta 

1 )e
C\bfittheta 

2 T
\bigr) 
, in particular, Lip\gamma \leq C\bfittheta 

1 +

C\bfittheta 
2 (| \gamma (0)| + TC\bfittheta 

1 )e
C\bfittheta 

2 T . Every \bfitmu = \{ \mu t\} t\in I \in \Upsilon F,\bfittheta 
I (\=\mu ) can be represented as \mu t = et\sharp \bfiteta 

with a measure \bfiteta \in P(\BbbR d \times \Gamma I), concentrated on pairs (x,\gamma ), where \gamma (0) = x and
\gamma is a trajectory of the differential inclusion. By integrating the above estimates, we
obtain that the elements \bfitmu of \Upsilon F,\bfittheta 

I (\=\mu ) satisfy the following:
\bullet uniform boundedness of the images in W 2:

W2(\delta 0, \mu t) =

\biggl( \int 
\BbbR d

| \gamma (t)| 2 d\bfiteta (x,\gamma )
\biggr) 1/2

\leq (m
1/2
2 (\=\mu ) + TC\bfittheta 

1 )e
C\bfittheta 

2 T ;
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\bullet uniform Lipschitz continuity:

W2(\mu t, \mu s)\leq \| et  - es\| L2
\BbbP 
=

\biggl( \int 
\BbbR d\times \Gamma I

| \gamma (t) - \gamma (s)| 2 d\bfiteta (x,\gamma )
\biggr) 1/2

\leq | t - s| \cdot (C\bfittheta 
1 +C\bfittheta 

2 (m
1/2
2 (\=\mu ) + TC\bfittheta 

1 )e
C\bfittheta 

2 T );

\bullet pointwise compactness in W2: The uniform boundedness of the images in
W2 yields the pointwise narrow compactness; thus, we have only to show the
uniform integrability of the second-order moments. We notice that for \bfiteta -a.e.
(x,\gamma ), if | \gamma (t)| > r, we have

s(r) :=max\{ re - C\bfittheta 
2 T  - TC\bfittheta 

1 ,0\} < | \gamma (0)| .

Thus,

(2.9)\Biggl( \int 
\BbbR d\setminus B(0,r)

| x| 2 d\mu t(x)

\Biggr) 1/2

\leq 

\Biggl( \int \int 
(\BbbR d\setminus B(0,s(r)))\times \Gamma I

| \gamma (t)| 2 d\bfiteta (x,\gamma )

\Biggr) 1/2

\leq 

\left[  \Biggl( \int 
\BbbR d\setminus B(0,s(r))

| x| 2 d\=\mu (x)

\Biggr) 1/2

+ TC\bfittheta 
1 \=\mu (\BbbR d \setminus B(0, s(r)))

\right]  eC\bfittheta 
2 T ,

and the right-hand side tends to 0 as r\rightarrow +\infty , uniformly w.r.t. \bfitmu \in \Upsilon F,\bfittheta 
I (\=\mu ).

By the Ascoli--Arzel\`a theorem, \Upsilon F,\bfittheta 
I (\=\mu ) is relatively compact in C0(I;P2(\BbbR d)). We

prove that it is closed. Given a sequence \{ \bfitmu (n)\} n\in \BbbN \subseteq \Upsilon F,\bfittheta 
I (\=\mu ), converging to \bfitmu in

C0(I;P2(\BbbR d)), we can find a sequence \bfiteta (\bfitn ) \subseteq P(\BbbR d\times \Gamma I) such that \mu 
(n)
t = et\sharp \bfiteta 

(\bfitn ) for
all t\in I and n\in \BbbN , where \bfiteta (n) is concentrated on pairs (x,\gamma ), where \gamma is a trajectory
of the differential inclusion and \gamma (0) = x. Since the functional

(x,\gamma ) \mapsto \rightarrow 

\Biggl\{ 
| x| 2 + | \gamma (0)| 2 + \| \.\gamma \| 2\infty if \gamma \in Lip(I;\BbbR d),

+\infty otherwise

has compact sublevels, by using the estimates on the trajectories, we obtain

sup
n\in \BbbN 

\int 
\BbbR d\times \Gamma I

(| x| 2 + | \gamma (0)| 2 + \| \.\gamma \| 2\infty )d\bfiteta (\bfitn )(x,\gamma )<+\infty .

By Remark 5.1.5 in [3], we extract a subsequence \{ \bfiteta (nk)\} k\in \BbbN narrowly convergent to
\bfiteta . By the continuity of et, we have that \mu t = et\sharp \bfiteta for all t. Finally, for a.e. (x,\gamma ) in
the support of \bfiteta , there exists \{ (xn, \gamma n)\} n\in \BbbN such that xn \rightarrow x, \| \gamma n  - \gamma \| \infty \rightarrow 0 and
\gamma n is a trajectory of \.\gamma n(t) \in F (t, \theta t, \gamma n(t)) with \gamma n(a) = x. Since the solution map of
such differential inclusion has a compact graph [6, Theorem 3.5.2], \gamma is a trajectory
starting from x, and therefore \bfitmu \in \Upsilon F,\bfittheta 

I (\=\mu ). This proves Step 2.
Step 3. We now construct \~\bfitmu \bfittheta satisfying (2.7).
Consider a sequence \varepsilon n \rightarrow 0+. By Step 1, there exists a sequence \{ \~\bfitmu \bfittheta ,(\bfitn )\} n\in \BbbN \subset 

\Upsilon F,\bfittheta 
I (\=\mu ) satisfying

W2(\mu t, \~\mu 
\bfittheta ,(\bfitn )
t )\leq eLt

\biggl( 
W2(\mu 0, \=\mu ) +

\int t

0

\int 
\BbbR d

dF (s,\theta s,x)(vs(x))d\mu s(x)ds+ \varepsilon n + \varepsilon nt

\biggr) 
,
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5934 C. JIMENEZ, A. MARIGONDA, AND M. QUINCAMPOIX

where \~\bfitmu \bfittheta ,(\bfitn ) = \{ \~\mu \bfittheta ,(\bfitn )
t \} t\in I . By the compactness result obtained in Step 2, we can find

a subsequence \{ \~\bfitmu \bfittheta ,(\bfitn \bfitk )\} k\in \BbbN converging in dC0 to \~\bfitmu \bfittheta = \{ \~\mu \bfittheta 
t \} t\in I \in \Upsilon F,\bfittheta 

I (\=\mu ) satisfying
(2.7).

Proof of Proposition 2.8. Given L,T > 0, \=\mu \in P2(\BbbR d), and M >m
1/2
2 (\=\mu ), we set

I = [0, T ],

C2 := LipF \cdot (T +M + 1), C1 :=max\{ | v| : v \in F (0, \delta 0,0)\} +C2,

and define SI,L,M (\=\mu ) to be the set of \bfittheta = \{ \theta t\} t\in I \in Lip (I;P2(\BbbR d)) satisfying \theta 0 = \=\mu ,
Lip\bfittheta \leq L, W2(\delta 0, \theta t)\leq M , and for all r > 0, t\in I,\Biggl( \int 

\BbbR d\setminus B(0,r)

| x| 2 d\theta t(x)

\Biggr) 1/2

(2.10)

\leq 

\left[  \Biggl( \int 
\BbbR d\setminus B(0,\~s(r))

| x| 2 d\=\mu (x)

\Biggr) 1/2

+ TC1\=\mu (\BbbR d \setminus B(0, \~s(r)))

\right]  eC2T ,

where \~s(r) =max\{ re - C2T  - TC1,0\} .
We have that SI,L,M (\=\mu ) is uniformly bounded in dC0 ; thus, we get the point-

wise relative compactness of SI,L,M (\=\mu ) w.r.t. the narrow topology. We prove that
SI,L,M (\=\mu ) is also pointwise relative compact in W2. Indeed, it is enough to show the
uniform integrability of the second-order moments, which comes from the fact from
(2.10) that we have\Biggl( \int 

\BbbR d\setminus B(0,2r)

| x| 2 d\mu t(x)

\Biggr) 1/2

\leq 

\Biggl( \int 
\BbbR d\setminus B(0,r)

| x| 2 d\mu t(x)

\Biggr) 1/2

\leq 

\left[  \Biggl( \int 
\BbbR d\setminus B(0,\~s(r))

| x| 2 d\=\mu (x)

\Biggr) 1/2

+ TC1\=\mu (\BbbR d \setminus B(0, \~s(r)))

\right]  eC2T

and that \~s(r)\rightarrow +\infty as r\rightarrow +\infty .
The set SI,L,M (\=\mu ) is nonempty since it contains the constant curves \theta t \equiv \=\mu . It is

convex from the convexity of the W2-ball. It is also closed in the dC0 topology and
hence compact by theAscoli--Arzel\`a theorem. Indeed, it is sufficient to recall that if
W2(\xi n, \xi )\rightarrow 0, then we have

lim inf
n\rightarrow +\infty 

\int 
\BbbR d\setminus B(0,r)

| x| 2 d\xi n(x)\geq 
\int 
\BbbR d\setminus B(0,r)

| x| 2 d\xi (x).

Suppose now that

M >m
1/2
2 (\=\mu ) + 1,

L >max\{ | v| : v \in F (0, \delta 0,0)\} +LipF \cdot (M + 2) + LipF \cdot (M + 2) \cdot (m1/2
2 (\=\mu ) + 1).

Then we claim that for all 0<T < 1 small enough, it holds that \Upsilon F,\bfittheta 
I (\=\mu )\subseteq SI,L,M (\=\mu )

for all \bfittheta \in SI,L,M (\=\mu ).
We prove this claim. As in the proof of Proposition 2.10, given \bfittheta \in SI,L,M (\=\mu ),

we get for every \bfitmu \in \Upsilon F,\bfittheta 
[0,T ](\=\mu )

Lip(\bfitmu )\leq C\bfittheta 
1 +C\bfittheta 

2 (m
1/2
2 (\=\mu ) + TC\bfittheta 

1 )e
C\bfittheta 

2 T ,
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DYNAMICAL SYSTEMS AND H.-J.-B. EQUATIONS ON P 2 5935

where (recalling that 0<T < 1)

C\bfittheta 
2 =LipF \cdot (T +M\bfittheta + 1)\leq C3 := LipF \cdot (M + 2),

C\bfittheta 
1 =max\{ | v| : v \in F (0, \delta 0,0)\} +C\bfittheta 

2

\leq C4 :=max\{ | v| : v \in F (0, \delta 0,0)\} +LipF \cdot (M + 2).

Therefore, Lip(\bfitmu )\leq f(T ), where

f(T ) =C4 +C3(m
1/2
2 (\=\mu ) + TC4)e

C3T .

We easily get f(0)<L, and therefore, since f(\cdot ) is continuous, there exists T0 \in ]0,1[
such that f(T ) < L for 0 < T < T0, where T0 depends only on F , M , and \=\mu . In
particular, we have Lip\bfitmu \leq L. Moreover, we have

W2(\delta 0, \mu t)\leq m
1/2
2 (\=\mu ) + TLip(\bfitmu )\leq m

1/2
2 (\=\mu ) +LT.

Therefore, by possibly further shrinking T0, we have W2(\delta 0, \mu t)\leq M . Equation (2.10)
follows from the estimate on C\bfittheta 

2 and from (2.9), and our claim is proved.
Given an interval J \subseteq [0, T ], we define

QJ(\bfitmu ,\bfittheta ) :=

\Biggl\{ 
\bfitxi = \{ \xi t\} t\in J \in C0(J ;P2(\BbbR d)) : For all t\in J , it holds that

W2(\mu t, \xi t)\leq et\cdot LipF \cdot (1+Lip\bfittheta )

\biggl( 
W2(\mu 0, \=\mu ) +

\int t

0

\int 
\BbbR d

dF (s,\theta s,x)(vs(x))d\mu s(x)ds

\biggr) \Biggr\} 
,

and we notice that QI(\bfitmu ,\bfittheta ) is a convex and dC0-closed set.
Notice that the set-valued map \bfittheta \mapsto \rightarrow QI(\bfitmu ,\bfittheta ), defined on C0([0, T ];P2(\BbbR d)), has

a closed graph since for all \bfittheta (i) = \{ \theta (i)t \} t\in I , i= 1,2, and every v \in \BbbR d, we have

d
F (t,\theta 

(1)
t ,x)

(v)\leq d
F (t,\theta 

(2)
t ,x)

(v) + LipFdC0(\bfittheta 1,\bfittheta 2),

and W2(\mu t, \cdot ) is continuous.
We consider the map SI,L,M (\=\mu )\rightrightarrows SI,L,M (\=\mu ) defined as \bfittheta \mapsto \rightarrow \Upsilon F,\bfittheta 

I (\=\mu )\cap QI(\bfitmu ,\bfittheta ).
As this map is not suitable to apply the Kakutani fixed point theorem, we will use an
embedding given by the following lemma, whose proof is postponed to Appendix A.

Lemma 2.11. Let S \subseteq C0(I;P2(\BbbR d)) be compact and convex, endowed with the
topology induced by dC0 . Then there exists a locally convex topological vector space \scrL 
and a homeomorphism h : (S , dC0)\rightarrow \scrL such that

h(\lambda \bfitmu (1) + (1 - \lambda )\bfitmu (2)) = \lambda h(\bfitmu (1)) + (1 - \lambda )h(\bfitmu (2))

for all \lambda \in [0,1] and \bfitmu (\bfiti ) \in S , i= 1,2, mapping (S , dC0) to a compact convex subset
of \scrL .

The map \bfittheta \mapsto \rightarrow \Upsilon F,\bfittheta 
I (\=\mu )\cap QI(\bfitmu ,\bfittheta ) has a closed graph and nonempty convex images.

Its graph is contained in a compact set, so it is upper semicontinuous. According to
Lemma 2.11, there is an affine homeomorphism h : SI,L,f (\=\mu ) \rightarrow \scrL , where \scrL is a
topological vector space. In particular, we can consider

h(SI,L,f (\=\mu ))\ni h(\bfittheta ) \mapsto \rightarrow h(\Upsilon F,\bfittheta 
I (\=\mu )\cap QI(\bfitmu ,\bfittheta ))\subseteq h(SI,L,f (\=\mu )).
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5936 C. JIMENEZ, A. MARIGONDA, AND M. QUINCAMPOIX

Recalling that h is an affine homeomorphism, we have that h(SI,L,f (\=\mu )) is again
compact and convex and that the above set-valued map is upper semicontinuous with
compact convex images. By the Kakutani--Fan--Glicksberg fixed point theorem (see,
e.g., Theorem 13.1 in [40]), this set-valued map admits a fixed point; i.e., there exists

\ell \in h(SI,L,f (\=\mu )) such that \ell \in h(\Upsilon 
F,h - 1(\ell )
I (\=\mu ) \cap QI(\bfitmu , h

 - 1(\ell ))). In particular, there

exists \~\bfitmu := h - 1(\ell ) \in \Upsilon F,\~\bfitmu 
I (\=\mu ) \cap QI(\bfitmu ,\bfiteta ); thus, \~\bfitmu \in \Upsilon F,\~\bfitmu 

I (\=\mu ) and \~\bfitmu \in QI(\bfitmu , \~\bfitmu ), and
thus

(2.11) W2(\mu t, \~\mu t)\leq et\cdot LipF \cdot (1+L)

\biggl( 
W2(\mu 0, \=\mu ) +

\int t

0

\int 
\BbbR d

dF (s,\~\mu s,x)(vs(x))d\mu s(x)ds

\biggr) 
for some constant L depending only on F , I, and \=\mu . Recalling the Lipschitz continuity
of F , this implies that

W2(\mu t, \~\mu t)\leq et\cdot LipF \cdot (1+L)

\Biggl( 
W2(\mu 0, \=\mu ) +

\int t

0

\int 
\BbbR d

[dF (s,\mu s,x)(vs(x))

+ LipF \cdot W2(\mu s, \~\mu s)]d\mu s(x)ds

\Biggr) 
.

Set

g(t) := et\cdot LipF \cdot (1+L)

\biggl( 
W2(\mu 0, \=\mu ) +

\int t

0

\int 
\BbbR d

dF (s,\mu s,x)(vs(x))d\mu s(x)ds

\biggr) 
.

We have (recalling 0\leq t\leq T < 1)

W2(\mu t, \~\mu t)(2.12)

\leq et\cdot LipF \cdot (1+L)

\biggl( 
W2(\mu 0, \=\mu ) +

\int t

0

\int 
\BbbR d

dF (s,\mu s,x)(vs(x))d\mu s(x)ds

+LipF \cdot 
\int t

0

W2(\mu s, \~\mu s)ds

\biggr) 
\leq g(t) + LipF \cdot eLipF \cdot (1+L)

\int t

0

W2(\mu s, \~\mu s)ds.

(2.13)

Gr\"onwall's inequality yields the desired estimate (2.12) with

L\prime =LipF \cdot eLipF \cdot (1+L) +LipF \cdot (1 +L),

yielding Proposition 2.8 for T small enough.
We prove now the case of possibly large T > 0. To this aim, we apply Zorn's

lemma to the set

Z := \{ (\tau , \~\bfitmu = \{ \~\mu t\} t\in [0,\tau ]) : \tau \in [0, T ], \~\mu 0 = \=\mu , \~\bfitmu \in \Upsilon F,\~\bfitmu 
[0,\tau ] \cap QJ(\bfitmu , \~\bfitmu )\} 

with the following partial order: (\tau (1), \~\bfitmu (1)) \preceq (\tau (2), \~\bfitmu (2)) if and only if \tau (1) \leq \tau (2)

and \~\mu 
(1)
t = \~\mu 

(2)
t for all t \in [0, \tau (1)]. Given a totally ordered chain A, set TA = sup\{ \tau \in 

[0, T ] : (\tau , \~\bfitmu ) \in A\} , and define \^\bfitmu (\bfitA ) = \{ \^\mu (A)
t \} t\in [0,TA[ by setting \^\mu t = \~\mu t for all t \in \tau ,

(\tau , \~\bfitmu )\in A.
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DYNAMICAL SYSTEMS AND H.-J.-B. EQUATIONS ON P 2 5937

Notice that given (\tau , \~\bfitmu ), there exists \~\bfiteta \in P(\BbbR d \times \Gamma [0,\tau ]), supported on the pairs
(x,\gamma ) satisfying \.\gamma (t)\in F (t, \~\mu t, \gamma (t)) for a.e. t\in [0, \tau ] and \gamma (0) = x, such that \~\mu t = et\sharp \~\bfiteta 
for all t\in [0, \tau ]. In particular, we have for \~\bfiteta -a.e. (x,\gamma )\in \BbbR d \times \Gamma [0,\tau ]

F (t, \~\mu t, \gamma (t))\leq F (0, \delta 0,0) +B(0,1) \cdot LipF \cdot (t+m
1/2
2 (\~\mu s) + | \gamma (t)| ).

Therefore, since C1 =max\{ | v| : v \in F (0, \delta 0,0)\} ,

| \gamma (t)| \leq | \gamma (0)| +
\int t

0

\Bigl[ 
C1 + (s+m

1/2
2 (\~\mu s) + | \gamma (s)| )

\Bigr] 
ds.

By taking the L2
\~\bfiteta -norm and using Jensen's inequality,

m
1/2
2 (\~\mu t)\leq m

1/2
2 (\=\mu ) +

\int t

0

\Bigl[ 
C1 +LipF \cdot (s+ 2m

1/2
2 (\~\mu s))

\Bigr] 
ds.

By Gr\"onwall's inequality and recalling that \tau \leq T ,

m
1/2
2 (\~\mu t)\leq m

1/2
2 (\=\mu ) + \tau C1 +LipF

T 2

2
\cdot e2TLipF .

Arguing as above, \~\bfitmu is Lipschitz continuous, with Lipschitz constant depending only
on \=\mu , T , and F . Since (\tau , \~\bfitmu ) \in A are arbitrary, \~\bfitmu (A) is Lipschitz on [0, TA[, and
therefore it can be uniquely extended to a Lipschitz function on [0, TA] still denoted

\~\bfitmu (A). One gets easily that \~\bfitmu (\bfitA ) \in \Upsilon F,\~\bfitmu (\bfitA )

[0,TA] (\=\mu ) and that \~\bfitmu (A) \in Q[0,TA](\bfitmu , \~\bfitmu ). There-

fore, (TA, \~\bfitmu 
(\bfitA )) \in Z majorizes every element of A. By Zorn's lemma, there exist

(T \prime , \^\bfitmu ) \in A) a maximal element. If T \prime < T , by applying the first part of the proof to
extend \^\bfitmu on [T \prime , T \prime + \varepsilon ] for some \varepsilon > 0, we contradict the maximality of \^\bfitmu .

In particular, we obtain \~\bfitmu \in \Upsilon F,\~\bfitmu 
I (\=\mu ) \cap QI(\bfitmu , \~\bfitmu ), and we can conclude by

Gr\"onwall's inequality as in the case of small T .

Remark 2.12. In a series of recent papers [8], [9], [10], [11], [12], [13], [14], [15],
optimization problems in the Wasserstein space driven by a controlled continuity equa-
tion were studied in the Cauchy--Lipschitz framework, i.e., assuming a local Lipschitz
regularity in space of the (possibly nonlocal) driving vector field. It is well known
that in this case, the continuity equation is well-posed, and moreover its unique solu-
tion is given by the push-forward of the initial measure along the flow: In particular,
mass splitting along the trajectories is not possible. The concept of trajectory used in
the Cauchy--Lipschitz framework yields a powerful tool to extend the classical finite-
dimensional theory to the Wasserstein space, at the price of restricting the set of
available trajectories for the agents (by adding a hidden interaction between the ve-
locities of close agents, which must be selected to be closed). A short comparison of
the concept of trajectory used in this paper and the Cauchy--Lipschitz framework was
outlined also in Remark 6 of [12].

Remark 2.13. Another Filippov-like theorem was obtained in [12] with a different
notion of solution to (0.1)--(0.2) under more smoothness assumptions on the vector
field. Also, when \bfitmu is itself a solution to (0.1)--(0.2), a Gr\"onwall--Filippov result was
obtained in [37].

Thanks to Theorem 2.1, we can write the value function \scrV (\cdot ) associated to (0.4)
on admissible trajectories in two different ways: We can write

\scrV (\mu ,T ) := inf

\Biggl\{ \int T

s

\scrL (\mu t)dt+ G (\mu T ) : \bfitmu \in AF
[0,T ](\mu )

\Biggr\} 
,
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5938 C. JIMENEZ, A. MARIGONDA, AND M. QUINCAMPOIX

and, setting L(Y ) :=\scrL (Y \sharp \BbbP ) and G(Y ) = G (Y \sharp \BbbP ) for all Y \in L2
\BbbP (\Omega ,\BbbR d), we can write

also

\scrV (\mu ,T ) := inf

\Biggl\{ \int T

s

L(Xt)dt+G(XT ) : X\cdot \in W 1,2([0, T ],\BbbR d), X0\sharp \BbbP = \mu ,

\.Xt(\omega )\in F (Xt\sharp \BbbP ,Xt(\omega )) for a.e. t\in [0, T ] and \BbbP -a.e. \omega \in \Omega 

\Biggr\} 
.

It has been shown in [37] that \scrV is a solution of an HJB equation in P2(\BbbR d) of the
type

(2.14)
\partial u

\partial t
+\scrH (\mu ,D\mu u(t, \mu )) = 0.

In the next section, we explore some properties of this equation and its meaning
in L2

\BbbP (\Omega ,\BbbR d). (We reduce our study to the sationary equation in order to simplify).
Moreover, we expect that, setting V (X) := \scrV (X\sharp \BbbP ) for all X \in L2

\BbbP (\Omega ,\BbbR d), V should be
a solution of an HJB equation in L2

\BbbP (\Omega ,\BbbR d). In subsection 3.4, we give some insights
on the difficult question of studying (2.14) as a classic HJB equation in L2

\BbbP (\Omega ,\BbbR d).

Remark 2.14. One of the most relevant drawbacks in the L2-representation for
evolutions in the Wasserstein space is due to the difficult-to-model density constraints.
Indeed, in a quite general form, a density constraint on P(\BbbR d) can be expressed as
follows: Given a reference measure \gamma and a density penalization function f , we define
the integral functional F :P(\BbbR d)\rightarrow \BbbR :

F (\mu ) =

\left\{       
\int 
\BbbR d

f

\biggl( 
x,
\mu 

\gamma 
(x)

\biggr) 
d\gamma (x) if \mu \ll \gamma ,

+\infty otherwise.

The constraint requires that, during an evolution \bfitmu = \{ \mu t\} t\in I , it holds that F (\mu t)\leq 0
for a.e. t\in I.

Under quite general assumptions on f (basically convexity and superlinearity of
f(x, \cdot ); see Theorem 3.4.1 in [17] and [16]), the functional F (\cdot ) turns out to be w\ast -
l.s.c., and therefore the set \{ \mu \in P(\BbbR d) : F (\mu )\leq 0\} where the constraint is satisfied
is closed, and so the set of continuous curves satisfying the constraint is closed w.r.t.
uniform convergence.

A basic ingredient to represent this constraint in the L2-setting is the possibility
to easily compute the density of the push-forward w.r.t. a given measure: Indeed, we

have \mu t =Xt\sharp \BbbP , and therefore we need to compute \omega \mapsto \rightarrow Xt\sharp \BbbP 
\gamma 

(Xt(\omega )).

Even in the case of \gamma = \BbbP =L d, an explicit description of the density of the push-
forward measure requires a quite strong assumption on Xt(\cdot ) (namely, the existence
of an approximate differential and essential injectivity; see, e.g., Lemma 5.5.3 in [3]),
which prevents the possibility to use them for generic trajectories in the Wasserstein
space (in particular in the presence of the constraint on the velocities given by the
differential inclusion). Indeed, such representation formulas are mostly used for the
geodesics of the space, which meet additional properties.

3. Hamilton--Jacobi--Bellman Equations. The Lipschitz value functions of
multiagent control problem should satisfy an HJB equation in the Wasserstein space in
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DYNAMICAL SYSTEMS AND H.-J.-B. EQUATIONS ON P 2 5939

suitable senses [4], [19], [33], [37]. The relevance of the notions of viscosity solutions
proposed in the previous references lies in the fact that the value function can be
characterized by an HJB equation. This needs comparison principles discussed in
[19], [26], [33], [39], [37]. Here we investigate several super/subdifferentials needed to
obtain viscosity solutions on P2(\BbbR d).

We consider the Hamilton--Jacobi equation satisfied by a function u :P2(\BbbR d)\rightarrow \BbbR ,

\scrH (\mu ,D\mu u(\mu )) = 0, \mu \in P2(\BbbR d),(HJ)

with the following Hamiltonian:

\scrH : (\mu 0, p)\in P2(\BbbR d)\times L2
\mu 0
(\BbbR d)\rightarrow \scrH (\mu 0, p)\in \BbbR .

Since D\mu u has not yet been defined and because u may not be regular, the meaning of
this equation has to be considered in the viscosity sense by replacing the derivatives
by suitable super/subdifferentials.

3.1. Super/subdifferential in P2(\BbbR \bfitd ). Now we introduce the following no-
tion of superdifferential.

Definition 3.1 (superdifferentials in P2; cf. [37]). Consider u : P2(\BbbR d) \rightarrow \BbbR ,
\mu 0 \in P2(\BbbR d) and \varepsilon \geq 0. The \varepsilon -superdifferential of u at \mu 0 is the set D+

\varepsilon u(\mu 0) of
elements p\in L2

\mu 0
(\BbbR d,\BbbR d) such that p\in dis+(\mu 0) and

(3.1) u(\nu ) - u(\mu 0)\leq 
\int 
p(x) \cdot (y - x) d\gamma (x, y) + \varepsilon W2(\mu 0, \nu ) + o (W2(\mu 0, \nu ))

for all \nu \in P2(\BbbR d), \gamma \in \Pi o(\mu 0, \nu ). The set dis+(\mu 0)\subset L2
\mu 0
(\BbbR d,\BbbR d) is the convex cone

generated by optimal ``anti""-displacements, namely,

dis+(\mu 0) := \{ \lambda (Id - T ) : \lambda > 0, T an optimal transport map between \mu 0 and T\sharp \mu 0\} .

When \varepsilon = 0, we write D+u(\mu 0) for D
+
0 u(\mu 0).

Remark 3.2. The definition above is not exactly equivalent to those of [39], [37].
The difference is that in [39], [37], the elements of D+

\varepsilon u(\mu 0) are optimal antidisplace-
ments. The set of optimal antidisplacement is not stable under multiplication by a
nonnegative real number. Indeed, let \mu 0 be the Lebesgue measure restricted to a ball
centered at 0\BbbR d of measure 1. Then Id\BbbR d = Id\BbbR d  - 0\BbbR d is an optimal antidisplacement,
as x \mapsto \rightarrow 0\BbbR d is an optimal transport map from \mu 0 to \delta 0\BbbR d . But 2Id\BbbR d is not an optimal
displacement, as  - Id\BbbR d is not an optimal transport map (it is not cyclically monotone;
see [44]).

Various concepts of super/subdifferentials have been proposed [3], [10], [19], [33],
[37], [39]. In our control framework, a ``good"" super/subdifferential should enable
us to prove that the value function is the unique viscosity solution of some HJB
equation. Namely, it should allow to obtain a comparison principle. The above
definition provides such a comparison principle (proved in less restrictive assumptions
in [39] and [37]).

Symmetrically, we can define the \varepsilon -subdifferential.

Definition 3.3 (subdifferentials in P2). The \varepsilon -subdifferential or u at \mu 0 is the
set D - 

\varepsilon u(\mu 0) of elements p\in L2
\mu 0
(\BbbR d,\BbbR d) such that p\in dis - (\mu 0) and

u(\nu ) - u(\mu 0)\geq 
\int 
p(x) \cdot (y - x) d\gamma (x, y) - \varepsilon W2(\mu 0, \nu ) + o (W2(\mu 0, \nu ))
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5940 C. JIMENEZ, A. MARIGONDA, AND M. QUINCAMPOIX

for all \nu \in P2(\BbbR d), \gamma \in \Pi o(\mu 0, \nu ), where

dis - (\mu 0) := \{ \lambda (T - Id\BbbR d) : \lambda > 0, T an optimal transport map between \mu 0 and T\sharp \mu 0\} .

Again D - u(\mu 0) :=D - 
0 (\mu 0).

We will discuss several alternative definitions of the superdifferential. Before doing
this, we recall the definition of tangent space to P2(\BbbR d) at \mu \in P2(\BbbR d) (cf. [3]),

(3.2) \scrT \mu (\BbbR d) := \{ \nabla \varphi : \varphi \in C\infty 
c (\BbbR d)\} 

L2
\mu (\BbbR 

d,\BbbR d)
,

which is related to optimal displacement thanks to the following relation proved in [3]:

(3.3) \scrT \mu (\BbbR d) = dis+(\mu )
L2

\mu (\BbbR 
d,\BbbR d)

= dis - (\mu )
L2

\mu (\BbbR 
d,\BbbR d)

.

We recall an equivalent definition of superdifferential (later we will use both
definitions without citing this equivalence result).

Proposition 3.4 (equivalent definition of superdifferential [37]). Let u :
P2(\BbbR d) \rightarrow \BbbR be a map, and let \mu 0 \in P2(\BbbR d), \varepsilon \geq 0 and p \in dis+(\mu 0). Then p
is in D+

\varepsilon u(\mu 0) if and only if

u(\nu ) - u(\mu 0)\leq 
\int 
p(x) \cdot (y - x) d\gamma (x, y) + \varepsilon 

\biggl[ \int 
| y - x| 2d\gamma (x, y)

\biggr] 1/2
(3.4)

+ o

\Biggl( \biggl[ \int 
| y - x| 2d\gamma (x, y)

\biggr] 1/2\Biggr) 
, \forall \nu \in P2(\BbbR d) and \gamma \in \Pi (\mu ,\nu ).

Indeed, the proof in [37] shows a more general result: p\in \scrT \mu 0
(\BbbR d) satisfies

u(\nu ) - u(\mu 0)\geq 
\int 
p(x) \cdot (y - x) d\gamma (x, y) + \varepsilon W2(\mu 0, \nu ) + o (W2(\mu 0, \nu ))

for all \nu \in P2(\BbbR d) and all \gamma \in \Pi o(\mu ,\nu ) if and only if it satisfies (3.4) for all \nu \in P2(\BbbR d)
and all \gamma \in \Pi (\mu ,\nu ).

Now we provide a simpler definition of D+
\varepsilon u(\mu ) for atomless \mu . Indeed, take

\nu \in P2(\BbbR d) with \mu having no atom. Then we know [42] that

W2(\mu ,\nu ) = inf
T\in L2

\mu (\BbbR d,\BbbR d)

\Biggl\{ \biggl( \int 
| Tx - x| 2d\mu (x)

\biggr) 1/2

: T\sharp \mu = \nu 

\Biggr\} 
.

This implies that there exists \{ Tn\} n \in L2
\mu (\BbbR d,\BbbR d) such that

(3.5) Tn\sharp \mu = \nu , lim
n\rightarrow +\infty 

\biggl( \int 
| Tnx - x| 2d\mu (x)

\biggr) 1/2

=W2(\mu ,\nu ).

Possibly extracting a subsequence, by compactness of \Pi (\mu ,\nu ), we have also that

(3.6) \gamma n := (Id\BbbR d \times Tn)\sharp \mu 
\ast 
\rightharpoonup \gamma \in \Pi o(\mu ,\nu ).

Note that \gamma is optimal because \pi \in P2(\BbbR d \times \BbbR d) \mapsto \rightarrow 
\int 
| y - x| 2 d\pi (x, y) is l.s.c.

This suggests that, for atomless \mu , we could restrict the definition of D+
\varepsilon u(\mu ) to

transport plans supported on the graph of transport maps.
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DYNAMICAL SYSTEMS AND H.-J.-B. EQUATIONS ON P 2 5941

Proposition 3.5. Let u :P2(\BbbR d)\rightarrow \BbbR , \mu \in P2(\BbbR d), and \varepsilon \geq 0.
Assume that \mu has no atom and p belongs to L2

\mu (\BbbR d,\BbbR d). Then
(a) if for all \Phi \in L2

\mu (\BbbR d,\BbbR d) the function p satisfies

u(\Phi \sharp \mu ) - u(\mu )(3.7)

\leq 
\int 
\BbbR d

p(x) \cdot (\Phi (x) - x) d\mu (x) + \varepsilon \| \Phi  - Id\| L2
\mu 
+ o

\Bigl( 
\| \Phi  - Id\| L2

\mu 

\Bigr) 
,

then it satisfies (3.1);
(b) if p satisfies (3.7), then the projection on \scrT \mu (\BbbR d) of p satisfies (3.4);
(c) if p\in dis+(\mu ), then p\in D+

\varepsilon u(\mu ) if and only if it satisfies (3.7).

To prove this result, we need the following lemma.

Lemma 3.6. Let \mu , \{ \nu k\} k\in \BbbN in P2(\BbbR d) such that limk\rightarrow +\infty W2(\mu ,\nu k) = 0. As-
sume for some \varepsilon \geq 0, p\in L2

\mu (\BbbR d,\BbbR d), and fixed \gamma k \in \Pi o(\mu ,\nu k) that we have

(3.8) limsup
k\rightarrow +\infty 

u(\nu k) - u(\mu ) - 
\int \int 

\BbbR d\times \BbbR d

p(x) \cdot (y - x) d\gamma k(x, y)

W2(\mu ,\nu k)
\leq \varepsilon .

Then, taking another sequence \{ \=\gamma k\} k in \Pi o(\mu ,\nu k), we also have

(3.9) limsup
k\rightarrow +\infty 

u(\nu k) - u(\mu ) - 
\int \int 

\BbbR d\times \BbbR d

p(x) \cdot (y - x) d\=\gamma k(x, y)

W2(\mu ,\nu k)
\leq \varepsilon .

Proof of the Lemma. Denote by q the projection of p on \scrT \mu (\BbbR d). We first remark
that, since \=\gamma k is an optimal transport plan for any k, by Lemma A.2, x \mapsto \rightarrow 

\int 
yd\gamma x(y) - x

is in dis - (\mu )\subset \scrT \mu (\BbbR d), and this yields\int \int 
\BbbR d\times \BbbR d

p(x) \cdot (y - x)d\=\gamma k(x, y) =

\int 
\BbbR d

p(x) \cdot 
\biggl[ \int 

\BbbR d

yd\=\gamma xk (y) - x

\biggr] 
d\mu (x)

=

\int 
\BbbR d

q(x) \cdot 
\biggl[ \int 

\BbbR d

y d\=\gamma xk (y) - x

\biggr] 
d\mu (x)(3.10)

=

\int \int 
\BbbR d\times \BbbR d

q(x) \cdot (y - x) d\=\gamma k(x, y).

By definition of \scrT \mu (\BbbR d), for all \delta > 0, there exists \varphi \delta \in C\infty 
c (\BbbR d) such that

\| \nabla \varphi \delta  - q\| L2
\mu 
\leq \delta . Then, by using Lemma 3.3. of [33, p. 10] and the Cauchy--Schwarz

inequality, we have\int 
q(x) \cdot (y - x) d\=\gamma k(x, y)\leq 

\int 
\nabla \varphi \delta (x) \cdot (y - x) d\=\gamma k(x, y) + \delta W2(\mu ,\nu k)

\leq 
\int 

\nabla \varphi \delta (x) \cdot (y - x) d\gamma k(x, y) + \| D2\varphi \delta \| \infty W 2
2 (\mu ,\nu k) + \delta W2(\mu ,\nu k)

\leq 
\int 
q(x) \cdot (y - x) d\gamma k(x, y) + \| D2\varphi \delta \| \infty W 2

2 (\mu ,\nu k) + 2\delta W2(\mu ,\nu k).

Applying the same argument as in (3.10), we get\int 
q(x)\cdot (y - x) d\=\gamma k(x, y)\leq 

\int 
p(x)\cdot (y - x) d\gamma k(x, y)+\| D2\varphi \delta \| \infty W 2

2 (\mu ,\nu k)+2\delta W2(\mu ,\nu k).
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5942 C. JIMENEZ, A. MARIGONDA, AND M. QUINCAMPOIX

Finally, for all \delta > 0, by (3.8),

limsup
k\rightarrow +\infty 

u(\nu k) - u(\mu ) - 
\int 
p(x) \cdot (y - x) d\=\gamma k(x, y)

W2(\mu ,\nu k)

\leq limsup
k\rightarrow +\infty 

u(\nu k) - u(\mu ) - 
\int 
p(x) \cdot (y - x) d\gamma k(x, y)

W2(\mu ,\nu k)
+ \| D2\varphi \delta \| \infty W 2(\mu ,\nu k) + 2\delta 

\leq \varepsilon + 2\delta ,

and letting \delta \rightarrow 0 yields (3.9).

Proof of Proposition 3.5. Assume for simplicity that \varepsilon = 0.
Proof of (a): Let (\nu k)k be a sequence of P2(\BbbR d) and \gamma k \in \Pi o(\mu ,\nu k) such that

lim
k\rightarrow +\infty 

\int 
\BbbR d\times \BbbR d

| x - y| 2 d\gamma k(x, y) = lim
k\rightarrow +\infty 

W2(\nu k, \mu )
2 = 0.

We aim to prove that

(3.11) limsup
k\rightarrow +\infty 

u(\nu k) - u(\mu ) - 
\int 
\BbbR d\times \BbbR d p(x) \cdot (y - x) d\gamma k(x, y)

W2(\mu ,\nu k)
\leq 0.

Set rk =W2(\mu ,\nu k). Take \Phi k \in C\infty 
c (\BbbR d,\BbbR d) such that

(3.12) \| p - \Phi k\| L2
\mu 
\leq \| y - x\| L2

\gamma k
= rk.

By (3.5) and (3.6), for all k \in \BbbN , there exists a sequence (Tk,n)n in L2
\mu (\BbbR d,\BbbR d) such

that

Tk,n\sharp \mu = \nu k, \gamma k,n = (Id\BbbR d , Tk,n)\sharp \mu 
\ast 
\rightharpoonup \=\gamma k \in \Pi o(\mu ,\nu k), lim

n\rightarrow +\infty 

\int 
| Id\BbbR d  - Tk,n| 2 d\mu = r2k.

It is worth pointing out that \=\gamma k may be different from \gamma k. Fix k in \BbbN . Note that,
uniformly in n, (\=\gamma k,n)n has uniformly integrable moments of order 2. Then, since for
all x and y we have | \Phi k(x) \cdot (y - x)| \leq \| \Phi k\| \infty (| y| + | x| ), it holds that (cf., e.g., Lemma
5.1.7. of [3])

lim
n\rightarrow \infty 

\int 
\Phi k(x) \cdot (y - x) d\=\gamma k,n(x, y) =

\int 
\Phi k(x) \cdot (y - x) d\=\gamma k(x, y).

As a consequence, for all k \in \BbbN , we can choose Tk \in L2
\mu (\BbbR d,\BbbR d) such that

Tk\sharp \mu = \nu k,

\bigm| \bigm| \bigm| \bigm| \| Id - Tk\| L2
\mu 
 - \| y - x\| L2

\=\gamma k

\bigm| \bigm| \bigm| \bigm| \leq r2k,(3.13) \bigm| \bigm| \bigm| \bigm| \int 
\BbbR d

\Phi k(x) \cdot (Tk(x) - x)d\mu (x) - 
\int 
\BbbR d

\Phi k(x) \cdot (y - x)d\=\gamma k(x, y)

\bigm| \bigm| \bigm| \bigm| \leq r2k.(3.14)

Then, using (3.12), (3.13), (3.14), and Cauchy--Schwarz inequality, for k large enough,
we have \int 

\BbbR d\times \BbbR d

p(x) \cdot (y - x) d\=\gamma k(x, y)\leq 
\int 

\Phi k(x) \cdot (y - x) d\=\gamma k(x, y) + r2k\int 
\BbbR d\times \BbbR d

\Phi k(x) \cdot (Tk(x) - x) d\mu (x) + 2r2k \leq 
\int 
\BbbR d\times \BbbR d

p(x) \cdot (Tk(x) - x) d\mu (x) + 4r2k.
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DYNAMICAL SYSTEMS AND H.-J.-B. EQUATIONS ON P 2 5943

This yields

u(\nu k) - u(\mu ) - 
\int 
\BbbR d\times \BbbR d

p(x) \cdot (y - x) d\=\gamma k(x, y)

rk

\leq 
u(\nu k) - u(\mu ) - 

\int 
\BbbR d\times \BbbR d

p(x) \cdot (Tk(x) - x) d\mu (x)

rk
+ 4rk.

Since when k tends to +\infty we have rk \rightarrow 0 and
\int 
\BbbR d | Id - Tk| 2 d\mu (x)\rightarrow 0, we get the

desired relation (3.11) with \=\gamma k instead of \gamma k. The conclusion follows by use of Lemma
3.6.

The proof of (b) follows from (a), using the same argument as in (3.10) and a
similar proof to Proposition 3.4. The proof of (c) follows from (3.3).

The following example shows that the result is no longer true when \mu has atoms.

Example 3.7. Again we set \varepsilon = 0. Set d = 1 and u(\mu ) :=
\bigl[ 
1 - 

\int 
\BbbR \varphi (x)d\mu (x)

\bigr] 1/2
with \varphi \in C0

b (\BbbR ) such that \varphi (x) = 1 if | x| \leq 1 and \varphi (x) = 0 if | x| \geq 2. So we have
u(\delta 0) = 0 and D+u(\delta 0) = \emptyset , but p= 0 satisfies (3.7).

Indeed, \delta 0 can only be transported to some \delta x by transport maps; moreover,

W2(\delta x, \delta 0) = | x| and limsupx\rightarrow 0

u(\delta x)

| x| 
= 0. We show that D+u(\delta 0) = \emptyset . Let us remark

that

D+u(\delta 0) =

\left\{         a\in \BbbR : limsup\int 
\BbbR | x| 2 d\nu (x)\rightarrow 0

u(\nu ) - 
\int 
\BbbR 
axd\nu (x)\biggl( \int 

\BbbR 
| x| 2 d\nu (x)

\biggr) 1/2
\leq 0

\right\}         .

Fix a\in \BbbR . Then taking \nu n = (1 - 1
n2 )\delta 0 +

1
n2 \delta 2 leads to

limsup
n\rightarrow +\infty 

u(\nu n) - 
\int 
\BbbR 
ax d\nu n(x)\biggl( \int 

\BbbR 
| x| 2d\nu n(x)

\biggr) 1/2
=

1

2
.

From that, we deduce D+u(\delta 0) = \emptyset .
Remark 3.8. Proposition 3.5 makes the link with viscosity solutions in the Wasser-

stein space introduced in [19] for HJB related to differential games. More precisely,
the superdifferential D+

CQ,\varepsilon u(\mu ) defined in [19] is the set of p \in L2
\mu (\BbbR d,\BbbR d) such that

for all T \in L2
\mu (\BbbR d,\BbbR d),

u(T\sharp \mu ) - u(\mu )\leq 
\int 
p(x) \cdot (Tx - x)d\mu (x) + \varepsilon \| Id - T\| L2

\mu 
+ o(\| Id - T\| L2

\mu 
).

By Proposition 3.5, we have for any \mu without atom

D+
CQ,\varepsilon u(\mu )\cap dis

+(\mu ) =D+
\varepsilon u(\mu ).

The previous example shows that this equality is no longer true when \mu has atoms.

Now we provide a result showing that somehow the atomic part and nonatomic
part of \mu can be considered separately.
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5944 C. JIMENEZ, A. MARIGONDA, AND M. QUINCAMPOIX

Proposition 3.9. Let u : [0, T ] \times P2(\BbbR d) \rightarrow \BbbR , \mu \in P2(\BbbR d), \varepsilon \geq 0, and p \in 
L2
\mu (\BbbR d,\BbbR d). Denote by \mu 0 the nonatomic part of \mu and \mu \sharp the atomic part of \mu . We

consider the property

(3.15)

u(\Phi \sharp \mu 0 + \nu ) - u(\mu )\leq 
\int 
p(x) \cdot (\Phi (x) - x) d\mu 0(x) +

\int 
p(x) \cdot (y - x) d\gamma (x, y)

+ \varepsilon 
\Bigl( 
\| \Phi  - Id\| 2L2

\mu 
+ \| y - x\| 2L2

\gamma 

\Bigr) 1/2
+ o

\biggl( \Bigl( 
\| \Phi  - Id\| 2L2

\mu 0
+ \| y - x\| 2L2

\gamma 

\Bigr) 1/2\biggr) 
for all \Phi \in L2

\mu 0
(\BbbR d,\BbbR d), \nu positive measure with \mu \sharp (\BbbR d) = \nu (\BbbR d), and \gamma \in \Pi (\mu \sharp , \nu ).

Then
(a) if p satisfies (3.15), then it satisfies (3.1);
(b) if p satisfies (3.15), then the projection on \scrT \mu (\BbbR d) of p satisfies (3.4);
(c) if p\in dis+(\mu ), then p\in D+

\varepsilon u(\mu ) if and only if it satisfies (3.15).

Proof. We show (3.15) \Rightarrow (3.1). Let m \in P2(\BbbR d) and \pi \in \Pi (\mu ,m). By disinte-
gration,

\pi (x, y) = \pi x(y)\otimes \mu (x) = \pi x(y)\otimes \mu 0(x) + \pi x(y)\otimes \mu \sharp (x).

Denote by \nu the second marginal of \gamma := \pi x \otimes \mu \sharp and by \nu 0 the second marginal of
\gamma 0 = \pi x \otimes \mu 0 \in \Pi (\mu 0, \nu 0). The first marginal of \gamma 0 has no atom. Arguing as in the
proof of Proposition 3.5, we get the conclusion.

In the definition of the superdifferential, we can restrict the variations \nu .

Lemma 3.10. Let \mu \in P2(\BbbR d), \varepsilon \geq 0, and u : [0, T ]\times P2(\BbbR d)\rightarrow \BbbR be continuous.
Let A\in \scrP 2(\BbbR d) be dense. Assume that p\in P2(\BbbR d) satisfies for all \nu \in A

(3.16) u(\nu ) - u(\mu )\leq 
\int 
p(x) \cdot (y - x) d\gamma (x, y) + \varepsilon \| y - x\| L2

\gamma 
+ o

\Bigl( 
\| y - x\| L2

\gamma 

\Bigr) 
for all \gamma \in \Pi (\mu ,\nu ). Then (3.16) is satisfied for all \nu \in \scrP 2(\BbbR d) and \gamma \in \Pi (\mu ,\nu ). If,
moreover, p\in dis+(\mu ), then p\in D+

\varepsilon u(t, \mu ).

Proof. Take again \varepsilon = 0. Let (\nu k)k\in \BbbN , \mu in P2(\BbbR d), and \gamma k \in \Pi (\mu ,\nu k) such that

(3.17) lim
k\rightarrow +\infty 

\int 
\BbbR 2d

| y - x| 2d\gamma k(x, y) = 0.

As A is dense and u is continuous, we can choose \=\nu k \in A such that

(3.18) W2(\=\nu k, \nu k)\leq \| y - x\| 2L2
\gamma k

, | u(\=\nu k) - u(\nu k)| \leq \| y - x\| L2
\gamma k
.

Let \=\gamma k \in \Pi o(\nu k, \=\nu k). We disintegrate \gamma k and \=\gamma k and glue them to get a transport plan
\pi k \in \Pi (\mu , \=\nu k):

\gamma k(x, y) = \gamma yk(x)\otimes \nu k(y), \=\gamma k(y, z) = \=\gamma yk(z)\otimes \nu k(y),

\pi k(x, z) =

\int 
\BbbR d

\gamma yk(x)\otimes \=\gamma yk(z)d\nu k(y).

Then we have\biggl( \int 
\BbbR 2d

| z  - x| 2 d\pi k(x, z)
\biggr) 1/2

=

\biggl( \int 
\BbbR 3d

| z  - y+ y - x| 2d\gamma yk(x) d\=\gamma 
y
k(z)d\nu k(y)

\biggr) 1/2

\leq 
\biggl( \int 

\BbbR 2d

| z  - y| 2d\=\gamma k(y, z)
\biggr) 1/2

+

\biggl( \int 
\BbbR 2d

| y - x| 2 d\gamma k(x, y)
\biggr) 1/2

.
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DYNAMICAL SYSTEMS AND H.-J.-B. EQUATIONS ON P 2 5945

From (3.18) and the definition of \=\gamma k,

(3.19)

\biggl( \int 
\BbbR 2d

| z  - x| 2d\pi k(x, z)
\biggr) 1/2

\leq \| y - x\| L2
\gamma k

\Bigl( 
1 + \| y - x\| L2

\gamma k

\Bigr) 
.

Now we have by (3.18)

1

\| y - x\| L2
\gamma k

(u(\nu k) - u(\mu ) - 
\int 
\BbbR 2d

p(x) \cdot (y - x) d\gamma k(x, y))

\leq 1

\| y - x\| L2
\gamma k

(u(\=\nu k) - u(\mu ) - 
\int 
\BbbR 3d

p(x) \cdot (y - z + z  - x) d\gamma yk(x)d\=\gamma 
y
k(z)d\nu k(y))

+ \| y - x\| L2
\gamma k

\leq 
u(\=\nu k) - u(\mu ) - 

\int 
\BbbR 2d

p(x) \cdot (z  - x)d\pi k(x, z)

\| y - x\| L2
\gamma k

+
\| p\| L2

\mu 
\| z  - y\| L2

\=\gamma k

\| y - x\| L2
\gamma k

+ \| y - x\| L2
\gamma k

\leq 
u(\=\nu k) - u(\mu ) - 

\int 
\BbbR 2d

p(x) \cdot (z  - x)d\pi k(x, z)

\| y - x\| L2
\gamma k

+ (1+ \| p\| L2
\mu 
)\| y - x\| L2

\gamma k

(by (3.18) and the definition of \=\gamma k)

\leq (1 + \| y - x\| L2
\gamma k
) \cdot 
u(\=\nu k) - u(\mu ) - 

\int 
\BbbR 2d

p(x) \cdot (z  - x)d\pi k(x, z)

\| z  - x\| L2
\pi k

+C\| y - x\| L2
\gamma k

(by (3.19), setting C := 1+ \| p\| L2
\mu 
). Then using (3.17), (3.19), and the assumption of

the lemma,

limsup
k\rightarrow +\infty 

1

\| y - x\| L2
\gamma k

(u(\nu k) - u(\mu ) - 
\int 
\BbbR 2d

p(x) \cdot (y - x) d\gamma k(x, y))

\leq limsup
k\rightarrow +\infty 

(1 + \| y - x\| L2
\gamma k
) \cdot 
u(\=\nu k) - u(\mu ) - 

\int 
\BbbR 2d

p(x) \cdot (z  - x)d\pi k(x, z)

\| z  - x\| L2
\pi k

\leq 0.

Remark 3.11. The previous result may be used with A \subseteq P2(\BbbR d), the set of
probability measures whose support is a finite set; another example is the set of abso-
lutely continuous probability measures. Recall that when \nu is absolutely continuous,
\Pi o(\mu ,\nu ) = \{ (T \times Id)\sharp \nu )\} for some T \in L2

\nu (\BbbR d,\BbbR d) such that T\sharp \nu = \mu . With this
remark, it is easily seen that p \in dis+(\mu ) belongs to D+

\varepsilon u(\mu ) if and only if, for all \nu 
absolutely continuous and all T \in L2

\nu (\BbbR d,\BbbR d) such that \mu = T\sharp \nu ,

u(\nu ) - u(\mu )\leq 
\int 
\BbbR d

p(Ty) \cdot (y - Ty) d\nu (y) + \varepsilon \| Id - T\| L2
\nu 
+ o

\bigl( 
\| Id - T\| L2

\nu 

\bigr) 
.

3.2. Differentiability in \bfitL 2
\BbbP (\Omega ,\BbbR \bfitd ) and P2(\BbbR \bfitd ). In what follows, the scalar

product \langle \cdot , \cdot \rangle L2
\BbbP (\Omega ,\BbbR d) is shortly denoted by \langle \cdot , \cdot \rangle L2

\BbbP 
and \| \cdot \| L2

\BbbP (\Omega ,\BbbR d) is abbreviated in
\| \cdot \| .

Consider u :P2(\BbbR d)\rightarrow \BbbR and its lift U :X \in L2
\BbbP (\Omega ,\BbbR d)\rightarrow u(X\sharp \BbbP ). Following [21]

and [38], we say that u is differentiable at \mu 0 \in P2(\BbbR d) if its lift U is differentiable
in L2

\BbbP at one X0 \in L2
\BbbP (\Omega ,\BbbR d) of law \mu 0. As already known in [21], [24] for continuous

differentiable function and in [33], the Fr\'echet gradient of U , denoted by DU(X), has
a specific structure.
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5946 C. JIMENEZ, A. MARIGONDA, AND M. QUINCAMPOIX

Proposition 3.12. Assume that U : L2
\BbbP (\Omega ,\BbbR d) \rightarrow \BbbR is rearrangement invariant

and differentiable at X0 of law X0\sharp \BbbP = \mu 0. Then there exists p \in \scrT \mu 0(\BbbR d) such that
DU(X0) = p \circ X0. Moreover, if X1 is also of law \mu 0, then DU(X1) = p \circ X1.

This allows to introduce the following definition.

Definition 3.13. We say that u :P2(\BbbR d)\rightarrow \BbbR is differentiable at \mu 0 \in P2(\BbbR d) if
its lift U is differentiable at one X0 of law \mu 0. That is, there exists some p\in \scrT \mu 0

(\BbbR d)
such that for any \nu \in P2(\BbbR d) and any \gamma \in \Pi o(\mu 0, \nu ),

u(\nu ) - u(\mu 0) =

\int 
\BbbR d\times \BbbR d

p(x) \cdot (y - x) d\gamma (x, y) + o(W2(\mu 0, \nu )).

We denote by D\mu u(\mu 0) := p.

We refer the reader to [21] and [2] for examples. In this section, we aim to
provide a new proof of Proposition 3.12. As in [33], the proof is based on the following
proposition, which will be proved, together with Proposition 3.12, at the end of this
section.

Proposition 3.14. Let X \in L2
\BbbP (\Omega ,\BbbR d). Assume that U : L2

\BbbP (\Omega ,\BbbR d) \rightarrow \BbbR is
rearrangement invariant. Let Z \in L2

\BbbP (\Omega ,\BbbR d) belong to the Fr\'echet superdifferential of
U at X; namely, it satisfies for all Y \in L2

\BbbP (\Omega ,\BbbR d)

(3.20) U(Y ) - U(X)\leq \langle Z,Y  - X\rangle L2
\BbbP 
+ o (\| Y  - X\| ) .

Then prHX
(Z) also belongs to the Fr\'echet superdifferential of U at X: For all Y \in 

L2
\BbbP (\Omega ,\BbbR d),

U(Y ) - U(X)\leq \langle prHX
(Z), Y  - X\rangle L2

\BbbP 
+ o (\| Y  - X\| ) .

Moreover, if prHX
(Z) = p\circ X and q is the projection on \scrT X\sharp P (\BbbR d) of p, we have again

U(Y ) - U(X)\leq \langle q \circ X,Y  - X\rangle L2
\BbbP 
+ o (\| Y  - X\| ) .

We refer the reader to (2.3) for the definition of HX and to Lemma 2.3 for the
characterization of the projection on HX denotes by prHX

.

Remark 3.15. Proposition 3.12 has been proved in [33] with some extra assump-
tions on the probability space (\Omega ,B(\Omega ),\BbbP ). The proof relies on Proposition 3.14 and
uses a very technical result in [23]. We provide a different and simpler proof only
requiring that \Omega is Polish, without using [23].

3.2.1. Preliminary results.
Lemma 3.16. Let U : L2

\BbbP (\Omega ,\BbbR d)\rightarrow \BbbR be rearrangement invariant, and let X,Z \in 
L2
\BbbP (\Omega ,\BbbR d) be such that for all Y \in L2

\BbbP (\Omega ,\BbbR d),

(3.21) U(Y ) - U(X)\leq \langle Z,Y  - X\rangle L2
\BbbP 
+ o (\| Y  - X\| ) .

Then for any couple (X \prime ,Z \prime )\in L2
\BbbP (\Omega ,\BbbR d)2 such that (X \prime ,Z \prime )\sharp \BbbP = (X,Z)\sharp \BbbP ,

U(Y ) - U(X \prime )\leq \langle Z \prime , Y  - X\rangle L2
\BbbP 
+ o (\| Y  - X \prime \| )

for all Y \in L2
\BbbP (\Omega ,\BbbR d).
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Proof. Let (Yn)n be a sequence in L2
\BbbP (\Omega ,\BbbR d) such that limn\rightarrow +\infty \| Yn  - X \prime \| = 0.

By Lemma 1.1, it exists \tau n : \Omega \rightarrow \Omega one to one such that \tau n\sharp \BbbP = \tau  - 1
n \sharp \BbbP = \BbbP and

(3.22) \| (Z,X) - (Z \prime ,X \prime ) \circ \tau n\| \leq \| Yn  - X \prime \| 2.

Then, as U is rearrangement invariant and using Cauchy--Schwarz,

U(Yn) - U(X \prime ) - \langle Z \prime , Yn  - X \prime \rangle L2
\BbbP 
=U(Yn \circ \tau n) - U(X) - \langle Z \prime \circ \tau n, Yn \circ \tau n  - X \prime \circ \tau n\rangle L2

\BbbP 

\leq U(Yn \circ \tau n) - U(X) - \langle Z,Yn \circ \tau n  - X \prime \circ \tau n\rangle L2
\BbbP 
+ \| Yn \circ \tau n  - X \prime \circ \tau n\| \cdot \| Z  - Z \prime \| \tau n\| 

\leq U(Yn \circ \tau n) - U(X) - \langle Z,Yn \circ \tau n  - X\rangle L2
\BbbP 
+ \| Z\| \| X  - X \prime \circ \tau n\| + \| Yn  - X \prime \| 3

\leq U(Yn \circ \tau n) - U(X) - \langle Z,Yn \circ \tau n  - X\rangle L2
\BbbP 
+ \| Yn  - X \prime \| 2(\| Z\| + \| Yn  - X \prime \| ).

Moreover, using again (3.22) leads to

(3.23) \| Yn\circ \tau n - X\| \leq \| Yn\circ \tau n - X \prime \circ \tau n\| +\| X - X \prime \circ \tau n\| \leq \| Yn - X \prime \| (1+\| Yn - X \prime \| ).

This gives

U(Yn) - U(X \prime ) - \langle Z \prime , Yn  - X \prime \rangle L2
\BbbP 

\| Yn  - X \prime \| 

\leq 
U(Yn \circ \tau n) - U(X) - \langle Z,Yn \circ \tau n  - X\rangle L2

\BbbP 

\| Yn \circ \tau n  - X\| 
(1 + \| Yn  - X \prime \| ) + \varepsilon (\| Yn  - X \prime \| ),

where \varepsilon :\BbbR + \rightarrow \BbbR satisfies limt\rightarrow 0 \varepsilon (t) = 0.
Then, since limn\rightarrow +\infty \| Yn \circ \tau n  - X\| = 0 by (3.23), by letting n \rightarrow +\infty in the

previous inequality, we get the result.

Remark 3.17. Note that applying the previous lemma with Z = p\circ X, (3.4) holds
true for all \nu \in P2(\BbbR d) and all \gamma \in \Pi (\mu ,\nu ) if and only if

U(Y ) - U(X)\leq 
\int 
\Omega 

(p \circ X) \cdot (Y  - X)d\BbbP + \varepsilon \| Y  - X\| L2
\BbbP (\Omega ,\BbbR d) + o(\| Y  - X\| L2

\BbbP (\Omega ,\BbbR d))

for all X \in L2
\BbbP (\Omega ,\BbbR d) of law \mu 0 and all Y \in L2

\BbbP (\Omega ,\BbbR d). Indeed,
\bullet given \gamma \in \Pi (\mu 0, \nu ), there exist X \prime , Y \prime \in L2

\BbbP (\Omega ,\BbbR d) s.t. (X \prime , Y \prime )\sharp \BbbP = \gamma ;
\bullet given X \in L2

\BbbP (\Omega ,\BbbR d) of law \mu 0 and Y \in L2
\BbbP (\Omega ,\BbbR d), \gamma = (X,Y )\sharp \BbbP \in \Pi (\mu 0, Y \sharp \BbbP ).

Next we will use the following specific notations:

\pi x : (x, y, z)\in \BbbR 3 \mapsto \rightarrow x, \pi y : (x, y, z)\in \BbbR 3 \mapsto \rightarrow z,

\pi x,y : (x, y, z)\in \BbbR 3 \mapsto \rightarrow (x, y), \pi x,z : (x, y, z)\in \BbbR 3 \mapsto \rightarrow (x, z).

Corollary 3.18. Assume that X,Z satisfy (3.21). Set \gamma = (X,Z)\sharp \BbbP and \mu =
X\sharp \BbbP and u :P2(\BbbR d)\rightarrow \BbbR associated to U . Then for any \nu \in P2(\BbbR d) and any triplan
\varpi \in P2(\BbbR d \times \BbbR d \times \BbbR d) such that \pi x,z\sharp \varpi = \gamma and \pi y\sharp \varpi = \nu , it holds that

(3.24) u(\nu ) - u(\mu )\leq 
\int 
(\BbbR d)3

z \cdot (y - x) d\varpi (x, y, z)+o

\left(  \Biggl( \int 
(\BbbR d)2

| y - x| 2d\varpi (x, y)

\Biggr) 1/2
\right)  .

Conversely, let u : P2(\BbbR d)\rightarrow \BbbR and \mu \in P2(\BbbR d). Assume that \gamma \in P2(\BbbR d) satisfying
\pi x\sharp \gamma = \mu is such that (3.24) holds for any for any \nu \in P2(\BbbR d) and any triplan
\varpi \in P2(\BbbR d \times \BbbR d \times \BbbR d) such that \pi x,z\sharp \varpi = \gamma and \pi y\sharp \varpi = \nu . Then, denoting by U
the lift of u, the assumptions of Lemma 3.16 hold for any X,Z \in L2

\BbbP (\Omega ,\BbbR d) such that
(X,Z)\sharp \BbbP = \gamma .
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5948 C. JIMENEZ, A. MARIGONDA, AND M. QUINCAMPOIX

Proof. The first assertion is easily proved by noticing that there exist X \prime , Y,Z \prime \in 
L2
\BbbP (\Omega ,\BbbR d) such that (X \prime , Y,Z \prime )\sharp \BbbP =\varpi and, consequently,

\nu = \pi y\sharp \varpi = Y, \mu = \pi x\sharp \varpi =X \prime , (X,Z)\sharp \BbbP = \gamma = \pi x,z\sharp \varpi = (X \prime ,Z \prime )\sharp \BbbP ,

and by Lemma 3.16,

u(\nu ) - u(\mu ) =U(Y ) - U(X \prime )\leq \langle Z \prime , Y  - X \prime \rangle L2
\BbbP 
+ o (\| Y  - X \prime \| )

\leq 
\int 
(\BbbR d)3

z \cdot (y - x) d\varpi (x, y, z) + o

\left(  \Biggl( \int 
(\BbbR d)2

| y - x| 2d\varpi (x, y)

\Biggr) 1/2
\right)  .

The converse is similar.

Remark 3.19. Taking u and U as in Corollary 3.18, the previous result makes a
direct link between the notion of superdifferential in L2

\BbbP (\Omega ,\BbbR d) (namely, Z \in D+U(X)
if and only if the assumption of the Lemma 3.16 holds) and the notion of strong
Fr\'echet superdifferential introduced in [3] (namely, \gamma \in \partial +u(\mu ) if and only if
(3.24) holds for any \nu and \varpi as in the corollary). Precisely, if (X,Z)\sharp \BbbP = \gamma and
X\sharp \BbbP = \mu = \pi x\sharp \gamma , then we have

\gamma \in \partial +u(\mu )\leftrightarrow Z \in D+U(X).

3.2.2. Proof of Propositions 3.14 and 3.12.

Proof of Proposition 3.14. Let Y \in L2
\BbbP (\Omega ,\BbbR d) be arbitrary. We set

\gamma := (X,Z)\sharp \BbbP , \mu :=X\sharp \BbbP , \nu = Y \sharp \BbbP , \rho = (X,Y )\sharp \BbbP .

By disintegration, \gamma and \rho write as

\gamma (x, z) = \gamma x(z)\otimes \mu (x), \rho (x, y) = \rho x(y)\otimes \mu (x).

Then, setting \varpi (x, y, z) = \gamma x(z)\otimes \rho x(y)\otimes \mu (x), we get a triplan satisfying

\pi x,y\sharp \varpi = \rho , \pi y\sharp \varpi = \pi y\sharp \rho = \nu , \pi x,z\sharp \varpi = \gamma .

We apply the first assertion of Corollary 3.18:

U(Y ) - U(X) = u(\nu ) - u(\mu )

=

\int 
(\BbbR d)3

z \cdot (y - x) d\varpi (x, y, z) + o

\left(  \Biggl( \int 
(\BbbR d)2

| y - x| 2d\varpi (x, y, z)

\Biggr) 1/2
\right)  

\leq 
\int 
(\BbbR d)3

z \cdot (y - x) d\gamma x(z)d\rho x(y) d\mu (x) + o

\left(  \Biggl( \int 
(\BbbR d)2

| y - x| 2d\rho (x, y)

\Biggr) 1/2
\right)  

=

\int 
(\BbbR d)2

\biggl[ \int 
\BbbR d

zd\gamma x(z)

\biggr] 
\cdot (y - x) d\rho (x, y) + o

\left(  \Biggl( \int 
(\BbbR d)2

| y - x| 2d\rho (x, y)

\Biggr) 1/2
\right)  .

Recalling Lemma 2.3, we have p(x) = [
\int 
\BbbR d zd\gamma 

x(z)] with p \circ X = prHX
(Z), and as

(X,Y )\sharp \BbbP = \rho ,

U(Y ) - U(X)\leq 
\int 
(\BbbR d)2

p(x) \cdot (y - x) d\rho (x, y) + o

\left(  \Biggl( \int 
(\BbbR d)2

| y - x| 2d\rho (x, y)

\Biggr) 1/2
\right)  

= \langle p \circ X,Y  - X\rangle L2
\BbbP 
+ o (\| Y  - X\| ) .
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DYNAMICAL SYSTEMS AND H.-J.-B. EQUATIONS ON P 2 5949

The first assertion of the proposition is proved.
To prove the second assertion, notice that by the computation above, for any

\nu \in P2(\BbbR d), an any optimal \rho \in \Pi o(\mu ,\nu ),

u(\nu ) - u(\mu )\leq 
\int 
(\BbbR d)2

p(x) \cdot (y - x) d\rho (x, y) + o

\left(  \Biggl( \int 
(\BbbR d)2

| y - x| 2d\rho (x, y)

\Biggr) 1/2
\right)  .

Now x \mapsto \rightarrow 
\int 
y d\rho x(y) - x being an optimal displacement, it is in \scrT \mu (\BbbR d) and

u(\nu ) - u(\mu )\leq 
\int 
\BbbR d

p(x) \cdot 
\biggl[ \int 

y d\rho x(y) - x

\biggr] 
d\mu (x) + o(W2(\mu ,\nu ))

\leq 
\int 
\BbbR d

pr\scrT \mu 
(p)(x) \cdot 

\biggl[ \int 
y d\rho x(y) - x

\biggr] 
d\mu (x) + o(W2(\mu ,\nu ))

=

\int 
\BbbR d

pr\scrT \mu 
(p)(x) \cdot (y - x) d\rho (x, y) + o

\left(  \Biggl( \int 
(\BbbR d)2

| y - x| 2d\rho (x, y)

\Biggr) 1/2
\right)  .

The conclusion follows by Proposition 3.4 and Remark 3.17.

Proof of Proposition 3.12. We have that, for all Y \in L2
\BbbP (\Omega ,\BbbR d),

U(Y ) - U(X0) = \langle DU(X0), Y  - X0\rangle L2
\BbbP 
+ o (\| Y  - X0\| ) ,

so that by Proposition 3.14, we also have

U(Y ) - U(X0)\leq \langle p \circ X0, Y  - X0\rangle L2
\BbbP 
+ o (\| Y  - X0\| ) ,

where p is the projection on \scrT X0\sharp \BbbP (\BbbR d) of \~p \circ X =: prHX0
(DU(X0)). In a symmetric

way, we could get

U(Y ) - U(X0)\geq \langle p \circ X0, Y  - X0\rangle L2
\BbbP 
+ o (\| Y  - X0\| ) ,

so that DU(X) = p\circ X and p is in \scrT X0\sharp \BbbP (\BbbR d). The last assertion follows from Lemma
3.16.

3.3. Viscosity solutions. We recall the definition of viscosity sub/
supersolution associated to the previous definitions of sub/superdifferential (see [37]).

Definition 3.20 (viscosity solutions). A function w :P2(\BbbR d)\rightarrow \BbbR is
\bullet a subsolution of (HJ) if w is upper semicontinuous and there exists C > 0
such that for all \mu \in P2(\BbbR d), p\in D+

\varepsilon w(\mu ), and \varepsilon > 0,

\scrH (\mu ,p)\geq  - C\varepsilon ;

\bullet a supersolution of (HJ) if w is lower semicontinuous and a constant C > 0
exists such that \mu \in P2(\BbbR d), p\in D - 

\varepsilon w(t, \mu ), and \varepsilon > 0,

\scrH (\mu ,p)\leq C\varepsilon ;

\bullet a solution of (HJ) if w is both a supersolution and a subsolution.

We refer the reader to [39], [37] for the comparison principle using these notions
with some quite weak assumptions.
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5950 C. JIMENEZ, A. MARIGONDA, AND M. QUINCAMPOIX

We will assume some regularity for the Hamiltonian associated with (HJ):
(A) For all \mu 0 \in P2(\BbbR d), the map p \in \scrT \mu 0(\BbbR d) \mapsto \rightarrow \scrH (\mu 0, p) is continuous in

L2
\mu 0
(\BbbR d,\BbbR d).

We also introduce a Hamiltonian on the set

\{ (X,p \circ X) : X \in L2
\BbbP (\Omega ,\BbbR d), p\in \scrT X\sharp \BbbP (\BbbR d)\} 

by H(X,p \circ X) :=\scrH (X\sharp \BbbP , p) and the corresponding Hamilton--Jacobi equation:

(HJ) H(X,DU(X)) = 0.

3.3.1. Properties of the superdifferential. We provide some properties of
D+

\varepsilon u(\mu 0) and relations with the following superdifferential introduced in [4]: p \in 
\scrT \mu 0(\BbbR d) belongs to D+

AGu(\mu 0) if it satisfies for all \gamma \in \Pi o(\mu 0, \nu )

u(\nu ) - u(\mu 0)\leq 
\int 
p(x) \cdot (y - x) d\gamma (x, y) + o (W2(\mu 0, \nu )) .

Remark 3.21. By Proposition 3.5 and Remark 3.8, when \mu has no atom, taking
\varepsilon = 0,

pr\scrT \mu (\BbbR d)(D
+
CQ,0u(\mu )) =D+

AGu(\mu ).

We prove that superdifferentials are nonempty when \mu 0 belongs to some dense
set. Moreover, we give a link between superdifferentials of [39], [37], [33].

Proposition 3.22. Let u : P2(\BbbR d) \rightarrow \BbbR be continuous. Then there exists \scrA a
dense subset of P2(\BbbR d) such that we have

(i) D+
AGu(\mu 0) is nonempty for any \mu 0 \in \scrA ;

(ii) for all \varepsilon > 0, D+
\varepsilon u(\mu 0) is nonempty for any \mu 0 \in \scrA ;

(iii) it holds that D+
AGu(\mu 0) = \{ p= lim\varepsilon \rightarrow 0 p\varepsilon : p\varepsilon \in D+

\varepsilon u(\mu 0)\} .
The last assertion is true even when u is not continuous.

Proof. We prove (i) and (iii); assertion (ii) follows.
(i) Let U be the lift of u and X0 \in L2

\BbbP (\Omega ,\BbbR d) a random variable of law \mu 0. Note
that U is also continuous. Take also R> 0, \varepsilon > 0, and consider the following function:

V\varepsilon (Y ) :=

\left\{   U(Y ) - \| Y  - X0\| 2

\varepsilon 
if \| Y  - X0\| \leq R,

 - \infty otherwise.

This function being upper semicontinuous, by Stegall's variational principle (Theorem
8.8 of [21, p. 55]), there exists \xi \in L2

\BbbP with \| \xi \| \leq \varepsilon and such that V\varepsilon  - \langle \xi , \cdot \rangle attains
its maximum at some X\ast . By definition of V\varepsilon , we have \| X\ast  - X0\| \leq R. Since
V\varepsilon (X0) - \langle \xi ,X0\rangle \leq V\varepsilon (X

\ast ) - \langle \xi ,X\ast \rangle , we get

\| X\ast  - X0\| 2 \leq \varepsilon (U(X\ast ) - U(X0)) + \varepsilon 2\| X\ast  - X0\| .

Then for \varepsilon small, \| X\ast  - X0\| <R, and Y in a neighborhood of X0, V\varepsilon (Y ) - \langle \xi ,Y \rangle \leq 
V\varepsilon (X

\ast ) - \langle \xi ,X\ast \rangle implies that

U(Y ) - U(X\ast )\leq \langle 2
\varepsilon 
(X\ast  - X0) + \xi ,Y  - X\ast \rangle + \| Y  - X\ast \| 2

\varepsilon 
.

This means that 2
\varepsilon (X

\ast  - X0)+ \xi satisfies the condition of Proposition 3.14. Then, by
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DYNAMICAL SYSTEMS AND H.-J.-B. EQUATIONS ON P 2 5951

applying the proposition, we get some p\in \scrT X\ast \sharp \BbbP (\BbbR d) such that

U(Y ) - U(X\ast )\leq \langle p \circ X\ast , Y  - X\ast \rangle + o(\| Y  - X\ast \| ).

The conclusion follows using Lemma 3.16 and Remark 3.17.
(iii) First, we show D+

AGu(\mu 0) \subset \{ p = lim\varepsilon \rightarrow 0 p\varepsilon : p\varepsilon \in D+
\varepsilon u(\mu 0)\} . Let p \in 

D+
AGu(\mu 0). By definition of \scrT \mu (\BbbR d), there exists \{ p\varepsilon \} \varepsilon in dis+(\mu 0) such that \| p\varepsilon  - 

p\| L2
\mu 0

\leq \varepsilon . Then for all \nu in P2(\BbbR d) and all \gamma \in \Pi o(\mu 0, \nu ),

u(\nu ) - u(\mu 0)\leq 
\int 
p(x) \cdot (y - x) d\gamma (x, y) + o (W2(\mu 0, \nu ))

\leq 
\int 
p\varepsilon (x) \cdot (y - x) d\gamma (x, y) + \| p\varepsilon  - p\| L2

\mu 0
W2(\mu 0, \nu ) + o (W2(\mu 0, \nu ))

\leq 
\int 
p\varepsilon (x) \cdot (y - x) d\gamma (x, y) + \varepsilon W2(\mu 0, \nu ) + o (W2(\mu 0, \nu )) .

So we have the desired inclusion. We prove the converse. Let p = lim\varepsilon \rightarrow 0 p\varepsilon with
p\varepsilon \in D+

\varepsilon u(\mu 0). As, for any \varepsilon , p\varepsilon \in dis+(\mu 0), we have p \in \scrT \mu 0
(\BbbR d). Now take \{ \nu k\} k a

sequence of P2(\BbbR d) and \gamma k \in \Pi o(\mu ,\nu k) such that

lim
k\rightarrow +\infty 

W 2
2 (\mu ,\nu k) =

\int 
\BbbR d\times \BbbR d

| y - x| 2 d\gamma k(x, y) = 0.

We have by Cauchy--Schwarz

u(\nu k) - u(\mu 0) - 
\int 
p(x) \cdot (y - x)d\gamma k(x, y)

\leq u(\nu k) - u(\mu 0) - 
\int 
p\varepsilon (x) \cdot (y - x)d\gamma k(x, y) + \| p\varepsilon  - p\| L2

\mu 0
.

So for every \varepsilon > 0,

limsup
k\rightarrow +\infty 

u(\nu k) - u(\mu 0) - 
\int 
p(x) \cdot (y - x)d\gamma k(x, y)

W2(\nu k, \mu 0)
\leq \varepsilon + \| p\varepsilon  - p\| L2

\mu 0
.

Letting \varepsilon \rightarrow 0+ yields the result.

Proposition 3.23. Let u :P2(\BbbR d)\rightarrow \BbbR be k-Lipschitz, \mu in P2(\BbbR d). Then
(i) for all \varepsilon > 0 and all q \in D+

\varepsilon u(\mu ), we have \| q\| L2
\mu 
\leq k+ \varepsilon ;

(ii) take p\varepsilon \in D+
\varepsilon u(\mu ) for all \varepsilon > 0. Up to a subsequence, \{ p\varepsilon \} \varepsilon admits an

L2
\mu (\BbbR d,\BbbR d)-weak limit p as \varepsilon tend to 0. Moreover, p\in D+

AG(\mu ).

Proof. Denote by U the lift of u, and let X \in L2
\BbbP (\Omega ,\BbbR d) of law \mu . By Corollary

A.5), the map U is k-Lipschitz. We have for all Y \in L2
\BbbP (\Omega ,\BbbR d)

U(Y ) - U(X)\leq \langle q \circ X,Y  - X\rangle + \varepsilon \| Y  - X\| + o(\| Y  - X\| ).

Then applying this inequality with Y = - t(q \circ X) with t\in \BbbR leads to

U( - t(q \circ X)) - U(X)\leq  - t\| q \circ X\| 2 + \varepsilon t\| q \circ X\| + o(t),

and using the Lipschitz property of U ,

t\| q \circ X\| 2 \leq (k+ \varepsilon )t\| q \circ X\| + o(t).

The property (i) follows by dividing by t and letting t\rightarrow 0+.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/1

0/
23

 to
 1

76
.2

00
.2

2.
14

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



5952 C. JIMENEZ, A. MARIGONDA, AND M. QUINCAMPOIX

Then take the sequence \{ p\varepsilon \} \varepsilon defined in (ii). Up to a subsequence (similarly
denoted), \{ p\varepsilon \} \varepsilon admits an L2

\BbbP -weak limit p as \varepsilon \rightarrow 0+. Now let \{ \nu n\} n\in \BbbN be a sequence
in P2(\BbbR d) and \gamma n \in \Pi o(\mu ,\nu n). Possibly extracting a subsequence, we may assume
that

limsup
n\rightarrow +\infty 

u(\nu n) - u(\mu ) - 
\int 
\BbbR d\times \BbbR d p(x) \cdot (y - x)d\gamma n(x, y)

W2(\mu ,\nu n)

= lim
n\rightarrow +\infty 

u(\nu n) - u(\mu ) - 
\int 
\BbbR d\times \BbbR d p(x) \cdot (y - x)d\gamma n(x, y)

W2(\mu ,\nu n)
.

Setting rn :=W2(\mu ,\nu n), by Jensen's inequality, it holds that\Biggl( \int 
\BbbR d

\bigm| \bigm| \bigm| \bigm| 1rn
\biggl( \int 

\BbbR d

y d\gamma xn(y) - x

\biggr) \bigm| \bigm| \bigm| \bigm| 2 d\mu (x)

\Biggr) 1/2

=

\Biggl( \int 
\BbbR d

\bigm| \bigm| \bigm| \bigm| 1rn
\int 
\BbbR d

y - xd\gamma xn(y)

\bigm| \bigm| \bigm| \bigm| 2 d\mu (x)
\Biggr) 1/2

\leq 

\biggl( \int 
\BbbR d

| y - x| 2 d\gamma (x, y)
\biggr) 1/2

W2(\mu ,\nu n)
\leq 1.

Then set qn : x \mapsto \rightarrow 1

rn

\bigl( \int 
\BbbR d y d\gamma 

x
n(y)  - x

\bigr) 
. The sequence \{ qn\} n\in \BbbN is bounded, so we

can extract a subsequence \{ qnk
\} k\in \BbbN weakly convergent to some q \in L2

\mu . For all \varepsilon > 0,
we have

limsup
n\rightarrow +\infty 

1

rn
\cdot 
\biggl[ 
u(\nu n) - u(\mu ) - 

\int 
\BbbR d\times \BbbR d

p(x) \cdot (y - x)d\gamma n(x, y)

\biggr] 
= lim

k\rightarrow +\infty 

1

rnk

\cdot 
\biggl[ 
u(\nu nk

) - u(\mu ) - 
\int 
\BbbR d\times \BbbR d

p(x) \cdot (y - x)d\gamma nk
(x, y)

\biggr] 
= lim

k\rightarrow +\infty 

1

W2(\mu ,\nu nk
)
\cdot 
\biggl[ 
u(\nu nk

) - u(\mu ) - 
\int 
\BbbR d\times \BbbR d

p\varepsilon (x) \cdot (y - x)d\gamma nk
(x, y)

\biggr] 
+

1

rnk

\cdot 
\biggl[ \int 

(p\varepsilon  - p)(x) \cdot (y - x) d\gamma nk
(x, y)

\biggr] 
\leq \varepsilon + lim

k

\int 
(p\varepsilon  - p)(x) \cdot 1

rnk

\biggl( \int 
yd\gamma xnk

(y) - x

\biggr) 
d\mu (x)

= \varepsilon + lim
k

\int 
(p\varepsilon  - p)(x) \cdot qnk

(x) d\mu (x) = \varepsilon +

\int 
(p\varepsilon  - p)(x) \cdot q(x) d\mu (x).

By letting \varepsilon \rightarrow 0+, we obtain (ii).

Proposition 3.22 provides some links between notions of subsolutions.

Corollary 3.24. Assume that assumption (A) holds. Let u :P2(\BbbR d)\rightarrow \BbbR be a
subsolution of (HJ), and let C > 0 be the constant appearing in definition 3.20. Then

(i) \scrH (\mu ,p)\geq 0 for all p\in D+
AGu(\mu 0);

(ii) for all \varepsilon > 0 and all p\in \scrT \mu (\BbbR d) such that for all \nu \in P2(\BbbR d), all \gamma \in \Pi o(\mu 0, \nu )

u(\nu ) - u(\mu 0)\leq 
\int 
p(x) \cdot (y - x) d\gamma (x, y) + \varepsilon W2(\mu 0, \nu ) + o(W2(\mu 0, \nu )),

we have \scrH (\mu ,p)\geq  - C\varepsilon .
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DYNAMICAL SYSTEMS AND H.-J.-B. EQUATIONS ON P 2 5953

Proof. We only prove (ii). Arguing as in the previous proof, for any \delta > 0, there
exists p\delta \in D+

\varepsilon +\delta u(\mu 0) such that \| p\delta  - p\| L2
\mu 0

\leq \delta and

\scrH (\mu ,p)\geq  - C(\varepsilon + \delta ).

The result follows by letting \delta \rightarrow 0+.

3.3.2. Test functions. We want to express the notion of Hamilton--Jacobi so-
lution in P2(\BbbR d) in terms of test functions, defined as follows.

Definition 3.25. Let u :P2(\BbbR d)\rightarrow \BbbR , \mu 0 \in P2(\BbbR d), and \varepsilon > 0.
v : P2(\BbbR d)\rightarrow \BbbR is an \varepsilon -supertest function for u at \mu 0 if it is continuous, differ-

entiable at \mu 0 and there exists r > 0 such that u(\mu 0) = v(\mu 0) and

u(\nu )\leq v(\nu ) + \varepsilon W2(\mu 0, \nu ) \forall \nu \in P2(\BbbR d) such that W2(\mu 0, \nu )< r.

v is an \varepsilon -subtest function for u at \mu 0 if  - v is a \varepsilon -supertest function for  - u at \mu 0.

We also have similar \varepsilon -test functions in L2
\BbbP (\Omega ,\BbbR d).

Definition 3.26. Let U :L2
\BbbP (\Omega ,\BbbR d)\rightarrow \BbbR , X0 \in L2

\BbbP (\Omega ,\BbbR d), and \varepsilon > 0.
V :L2

\BbbP (\BbbR d)\rightarrow \BbbR is an \varepsilon -supertest function for U at X0 if it is continuous, differ-
entiable at X0 and there exists r > 0 such that

U(X0) = V (X0)

U(Y )\leq V (Y ) + \varepsilon \| Y  - X0\| \forall Y \in L2
\BbbP (\Omega ,\BbbR d) such that \| Y  - X0\| < r.

V is an \varepsilon -subtest function for U at X0 if  - V is \varepsilon -supertest function for U at X0.

We wish to give a result comparing both of the above notions.

Theorem 3.27. Let u :P2(\BbbR d)\rightarrow \BbbR be continuous and U :L2
\BbbP \rightarrow \BbbR be its lift.

Assume that (A) holds. Then the following assertions are equivalent:
(i) u is a viscosity subsolution of (HJ).
(ii) There exists C > 0 such that for all \varepsilon > 0, all \mu 0 \in P2(\BbbR d), and all \varepsilon -supertest

function v of u at \mu 0, it holds that

\scrH (\mu 0,D\mu v(\mu 0))\geq  - C\varepsilon .

(iii) There exists C > 0 such that for all \varepsilon > 0, all \mu 0 \in P2(\BbbR d), and all
rearrangement-invariant \varepsilon -supertest functions V of U at some X0 of law \mu 0,
it holds that

H(X0,DV (X0))\geq  - C\varepsilon .

To prove this theorem, we need some preliminary results.

Lemma 3.28. Let U : L2
\BbbP \rightarrow \BbbR be rearrangement invariant, X0 \in L2

\BbbP , and \varepsilon > 0.
Let V be a rearrangement-invariant \varepsilon -supertest function of U at X0. Let r > 0 be the
constant appearing in the definition of supertest function. Then V is an \varepsilon -supertest
function of U at any X \in L2

\BbbP with the same law of X0 and the constant r.

Proof. By Lemma 1.1, for any n \in \BbbN \ast , there exists \tau n : \Omega \rightarrow \Omega (measurable,
invertible with \tau n\sharp \BbbP = \tau  - 1

n \sharp \BbbP = \BbbP ) such that \| X  - X0 \circ \tau n\| \leq 1
n . Let Y \in L2

\BbbP satisfy
\| X  - Y \| < r. Then for n big enough, we have

\| X0  - Y \circ \tau  - 1
n \| = \| X0 \circ \tau n  - Y \| \leq \| X  - Y \| + \| X0 \circ \tau n  - X\| < r.
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5954 C. JIMENEZ, A. MARIGONDA, AND M. QUINCAMPOIX

Then, as V is an \varepsilon -supertest function at X0, we have

U(Y \circ \tau  - 1
n )\leq V (Y \circ \tau  - 1

n ) + \varepsilon \| X0  - Y \circ \tau  - 1
n \| .

As U and V are rearrangement invariant, this leads to

U(Y )\leq V (Y ) + \varepsilon \| X0  - Y \circ \tau  - 1
n \| \leq V (Y ) + \varepsilon \| X0 \circ \tau n  - Y \| \leq V (Y ) + \varepsilon \| X  - Y \| + \varepsilon 

n
.

Letting n tend to infinity gives the result.

The representation of Wasserstein distance (1.1) gives immediately the following.

Corollary 3.29. Let u :P2(\BbbR d)\rightarrow \BbbR and U :L2
\BbbP (\Omega ,\BbbR d)\rightarrow \BbbR be its lift.

(a) Let \varepsilon > 0 and \mu 0 \in P2(\BbbR d) and v an \varepsilon -supertest function of u at \mu 0. Then
the lift V of v is an \varepsilon -supertest function of U at any X0 of law \mu 0.

(b) Let \varepsilon > 0, X0 \in L2
\BbbP (\Omega ,\BbbR d) and V an \varepsilon -supertest function of U at X0. Assume

that V is rearrangement invariant. Given any \nu \in P2(\BbbR d,\BbbR d), set

v(\nu ) := V (Y ) for any Y of law \nu .

Then the map v is an \varepsilon -supertest function of the lift u at \mu 0 the law of X0.

Proposition 3.30. Take u continuous on P2(\BbbR d), \varepsilon > 0 and \mu 0 \in P2(\BbbR d). Then
(a) if v an \varepsilon -supertest function of u at \mu 0, its gradient D\mu v(\mu 0) can be approxi-

mate in L2
\mu 0
(\BbbR d,\BbbR d) by a sequence \{ pn\} n such that pn \in D+

\varepsilon +1/nu(\mu 0);

(b) if p \in L2
\mu 0
(\BbbR d,\BbbR d) belongs to D+

\varepsilon u(\mu 0), there exists a sequence \{ vn\} n of (\varepsilon +
1/n)-supertest functions of u at \mu 0 such that

lim
n\rightarrow +\infty 

\| D\mu vn(\mu 0) - p\| = 0.

We need a technical lemma whose proof is very similar to Lemma 3.1.8 in [18].

Lemma 3.31. Let R > 0 and \omega :]0,R] \rightarrow \BbbR be a lower semicontinuous such that
limt\rightarrow 0+ \omega (t) = 0. Then there exists \omega 0 : [0,

R
2 ]\rightarrow \BbbR such that

(a) \omega (\tau )\leq \omega 0(\tau ) for all \tau \in ]0, R2 ];
(b) \omega 0 is continuous on [0, R2 [;
(c) \omega 0(\tau ) = 0.

Proof of Proposition 3.30. (a) As D\mu v(\mu 0) \in \scrT \mu 0
(\BbbR d), there exists \{ pn\} n\in \BbbN \ast in

dis+0 (\mu 0) such that

\| pn  - D\mu v(\mu 0)\| L2
\mu 0

(\BbbR d,\BbbR d) \leq 
1

n
.

Then for all \nu \in P2(\BbbR d) and all \gamma \in \Pi 0(\mu 0, \nu ),

u(\nu ) - u(\mu 0)\leq v(\nu ) - v(\mu 0) + \varepsilon W2(\mu 0, \nu )

\leq 
\biggl[ \int 

D\mu v(\mu 0)(x) \cdot (y - x)d\gamma (x, y) + o (W2(\mu 0, \nu ))

\biggr] 
+ \varepsilon W2(\mu 0, \nu )

\leq 
\int 
pn(x) \cdot (y - x)d\gamma (x, y) + (\varepsilon + 1/n)W2(\mu 0, \nu ) + o (W2(\mu 0, \nu )) .

(b) As p\in \scrT \mu 0
(\BbbR d), there exists a sequence (\varphi n)n\in \BbbN \ast in C\infty 

c (\BbbR d) such that

(3.25) \| \nabla \varphi n  - p\| L2
\mu 0

\leq 1

n
.
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DYNAMICAL SYSTEMS AND H.-J.-B. EQUATIONS ON P 2 5955

Then setting wn(\nu ) =
\int 
\varphi n(x)d\nu for all \nu \in P2(\BbbR d), it is continuous and

D\mu wn(\mu 0) =\nabla \varphi n, \| D\mu wn(\mu 0) - p\| L2
\mu 0

\leq 1

n
.

Moreover, as p\in D+
\varepsilon u(\mu 0), we have in view of (3.25)

limsup
W2(\mu 0,\nu )\rightarrow 0
\gamma \in \Pi o(\mu 0,\nu )

u(\nu ) - u(\mu 0) - 
\int 

\nabla \varphi n(x) \cdot (y - x) d\gamma (x, y)

W2(\mu 0, \nu )
\leq 

\leq limsup
W2(\mu 0,\nu )\rightarrow 0
\gamma \in \Pi o(\mu 0,\nu )

u(\nu ) - u(\mu 0) - 
\int 
p(x) \cdot (y - x) d\gamma (x, y)

W2(\mu 0, \nu )
+

1

n
\leq 
\biggl( 
\varepsilon +

1

n

\biggr) 
.

Since D\mu wn(\mu 0) =\nabla \varphi n,

\alpha := limsup
W2(\mu 0,\nu )\rightarrow 0

u(\nu ) - u(\mu 0) - wn(\nu ) +wn(\mu 0)

W2(\mu 0, \nu )
 - (\varepsilon + 1/n)\leq 0.

If \alpha < 0, then setting v(\nu ) := u(\mu 0) +wn(\nu ) - wn(\mu 0), the proof is concluded.
Assume that \alpha = 0. Then set for all r > 0

\omega (r) = sup
W2(\mu 0,\nu )\leq r

u(\nu ) - u(\mu 0) - wn(\nu ) +wn(\mu 0)

W2(\mu 0, \nu )
 - (\varepsilon + 1/n).

This function is nondecreasing and bounded on some ]0,R[, and it satisfies
limr\rightarrow 0+ \omega (r) = 0. Assume that this function is measurable (we will prove it later).
Then we use the previous lemma and set for all \nu with W2(\mu 0, \nu )<

R
2

vn(\nu ) := u(\mu 0) +wn(\nu ) - wn(\mu 0) +W2(\mu 0, \nu )\omega 0(W2(\mu 0, \nu )).

Moreover, we have

lim
W2(\mu 0,\nu )\rightarrow 0

W2(\mu 0, \nu )\omega 0(W2(\mu 0, \nu )) - W2(\mu 0, \mu 0)\omega 0(W2(\mu 0, \mu 0))

W2(\mu 0, \nu )
= 0.

Thus, vn is continuous and differentiable at \mu 0 and

D\mu vn(\mu 0) =\nabla \varphi n and vn(\mu 0) = u(\mu 0)

\forall \nu such that W2(\mu 0, \nu )<
R

2
: u(\nu )\leq vn(\nu ) + (\varepsilon + 1/n)W2(\mu 0, \nu ).

The result is proved.
It remains to prove that \omega is l.s.c. and hence measurable. Indeed, let \rho 0 \in ]0,R[,

and take \rho k \rightarrow \rho 0 such that lim inf\rho \rightarrow \rho 0
\omega (\rho ) = limk\rightarrow +\infty \omega (\rho k). We want to show that

limk\rightarrow +\infty \omega (\rho k) \geq \omega (\rho 0). If (\rho k)k admits a nonincreasing subsequence, we are done
because \omega is nondecreasing.
Let us assume that (\rho k)k is nondecreasing. Let \delta > 0 and \nu be \delta -optimal for \omega (\rho 0).
Take t \in [0,1]\rightarrow \nu t a geodesic curve joining \nu and \mu 0. For k big enough, we can find
\nu tk such that W2(\mu 0, \nu tk) = \rho k. Then

(\varepsilon + 1/n) + \omega (\rho k)\geq 
u(\nu tk) - u(\mu 0) - wn(\nu tk) +wn(\mu 0)

\rho k
.
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5956 C. JIMENEZ, A. MARIGONDA, AND M. QUINCAMPOIX

As W2(\nu tk , \nu ) =W2(\mu 0, \nu ) - W2(\nu tk , \mu 0) = (\rho 0  - \rho k), by continuity of u and wn,

lim
k\rightarrow +\infty 

\omega (\rho k)\geq 
u(\nu ) - u(\mu 0) - wn(\nu ) +wn(\mu 0)

\rho 0
 - (\varepsilon + 1/n)\geq \omega (\rho 0) - \delta .

By the arbitrariness of \delta > 0, we get the desired regularity.

Proof of Theorem 3.27. First, we show (i)\Rightarrow (ii). Let C be the constant appearing
in definition 3.20. We take \varepsilon > 0, \mu 0 \in P2(\BbbR d), and v any \varepsilon -supertest function of u
at \mu 0. By Proposition 3.30(a), there exists (pn)n in D+

\varepsilon +1/nu(\mu 0) such that

lim
n\rightarrow +\infty 

\| pn  - D\mu v(\mu 0)\| L2
\mu 0

= 0.

Then, by (i),

\scrH (\mu 0, pn)\geq  - C(\varepsilon + 1/n),

and using (A) and letting n\rightarrow +\infty ,

\scrH (\mu 0,D\mu v(\mu 0))\geq  - C\varepsilon .

Using Corollary 3.29 and Theorem 3.12, we have (ii)\leftrightarrow (iii).
The proof of (ii)\Rightarrow (i) follows from Proposition 3.30(b).

3.4. Hamilton Jacobi equations in L2
\BbbP (\BbbR 

d) or in P2(R
d): comparing

points of view. It is a natural question to ask weather HJB can be studied as
an equation in L2

\BbbP (\Omega ,\BbbR d) with the usual notion of viscosity solution in L2
\BbbP . This leads

to several questions:
(1) In order to give a definition of H(X,DV (X)) for any test function V :L2

\BbbP \rightarrow \BbbR ,
we need to extend H to the whole L2

\BbbP (\Omega ,\BbbR d)2.
(2) The extension \~H should be chosen in order to get some equivalences between

L2
\BbbP -solutions of the extended equation and P2-solutions of (HJ). More precisely,

provided that \~H is rearrangement invariant (see Definition 3.32), it is easily seen
that any rearrangement-invariant L2

\BbbP -solution of the extended equation is the lift of a
P2-solution of (HJ). The opposite property is more involved.

(3) As we would like to apply usual results in L2
\BbbP to the extended equation, we

want \~H to preserve the regularity of \scrH .
We would like to share our reflections on the subject.
In this section, we will use consider the following sets:

\scrF 2(\BbbR d) : = \{ (\mu ,p) : p\in L2
\mu (\BbbR d;\BbbR d), \mu \in P2(\BbbR d)\} ,

F2 : = \{ (X,p) :X\sharp \BbbP \in P2(\BbbR d), p\in L2
X\sharp \BbbP (\BbbR d;\BbbR d)\} .

We also give the definition.

Definition 3.32 (rearrangement invariance of Hamiltonians). Given D \subseteq 
L2
\BbbP (\Omega ;\BbbR d)\times L2

\BbbP (\Omega ;\BbbR d), a function \^H :D\rightarrow \BbbR is called rearrangement invariant on D
if \^H(X,\xi ) = \^H(Y, \zeta ) for all (X,\xi ), (Y, \zeta )\in D satisfying (X,\xi )\sharp \BbbP = (Y, \zeta )\sharp \BbbP .

Note that the lift H is rearrangement invariant on F2.

3.4.1. Comparing convergences in \bfitL 2
\BbbP and P2(\BbbR \bfitd ).. For any sequence

\{ (Xn, p \circ Xn)\} n in F2, we consider here two natural types of convergences in
L2
\BbbP (\Omega ,\BbbR d)2: the strong/weak convergence and the strong/strong convergence. In

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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DYNAMICAL SYSTEMS AND H.-J.-B. EQUATIONS ON P 2 5957

this section, we study the corresponding notions in \scrF 2(\BbbR d). First, we introduce the
following distance in \scrF 2(\BbbR d):

d\scrF 2
((\mu 1, p1), (\mu 2, p2)) :=W2((Id\BbbR d , p1)\sharp \mu 1, (Id\BbbR d , p2)\sharp \mu 2).

In addition to the topology induced by d\scrF 2 , following [3], we introduce the fol-
lowing notion of convergence.

Definition 3.33 (strong/weak onvergence in \scrF 2(\BbbR d)). Let \{ (\mu n, pn)\} n\in \BbbN and
(\mu ,p) be in \scrF 2(\BbbR d). We say that \{ (\mu n, pn)\} n\in \BbbN converges strong/weak (converges s/w
in short) to (\mu ,p) if

\bullet limn\rightarrow +\infty W2(\mu n, \mu ) = 0;
\bullet pn\mu n

\ast 
\rightharpoonup p\mu as a sequence of vector-valued measures, i.e., for all \Phi \in 

C0
b (\BbbR d,\BbbR d),

lim
n\rightarrow +\infty 

\int 
\BbbR d

\Phi (x) \cdot pn(x)d\mu n(x) =

\int 
\BbbR d

\Phi (x) \cdot p(x)d\mu (x);

\bullet supn\in \BbbN 
\int 
\BbbR d | pn| 2d\mu n <+\infty .

By Theorem 5.4.4 of [3, p. 127], \{ (\mu n, pn)\} n\in \BbbN converges to (\mu ,p) for d\scrF 2 if and
only if \{ (\mu n, pn)\} n\in \BbbN converges s/w to (\mu ,p) and satisfies limsupn\rightarrow +\infty 

\int 
| pn| 2 d\mu n \leq \int 

| p| 2 d\mu .
The following lemma gives the correspondence with convergence in L2

\BbbP .

Lemma 3.34 (alternative characterization for convergence).
(i) Given \{ (\mu n, pn)\} n\in \BbbN and (\mu ,p) in \scrF 2(\BbbR d), the following are equivalent:

1. W2 ((Id\BbbR d , pn)\sharp \mu n, (Id\BbbR d , p)\sharp \mu )\rightarrow 0;
2. there exists \{ Xn\} n\in \BbbN \subseteq L2

\BbbP (\Omega ), X \in L2
\BbbP (\Omega ) such that Xn\sharp \BbbP = \mu n for all

n\in \BbbN , X\sharp \BbbP = \mu and Xn \rightarrow X, pn \circ Xn \rightarrow p \circ X strongly in L2
\BbbP .

(ii) Let \{ Xn\} n\in \BbbN ,\{ \xi n\} n\in \BbbN \subseteq L2
\BbbP , and X,\xi \in L2

\BbbP . Suppose that Xn \rightarrow X strongly
converges and that \xi n \rightharpoonup \xi weakly converges in L2

\BbbP . Then set \mu n = Xn\sharp \BbbP ,
\mu =X\sharp \BbbP , prHXn

(\xi n) = pn \circ Xn, prHX
(\xi ) = p \circ X; the sequence \{ (\mu n, pn)\} n\in \BbbN 

s/w converges to (\mu ,p).
(iii) Let \{ (\mu n, pn)\} n\in \BbbN \subset \scrF 2(\BbbR d) s/w converging to (\mu ,p).

Then there exist \{ (\mu nk
, pnk

)\} k\in \BbbN and \{ Xnk
\} k\in \BbbN \subseteq L2

\BbbP , X,\xi \in L2
\BbbP satisfying

Xnk
\sharp \BbbP = \mu nk

, X\sharp \BbbP = \mu , prHX
(\xi ) = p \circ X, with Xnk

\rightarrow X strongly converging
and pnk

\circ Xnk
\rightharpoonup \xi weakly converging in L2

\BbbP .

Proof. (i) This follows from Lemma A.3.
(ii) The convergence of the Wasserstein distance in Definition 3.33(1) follows easily

from (1.1). Moreover, by weak convergence of \xi n,

sup
n\in \BbbN 

\| pn\| L2
\mu n

= sup
n\in \BbbN 

\| pn \circ Xn\| L2
\BbbP 
\leq sup

n\in \BbbN 
\| \xi n\| L2

\BbbP 
<+\infty .

To get the second assertion, note that, setting \pi n = (X,Xn)\sharp \BbbP ,

W2(\pi n, (Id\BbbR d , Id\BbbR d)\sharp \mu )\leq \| (X,Xn) - (X,X)\| L2
\BbbP 
\rightarrow 0.

Thus, for all \Phi \in C0
b (\BbbR d,\BbbR d), it holds that\int 

\Omega 

| \Phi (X(\omega )) - \Phi (Xn(\omega ))| 2 d\BbbP (\omega ) =
\int 
\BbbR d\times \BbbR d

| \Phi (x) - \Phi (y)| 2 d\pi n(x, y) = 0.
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5958 C. JIMENEZ, A. MARIGONDA, AND M. QUINCAMPOIX

Finally,

lim
n\rightarrow +\infty 

\int 
\BbbR d

p(x) \cdot \Phi (x)d\mu n(x) = lim
n\rightarrow +\infty 

\int 
\Omega 

(pn \circ Xn(\omega )) \cdot (\Phi \circ Xn(\omega ))d\BbbP (\omega )

= lim
n\rightarrow +\infty 

\langle \xi n,\Phi \circ Xn\rangle L2
\BbbP 
= \langle \xi ,\Phi \circ X\rangle L2

\BbbP 
=

\int 
\BbbR d

p(x) \cdot \Phi (x)d\mu (x).

(iii) By Lemma A.3, there exists Xn, X in L2
\BbbP such that Xn \rightarrow X in L2

\BbbP , \mu n =Xn\sharp \BbbP ,
\mu =X\sharp \BbbP . Moreover, since supn\in \BbbN \| pn \circ Xn\| L2

\BbbP 
= supn\in \BbbN \| pn\| L2

\mu n
<+\infty , there exists

\{ pnk
\circ Xnk

\} k\in \BbbN weakly converging in L2
\BbbP to some \xi . Then for any regular \Phi , we have

\langle \xi ,\Phi \circ X\rangle L2
\BbbP 
= lim

k\rightarrow +\infty 
\langle pnk

\circ Xnk
,\Phi \circ X\rangle L2

\BbbP 
= lim

k\rightarrow +\infty 

\int 
\BbbR d

pnk
(x) \cdot \Phi (x) d\mu nk

(x)

=

\int 
\BbbR d

p(x) \cdot \Phi (x)d\mu (x) = \langle p \circ X,\Phi \circ X\rangle L2
\BbbP 
.

Hence, prHX
(\xi ) = p \circ X.

Lemma 3.34 provides some consequences on the regularity of the Hamiltonian.

Corollary 3.35. (a) Hamiltonian \scrH is Lipschitz (resp., continuous) w.r.t. to
d\scrF 2

on \scrF 2(\BbbR d) if and only if its lift H is Lipschitz (resp., continuous) w.r.t. the strong
topology on F2.
(b) If \scrH is s/w continuous in \scrF 2(\BbbR d), then H is s/w continuous on F2.

3.4.2. Some insights on the regularity of the extension proposed in [33].
The authors of [33] propose to consider the Hamiltonian on L2

\BbbP (\Omega ,\BbbR d),

\^H(X,\xi ) =\scrH (X\sharp \BbbP ,pr\scrT X\sharp \BbbP 
(p)) with prHX

(\xi ) = p \circ X,

together with the following extended HJB in L2
\BbbP (\Omega ,\BbbR d):

(\widehat HJ) \^H(X,DU(X)) = 0.

The Hamiltonian \^H is rearrangement invariant and satisfies

\^H(X,p \circ X) =\scrH (X\sharp \BbbP , p)

for all (X,p \circ X) \in TF2 := \{ (X,p \circ X) : p \in \scrT X\sharp \BbbP (\BbbR d), X\sharp \BbbP \in P2(\BbbR d)\} . The interest
of this extension, as emphasized in [33], is that the lift of any solution of (HJ) in the

P2-sense is a solution of (\widehat HJ) in the L2
\BbbP -sense (using \varepsilon -subdifferential and using the

definition of P2-viscosity solutions of the present paper). This result is a consequence
of Proposition 3.14.

Here we want to determine whether \^H is regular if \scrH is so. As pointed out
previously, the regularity of \^H is crucial in order to apply the L2

\BbbP -theory of viscosity
solution.

Lemma 3.36.
(i) The map PH : (L2

\BbbP ,\| \cdot \| L2
\BbbP 
) \times (L2

\BbbP , \sigma ) \rightarrow (\scrF 2(\BbbR d), s/w), defined by (X,\xi ) \mapsto \rightarrow 
(X\sharp \BbbP , p), where prHX

(\xi ) = p\circ X, is continuous (\sigma denotes the weak topology).
(ii) The map PH : (L2

\BbbP ,\| \cdot \| L2
\BbbP 
)\times (L2

\BbbP ,\| \cdot \| L2
\BbbP 
)\rightarrow (\scrF 2(\BbbR d), d\scrF 2

), defined by (X,\xi ) \mapsto \rightarrow 
(X\sharp \BbbP , p), where prHX

(\xi ) = p \circ X, is not continuous.
(iii) The map F : (L2

\BbbP ,\| \cdot \| L2
\BbbP 
)\times (L2

\BbbP ,\| \cdot \| L2
\BbbP 
)\rightarrow (\scrF 2(\BbbR d), d\scrF 2), defined by (\xi ,X) \mapsto \rightarrow 

(pr\scrT X\sharp \BbbP (\BbbR d)(p),X\sharp \BbbP ), where prHX
(\xi ) = p \circ X, is not continuous.
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DYNAMICAL SYSTEMS AND H.-J.-B. EQUATIONS ON P 2 5959

Proof. (i) This is an immediate consequence of Lemma 3.34.
(ii)--(iii) Let \=x \in \BbbR d and \{ \mu n\} n\in \BbbN \subseteq P2(\BbbR d) with \mu n \ll L d satisfying \mu n \rightarrow \delta \=x. Let
\nu \in P2(\BbbR d) be without atoms, and choose \pi n = (Id\BbbR d , Tn)\sharp \mu n \in \Pi o(\mu n, \nu ). Up to a
subsequence, we can assume that \pi n \rightarrow \pi 0 = \delta \=x \otimes \nu , which is the unique element of
\Pi (\delta \=x, \nu ). Then, by A.3, there exist \{ Xn\} n\in \BbbN \subseteq L2

\BbbP , Y \in L2
\BbbP such that

Xn\sharp \BbbP = \mu n, (Xn, Tn \circ Xn)\sharp \BbbP = \pi n, (\=x,Y )\sharp \BbbP = \pi 0,

lim
n

\| (Xn, Tn \circ Xn) - (\=x,Y )\| L2
\BbbP \times L2

\BbbP 
= 0.

Then the sequence \{ (Xn, Tn \circ Xn - Xn)\} n\in \BbbN strongly converges to (\=x,Y  - \=x), but

PH(Xn, Tn \circ Xn  - Xn) = F (Xn, Tn \circ Xn  - Xn) = (\mu n, Tn  - Id\BbbR d)

does not converge strongly/strongly to

PH(\=x,Y  - \=x) = F (\=x,Y  - \=x) =: (\delta \=x, p).

Indeed, set \gamma to be the transport plan defined by\int 
\varphi (x, y)d\gamma (x, y) =

\int 
\varphi (\=x, y - \=x)d\nu (y) =

\int 
\varphi (\=x,Y - \=x)d\BbbP for any regular \varphi :\BbbR 2d \rightarrow \BbbR .

Then, recalling that \nu has no atom, clearly \gamma \not = (Id\times p)\sharp \delta \=x and

lim
n\rightarrow +\infty 

W2((Tn  - Id\BbbR d)\sharp \mu n, \gamma ) = 0 \not = lim
n\rightarrow +\infty 

W2((Tn  - Id\BbbR d)\sharp \mu n, (Id\times p)\sharp \delta \=x).

Remark 3.37.
\bullet According to the previous result, even if \scrH is Lipschitz for the distance d\scrF 2 ,

in general, the extension \~H may fail to be continuous for the L2
\BbbP \times L2

\BbbP norm.
\bullet If \scrH is s/w regular and supposing that the composition with the projection

on \scrT \mu (\BbbR d) preserves this regularity, then \~H is also s/w regular.
\bullet It is still an open problem to establish if \{ (\mu ,p) : p \in \scrT \mu (\BbbR d) : \mu \in P2(\BbbR d)\} 

is s/w or d\scrF 2
closed and the regularity of(\mu ,p) \in \scrF 2(\BbbR d) \mapsto \rightarrow (\mu ,pr\scrT \mu (\BbbR d)(p))

w.r.t. these types of convergence.

Even assuming that \scrH is quite regular, it seems a very difficult question to find, in
the general case, a regular extension giving equivalence of solutions in L2

\BbbP and P2(\BbbR d).
Nevertheless, in some cases, this can be done in a quite natural way as shown in the
next example.

3.4.3. Example. As in [19], we consider the Hamiltonian

\scrH (\mu ,p) := inf
u\in U

sup
v\in V

\int 
\BbbR d

f(x,u, v) \cdot p(x) d\mu (x),

with f :\BbbR d \times U \times V \rightarrow \BbbR d, where f is bounded, continuous, and Lipschitz in its first
variable. The sets U and V are compact subsets of some finite-dimensional spaces.

We also consider the following time-dependent HJB (cf. [19]):

(HJt)

\Biggl\{ 
\partial tu+\scrH (\mu ,D\mu u) = 0 on [0, T ]\times P2(\BbbR d),

u(T,\mu ) =G(\mu ) on P2(\BbbR d)\} ,
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5960 C. JIMENEZ, A. MARIGONDA, AND M. QUINCAMPOIX

where G is Lipschitz and bounded. We slightly modify the notion of solution:
(pt, p\mu )\in \BbbR \times L2

\mu (\BbbR d,\BbbR d)\in D+
\varepsilon u(t, \mu ) if and only if p\mu \in dis+(\mu ) and for all \gamma \in \Pi (\mu ,\nu ),

u(s, \nu ) - u(t, \mu )\leq 
\int 
p\mu (x) \cdot (y - x) d\gamma (x, y) + pt(s - t)

 - \varepsilon 
\sqrt{} 
(t - s)2 +W 2

2 (\mu 0, \nu ) + o

\biggl( \sqrt{} 
(t - s)2 +W 2

2 (\mu 0, \nu )

\biggr) 
.

A natural L2
\BbbP -extension of \scrH is \~H(X,Y ) = infu\in U supv\in V

\int 
\Omega 
f(X,u, v) \cdot Y d\BbbP . We set

(\widetilde HJ t)

\Biggl\{ 
\partial tU + \~H(X,DU) = 0 on [0, T ]\times L2

\BbbP (\Omega ,\BbbR d)\} ,
u(T,X\sharp \BbbP ) =G(X\sharp \BbbP ) on L2

\BbbP (\Omega ,\BbbR d)\} .

Note that

(3.26) \~H(X,Y ) = \~H(X,prHX
(Y )).

Then
\bullet \~H is rearrangement invariant and continuous (so in L2

\BbbP , we can consider ap-
proximate superdifferentials or subdifferentials);

\bullet \~H and \scrH both satisfy the assumptions needed to obtain a comparison prin-
ciple (cf. Theorem 2 of [27], Theorem 5.6 of [22], and Lemma 6 of [19]);

\bullet using Proposition 4.5 of [33], if (\widetilde HJ t) has a unique solution, it is rearrange-
ment invariant.

From all these considerations, we can deduce that, assuming that (\widetilde HJ t) has a
bounded uniformly continuous solution, it is unique, rearrangement invariant, and
also the unique solution of (HJt). Then it can easily be seen (using, for instance,
(3.26), Proposition 3.14, and Proposition 3 of [19]) that the lift of the value function

\scrV of [19] is the unique solution of (\widetilde HJ t) and that \scrV is the unique solution of (HJt).

In this case, solving (\widetilde HJ t) or (HJt) is equivalent.
Appendix A.

A.1. Measure theory. Let X,Y be a complete metric space. Given \mu \in P(X)
and a Borel family \{ \nu x\} x\in X \subseteq P(X \times Y ) of probability measures (i.e., x \mapsto \rightarrow \nu x(B) is
a Borel map for every Borel set B \subseteq X), the product measure \mu \otimes \nu x \in P(X \times Y ) is
defined (see, e.g., section 5.3 in [3]) by setting for all f \in C0

b (X \times Y )

(A.1)

\int \int 
X\times Y

f(x, y)d(\mu \otimes \nu x)(x, y) =

\int 
X

\int 
Y

f(x, y)d\nu x(y)d\mu (x).

Theorem A.1 (disintegration theorem; Theorem 5.3.1 in [3]). Given a measure
\mu \in P(\BbbX ) and a Borel map r : \BbbX \rightarrow X, there exists a family of probability measures
\{ \mu x\} x\in X \subseteq P(\BbbX ), uniquely defined for r\sharp \mu -a.e. x \in X, such that \mu x(\BbbX \setminus r - 1(x)) = 0
for r\sharp \mu -a.e. x\in X, and for any Borel map \varphi :X \times Y \rightarrow [0,+\infty ], we have\int 

\BbbX 
\varphi (z)d\mu (z) =

\int 
X

\Biggl[ \int 
r - 1(x)

\varphi (z)d\mu x(z)

\Biggr] 
d(r\sharp \mu )(x).

We will write \mu = (r\sharp \mu )\otimes \mu x. If \BbbX =X \times Y and r - 1(x)\subseteq \{ x\} \times Y for all x \in X, we
can identify each measure \mu x \in P(X \times Y ) with a measure on Y .

We recall a characterization of optimal displacement of dis - (\mu ) (Definition 3.3).
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DYNAMICAL SYSTEMS AND H.-J.-B. EQUATIONS ON P 2 5961

Lemma A.2 (Lemma 5.2 in [37]). Let \mu \in P2(\BbbR d), p \in L2
\mu (\BbbR d). The map p

is an optimal displacement in dis - (\mu ) if and only if there exists \nu \in P2(\BbbR d) and
\gamma \in \Pi o(\mu ,\nu ) such that p(x) =

\int 
\BbbR d y d\gamma 

x(y) - x, where \gamma = \mu \otimes \gamma x is a disintegration
of \gamma .

A.2. Wasserstein space and \bfitL 2
\BbbP . In section 1.2, we have already defined the re-

lation \sim allowing to identify (P2(\BbbR d),W2) with the quotient (L2
\BbbP (\Omega ,\BbbR d)/\sim ) equipped

with the quotient topology. Let us denote by [X] the equivalence class of X \in L2
\BbbP . It

is clear that the following map is one to one:

[X]\in 
\bigl( 
L2
\BbbP (\Omega ,R

d)/\sim 
\bigr) 
\mapsto \rightarrow X\sharp \BbbP \in \scrP 2(\BbbR d).

Consider also pr :X \mapsto \rightarrow [X], the canonical projection on the quotient space.
It is well known that if sequence \{ Xn\} n\in \BbbN converges to X in L2

\BbbP , then it converges
also in law, i.e., W2(Xn\sharp \BbbP ,X\sharp \BbbP )\rightarrow 0 (while the converse is false). On the other hand,
we have the following.

Lemma A.3. If a sequence \mu n \in \scrP 2(\BbbR d) converges to \mu for the distance W2, then
for any \varepsilon n \rightarrow 0, there exist \{ Xn\} n\in \BbbN , X in L2

\BbbP such that X\sharp \BbbP = \mu and

W2(\mu n, \mu )\leq \| Xn  - X\| L2
\BbbP 
\leq W2(\mu n, \mu ) + \varepsilon n.

Proof. Take X such that X\sharp \BbbP = \mu . There exists Yn, X such that

W2(\mu ,\mu n) = \| Yn  - Zn\| L2
\BbbP 
, Yn\sharp \BbbP = \mu , Zn\sharp \BbbP = \mu n.

Then, arguing as in Lemma 1.1, there exists \tau n one to one such that \tau n and \tau  - 1
n are

measure preserving such that \| X  - Yn \circ \tau n\| L\infty 
\BbbP 
\leq \varepsilon n. Then we have

W2(\mu ,\mu n)\leq \| Zn \circ \tau n  - X\| L2
\BbbP 
= \| Zn  - X \circ \tau  - 1

n \| L2
\BbbP 
\leq \| Zn  - Yn\| L2

\BbbP 
+ \| Yn  - X \circ \tau  - 1

n \| L2
\BbbP 

=W2(\mu ,\mu n) + \| Yn \circ \tau n  - X\| L2
\BbbP 
\leq W2(\mu ,\mu n) + \varepsilon n.

So with Xn :=Zn \circ \tau n, the proof is complete.

We recall a useful known result.

Proposition A.4. A subset F of the quotient space is closed if and only if for
all ([Xn])n in F and X \in L2

\BbbP (\Omega ,\BbbR d),

lim
n\rightarrow +\infty 

W2(Xn\sharp \BbbP ,X\sharp \BbbP ) = 0\Rightarrow [X]\in F.

The previous results then easily imply the following useful corollary.

Corollary A.5.
(a) Take U :L2

\BbbP (\Omega ,\BbbR d)\rightarrow R a rearrangement invariant, and set u(X\sharp \BbbP ) =U(X).
Then

U is continuous for the L2
\BbbP - norm \leftrightarrow u is continuous for the distance W2.

(b) Let u :\scrP 2(\BbbR d)\rightarrow \BbbR and U :L2
\BbbP (\Omega ,\BbbR d)\rightarrow \BbbR its lift. Then

U is continuous for the L2
P - norm \leftrightarrow u is continuous for the distance W2.

(c) Let u :\scrP 2(\BbbR d)\rightarrow \BbbR and U :L2
\BbbP (\Omega ,\BbbR d)\rightarrow \BbbR its lift. Let k > 0. Then

U is k-Lipschitz \leftrightarrow u is k-Lipschitz.
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5962 C. JIMENEZ, A. MARIGONDA, AND M. QUINCAMPOIX

Now we show a very close relationship between geodesics in the Wasserstein space
and goedesics in the space L2

\BbbP (\Omega ,\BbbR d). Recall that t\in [0,1]\rightarrow \mu t \in \scrP 2(\BbbR d) is a constant
speed geodesic if

W2(\mu t, \mu s) = (t - s)W2(\mu t, \mu 0) \forall 0\leq s\leq t\leq 1.

Proposition A.6. Let \{ \mu t\} t\in [0,1] be a constant speed geodesic and (T0, T2) be two
random variables of L2

\BbbP (\Omega ,\BbbR d) such that \gamma := (T0, T1)\sharp \BbbP is an optimal transport plan
from \mu 0 to \mu 1. Then

\mu t = [(1 - t)T0 + tT1]\sharp P \forall t\in [0,1],

W2(\mu s, \mu t) = \| Tt \circ S  - Ts \circ S\| L2
\BbbP 
\forall s, t\in [0,1],

where S is any map in L2
\BbbP such that S\sharp \BbbP = \mu 0. In particular, (Tt\circ S)t\in [0,1] is a geodesic

in L2
\BbbP (\Omega ,\BbbR d).

Proof. By Lemma 7.2.1 of [3, p. 158], denoting by \pi 0, \pi 1 : \BbbR d \times \BbbR d \rightarrow \BbbR d the
projections on the first and second variables, it holds that \mu t = [(1  - t)\pi 0 + t\pi 1]\sharp \gamma .
Then, as \gamma = (T0, T1)\sharp \BbbP , we get the first equality. To prove the second equality, just
notice that

W2(\mu s, \mu t) = | t - s| W2(\mu 0, \mu 1) = | t - s| \| T1  - T0\| L2
\BbbP 
.

We also recall a result concerning the existence and representation of solution of
the multiagent control system.

Theorem A.7 (Theorem 3.6 in [37]). Consider a Lipschitz continuous set-valued
map F :\BbbR + \times P2(\BbbR d)\times \BbbR d \rightrightarrows \BbbR d with compact and convex images. Then for all \mu \in 
P2(\BbbR d), there exists \bfitmu = \{ \mu t\} t\in [0,T ] \subseteq P2(\BbbR d) \in A F

[0,T ](\mu ), an admissible trajectory

driven by F . Moreover, there exists \bfiteta \in P(\BbbR d \times \Gamma T ) such that
(1) \mu t = et\sharp \bfiteta for all t\in [0, T ];
(2) for \bfiteta -a.e. (x,\gamma )\in \BbbR d \times \Gamma T , we have

\gamma (0) = x and \.\gamma (t)\in F (et\sharp \bfiteta , \gamma (t)) for a.e. t\in [0, T ].

Conversely, if \bfiteta \in P(\BbbR d \times \Gamma T ) satisfies (2) above, then \bfitmu := \{ \mu t := et\sharp \bfiteta \} t\in [0,T ] \in 
A F

[0,T ](\mu ) is an admissible trajectory driven by F , with \bfitnu = \{ vt\mu t\} t\in [0,T ], and for a.e.

t\in [0, T ] and \mu t-a.e. y \in \BbbR d,

vt(y) =

\int 
e - 1
t (y)

\.\gamma (t)d\eta yt (x,\gamma ),

and \eta yt is given by the disintegration \bfiteta = \mu t \otimes \eta yt .

A.3. Technical proofs.

Proof of Lemma 2.9. Given \{ Yn(\cdot )\} n\in \BbbN \subseteq L2
\BbbP (\Omega ) and Y (\cdot )\in L2

\BbbP (\Omega ) such that Yn \rightarrow 
Y in L2

\BbbP and Yn(\cdot )\in G\bfittheta (t,X(\cdot )), we can extract a subsequence \{ Ynk
(\cdot )\} k\in \BbbN satisfying

Ynk
(\omega )\rightarrow Y (\omega ) for a.e. \omega \in \Omega , and therefore we conclude that Y (\omega ) \in F (t, \theta t,X(\omega ))

for a.e. \omega \in \Omega by the closedness of F (t, \theta t,X(\omega )). Thus, Y (\cdot )\in G\bfittheta (t,X(\cdot )).
Given t1 \in I and X1(\cdot ) \in L2

\BbbP (\Omega ), consider the set-valued map G\bfittheta 
t1,X1

: \Omega \rightrightarrows \BbbR d

defined as G\bfittheta 
t1,X1

(\omega ) = F (t1, \theta t1 ,X1(\omega )).
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Since the map x \mapsto \rightarrow F (t1, \theta t1 , x) is continuous with compact convex nonempty
images, there exists a countable family of continuous map \{ fn\} n\in \BbbN such that fn(x)\in 
F (t1, \theta t1 , x) and F (t1, \theta t1 , x) =

\bigcup 
n\in \BbbN fn(x) for all x\in \BbbR d. In particular, we have that

G\bfittheta 
t1,X1

(\omega ) = F (t1, \theta t1 ,X1(\omega )) =
\bigcup 
n\in \BbbN 

fn(X1(\omega )).

Since fn \circ X1(\cdot ) are measurable, G\bfittheta 
t1,X1

is a measurable. Given t2 \in I, X2(\cdot ) \in L2
\BbbP 

and Y2(\cdot ) \in G\bfittheta (t2,X2(\cdot )). By Corollary 8.2.13 in [5], since Y2(\cdot ) is measurable, there
exists a measurable selection Y1(\cdot ) of G\bfittheta 

t1,X1
such that

| Y2(\omega ) - Y1(\omega )| = dG\bfittheta 
t1,X1

(\omega )(Y2(\omega )) = dF (t1,\theta t1 ,X1(\omega ))(Y2(\omega )).

So by the Lipschitz continuity of F , we get easily

\| Y1  - Y2\| L2
\BbbP 
\leq LipF \cdot (1 + Lip\bfittheta ) \cdot (| t1  - t2| + \| X1  - X2\| L2

\BbbP 
).

Interchanging X1 and X2, we have LipG\bfittheta \leq LipF \cdot (1 + Lip\bfittheta ).

Proof of Lemma 2.11. According to [31] and [43], it is enough to show that every
point of S has a fundamental system of open convex neighborhoods and that the
convex structure on S is compatible in a suitable sense with the topology induced
on S by dC0 , more precisely that the function \psi :C0(I;P2(\BbbR d))\times C0(I;P2(\BbbR d))\times 
[0,1]\rightarrow C0(I;P2(\BbbR d)) defined by \psi (\bfittheta (1),\bfittheta (2), \lambda ) = \lambda \bfittheta (1) +(1 - \lambda )\bfittheta (2) is continuous.
Intersecting each element of the dC0 -open balls of positive rational radius around
\bfittheta \in S provides a fundamental system of open convex neighborhoods of \bfittheta w.r.t. the
topology induced by dC0 on S .

For i= 0,1, let \bfittheta i,n = \{ \theta i,nt \} t\in I be a sequence dC0 -converging to \bfittheta i = \{ \theta it\} i\in I and
\{ \lambda n\} n\in \BbbN \subseteq [0,1] converging to \lambda . Let

\bfittheta \lambda : = \{ \theta \lambda t \} t\in I , where \theta 
\lambda 
t = \lambda \theta 0t + (1 - \lambda )\theta 1t ,

\bfittheta \lambda n,n : = \{ \theta \lambda n,n
t \} t\in I , where \theta 

\lambda n,n
t := \lambda n\theta 

0,n
t + (1 - \lambda n)\theta 

1,n
t ,

and, choosing \pi i,n \in \Pi o(\theta 
i,n
t , \theta i,ns ), i= 0,1, for all n\in \BbbN , t, s\in I, set

\pi n
t\rightarrow s = \lambda n\pi 

0,n + (1 - \lambda n)\pi 
1,n \in \Pi (\theta \lambda n,n

t , \theta \lambda n,n
s ).

We show that \{ \bfittheta \lambda n,n\} n\in \BbbN are equibounded. Since \{ \bfittheta i,n\} n\in \BbbN are dC0-converging for
i = 0,1, in particular, they are bounded, therefore, considering, for instance, the
constant curve \bfitxi = \{ \xi t\} t\in I with \xi t \equiv \delta 0, there exists R> 0 such that dC0(\bfittheta i,n,\bfitxi )\leq R,
i= 1,2. From the convexity of the dC0-ball, we have that dC0(\bfittheta \lambda n,n,\bfitxi )\leq R.

We show that \{ \bfittheta \lambda n,n\} n\in \BbbN are equicontinuous. It holds that

W 2
2 (\theta 

\lambda n,n
t , \theta \lambda n,n

s )\leq 
\int \int 

\BbbR d\times \BbbR d

| x - y| 2 d\pi n
t\rightarrow s(x, y)

= \lambda nW
2
2 (\theta 

0,n
t , \theta 0,ns ) + (1 - \lambda n)W

2
2 (\theta 

1,n
t , \theta 1,ns )

\leq W 2
2 (\theta 

0,n
t , \theta 0,ns ) +W 2

2 (\theta 
1,n
t , \theta 1,ns ).

Since for i = 0,1 the set \{ \bfittheta i,n\} n\in \BbbN \cup \{ \bfittheta i\} is dC0 -compact, in particular, it is
equicontinuous, therefore there exists a continuous increasing \omega i : [0,+\infty [\rightarrow [0,+\infty [
satisfying \omega i(0) = 0 and W 2

2 (\theta 
i,n
t , \theta i,ns ) \leq \omega i(| t  - s| ) for all t, s \in I, n \in \BbbN , i = 0,1.

Therefore, \{ \bfittheta \lambda n,n\} n\in \BbbN are equicontinuous with modulus \omega (\cdot ) :=
\sqrt{} 
\omega 2
0(\cdot ) + \omega 2

1(\cdot ).
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We show that \{ \bfittheta \lambda n,n\} n\in \BbbN pointwise converges to \bfittheta \lambda . Indeed, given any \varphi \in 
C0

b (\BbbR d), t\in I, we have\int 
\BbbR d

\varphi (x)d\theta \lambda n,n
t (x) = \lambda n

\int 
\BbbR d

\varphi (x)d\theta 0,nt (x) + (1 - \lambda n)

\int 
\BbbR d

\varphi (x)d\theta 1,nt (x),

and by passing to the limit on n and recalling that | \lambda n| \leq 1 and that the convergence
in d0 implies that \theta i,nt converges in W2 and narrowly to \theta it for i= 0,1, we have that

lim
n\rightarrow +\infty 

\int 
\BbbR d

\varphi (x)d\theta \lambda n,n
t (x) =

\int 
\BbbR d

\varphi (x)d\theta \lambda t (x),

and so we have narrow pointwise convergence. We prove the uniform integrability of
the second-order moments. Indeed,\int 
\BbbR d\setminus B(0,R)

| x| 2 d\theta \lambda n,n
t (x) = \lambda n

\int 
\BbbR d\setminus B(0,R)

| x| 2 d\theta 0,nt (x) + (1 - \lambda n)

\int 
\BbbR d\setminus B(0,R)

| x| 2 d\theta 1,nt (x),

\leq 
\int 
\BbbR d\setminus B(0,R)

| x| 2 d\theta 0,nt (x) +

\int 
\BbbR d\setminus B(0,R)

| x| 2 d\theta 1,nt (x),

and uniform integrability of the second-order moments follows from the uniform in-
tegrability of the second moments for \{ \theta i,nt \} n\in \BbbN , which are W2-converging sequences.

By the Ascoli--Arzela theorem, we conclude that dC0(\bfittheta \lambda n,n,\bfittheta \lambda ) \rightarrow 0; thus, \Psi is
continuous, and so the assumptions of [31] and [43] are satisfied.
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