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Simple Summary: Viticulture is one of the most resource-demanding agricultural sectors worldwide.
Therefore, if we would like to find a way to make it more sustainable, we need to understand how
cultivation methods affect the interactions between vine grape and its environment. However, very
little is known about what bacteria live in the root system of grapes. Furthermore, we have even less
knowledge about how the microorganisms’ composition might be changed due to various tillage
methods and soil disturbances. This study examined and compared the soil–bacterial microbial
composition of three experimental plots using laboratory techniques and up-to-date molecular
methods. We investigated soil microbial communities’ composition and some cultivation practices’
effects. Our results show that intensive tillage significantly and negatively affected soil bacterial
community structure and diversity.

Abstract: The microbial communities of the rhizospheres of vineyards have been subject to a consider-
able body of research, but it is still unclear how the applied soil cultivation methods are able to change
the structure, composition, and level of diversity of their communities. Rhizosphere samples were
collected from three neighbouring vineyards with the same time of planting and planting material
(rootstock: Teleki 5C; Vitis vinifera: Müller Thurgau). Our objective was to examine the diversity
occurring in bacterial community structures in vineyards that differ only in the methods of tillage
procedure applied, namely intensive (INT), extensive (EXT), and abandoned (AB). For that we took
samples from two depths (10–30 cm (shallow = S) and 30–50 cm (deep = D) of the grape rhizosphere
in each vineyard and the laboratory and immediately prepared the slices of the roots for DNA-based
analysis of the bacterial communities. Bacterial community structure was assessed by means of
PCR-DGGE analysis carried out on the v3 region of 16S rRNA gene. Based on the band composition
of the DGGE profiles thus obtained, the diversity of the microbial communities was evaluated and
determined by the Shannon–Weaver index (H′). Between the AB and EXT vineyards at the S depth,
the similarity of the community structure was 55%; however, the similarity of the D samples was
more than 80%, while the difference between the INT samples and the other two was also higher than
80%. Based on our results, we can conclude that intensive cultivation strongly affects the structure
and diversity of the bacterial community.

Keywords: vine grape rhizosphere; cultivation method; DGGE; bacterial diversity; sustainable viticulture

1. Introduction

One of the key features of sustainable agriculture is that it is diverse, resilient, and
adaptable. Therefore, the amount and diversity of microbes in soils are significant, as
they play a crucial role in the uptake and recycling of soil nutrients and formation [1].
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The microbiological communities of the rhizospheres of vineyards have been subject to
a considerable body of research [2]. However, it is still unclear how the applied soil
cultivation methods change their microbial communities’ structure, composition, and level
of diversity [3,4].

Anthropogenic impacts and changing climatic conditions cause biotic and abiotic
stresses and modify soil bacterial and plant diversity. Fertilizer use, farming, and tillage
practices in agroecosystems are causing changes in the soil microbiome [5].

In addition to fungi, soil bacteria are essential partners in the rhizosphere for plants
such as vine grapes. Soil bacteria can stimulate plant growth by increasing the availability
of nutrients such as N, P, and Fe, producing phytohormones, limiting plant pathogenic
organisms’ activity [6–8], and indirectly affecting soil fertility and health [9,10]. The benefi-
cial rhizosphere bacteria are called Plant Growth Promoting Rhizobacteria (PGPR) based
on their plant-helping effects. According to our current knowledge, these can make up
2–5 percent of the rhizosphere bacterial community; their presence primarily depends
on the plant, but abiotic conditions also exhibit a strong influence [11]. The vine grape
rhizosphere contains many diverse bacteria that interact with different plant parts. These
bacteria can also be transferred to wine, affecting its quality [12]. Molecular biology studies
have reported that the microbiome of vine grapes is related to the location of the vine-
yard and environmental factors [13]. Studies using conventional and molecular biology
methods have shown in Merlot that the soil microflora influences the microbiota of the
grapevine plant. This affects the epiphytic bacterial communities of grape berries, leaves,
buds, and soil [14].

The diversity of bacteria in the rhizosphere of a grapevine plant is essential for healthy
plant development. The role of rhizosphere bacteria is highly diverse and complex within
the soil–microbe–plant system. In many cases, plant diseases are suppressed by various
microbes that inhibit plant pathogens by producing an enzyme (chitinase) that limits the
growth of phytopathogenic fungi [15,16].

The vulnerability of vineyards through their root systems receives little attention
from both practitioners and scientists from a plant health perspective. Therefore, the
community’s presence and proportion of below-ground pathogenic microbes is poorly
understood [3]. However, some agrotechnical operations involving mechanical soil distur-
bance and root cutting may pose a significant risk of penetration by providing surfaces for
inoculation by pathogens [17,18]. Among the pathogenic organisms, fungi and nematodes
are the ones that act as significant plant pests in the rhizosphere. Pathogenic bacteria can
only penetrate and damage the plant through injuries [19]. Following this recognition, most
research has focused on the composition of the microbial communities [14], the proportion
of pathogenic strains [15], and, most importantly, prevention. This has facilitated the
spread of control practices such as pre-planting soil disinfection, the use of more resistant
varieties [16], and the deposition of dead plant parts instead of rotation [17,18].

Soil cultivation practices in plantations are constantly developing to meet new require-
ments. Climate change, the acquisition of new machinery related to technological progress,
and continually changing consumer demands (e.g., the need for environmental sustainabil-
ity) represent new challenges for farmers [19,20]. The soil conditions of plantations are also
influenced by the cultivation methods used [21,22]. As mentioned above, this, together
with the challenges posed by climate change, uneven rainfall patterns, and extreme weather
conditions, must be considered by farmers. Efforts should, therefore, be made to create
conditions that provide the right ecological conditions for both the cultivated crop and the
soil organisms. Soil biodiversity is, thus, key to this aspect [23], and the most anthropogenic
and unfavorable land-use practices must be replaced by an approach that exploits the
activity of microorganisms well adapted to local conditions. It is therefore essential to
detect soil microbes and understand their role in soil processes.

Several studies confirm that intensive tillage practices cause significant changes in soil
microbial composition [2,14,24], with edaphon diversity decreasing in intensively cultivated
plantations [24,25], similar to suppressive values. Based on the findings of Huber et al. [3]
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and Alabouvette [26], the lower levels of suppressive appear as a side effect of intensive soil
cultivation where the soil of the plantation resistance against phytopathogenic organisms
decreases, and this is often associated with lower organic C intake.

Based on the available literature, we aspired to determine whether the intensity of
the cultivation methods could change the level of diversity of bacterial communities and,
consequently, the proportion of pathogenic strains in the grape rhizosphere. The relevance
of our question is underlined by its potential benefits since the indirect impact of reducing
soil tillage intensity might result in lesser exposure of the plant to pathogens underground.
Alongside the expected increase in diversity, there would also be the ecological advantage
of reducing the intensity of soil agitation.

2. Materials and Methods
2.1. Sampled Vineyards

We used three vineyards in our examinations in Badacsony, Hungary’s wine region,
on slight slopes at the northern foot of the volcanic Saint George Hill (Figure 1). The
sampling areas are right next to each other, making them direct neighbors (extensively
cultivated vineyard: 46◦85′304′′ 17.44237N 17◦44′237′′ E; intensively cultivated vineyard:
46◦85′218′′ N 17◦44′293′′E; abandoned vineyard: 46◦85′268′′ N 17◦44′351′′ E).
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Figure 1. The location of the plantations on Saint George Hill, Hungary. Figure 1. The location of the plantations on Saint George Hill, Hungary.

All three plantations were planted by the same company at the beginning of the 1980s,
with grafts on T.5C (Berlandieri × Riparia) rootstock and Müller Thurgau scion (Vitis
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vinifera L.) with a low number of plants (less than 2500 plants per hectare). The cultivation
methods used on the plantations for the last 15 years have also been different.

In 2018 (timing of the examination was 25 April), disking, which means a disturbance
within the top 20 cm of the soil, was applied once at the beginning of April as soil tillage on
the intensely cultivated plantation (INT). In the extensively cultivated vineyard (EXT), no
procedure was applied that would disturb the soil. Before our spring sampling, 12 months
had passed with no mechanical soil tillage, which was the appliance of a disk harrow
0–20 cm deep. Instead of soil-disturbing weeding processes, grass cutting was performed
two times during the vegetative period. The single curtain training system allowed the
agronomist to let the grass grow higher without risking the humidity becoming higher and
the cluster zone becoming exposed to pathogen fungi.

For the third vineyard, the abandoned field (AB), no procedure had been applied in
the past 17 years that would disturb the soil, though grass cutting had been conducted
yearly, specifically once in the vegetative period.

2.2. Sampling

Sampling took place in spring at the end of April. Five samples were taken from each
vineyard using a manual stainless steel soil sampler (similar configuration to a gouger
auger) at a distance of 25 cm from the trunk at a depth of 10–30 (S = shallow) or 30–50 cm
(D = deep) to examine bacteria communities of the rhizosphere of vine grape, with samples
also taken at the depths of 0–30 and 30–60 cm for agrochemical examination.

For laboratory analysis, the samples were homogenized per vineyard from the same
depth (from 5 samples, 1 composite sample (approximately 250 g) was obtained to rep-
resent the studied field) and were placed in sealed plastic bags for microbial community
assessment. The composite samples were brought to the lab in a freezer bag and stored in
the freezer at −20 ◦C until microbiological examination [21]. The same steps were taken for
agrochemical examination until transportation was completed, and the samples were then
brought to an accredited soil laboratory for analysis.

2.3. Physical Parameters

The analysis of physical parameters for the soil tests was carried out by the accredited
laboratory of the NAIK-Research Institute for Viticulture and Oenology, Badacsony, Hun-
gary. During the tests, the pH values and conductivity of the soil samples were determined
with a Consort C830 device (Cole-Parmer, St Neots, Cambridgeshire, UK), and element
content was analyzed with a GBC 932 Plus Atomic Absorption Spectrophotometer (GBC
Scientific Equipment Ltd., Dandenong, Australia). The N-forms of the samples were deter-
mined using TECATOR BD20 shredders (Foss Kjeldahl, Apeldoorn, The Netherlands) and
Kjeltec 2200 automatic distillation devices (LabMakelaar, Zevenhuizen, The Netherlands),
while a Scheibler calcimeter was used to determine the amount of CaCO3. The total content
of organic matter was analyzed using the Hoogsteen method [22].

2.4. Soil DNA Extraction

From each frozen (−20 ◦C) soil sample, rootlets were taken (7–8 cm) and sliced
randomly to about ~1 mm long parts using a sterile lance. The DNA from the subsamples
(0.25 g of field-moist soil from the rhizosphere and from each rootlet) was extracted using
the FastDNA® Spin Kit for soil (MP Biomedicals, LLC, Illkirch-Graffenstaden, France)
following the manufacturer’s protocol. DNA extracted from soil samples was checked for
quality on 1% w/w agarose gel via electrophoresis at 100 V for 20 min.

2.5. PCR Amplification of 16S rRNA Gene

Eubacterial 16S rRNA fragments were amplified using fD1 and rP2 primer as de-
scribed by Weisburg et al. [27]. The further nested PCR was performed by amplifying the
hypervariable V3 region with p2 and p3 primers as reported in Muyzer et al. [28]. PCR
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products were run on agarose gel in Tris–borate–EDTA buffer for 15 min at 100 V to check
the quality of amplicons obtained.

2.6. Denaturing Gradient Gel Electrophoresis (DGGE)

DGGE was performed with a DcodeTM Universal Mutation Detection System (Bio-Rad
Laboratories Inc., Hercules, CA, USA). PCR products were loaded into 8% polyacrylamide
gel with a 30% to 60% denaturant gradient (where 100% denaturant contains 7 M urea and
40% v/v formamide) and run as previously described [29].

The gels were thus stained for 30 min through the use of Eurosafe (EuroClone SpA,
Milan, Italy). The similarity among the different DGGE profiles was evaluated by UPGMA
clusters, and the resulting dendrogram was visualized through the UVI bandmap software
package V11.11 (UVI tec Ltd., Cambridge, UK) [30].

2.7. Sequence Analysis of DGGE Bands

The most representative bands were excised with a sterile blade and transferred to
30 µL TE (Tris-EDTA buffer, Sigma-Aldrich, St. Louis, MO, USA). DNA was allowed to
diffuse into the TE by incubation at 37 ◦C for 3 h. A total of 3 µL of the DNA solution was
used as a template and re-amplified using non-GC clamped primers p1 and p2 [28]. PCR
products were transferred in Escherichia coli Xl1-blue using the Promega pGEM-T vector
system (Promega, Madison, WI, USA) according to the manufacturer’s instructions, and
the insert was further sequenced by Primm Srl (Milan, Italy). The obtained sequences were
used as BLAST queries [31] against the GenBank (NCBI) database [32].

3. Results and Discussions
3.1. Results of Soil Analysis

It is necessary to evaluate the agrochemical results in light of the fact that no nutrient
replenishment was carried out in the case of any of the plantations, so the origin of any
differences must be sought in the different levels of load resulting from the different number
of plants in the vineyards due to a shortage of grapevines due to pathogens (Table 1). The
levels of sulfur (S) and copper (Cu) are exceptions because the level of these elements grows
with more intense plant protection activities (concentration and density of spraying).

Table 1. Soil parameters, nutrient content, and the evaluated agrochemical results for the experimental
vineyards at ‘Saint George Hill’ [33–35].

Sample Labels: INT-S
(0–30 cm)

INT-D
(30–60 cm)

EXT-S
(0–30 cm)

EXT-D
(30–60 cm)

AB-S
(0–30 cm)

AB-D
(30–60 cm)

pH (H2O) 7.48 7.74 6.89 6.93 6.16 6.35

pH (KCl)
7.09 7.36 6.55 6.60 5.41 5.70

slightly acidic slightly acidic slightly acidic slightly acidic slightly acidic slightly acidic

KA (soil texture)
23 23 23 25 26 25

coarse sand coarse sand coarse sand sand sand sand

Total salt (m/m%)
<0.02 <0.02 <0.02 <0.02 <0.02 <0.02

low salinity low salinity low salinity low salinity low salinity low salinity

CaCO3 (m/m%)

0.17 0.25 0.13 0.35 0.22 0.30

slightly
calcareous

slightly
calcareous

slightly
calcareous

slightly
calcareous

slightly
calcareous

slightly
calcareous

Organic matter (SOC)
(m/m%)

0.63 0.58 0.75 0.71 0.78 0.89

poor poor medium medium medium medium
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Table 1. Cont.

Sample Labels: INT-S
(0–30 cm)

INT-D
(30–60 cm)

EXT-S
(0–30 cm)

EXT-D
(30–60 cm)

AB-S
(0–30 cm)

AB-D
(30–60 cm)

P2O5 (mg/kg)
278.0 296.0 228.6 234.2 126.69 202.93

good very good very good very good good very good

K2O (mg/kg)
88.4 66.0 240.35 360.10 140.20 188.45

very good very good very good very good good very good

(NO3 + NO2)-N
(mg/kg)

3.79 4.33 3.20 2.40 2.25 2.31

low low low low low low

Na (mg/kg)
6.45 11.9 11.30 2.10 1.08 21.10

optimal optimal optimal optimal optimal optimal

Mg (mg/kg)
43.1 43.6 56.5 46.7 42.0 33.1

medium medium medium medium medium poor

SO4-S (mg/kg)
36.8 40.7 46.29 41.77 30.25 21.33

good good good good good good

Mn (mg/kg)
109 99.1 82.92 75.10 55.70 60.8

sufficient sufficient sufficient sufficient sufficient sufficient

Zn (mg/kg)
6.05 5.84 8.65 6.56 4.21 3.95

good good good good good good

Cu (mg/kg)
69 37.9 52.28 42.48 28.60 47.92

sufficient sufficient sufficient sufficient sufficient sufficient

At both sampling depths, the three plantations have weakly acidic, weakly calcareous,
and low-salt soils.

According to the laboratory soil analyses’ evaluated outcomes [36], the soils were
slightly different regarding their physical and agrochemical characteristics. The difference
was in the amount of organic matter; in the INT plantation it was lower at both sampling
depths than in the other two plantations. The level of Cu (Table 1) was higher in the
EXT plantation and at the deeper samples in the AB plantation too compared to the INT
plantation, and this difference is possibly explained by the applied cultivation methods.
The EXT vineyard is managed by certified organic methods, which means only copper
(Cu)-based plant protection can be applied against the most damaging above-ground fungi,
such as downy mildew. Also, in the case of the AB plantation a decade ago, copper was
the most often used pesticide, and in the last non-cultivated period it moved down to
deeper zones. Although copper content is not particularly high compared to the average of
European vineyards [37], it certainly had an impact on both the fungal [38] and bacterial
communities [39]. Soil-dwelling fungi are more sensitive to copper than bacteria [40],
so it is necessary to account for this effect at plantations with higher values. However,
the pH value and disturbance significantly affect the bacterial community [41] and the
diversity values [42].

According to the criteria system of [41], the layer of soil deeper than 30 cm is immune to
Phylloxera (over 85% silicate content, total ratio of humus is lower than 1%). Regarding the
consistency of the soil, the intensively cultivated area was the least compacted (still it was
compacted based on the average of the measured (n = 10) values: 3.9 MPa/19 mm), while
on the other hand the EXT plantation exceeded it by 5% and the AB plantation by 22.5%.

3.2. PCR-DGGE on the Grapevine Rhizosphere among Different Vineyards

PCR-DGGE analysis was performed to compare the grapevine rhizosphere microbial
communities grown with three different tillage methods: intensive (INT), extensive (EXT),



Biology 2024, 13, 254 7 of 12

and abandoned (AB). Moreover, two distinct depths (S and D) were investigated. The
results evidenced the presence of several bands in the DGGE profiles obtained from different
samples, indicating that abundant and various bacterial communities are present (Figure 2).
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The further statistical analyses (Figure 3) evidenced a single cluster harboring both
INT samples with only 20% similarity to EXT and AB samples, corresponding to what was
previously expected based on the literature [43,44]. Thus, in this work, the intensity of
cultivation resulted in the most significant variable, which differentiated the community
structure of soil bacteria through pesticides significantly affecting the microbiological
population in the grapevine rhizosphere [45].
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Moreover, the dendrogram evidenced two more clusters containing the D and S
samples, respectively. Therefore, the sampling depths were the main cause of bacterial
speciation among abandoned and extensive tilling. The higher similarity percentage
between AB and EXT samples compared to INT samples suggests that the main effect
on these two vineyards may be the chopper accumulated in the soil over decades. The
constant occurrence of this accumulating heavy metal in the measured depths of the soil
may have a stronger impact on the bacterial community than the differences between the
current plant protection activities in the vineyards.

3.3. Identification Analysis of the Most Representative DGGE Bands

Seven bands were excised and sequenced (Table 2) that were retrieved from INT and
EXT DGGE profiles.

Table 2. Sequencing analysis of bands excised from DGGE profiles.

Band
Closest Bacterial

Strain Accession
Number Class Occurrence in

Samples
Occurrence According to

the Literature(Identity %)

24C Flavobacterium sp.
HS916 (100) NR_165696 Flavobacteriia All Polluted bulk soil [46]

25C Nordella oligomobilis
N21 (100) NR_114615 Alphaproteobacteria INT-S

Environmental uncultured
(order: Rhizobiales)

bacteria [47]

25D

Pseudomonas
qingdaonensis JJ3 (100) NR_169411 Gammaproteobacteria All

Aerobic bacteria from
peanut rhizosphere with

aflatoxin degradation
capability [48], head rot of
lesions of broccoli (Brassica

oleracea L. var. italica
Plenck) [49], PGPR bacteria
in Zea mays’s rhizosphere
with resistance of heavy

metals (e.g., Cu) [50]

Pseudomonas flavescens
NBRC 103044 (100) NR_114195 Gammaproteobacteria All Rhizosphere of tomato,

soil, ater [42]

26A

Arthrobacter ginkgonis
SYP-A7299 (99.43) NR_156061 Actinobacteria AB-D, EXT-D,

INT-S, INT-D

Aerobic strain from the
rhizosphere of

Ginkgo biloba [51]

Galactobacter
valiniphilus JZ7 (99.43) NR_165018 Actinobacteria AB-D, EXT-D,

INT-S Raw cow milk sample [52]

26B

Flavobacterium
arsenitoxidans S2-3H NR_134726 Flavobacteriia AB-D, EXT-D

Arsenate-oxidizing
bacterium from

contaminated bulk soil [53]

Flavobacterium
eburneum SA31 (98.94) NR_156035 Flavobacteriia AB-D, EXT-D Soil (aerobe) [54]

26C

Hyphomicrobium
vulgare JCM
6889 (98.83)

NR_104697 Alphaproteobacteria AB-D, EXT-D Sea water, river [55]

Hyphomicrobium
aestuarii ATCC
27483 (98.83)

NR_104954 Alphaproteobacteria AB-D, EXT-D,
INT-D River [56]

27D

Thiophaeococcus
mangrovi JA304 (93.4) NR_042643 Gammaproteobacteria Mud of brackish water [57],

obligate anaerobe [58]

Thiohalocapsa halophila
strain DSM 6210 (93.4) NR_115076 Gammaproteobacteria EXT-S, INT-S,

INT-D

Anoxic sediment in a
marine aquaculture pond,
phototrophic [59] it has a
requirement for NaCl [60]

Band 25C showed high similarity to Nordella oligomobilis, a species that belongs to the
Rhizobiales order. Rhizobiales bacteria are often found in root samples with high abundance,
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presumably because of the active preference of plants driven by chemoattraction via
secreted photoassimilates [11]. The only occurrence of it for the INT-S sample—according
to the data of Table 1—does not relate to the lower nitrogen content, which could be
an explanation.

Band 25D corresponding to Pseudomonas genus, Gammaproteobacteria, in our samples
is described as rhizospheric PGP rhizobacteria. Additionally, aflatoxin degradation capabil-
ity and an antagonistic effect against pathogens were detected. Their absence from INT-D
samples may be caused by the intensive vertical disturbance of the soil, resulting in a less
favorable community structure for the taxa. However, more intensive cultivation can gen-
erally be favorable for the total number of bacterial species in the bacterial community [51].
It should be noted that the sequencing analysis also detected the same phenomena.

The Thiophaeococcus genus was found in the INT-S samples. It belongs to the class
Gammaproteobacteria, order Chromatiales. Chromatiales typically grow under anoxic condi-
tions in the light using sulfide as a photosynthetic electron donor, which is oxidized to
produce sulfate. The occurrence of the representatives from the most disturbed sample
is unexpected due to the air-supplying effect of soil cultivation in the shallow soil zones.
However, the second highest level of sulfate (Table 1) in the INT after EXT vineyards may
explain why the environment was favorable for the representatives of this class, though
it would still be more expected in the deeper zone. A temporary wet and anaerobic pe-
riod after intense rainfall could complete the explanation, but precise meteorological data
are unavailable.

However, our methodology of taking the rhizosphere samples allowed us to divide
(references listed in the right column of Table 2) bulk soil and rhizosphere from the seven
most abundant strains studied, only three of which are rhizosphere-specific (Table 2).
Validov et al. (2007) [42] found in their study that samples from bulk soil have Rhizobiales
(Alphaproteobacteria) and Xanthomonadales (Gammaproteobacteria) in lower abundance than
vine grape root samples. Based on this reference, four of the seven taxa resulted from the
sequencing of DGGE bands often occur in vine grape root and rhizosphere soil samples.
According to the findings of Klaupfel (1993) [61], those bacteria growing farther from
the root surface or growing in nutritionally poorer root segments will not contribute
significantly to the total population. It follows that the most abundant species we detected
are the ones from the part of the root or rhizosphere where the cooperation between the
plant and microbes is the most intense.

4. Conclusions

Based on the results of our DNA-based molecular diagnostic tests, it can be concluded
that, as expected, the EXT and AB plantations show a significant similarity in the composi-
tion of the bacterial community. The more than 80 percent match in the DNA pool extracted
from the deeper layer (30–50 cm) allows us to conclude that tillage, which disturbs the
surface only rarely, and even then horizontally, does not significantly change the properties
of the soil either from an abiotic or biotic point of view, thus not indirectly affecting the
composition of the bacterial community.

From the agrochemical data, it emerges that the accumulated copper content in this
layer (due to the cultivation practices of previous decades and, in the case of the extensive
plantation, the current practice) must be considered as a toxic heavy metal. However, at
the same depths for the two areas, the amount of copper is almost the same, and we can
see a difference in the intensive area compared to the other two in this respect as well.

The similarity in the community pattern between the two areas shows that the aban-
donment of soil disturbance, plant protection, and soil compaction for more than a decade
in areas with such characteristics does not result in the development of greater diversity
in the soil bacterial community compared to extensive cultivation. Presumably, a drastic
change appears after the abandonment of mowing with the cessation of monoculture,
reaching the next phase of the succession with the appearance of shrubs and trees.
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Intensive treatment is separate, with less than 20% being matched with the other
two. The vertical disturbance is associated with the destruction of obligate aerobic and
anaerobic organisms and, thus, community realignment. In the same way, the presence of
dead plant organic matter introduced by rotation also increases the ratio of saprophytes
and opportunistic pathogenic species in layers further from the soil surface. Intensive
disturbance in such structureless sandy soils also prevents soil moisture conservation
and SOC formation. As a result, the edaphon, the community of microbes found in the
rhizosphere and its environment, can be exposed to other stress effects, such as water and
nitrogen sources that are more difficult to access, which can be an inhibiting factor that
modifies the community’s composition.
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