J. Symbolic Computation (1996) 21, 507-522

On the Reconstruction of Proofs in Distributed

Theorem Proving:
a Modified Clause-Diffusion Method

MARIA PAOLA BONACINA f
Department of Computer Science
University of Towa
Towa City, 1A 52242-1419, U.S.A.

bonacina@cs.uiowa. edu

(Received 81 May 1995)

Proof reconstruction is the operation of extracting the computed proof from the trace of
a theorem-proving run. We study the problem of proof reconstruction in distributed theo-
rem proving: because of the distributed nature of the derivation and especially because
of deletions of clauses by contraction, it may happen that a deductive process generates
the empty clause, but does not have all the necessary information to reconstruct the
proof. We analyze this problem and we present a method for distributed theorem pro-
ving, called Modified Clause-Diffusion, which guarantees that the deductive process that
generates the empty clause will be able to reconstruct the distributed proof. This result
is obtained without imposing a centralized control on the deductive processes or resor-
ting to a round of post-processing with ad hoc communication. We prove that Modified
Clause-Diffusion is fair (hence complete) and guarantees proof reconstruction. First we
define a set of conditions, next we prove that they are sufficient for proof reconstruction,
then we show that Modified Clause-Diffusion satisfies them. Fairness is proved in the
same way, which has the advantage that the sufficient conditions provide a treatment of
the problem relevant for distributed theorem proving in general.

1. Introduction

Proof reconstruction is an important feature of theorem provers that implement reso-
lution-based or completion-based strategies. These strategies work primarily by forward
reasoning, that is, by deriving consequences from the axioms and the negation of the
target theorem, until a contradiction, the empty clause, is generated. Contraction rules
such as simplification and subsumption are employed to delete those generated clauses
that are redundant. While searching for the empty clause, these procedures typically
produce a very high number of clauses, many of whom may not contribute directly
to deriving the empty clause. The numbers of clauses vary with the theorem-proving
problem and the strategy, but theorem-proving runs that involve millions of clauses

T Supported in part by the National Science Foundation with grant CCR-94-08667.

0747-7171/96,/040507 + 16 $18.00/0 © 1996 Academic Press Limited

508 M. P. Bonacina

are not regarded as exceptional. Since an output of this size is unpractical for most
purposes, theorem provers incorporate an algorithm that extracts from the record of all
the generated clauses those that are related by inference steps to the empty clause. This
process is called proof reconstruction.

The motivation for proof reconstruction is that theorem provers are expected to pro-
duce an output that their users may understand. A yes/no answer is not sufficient in most
contexts. The entire trace of the derivation is often too long to be readable. Therefore,
theorem provers need to include proof-presentation features that make the computed
proof accessible. The capability of extracting the proof from the derivation is obviously
a prerequisite for proof presentation.

In this paper, we study proof reconstruction in distributed theorem proving. By dis-
tributed theorem proving, we mean having multiple concurrent, asynchronous deductive
processes working in parallel on the same theorem-proving problem. Each process exe-
cutes a theorem-proving strategy, has its own database of clauses and develops its own
derivation. The processes may all execute the same strategy or execute strategies with
different search plans, e.g. different criteria to select inference rules and premises. A
method for distributed theorem proving specifies, together with the strategy or strate-
gies to be executed by the processes, a mechanism to subdivide the theorem-proving
problem among the processes, and a communication scheme: the former aims at ensuring
that each process has less work than a single sequential process would; the latter aims at
ensuring that the processes cooperate, for instance by exchanging the clauses they derive.
In this context, a distributed derivation is made by the collection of the derivations de-
veloped by the processes and it succeeds when one of the processes generates the empty
clause. We refer to Bonacina and Hsiang (1994) and Suttner and Schumann (1994) for
surveys on parallel and distributed deduction for different strategies and architectures,
and to Bonacina and Hsiang (1995a) for the Clause-Diffusion method, which we adopt
here as a starting point.

In sequential theorem proving, proper book-keeping is sufficient to guarantee proof
reconstruction. The situation is sensibly different in distributed theorem proving. The
distributed nature of the derivation implies that while one process succeeds first, all
processes contributed to the proof, and it is not trivial to guarantee that the successful
process is capable of reconstructing the proof by consulting only its own database. As an
example, consider the following scenario: a deductive process p; generates an equation ¢
and applies it to reduce another clause 1 to a new form ¢’. It follows that ¢ and 1 are
parents of ¢’. Then, process p; also simplifies ¢ itself to ¢’. Later, ¢’ and v’ are sent
by process p; to another process p;. Eventually, p; generates the empty clause, and the
proof involves ¢’ at some stage. When p; tries to reconstruct the proof, the history of ¢’
will refer to ¢ and %), but neither of them can be retrieved in the database of p;.

In this work we give a systematic treatment of the problem of proof reconstruction in
distributed theorem proving, and we propose a solution that prevents situations such as
the one illustrated by the above example. First, we define formally proof reconstruction
and we overview briefly the Clause-Diffusion approach. Then we classify the possible
failures in distributed proof reconstruction. These observations guide the design of the
Modified Clause-Diffusion method, so that proof reconstruction failures are avoided. In
the formal sections of the paper, we prove that modified Clause-Diffusion is fair, and
therefore complete, if the underlying inference system is complete, and that it guaran-
tees proof reconstruction. We demonstrate the latter property by formulating sufficient
conditions for distributed proof reconstruction: these conditions apply to general distri-

On the Reconstruction of Distributed Proofs 509

buted theorem proving, beyond Clause-Diffusion itself. We show that our conditions are
sufficient and that the Modified Clause-Diffusion method fulfils them.

We remark that Modified Clause-Diffusion guarantees proof reconstruction by using
the asynchronous communication that is in place for the distribution of the work-load.
No ad hoc communication for proof reconstruction is needed. Also, Modified Clause-
Diffusion preserves the characteristic of Clause-Diffusion that all deductive processes are
asynchronous peers. No central control, such as in a master-slave type of organization,
where the master performs centralized book-keeping and decision-making, is added. The
capability of proof reconstruction is ensured by schemes for communication, identifica-
tion, and allocation of clauses, that are executed in a purely distributed, asynchronous
fashion by the processes.

To our knowledge, the problem of proof reconstruction in distributed theorem proving
with loosely coupled, asynchronous peer processes and separate databases was not con-
sidered before. In general, the more centralized the control is and the more predictable
the communication is, the simpler is the book-keeping for proof reconstruction. Thus,
proof reconstruction in distributed memory is more difficult than proof reconstruction
in parallel theorem proving in shared memory, because in the latter there is only one
database in the shared memory and proof reconstruction can be done as in the sequen-
tial case. Similarly, proof reconstruction in a distributed system with peer processes is
different than proof reconstruction in a distributed system with a hierarchical organiza-
tion: if the processes work as master and slaves, it is sufficient to reconstruct the proof
in the database of the master. In the Team-Work method of Avenhaus and Denzinger
(1993), the databases of the deductive processes are periodically merged, so that proof
reconstruction can also be done in a single database (Denzinger and Schulz 1994). The
work reported in this paper appeared in preliminary form in Bonacina (1994).

2. Proof Reconstruction

This section contains the definitions of computed proof, proof reconstruction and con-
ditions for proof reconstruction in sequential theorem proving. We assume to have a
theorem-proving strategy C = (I;X), where I is the set of inference rules and ¥ is the
search plan that controls the application of the inference rules. The inference rules com-
prise both ezpansion rules, such as resolution and paramodulation, and contraction rules,
such as equational simplification and subsumption. Given a theorem-proving problem
S E ¢ in refutational form (So = S U {—¢p}), the strategy will generate a derivation

Sob Stk Sik Sk ...,

where at each step an inference rule is applied to selected premises according to the
search plan. For each generated clause ¢, the “proof” or “justification” of ¢ is made of
the inference steps that derived ¢ from the input clauses. We represent it as an ancestor-
tree:

DEFINITION 2.1. Let D be a derivation Sot¢ Sitc...FeS; For all clauses ¢ €
Ui>o Si» the ancestor-tree of ¢ in D, denoted by atp(y), is a tree with root labelled ¢
and no subtrees, if o € Sy, with subtrees atp(p1),...,atp(pn) if @ is generated at stage
i > 0 from premises ©1,...,¢Yn.

510 M. P. Bonacina

For instance, if ¢ is a resolvent of ¢1 and ¢, atp(p) has root ¢ and subtrees atp(p1)
and atp(pz2). This representation applies also to contraction inferences that generate
clauses, such as equational simplification. For example, if ¢ is generated as the normal
form of a pre-existing clause 1) with respect to the equations @1, ..., @, atp(p) has root
¢ and subtrees atp(p1),...,atp(vn) and atp(w). Thus, the ancestor-tree of a clause
contains all its ancestors, including both expansion-ancestors, i.e. clauses used as parents
in expansion steps, and contraction-ancestors, i.e. simplifiers and ancestors that were
reduced. To complete the representation, node ¢ in atp(p) may also be decorated by a
label denoting the applied inference rule.

We remark that variants, i.e. clauses that differ only by a renaming of variables, are
regarded as distinct clauses. This assumption is reasonable, because in practice theorem
provers do treat variants as distinct clauses. Under this assumption, the same clause
is never derived twice, since each clause has its own set of variables. If a clause ¢ is
derived at stage 7 and a variant ¢’ of ¢ is derived at stage j, their ancestor-trees are
two distinct objects, even if they may represent the same inferences logically. It follows
that the ancestor-tree of a clause in a given derivation is unique. On the other hand, an
ancestor-tree may have more than one node labelled by the same clause, since a premise
may be used more than once to generate a clause.

The proof computed by a derivation can then be defined as the ancestor-tree of the
empty clause:

DEFINITION 2.2. If D is a successful derivation Sotc Sibc...Sitc Si+1 -..Fc Sh, the
proof computed by the derivation is atp(0O).

We shall assume that the theorem prover builds ancestor-trees correctly, and the infor-
mation about the used inference rules is stored with the clauses, so that proof reconstruc-
tion reduces to retrieval of ancestors. In order to reconstruct the computed proof, and
also for other reasons, including selection by the search plan, theorem provers associate
identifiers to clauses. Identifiers are chosen from a countably infinite ordered set, since
infinitely many clauses may be generated. Often IN itself (the natural numbers) is used.
We call naming scheme the mechanism that a theorem prover uses to associate identifiers
to clauses:

DEFINITION 2.3. Let L be the language of clauses on the given signature. A naming
scheme is a pair (A, R), where A is a countably infinite ordered set, and R is a relation
R C A X L, called retrieval relation, such that (x,) € R means that x is the identifier
of clause .

The relevant property for proof reconstruction is the following:

DEFINITION 2.4. A theorem-proving strategy C has an unambiguous naming scheme
(A, R) if, for all derivations by C, SotcSitc...SiteSiy1 ..., RiA — J;50S5i is a

bijective function.

R needs to be a function, so that, given an identifier x, there exists one and only one
clause ¢ € | ;5 i that is identified by . Bijectivity means that every generated clause
has an identifier and such identifier is unique. Multiple variants of a clause are treated
as distinct clauses and are given different identifiers.

On the Reconstruction of Distributed Proofs 511

An unambiguous naming scheme is essentially sufficient for proof reconstruction in
sequential theorem-proving. For instance, the theorem prover Otter (McCune 1994) uses
an unambiguous naming scheme and a data structure for representing clauses with fields
to store the identifier of the clause, the identifiers of its parent clauses and the code of
the inference rule that generated it. When an empty clause O is produced, the prover
reconstructs atp(0) by retrieving the parents of O, then the parents of the parents and
so on, until the reconstruction process reaches clauses that were part of the input set.

Additional care is needed if the strategy features contraction inference rules, because
clauses deleted by contraction may occur in atp(0) and thus may be needed for the
purpose of proof reconstruction even if they are no longer used for inferences. We dis-
tinguish between forward contraction, the contraction of newly generated clauses right
after generation, and backward contraction, the contraction of all other clauses. Clauses
deleted by forward contraction are not used as premises of other steps before deletion and
therefore cannot occur in atp(0O). Clauses deleted by backward contraction may occur in
atp(0), because they may have been used as premises of other steps before being deleted.
Therefore, the clauses deleted by backward contraction need to be saved in a separate
component D of the database, which will be consulted only by the proof reconstruction
algorithm. The derivation assumes the form:

c c c
Theorem provers such as Otter proceed in this way for the sake of proof reconstruction,
with no apparent harm for performance.

3. Distributed Theorem Proving

In this section, we describe the type of distributed theorem proving, theorem proving
by Clause-Diffusion, that is the context for our study of proof reconstruction.

Clause-Diffusion seeks to realize a form of coarse-grain parallelism for theorem proving
called parallelism at the search level (Bonacina and Hsiang 1994). The idea is to have
concurrent deductive processes py, . . ., pn—1 searching in parallel the search space of the
theorem-proving problem. We assume a distributed environment, with distributed memo-
ry and message-passing, where each process runs on a node of the system, also denoted by
Do, - -+, Pn—1. Given a theorem-proving strategy C and an input problem Sy, each process
pr. executes the strategy, generating its derivation

s{;ts{cg...sf....

The distributed derivation is formed by the collection of these derivations and it succeeds
as soon as one of them does. The set S¥ represents the local database of process py at
stage i, and S; = Z;é Sk represents the global database at stage i. The partition of S; in
the S¥’s is the physical partition of the database, because the clauses in S¥ are physically
stored at pi. The physical partition is not a partition in the mathematical sense, since
the S¥’s generally have non-empty intersections.

For the purpose of subdividing the search space among the processes, each clause is
assigned to a process and is said to be a resident of that node. This partition is called
logical partition, and it is a true partition (under the assumption that variants are distinct
clauses), because each clause belongs only to one process. Then, each process performs
only those inferences that involve its residents. For instance, for the paramodulation

512 M. P. Bonacina

inference rule, process py performs only those paramodulation steps that paramodulate
into a resident of py. For two clauses 1, and s, belonging to py and pj respectively, pg
will paramodulate - into 1, whereas p;, will paramodulate 1 into 1o. Similar criteria
for subdivision apply to resolution, hyperresolution, and other expansion inference rules.
The clauses thus generated are called raw clauses. Every raw clause is forward-contracted
and assigned to a process by executing the allocation algorithm that controls the logical
partition. Inferences between clauses belonging to different processes are made possible
by broadcasting, or diffusing the clauses (hence the name of the methodology) in the
form of inference messages. It follows that the database of each process contains both
residents and non-resident clauses that were received as inference messages.

While it applies to theorem proving in general, the Clause-Diffusion methodology tar-
gets primarly contraction-based strategies, that is, strategies with contraction rules and an
eager-contraction search plan. For these strategies it is fundamental to address the issue
of distributed global contraction, the contraction of clauses (both forward and backward)
with respect to the distributed global database. One approach is to let the processes
save the clauses received as inference messages, and form with them an approximated
version, termed localized image set, of the current state of the global database. Each
process uses its localized image set as set of simplifiers for the purpose of distributed
global contraction. Another key aspect of contraction-based strategies is that a reduced
clause generated by backward contraction is also regarded as a raw clause, that needs to
be tested for further contraction with respect to the distributed global database.

A specific Clause-Diffusion strategy is defined by specifying its components, including
the inference system, the search plan, the algorithm for the allocation of clauses to
processes, the scheme for communication of the inference messages and the scheme for
distributed global contraction. The interested reader may find in Bonacina and Hsiang
(1995a) a complete presentation of Clause-Diffusion, and in Bonacina and Hsiang (1995b)
and in Bonacina and McCune (1994) specific strategies. In this paper we do not assume
a specific strategy, because we wish our study of proof reconstruction to be as general as
possible.

4. The Problems in Distributed Proof Reconstruction

In this section we identify the types of problems that may cause failures in reconstruc-
tion of proofs. We find that proof reconstruction depends mainly on three components of
a distributed strategy: the naming scheme, the communication scheme and the treatment
of clauses generated by backward contraction.

4.1. FAILURES BY NAME CLASH

The basic issue is the same as in sequential theorem proving: the naming scheme should
be unambiguous. If different clauses ¢ and 1 receive the same identifier z, and a reference
to x is found in the process of reconstructing the proof, proof reconstruction will fail,
because it cannot be resolved whether the occurrence of x refers to ¢ or ¢. We call such
failure a failure by name clash. In distributed theorem proving, the naming scheme needs
to be unambiguous not only within the local database of each deductive process, but also
in the global database. Since multiple processes name clauses concurrently, care must be
taken that different clauses do not receive the same name. This involves several issues
including: how to subdivide the task of naming clauses among the processes (e.g., should

On the Reconstruction of Distributed Proofs 513

a process name the clauses it owns? or the clauses it generates? or the clauses it holds in
its local database?); how the naming scheme interplays with communication (e.g., may
a process change the name of a clause it received as an inference message?); how the
naming scheme interplays with backward contraction (e.g., what happens to the name
of a clause when the clause is backward-contracted?). For instance, consider a clause ¢
with identifier x, resident at a node p;, that is broadcast at some stage of the derivation.
At some later stage another process py simplifies ¢ to ¢’. Assume that py discards ¢
and keeps x as the name of . This may be because pi does not own ¢ and ¢’, or
because py broadcasts ¢’ without keeping it. Clause ¢’ will be used as premise, so that
the ancestor-trees of other clauses may contain occurrences of x referring to ¢’. If pg, or
some other process p; that receives ¢’ from py, finds a proof including a reference to ¢,
proof reconstruction fails if the identifier x retrieves ¢’ instead of . Symmetrically, if
p;, or some other process unaware of ', finds a proof containing a reference to ¢’, proof
reconstruction fails if the identifier retrieves ¢ instead of .

4.2. FAILURES BY DELAYED DIFFUSION

The second type of failure is related to the communication scheme. Proof reconstruction
may fail if a clause is sent or broadcast earlier than one of its ancestors. For instance,
consider a clause ¢ in the database of pg. Process py, generates another clause ¢ from ¢ by
either expansion or contraction, so that ¢ is a parent of 1. Assume that pj broadcasts ¥
before @, or that py, broadcasts 1, but not ¢, because ¢ is deleted by backward contraction.
It follows that some other process p, may receive 1 and find a proof involving v before
receiving . Process p, will not be able to reconstruct the proof, because the reference
to the identifier of ¢ in 1 cannot be solved. We call this phenomenon failure by delayed
diffusion, because it may happen if clauses are diffused too late. In experiments, we also
observed that a communication scheme with both “send” and “broadcast” operations
may cause failures by delayed diffusion if “send” is much faster than “broadcast”.

5. Modified Clause-Diffusion

In this section we describe the features of Modified Clause-Diffusion that prevents the
proof reconstruction failures of the previous section.

5.1. THE NAMING SCHEME

In Modified Clause-Diffusion, a clause is given its identifier by the process that gene-
rates it. Whenever process py generates a raw clause ¢, py reduces ¢ to its normal form
¢ (forward contaction), and if ¢’ is not deleted, py executes the allocation algorithm to
decide which process ¢’ belongs to. Let p; be this process. Then the identifier of ¢’ is
(4,k,1) if ¢’ is the [-th clause to be allocated as resident to p; among all those generated
by pk. As a special case, if py allocates the clause to itself, the identifier will have the
form (k, k, 1), with the same meaning for {. This naming scheme is unambiguous, because
no two processes may generate the same identifier and no process may generate the same
identifier twice. A naming scheme that uses only two components, where the identifier
of ¢ is (k,1), if ¢’ is the I-th clause generated by py, is also unambiguous, but we use
(j, k,1), because processes need to know which clauses they own.

514 M. P. Bonacina

5.2. THE COMMUNICATION SCHEME

Modified Clause-Diffusion prevents failures by delayed diffusion by adopting an ea-
ger communication scheme, where clauses are broadcast right after forward contraction.
Continuing with the above description, if the allocation algorithm assigns ¢’ to p, then
pr keeps it as its resident and also broadcasts it as an inference message to the other
processes. If ¢’ is assigned to another node p;, then py keeps and broadcasts ¢, realizing
in one operation the goal of sending ¢’ to its owner p,; and the goal of broadcasting
¢’ to all the processes. Failures by delayed diffusion do not occur, because clauses are
broadcast before being used as premises.

5.3. THE TREATMENT OF CLAUSES GENERATED BY BACKWARD CONTRACTION

An unambiguous naming scheme prevents failures by name clash only if every raw
clause gets a new identifier generated by the naming scheme. For the raw clauses gen-
erated by backward contraction, this requires some additional thought. Assume that a
clause ¢, that was broadcast at some stage of the derivation and is stored at all the
nodes, becomes reducible to a new normal form ¢’. If all the processes are allowed to
reduce ¢ to ', up to n copies of ¢’ will be generated, forward-contracted, given a (dif-
ferent) identifier and broadcast. This clearly represents a high degree of redundancy.
If, on the other hand, we establish that a process may simplify only its residents, only
the owner of ¢ will reduce it and name and broadcast ¢’. Upon receiving the inference
message ¢’ the other processes will use it to replace ¢ in their databases (¢’ carries in
its history the information that it was generated by backward contraction of ¢.). The
disadvantage of this second scheme is that backward contraction is delayed, contrary to
the eager-contraction search plan. Since a large part of the database of a process may be
made eventually of non-resident clauses, the limitation of the contraction power of the
processes is significant. Also, it complicates the treatment of inference messages, because
a process needs to recognize that an incoming inference message carries the reduced form
¢ of a clause ¢ in its database.

Modified Clause-Diffusion proposes a compromise between these two options. Each
process may perform backward contraction of its own clauses by any contraction rule. It
may apply without restrictions those contraction rules, such as subsumption and tauto-
logy deletion, that do not produce new clauses. In addition, it may use simplification to
delete clauses belonging to other processes, but it is not allowed to generate their reduced
forms. Thus, all processes may apply backward contraction to detect that ¢ is reducible
and delete it, but only the owner of ¢ is allowed to complete the backward contraction
inference, generate ¢’, name it and broadcast it. At all the other nodes the contraction
step initiated by deleting ¢ will be completed when the inference message ¢’ is received.
Deleting ¢ without generating ¢’ is incomplete locally, but it is complete globally, as

long as ¢’ is generated by the owner of ¢ and broadcast!.
This approach has several advantages. First, it does not induce the duplication of un-
restricted backward contraction, without strongly reducing the contraction power of the

T This scheme can easily accomodate a strategy that separates the goal from the other clauses, such
as Unfailing Knuth-Bendix Completion (Hsiang and Rusinowitch 1987, Bachmair et al. 1989) applied
to a purely equational problem. The target theorem Vas ~ t is negated and skolemized into a ground
inequality § # ¢ and is proved by reducing § and £ to the same form. Since the goal is used for no other
purpose, it can be given a special status, and all processes can keep a copy of it and reduce it.

On the Reconstruction of Distributed Proofs 515

processes, since they can still delete redundant clauses regardless of ownership. Second,
there is no distinction between generation of raw clauses by backward contraction and
generation of raw clauses by expansion. All generation of raw clauses is restricted based
on ownership. All raw clauses are processed in the same way, and all inference messages
are treated in the same way. Finally, this scheme implies that all clauses generated by
backward contraction are assigned new identifiers. Together with the fact that the nam-
ing scheme is unambiguous, this means that there are no failures of proof reconstruction
by name clash.

5.4. DISTRIBUTED DERIVATIONS

We summarize the operations of Modified Clause-Diffusion in a refined description of
its derivations. A distributed derivation is made of a collection of n derivations

ToETE .. TF ..

0 c 1 c i ’

for 0 < k < n— 1, by the processes pg, p1,. .., pn—1. Here and in the rest of the paper T*

is the tuple (S*; V*: CP*; MI¥; MO¥; D*) where S* is the set of residents of py, V* is

the set of non-resident clauses currently held at py, CPF is the set of raw clauses, M I* is

the set of inference messages being received (input), MO is the set of inference messages

to be broadcast (output) and DF is the set of clauses deleted by backward contraction.

The different types of operations work as follows for each py.

1 Ezpansion takes premises in S*UV* and puts the generated raw clauses in C P*. Ex-
pansion inferences are subdivided according to the logical partition (see Section 3).
For instance, for paramodulation, for any two clauses 11,1 € S*, p;, paramodu-
lates 11 into o and 19 into 4. For any two clauses ¢ € S* and v, € V*, p;
paramodulates vy into ;. (If py, is the process that owns v — hence ¥ € S —
paramodulation of 11 into 15 is done by pj, when 1 € V"))

2 Forward contraction applies the clauses in S* U V¥ to contract the raw clauses
in CP*. Deleted clauses are discarded, whereas for a non-trivial normal form py
executes the allocation algorithm: if the clause is assigned to py, it is stored in S*,
otherwise in V*. In either case it is also put in MOF as an inference message to be
broadcast.

3 Backward contraction keeps S*UV* inter-reduced, by contracting clauses in S¥UV*
with respect to S* U V¥ itself. The generated raw clauses are treated like in the
previous case, except that deleted clauses are moved to DF.

4 The act of broadcasting an inference message is initiated by putting the clause
in MOP¥: the effect of broadcasting is represented in the derivation by the clause
appearing in the M I components of all the other processes at the next stage.

5 Process py, receives an inference message by moving it from MI* to S*, if the clause
belongs to pi, to V¥ otherwise.

All clauses in the V' component are copies, or “images”, of clauses in the S component:

LEMMA 5.1. Forallk,0 <k <n-—1, foralli>0, if ¢ € Vik, then ¢ € S]’?, for some
h, 0<h#k<n-—1,andj>0.

PROOF. It follows trivially from Items 2, 4 and 5 above. [

516 M. P. Bonacina

Similarly, all clauses in M I* and MOF are copies, and clauses are in CP* only tem-
porarily. Thus, from a logical point of view, UZ;& Sk is the global database. The union
Sk U VF forms the localized image set of process py, that is, the “image” of UZ;& Sk
known to py.

5.5. UNIFORM FAIRNESS OF MODIFIED CLAUSE-DIFFUSION

A proof of fairness of the original Clause-Diffusion method can be found in Bonacina
and Hsiang (1995a). Since the method and the formal description of the derivations are
different, we need to prove separately the fairness of Modified Clause-Diffusion. Fairness
of a theorem-proving strategy means that the inferences that are necessary to prove the
theorem will not be postponed indefinitely by the search plan of the strategy. A stronger
property, that we call uniform fairness, says that all expansion inferences from persistent,
non-redundant premises will be considered eventually by the search plan:

DEFINITION 5.1. (Bachmair and Ganzinger 1992) Given a set of expansion inference
rules I. and a redundancy criterion R, a derivation So = S1 F ...S; F Siy1... s
uniformly fair with respect to I. and R if I.(Sec — R(Sx)) € U;>q Si, where So =
Uiso ;s S is the set of persistent clauses (the limit of the derivation), I.(S) is the set
of clauses that can be inferred from S in one step by I., and R(S) is the set of clauses
that are redundant in S according to R.

We refer to Bachmair and Ganzinger (1992) for the definition of redundancy criterion.
Intuitively, redundant clauses are those that can be deleted by contraction without detri-
ment for the refutation. In this paper we apply Definition 5.1 to the derivations of a
strategy C with expansion rules I, and redundancy criterion R in the sense that the
clauses deleted by the contraction rules of C are redundant according to R. We shall
use two properties of redundancy criteria given in Bachmair and Ganzinger (1992): a
redundancy criterion is monotonic, that is, if S C S’, then R(S) C R(S’), and redundant
clauses are irrelevant to establishing the redundancy of other clauses: if (S’ —S) C R(S"),
then R(S") C R(S).

For distributed derivations, So, is UZ;& Sk where SX_ is UisoNji SJ]?. Limits for the
other components of a distributed derivation may be defined in the same way. Defini-
tion 5.1 considers only clauses in S. In a distributed derivation, each process performs
expansion inferences from premises in SUV and deletes by contraction clauses redundant
with respect to S U V. The following lemma and theorem will bridge this gap. We start
by showing that if a clause is redundant with respect to (S U V), then it is redundant
with respect to So:

LEMMA 5.2. Forallk, 0<k<n—1, R(SUV)*) C R(S).

PROOF. We prove that R((S UV)s) C R(Sx): since (SUV)E C (SUV)y, it follows
R((SUV)*) C R((SUV)s) € R(Sw) by monotonicity of R.
If (SUV)eo C Seo holds, then R((SUV)e) C R(Sx) follows by monotonicity of R.
If (SUV) oo C Soo does not hold, then there exists some clause ¢, such that ¢ € (SUV) s
but ¢ € So. We show that such a clause must be redundant. Since ¢ ¢ S., there exist
k and n such that ¢ € V.¥. By Lemma 5.1, ¢ € S/ for some process p; and stage i. Since
© & S, ¢ is deleted by contraction at pj, that is, ¢ is redundant: ¢ € R((SUV)).

On the Reconstruction of Distributed Proofs 517

By monotonicity of R, (SUV)i, C (SUV)s implies that ¢ € R((SUV)s). Thus, we
have that every clause that is in (S U V)4, but not in Seo, is in R((S U V)s). In other
words, we have ((SUV)o —Sx) € R((SUV)w). By the second property of redundancy
criteria (irrelevance of redundant clauses), it follows that R((SUV)s) C R(Ss). U

The theorem shows that if the derivations at the nodes are locally fair on SU V| and
the communication scheme satisfies additional conditions, then the distributed derivation
is globally fair:

THEOREM 5.1. If a distributed derivation TF e T ... TFlc ... is such that

1 all raw clauses and all messages are processed:
Vk,0<k<n-1, CP% = MI}¥ = MOk, =10,

2 all persistent, non-redundant residents are diffused:

(a) Vi) € (Seo — R(Sx)), there exist process py and stage i, i > 0, such that
¢ e MOy,

(b) Vb € (Seoc — R(Sw)), if v € MO¥ for some k and i, then for all processes p;,
0<j#k<n-—1, there exists a stage l;, I; > 0, such that ¢ € Mli,

3 all expansion inferences from persistent, non-redundant clauses at any given node
pr will be considered either by process pi or by others; in particular, inferences
between persistent, non-redundant residents will be considered by py, itself:

Yk, 0<k<n—1, L((SUV)E —R(SUV)X)) € Uz Uiy CP/ and
L(S% = R((SUV)L)) € Uiz CPF,

then the distributed derivation is uniformly fair: Ic(Se — R(Sx0)) € U, Z;& CPE.

PROOF. Let ¢ be any clause in I.(Soo — R(Swo)) with parents ¢, 12 € Seo — R(S). Let
pr and pp, 0 < k,h < n — 1, be the processes that own 1 and s respectively, that is,
"/Jl € Sgo - R(Soo) and '@[12 € Sgo - R(Soo)

If k = h, then ¢ € I.(S% — R(S.)). By Lemma 5.2, R((SUV)*)) C R(S«) and
thus (S% — R(Ss)) C (S% — R((SUV)K)), so that ¢ € I.(SE — R((SUV)X)). By
Condition 3, we have ¢ € |J,~, CPF.

If & # h, by Condition 2a, we have ¢y € MO; for some process r and stage i1
and ¥y € MOf2 for some process ¢ and stage is. Since MOy = @ by Condition 1, the
messages 1, and 1, are broadcast. By Condition 2a, 1, arrives at p; and 9 arrives at
Pr: Y1 € MIjh1 for some stage j; and ¥y € MIJ’-“2 for some stage j2. Since M I, = () by
Condition 1, we have that ¢, € Vli‘ for some stage [y and 1o € Vl’; for some [5. Since
and 1y are persistent, they will not be deleted by backward contraction: ¢ € V2 and
19 € VX . Since they are non-redundant, we have 11,12 € ((SUV)* —R(S,,)) at node py
and 11,19 € (SUV)" — R(S4)) at node py,. By Lemma 5.2 applied as above, we have
G112 € (SUV)E — R((SUV)E)) at node pg and vy, b € ((SUV)L, — R(SUV)L))
at node py,. By Condition 3, applied to either pj or pp, we have ¢ € [J,;~, Z;é CPZ-’“. O

Given a specific Clause-Diffusion strategy with a refutationally complete inference
system, it suffices to verify the hypotheses of this theorem to establish that the strategy
is fair, and thus complete. Condition 1 and 2 express the fairness requirements for the

518 M. P. Bonacina

communication schemeT, while Condition 3 expresses the local fairness of the search
plan(s) controlling the inferences at the nodes.

6. Reconstruction of Distributed Proofs

In this section we prove that Modified Clause-Diffusion guarantees proof reconstruc-
tion. The first step is to generalize to distributed strategies the notion of unambiguous
naming scheme:

DEFINITION 6.1. A distributed theorem-proving strateqy C has an unambiguous naming
scheme (A, R) if, for all derivations, T¥t-c TEtc... TEFc. .., for all processes py, for
0<k<n-—1, R is a bijective function R: A — |J,, SkuvkuDE.

The co-domain of the retrieval function is S UV U D, because these are the components
a process will consult when reconstructing the proof, since for a fair strategy CPX =
MIF = MOE, =.

The second step is to give requirements for the communication scheme. Condition 2
for fairness says that all persistent non-redundant residents will be diffused. This is not
sufficient, however, for proof reconstruction, because the proof may contain non-persistent
clauses or persistent but redundant clauses. Thus, we need to require that all premises
will be broadcast eventually:

DEFINITION 6.2. A distributed theorem-proving strategy C has a comprehensive com-
munication scheme if, for all derivations, T¥ e T e ... TEFc ..., for all processes py,
0 <k <n-—1, if there is a stage i, i > 0, where the search plan Xy, selects p as premise,
then there exist a process p;, 0 < j <n —1 (possibly, but not necessarily j = k) and a
stage I, [> 0, such that ¢ € MOlj.

One could give a stronger requirement, asking that premises be broadcast before their
descendants. However, we shall see that this definition, combined with others, is suffi-
cient. We prefer to give a weaker requirement, so that our treatment is more general. For
instance, this definition does not exclude a communication scheme that is comprehensive
thanks to a round of post-processing, with ad hoc communication for proof reconstruc-
tion. Modified Clause-Diffusion, on the other hand, achieves proof reconstruction by using
the communication that is already in place for inferences.

The complementary requirement is that all broadcast clauses will be received by all
nodes:

DEFINITION 6.3. A distributed theorem-proving strateqgy C has a safe communication
scheme if, for all derivations, TE e Tf e ... TFic ..., for all processes pi, 0 < k <n—1,
if ¢ € MOY for some stage i, i > 0, then for all processes pj, 0 < j #k < n — 1, there
exists a stage l;, l; > 0, such that ¢ € MIIJ]

T We recall that CP(EO = (0 does not mean that C'P* will be empty eventually (which for an infinite
derivation may never occur), but that no clause will persist in CP¥, i.e. all clauses added to CP* will
be deleted or moved to other components eventually.

On the Reconstruction of Distributed Proofs 519

We remark that a communication scheme that allows interleaving of backward contrac-
tion and communication may not be safe. Consider, for instance, a communication scheme
where broadcasting is implemented by receive-and-forward, and nodes may reduce re-
ceived messages and forward their reduced forms. Such a scheme may satisfy Condi-
tion 2b for fairness, because the latter is only concerned with persistent and non-redun-
dant clauses, which will not be reduced. But it is not safe, because inference messages
carrying non-persistent clauses may not be received in the form they were sent. On the
other hand, a communication scheme where a message is broadcast in one hop, with no
forwarding by intermediate nodes, is safe. Also a receive-and-forward mechanism is safe,
if backward contraction is not mingled with receive-and-forward. This is a reasonable
constraint, since the end receiver of an inference message will most likely be able to
perform the backward contraction steps that the intermediate nodes would perform on
the message. Furthermore, interleaving of backward contraction and receive-and-forward
means that the broadcast operation is not atomic with respect to the inferences. This
makes the design more complicated and less realistic, since in most software systems for
programming distributed computations the communication operations, including broad-
cast, are available to the programmer as primitives.
The following theorem summarizes all the conditions for proof reconstruction:

THEOREM 6.1. Given a distributed theorem-proving strategy C such that

1 C has an unambiguous naming scheme,
2 C satisfies the hypotheses of Theorem 5.1 for uniform fairness and
8 C has a comprehensive and safe communication scheme,

then for all derivations D in the form T¥ e TFlc ... TFc ..., if process p;, for some
i, 0 <1 < n—1, generates the empty clause at stage h; and every process p, for all k,

0 <k <n-—1, terminates at stage hy, then p; can reconstruct atp(Q) from its final state
(S;V;CP; MI; MO; D), .-

PROOF. Since the naming scheme is unambiguous, it is sufficient to show that all clauses
in atp(0) are in S}'” UV,;_ UD}'”: if they are available, p; will retrieve them unambiguously.
The proof is by induction on the depth m of atp(0).

Base: if m = 1, then atp(0) has O as root with children the input clauses ¥1, ... 9,
and p; generates O in one step from 41, .. .1, at stage h;. Thus, ¢1,... ¢, arein S}, UV} .

Induction hypothesis: all clauses in atp(0) up to depth m = ¢ are in S}l U V,f U DZ

Induction step: let ¢ be a clause at depth ¢ in atp(0) and let 1, . . . ¢, be its parents at
depth g+1 (This proof applies regardless of whether the step generating ¢ from v, ...,
is an expansion or a contraction step.). We need to consider the following cases:

1 The step generating ¢ from 1, ..., was executed at p; at some stage [;, 0 < [; <
hi. This means that ¢1,...¢, € (SUV); .

(a) If 41, .. .1, are all persistent, then 4y, ... ¢, € (SUV); . (This subcase applies
only if the step generating ¢ from 1)1, ..., is an expansion step.)

(b) If ¢1,... 4, are not all persistent, then there is some ;, 1 < j <r, which was
deleted by p;. Since v; was in S UV, it must have been deleted by backward
contraction. Since the strategy saves in D the clauses deleted by backward
contraction, 1; € D and ¢1,...¢, € S, UV} UDj .

520 M. P. Bonacina

2 The step generating ¢ from 11, ..., was executed at some pg, k # i. Since the
strategy has a comprehensive communication scheme and 1, ..., were used as
premises, Y1, ..., were broadcast. Since the communication scheme is also safe,
they were received by all processes. In particular, they were received by p;: for all
¥j, 1 < j <, there is a stage [, 0 < I; < h;, such that ¢; € MI;J,. By hypothesis 1
of Theorem 5.1, MI' = MI}'” = (. Thus, 91,...1%, are moved from the MI
component to SUV. For all j, 1 < j <, if ¢; is persistent, then ¢; € (SUV)j, .
If 4; is not persistent, then, since it is in S U V/, it must have been deleted by
backward contraction, and we have ¢; € D}LZ

|

Modified Clause-Diffusion has an unambiguous naming scheme (Section 5.1) and a
comprehensive communication scheme, because it takes the eager approach of broad-
casting clauses right after forward contraction (Section 5.2). If, in addition, the com-
munication scheme is safe, and the specific strategy is fair, then proof reconstruction is
guaranteed.

7. Discussion

We have studied the problem of proof reconstruction in the context of distributed theo-
rem proving by concurrent, deductive, peer processes, with asynchronous communication
and distributed memory. The proof reconstruction problem consists in guaranteeing that
the successful process is able to reconstruct the distributed proof based solely on the
final state of its database. We showed that this property is not trivial, as the successful
process may fail to find locally all the clauses that are necessary to reconstruct the proof,
even if the distributed strategy is fair and complete.

As a starting point, we assumed the methodology for distributed deduction by Clau-
se-Diffusion that we developed in previous work. By analyzing the possible failures of
proof reconstruction, we focused on the components of a strategy that are relevant to
the reconstruction of proofs: the communication scheme, the naming scheme and the
treatment of the raw clauses generated by backward contraction. Based on this analysis,
we proposed a Modified Clause-Diffusion method, we proved that it is fair, thus complete,
and guarantees proof reconstruction. This result showed that proof reconstruction can
be achieved in distributed theorem proving with distributed memory, peer processes
and asynchronous communication, without adding centralized control or ad hoc post-
processing, and using solely the communication already prescribed by the method for
the distribution of inferences. In addition to being a desirable property, we feel that
proof reconstruction led us to polish and streamline Clause-Diffusion significantly.

We have implemented Modified Clause-Diffusion in the prototype Peers-mcd, a new
version of Peers (Bonacina and McCune 1994). Like its predecessor, Peers-mcd features
contraction-based strategies for equational problems, possibly with AC operators. Peers-
mcd succeeded in reconstructing the proof in all experiments, according to the theoretical
results. Table 1 reports some experiments with Peers-mcd on a local area network of HP
workstations: n-Peers is Peers with n nodes, where the first and second nodes are HP
715/80, the third, fourth and fifth are HP 715/75, the sixth is an HP 715/50 and the
seventh is an HP 715/33. All nodes have 64M of memory, except the seventh which has
32M of memory. The run-time of n-Peers is the CPU time (in sec.) of the first process

On the Reconstruction of Distributed Proofs 521

Table 1. Experiments with Peers-mcd.

Problem 1-Peers 2-Peers 4-Peers 6-Peers 7-Peers

kbcomm 7.38 1.55 1.00 0.78 0.44
x3 92.80 20.26 24.58 12.97 15.95
r2 14.16 20.74 7.74 9.68 6.68
rl4 154.03 36.08 96.63 16.33 61.41
s12 54.51 15.59 11.51 25.33 24.03
s32 7.18 2.39 3.66 4.40 2.95

to succeed. The other processes run till either they receive a halting message or also find
a proof, whichever happens first.

Problem kbcomm is the commutator problem in group theory, z3 is the problem of
proving that 23 = z implies commutativity in ring theory, 72 is the problem in Robbins
algebra called Robbins in Lusk and McCune (1992), 714 is a related problem (courtesy of
Bill McCune), s12 and $32 are problems in algebraic logic (courtesy of Anita Wasilewska
and Jieh Hsiang).

References

Avenhaus, J., Denzinger, J. (1993). Distributing equational theorem proving. In Kirchner, C., editor,
Fifth Conf. on Rewriting Techniques and Applications, volume 690 of Lecture Notes in Computer
Science, pages 62-76, Montréal, Canada, June. Springer Verlag.

Bachmair, L., Dershowitz, N., Plaisted, D. A. (1989). Completion without failure. In Ait-Kaci, H., Nivat,
M., editors, Resolution of Equations in Algebraic Structures - Rewriting Techniques, volume 2, pages
1-30, New York. Academic Press.

Bachmair, L., Ganzinger, H. (1992). Non-clausal resolution and superposition with selection and redun-
dancy criteria. In Voronkov, A., editor, Logic Programming and Automated Reasoning, volume 624
of Lecture Notes in Artificial Intelligence, pages 273—284. Springer Verlag.

Bonacina, M. P. (1994). On the reconstruction of proofs in distributed theorem proving with contraction:
a modified Clause-Diffusion method. In Hong, H., editor, First Int. Symp. on Parallel Symbolic
Computation, volume 5 of Lecture Notes Series in Computing, pages 22—33, Linz, Austria, Septem-
ber. World Scientific.

Bonacina, M. P., Hsiang, J. (1994). Parallelization of deduction strategies: an analytical study. J.
Automated Reasoning, 13:1-33.

Bonacina, M. P., Hsiang, J. (1995a). The Clause-Diffusion methodology for distributed deduction.
Fundamenta Informaticae, 24:177-207.

Bonacina, M. P., Hsiang, J. (1995b). Distributed deduction by Clause-Diffusion: the Aquarius prover.
J. Symbolic Computation, 19:245-267.

Bonacina, M. P., McCune, W. W. (1994). Distributed theorem proving by Peers. In Bundy, A., editor,
Twelfth Conf. on Automated Deduction, volume 814 of Lecture Notes in Artificial Intelligence,
pages 841-845, Nancy, France, June. Springer Verlag.

Denzinger, J., Schulz, S. (1994). Recording, analyzing and presenting distributed deduction processes.
In Hong, H., editor, First Int. Symp. on Parallel Symbolic Computation, volume 5 of Lecture Notes
Series in Computing, pages 114—123, Linz, Austria, September. World Scientific.

Hsiang, J., Rusinowitch, M. (1987). On word problems in equational theories. In Ottman, Th., editor,
Fourteenth Int. Conf. on Automata, Languages and Programming, volume 267 of Lecture Notes in
Computer Science, pages 54-71, Karlsruhe, Germany, July. Springer Verlag.

Lusk, E. L., McCune, W. W. (1992). Experiments with ROO: a parallel automated deduction system. In
Fronhofer, B., Wrightson, G., editors, Parallelization in Inference Systems, volume 590 of Lecture
Notes in Artificial Intelligence, pages 139-162. Springer Verlag.

522 M. P. Bonacina

McCune, W. W. (1994). Otter 3.0 reference manual and guide. Technical Report 6, Mathematics and
Computer Science Division, Argonne National Laboratory.

Suttner, C. B., Schumann, J. (1994). Parallel automated theorem proving. In Kanal, L., Kumar,
V., Kitano, H., Suttner, C. B., editors, Parallel Processing for Artificial Intelligence. Elsevier,
Amsterdam.

