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THE QUENCHED CENTRAL LIMIT THEOREM FOR A MODEL OF
RANDOM WALK IN RANDOM ENVIRONMENT

VIKTOR BEZBORODOV AND LUCA DI PERSIO

ABsTRACT. In the present paper we provide a proof of the quenched central limit the-
orem for the random walk in random environment model introduced by Boldrighini,
Minlos, and Pellegrinotti in [3].

V it crarTi JaHO JI0BEEHHS KBEHY-I[eHTPAJIbHOT IDAHUYHOT TEOPEMHU JIJIsI BUIIA/IKOBUX
OIyKaHb Y MOJIeJIi 3 BUIIQIKOBUM CepeJIOBHINeM, 3alpoloHoBaHii Boaapiriai, Minmocom
i Ilennerpunorti [3].

1. INTRODUCTION

In this article we prove the quenched Central Limit Theorem (CLT) for a model of
random walk in random environment, as it has been introduced by Boldrighini, Minlos,
and Pellegrinotti, see in particular [3 [4] [6]. At each site the transition probability kernel
is affected by the current state of the environment at this site. A more detailed descrip-
tion can be found in Section 21 For a nice overview of the literature on the subject, we
refer to [3], and a survey on the recent progress in the related models can be found in
[10] or [2]. In [7] the anomalous behavior of the corrections to the CLT in low dimensions
has been studied. Moreover, related models are considered in [I] and [9].

We underline that the novelty of this work is that the proofs are essentially based on
the the multidimensional martingale CLT by Kiichler and Sgrensen, see [§].

The paper is organized as follows: in Section 2] we describe the model and give the
statement; while in Section [3] we provide all the proofs and some further comments.

2. MODEL, CONDITIONS AND RESULTS

Consider a particle moving in a n-dimensional infinite lattice and denote by X; is
position at time ¢. On the lattice, a dynamical random environment is considered. It is
described by the random field

E={&(@):x el tel"}
Note that the time is discrete. We assume that £ is the result of independent copies of the
same random variable taking values in some finite space S. The space of configurations is
given by Q = SZ"*Z" Thuys, {& (x)}(w pyeznxz+ 18 @ collection of ii.d random variables,
distributed according to a given probai)ility measure on S denoted by m. We denote by
II the distribution of £ in €.

The one step transition probability from position = at time ¢ to position y at the
subsequent time step ¢t 4 1 is given by

P{Xi1 =y[Xi =2,§} = P(y —2,&(x) = Po(y — z) + c(y — 2, & (2))
where P, is the transition probability of a free random walk and c is the function which

provides the influence of the environment on the particle’s dynamic. We note that in the
original work [3] there was a small factor ¢ before the function c.

Keywords. Random walk in random environment; quenched central limit theorem; multidimensional
martingale central limit theorem.
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In order for the probability P to be well-defined, the following conditions must be
fulfilled:
e 0< P(u,s) = Py(u) +clu,s) <1 VseS VYueZm
> ezmclu,s)=0 VseS.
Without loss of generality we assume that the random environment has the following
property:
Z c(u, s)m(s) =0 for any u € Z", (2.1)
seS
which means that P, is the mean transition probability. Indeed, if (2] is not satisfied,
then we can replace Py(u) with Py(u) := Po(u) + ) o5 c(u, s)m(s) and ¢ with é(u,s) =
¢(u, s) — Py(u) 4+ Py(u). This replacement wouldn’t change the law of the random walk
and (21) would hold.
Additionally, let Py and ¢ be of bounded range. We denote by P¢ the conditional
probability with respect to the environment &.
We will also assume that ), ;. uc(u,s1) = Y, cpn uc(u, s2) for s1,s2 € S. It then
follows from (2] that in fact

UEL"

Z uc(u,8) =0 VseS. (2.2)

ueL™

Let YV = {Yt}tez+ be the stochastic processes defined by Y; = X; — tb, where b =
> wezn wPo(u). Note that

> (w—b)Py(u) = 0. (2.3)
uezm™

For a vector u € R", u; denotes its i-th coordinate.

Theorem 1. For almost every realization £ of the random environment we have

1
—Y, = n?U, 2.4
\/f t n ( )

P¢ -a.s., where U is a standard normal vector and n? is the positive semidefinite matriz
with entries

(0%)is = Y (s = bi)(u; — by) Po(u) . (2.5)

(M<yAL

3. PROOFS

Lemma 1. For every & € Q, the process Y is a martingale under Pe.

Proof. This is a consequence of the definition of Y along with the condition (Z2)).
Indeed, by (23)), we have

E[Yi1|Ye, Vi1, ., Yo] = E[Y; 4 (Vg1 — Y3)[ V3]

=Yt D (w=b)[Po(u) +c(u&)] = Yr .
INSYAL
O
Let us define the following n x n matrices: H; = E (Y;Y}/), where Y; the transposed
matrix, the matrix [Y], = (Y%, Y7],)1<ij<n, and H> = E¢(V;Y/) (here and below we
treat Y; as a column-vector). Let also K; = %In, where I, is the n x n identity matrix.
Then, the following result holds true.
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Lemma 2. We have

T

E£ {(WJrl - Y )(YTJ-H Yj)

=S P =y 18 Y (b~ b) [Bow) + e &)
yey uezZm™
The above sum by y is taken over the countable set
Y= {21 + 29b | 21,22 € Z} .
(Note that P{Y, € Y for allt e N} =1).
Proof. By definition of ¥ and P¢, we have
Ee [V — Y)Y —¥))]
= B[ (Vi - V)0~ )|g] =E[E{(vi - v, - v)|e va e
=E | (i —bi = Y)(u; — by = Y))[Po(u—Yz) + c(u— Yr, §(V;)] ¢
=E lZ(Uz‘ = bi)(uj — b;)[Po(u) + c(u, £(Y7)]|€
=Y P{Yo=yl& D (wi—bi)(u; — b)) [Po(w) + c(u, & (y))] -
yey uezZm™
O
Lemma 3. For Il-a.a. £, we have P¢-a.s.
#rir <6607) = s} = 7(s), t— 0. (3.7)

t

Proof. Recall that II is defined on Page BIIl The events {Y, = y} and {{-(y) = s}
are independent, so [B1) holds P-a.s. by the law of large numbers. Hence ([3.7)) also holds
P¢-a.s for IT-a.a. &, otherwise, denoting the event in (B.7) by A, we would have

P(A) = / Pe(A)TI(dg) < 1.

Lemma 4. We have
V], > 2, (3.8)

| =

Pe-a.s. for Il-a.a. &.
Proof. Note that for 1 < 4,5 < n,

Y]t)z] = Z A’r‘,ij7
0<r<t
where
Avij = [V, - Y]] [Yrj+1 -Y/].

Under P¢ conditionally on {Y; = y} the distribution of Y;+1 — Y is Py(u) + c(u, & (y)).
Since under P¢ the random vectors Y;;1 — Y; are independent of each other for different
t, the statement of the lemma follows from the law of large numbers. Indeed, by B7)
and the law of large numbers P¢-a.s.

A’rl
Z #{7« r<t gi T —> Z bj)P(u,s),

{rir<t,&-(Yr)=s} uezn
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and hence by ([B.7)) we obtain

Z f;;Jt - Z (ui —bi)(uj —bj)P(u,s) .

{rir<t,&.(Y,)=s} uezZn
Therefore, Pg—a S.
Ay i

lim Brii _ iy Y. > =HE=lmyoas) Y (s)t
> sES {rir<t,& (Y,)=s} s

t—o0 t—o0
{rir<t} s€S {rir<t,&.(Y,)=s}
D w(s) D (i = bi)(uj — b)) Plu,s) = > (u; — b)(u; — by) Po(u) .
sES uezLmn (YAl
|

Corollary 1. The convergence in Lemmal[f] also holds P-a.s.

Lemma 5.
(i) We have
(Hri1)ig — (Hp)ig = > _m(s) > (wi = bi)(u; — b;) [Po(u) + c(u, s)] - (3.10)
s€s uezn
(1i) We also have
(Hf+1)ij - (Hf)ij
o — b (3.11)
=Y BAYe =y} > (wi—by) i) [Po(u) + c(u, & (y))] -
yey ueLn
Proof. (i) We start by noting that for 7,7 € {1,...,n},
E (v, - v)y) =0, (3.12)
Indeed,
E (% - Y:)Y#) EE [(Yt+1 g
=Y PYi=y} Y (Witui—bi—yi)yPo(w) = > P{Yi=yly; > (ui—b;)Po(u) =
yey uEL™ yey ueLm

by 23). Moreover, by (3.12), we have
(Hri1)iy — (Hy)ij = E (}/ifz;i-l}/i&];i-l - Ytthj)

= E (v = YO0 =) +E (0 =YY ) + B (W (Y, - YD)
=B (¥ - Y0 - 17) -

Conditioning on Yy, we get
(Hr1)ij = (Hry1)i5 ZP{Yt =y} Z bj) [Po(u) + E [e(u, & (y)[Y: = y]]

= Z(Ui —b;)(uj — bj) Po(u).

(79) (B12) holds for E¢ too, since
EE (v — Y)Y |Yi¢]
= "P{Yi =y} Y (yi +ui — b — yi)yi[Po(w) + c(u,&(y))]

yey u€Zn
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=Y PYi=yly; Y (ui—b)Po(u)+ > P{Yi=yly; > uic(u,&(y))

yey ueL™ yey u€Zn
—bi Y P{Yi=yly; Y c(w,&(y) =
yey (NYAL
and the proof continues as in (7). |
Lemma 6. We have . 1
FH =P, SHE =, (3.13)

where 12 is as in Z3), P¢-a.s for H-a.a. & .
Proof. Let us only prove the second convergence in (B.1I3). By Lemma [5

(Hp)ij = Z S PAY, =y} > (us ) [Po(u) + c(u, & (y))]

r=0yey (N<yAL
=t > (ui = b;)(u; — b;) Po(u) (3.14)
(YAl
£ 3 (i by = 5) 3 3 PedYe = yhe(u & (1)
ueL™ r=0yey

Since Y PeAY, = yle(u, & (y)) @ c(u,&-(0)) under P (the symbol D neans here
yey
‘equal in distribution’), where 0 is the origin, and

S OPY, = yle(u,(y), rEN,

yey

constitute a sequence of independent random variables indexed by r € N, by the law of
large numbers for IT-a.a. £

—ZZIP‘%{Y = ye(u. &) = Y s (3.15)

r=0yey seS
Combining 3.I4) and [3I5) and recalling the definition of n?, we get the desired result.
O
Recall that we defined K; = L-1,,.

v
Proof of Theorem [II Theorem 2.1 in [8] and Lemmas @ and [6l imply that P -a.s.

1
—f = 21/’ 316
NG t =1 ( )

where U is a standard n-dimensional Gaussian vector. The theorem in [8] is formulated
for continuous time processes, so to apply it we define Y;, H;, etc. for ¢t € (1,00) by
KgZYLtJ,HtZHL”,etC. 0
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