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ABSTRACT
Disruptions to brain networks, measured using structural (sMRI), diffusion (dMRI), or functional (fMRI) MRI, have been shown 
in people with multiple sclerosis (PwMS), highlighting the relevance of regions in the core of the connectome but yielding mixed 
results depending on the studied connectivity domain. Using a multilayer network approach, we integrated these three modali-
ties to portray an enriched representation of the brain's core-periphery organization and explore its alterations in PwMS. In this 
retrospective cross-sectional study, we selected PwMS and healthy controls with complete multimodal brain MRI acquisitions 
from 13 European centers within the MAGNIMS network. Physical disability and cognition were assessed with the Expanded 
Disability Status Scale (EDSS) and the symbol digit modalities test (SDMT), respectively. SMRI, dMRI, and resting-state fMRI 
data were parcellated into 100 cortical and 14 subcortical regions to obtain networks of morphological covariance, structural 
connectivity, and functional connectivity. Connectivity matrices were merged in a multiplex, from which regional coreness—the 
probability of a node being part of the multiplex core—and coreness disruption index (κ)—the global weakening of the core-
periphery structure—were computed. The associations of κ with disease status (PwMS vs. healthy controls), clinical phenotype, 
level of physical disability (EDSS ≥ 4 vs. EDSS < 4), and cognitive impairment (SDMT z-score < −1.5) were tested within a linear 
model framework. Using random forest permutation feature importance, we assessed the relative contribution of κ in the multi-
plex and single-layer domains, in addition to conventional MRI measures (brain and lesion volumes), in predicting disease status, 
physical disability, and cognitive impairment. We studied 1048 PwMS (695F, mean ± SD age: 43.3 ± 11.4 years) and 436 healthy 
controls (250F, mean ± SD age: 38.3 ± 11.8 years). PwMS showed significant disruption of the multiplex core-periphery organi-
zation (κ = −0.14, Hedges' g = 0.49, p < 0.001), correlating with clinical phenotype (F = 3.90, p = 0.009), EDSS (Hedges' g = 0.18, 
p = 0.01), and SDMT (Hedges' g = 0.30, p < 0.001). Multiplex κ was the only connectomic measure adding to conventional MRI in 
predicting disease status and cognitive impairment, while physical disability also depended on single-layer contributions. In con-
clusion, we show that multilayer networks represent a biologically and clinically meaningful framework to model multimodal 
MRI data, with disruption of the core-periphery structure emerging as a potential connectomic biomarker for disease severity 
and cognitive impairment in PwMS.

1   |   Introduction

In multiple sclerosis, there is a well-recognized gap between 
clinical-cognitive impairment and brain pathology as assessed 
through conventional MRI [Barkhof 2002]. The field of connec-
tomics has now started to bridge this gap. Clinically relevant 
disruptions to macro-scale brain networks, measured using 
structural (sMRI), diffusion (dMRI), or resting-state functional 
(rs-fMRI) MRI, have been extensively demonstrated in people 
with multiple sclerosis (PwMS), to the point that it has been 
described as a network disorder [the MAGNIMS Study Group 
et al. 2021].

Our current understanding points toward abnormal connec-
tivity centred around regions such as the thalamus and the 
default mode network, evolving along the disease course and 
representing a possible mechanism through which cumulative 
brain damage eventually leads to long-term disability [Pontillo 
et al. 2024; Schoonheim et al. 2022]. Nevertheless, MRI-based 
connectivity studies often yield conflicting results, somehow 
failing to identify a unified connectomic hallmark of multiple 
sclerosis and related disability [Jandric et al. 2022]. While this is 
partly explained by multiple sclerosis’ intrinsic neurobiological 
and phenotypic heterogeneity [Pontillo et al. 2022], methodolog-
ical issues may also play a role, including the disparity of image 
processing strategies and the small sample sizes. Moreover, one 
major conceptual problem lies in the focus on single-modality 
networks, providing only a partial representation of the brain's 
complex organization.

Indeed, despite the increasing availability of multimodal neu-
roimaging data, most studies so far have focused on one aspect 

of brain connectivity using a single imaging modality (e.g., mor-
phological covariance, MC, with sMRI; structural connectivity, 
SC, with dMRI; functional connectivity, FC, with rs-fMRI) [the 
MAGNIMS Study Group et al. 2021]. Integrating different neu-
roimaging modalities into a unified brain network model holds 
promise to enhance our understanding of the brain and its dis-
orders, by informing us about how structure shapes function, 
how they are jointly impacted by disease, and which aspects are 
relevant for cognitive functioning and clinical manifestations 
[Calhoun and Sui 2016]. The brain can be modelled as a multi-
layer network where different connectivity domains, each encod-
ing a specific type of information about the system, are jointly 
embodied in the same topological space [De Domenico  2017]. 
Such topology is able to account for the simultaneous existence 
of different types of relationships between brain regions, poten-
tially revealing network properties that are not evident from con-
ventional single-layer architectures and may be more sensitive 
to disease-related changes [De Domenico 2017]. However, how 
to jointly model different aspects of brain connectivity is still an 
open challenge, with different measures that have been adopted 
to describe the topological properties of multilayer brain networks 
[Battiston et al. 2017; De Domenico, Sasai, and Arenas 2016].

In PwMS, increasing evidence suggests that the core-periphery 
structure, a fundamental property of the human connectome, 
characterized by a subgraph of densely connected and topo-
logically central nodes (the core) and a set of nodes that are 
strongly connected with the core but sparsely interconnected 
with each other (the periphery) [Fornito, Zalesky, and Bullmore 
2016] is impacted by the disease in a clinically relevant man-
ner [Pontillo et al. 2024; Schoonheim et al. 2022]. Indeed, con-
nectivity alterations involving brain regions that constitute 
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the structural and functional core of the connectome (i.e., 
network hubs) are a crucial event in the disease course and 
are most strongly associated with clinical progression [Pontillo 
et al. 2024; Schoonheim et al. 2022]. Nevertheless, while it has 
been demonstrated that the core of the human connectome 
can be more accurately mapped in a multilayer setting, where 
it encodes richer information than single-layer aggregations 
[Battiston et al. 2018; De Domenico, Sasai, and Arenas 2016; 
Guillon et  al. 2019] the impact of multiple sclerosis on the 
multilayer core-periphery structure and its potential role as a 
biomarker of clinical severity and progression remain largely 
unexplored. Also, previous multimodal connectivity studies 
have shown that the structure–function relationship is altered 
in the brains of PwMS, with the integration of structural and 
functional information potentially enhancing our understand-
ing of the pathophysiology and clinical correlates of the dis-
ease [Casas-Roma et  al. 2022; Kulik et  al. 2022; Martí-Juan 
et al. 2023; Sorrentino et al. 2022; Sorrentino et al. 2024].

Here, leveraging unique access to a large multicentric cohort 
of PwMS, we used a multilayer network approach to integrate 
information from sMRI, dMRI, and rs-fMRI data and portray 
an enriched representation of the brain's core-periphery orga-
nization. Based on previous evidence that network hubs are 
prominently affected in PwMS, we hypothesised that joint brain 
network changes across structural and functional levels would 
manifest in a disrupted multilayer core-periphery structure com-
pared to healthy individuals. A multilayer analysis is expected 
to be more sensitive to multiple sclerosis-related pathophysiolog-
ical alterations and enable more accurate predictions of physical 
and cognitive disability compared to unimodal approaches.

2   |   Materials and Methods

2.1   |   Participants

In this retrospective, cross-sectional study, we collected MRI and 
clinical data of people diagnosed with multiple sclerosis accord-
ing to 2010 McDonald criteria [Polman et al. 2011] or clinically 
isolated syndrome (CIS) [Lublin et al. 2014] from 13 European 
centers (MAGNIMS: www.​magni​ms.​eu). Healthy controls 

(HC) without a history of neurologic or psychiatric disorders 
were also included. At the time of MRI, PwMS were clinically 
evaluated using the Expanded Disability Status Scale (EDSS) 
[Kurtzke  1983] and the Symbol Digit Modalities Test (SDMT) 
[Benedict et al. 2017], measuring physical disability and cogni-
tion, respectively. Raw SDMT scores were transformed to age-, 
sex-, and education-adjusted z-scores according to population-
specific normative data [Amato et al. 2006; Eijlers et al. 2019; 
Scherer et al. 2004; Sepulcre et al. 2006; Strober et al. 2020].

Written informed consent had been obtained from each partic-
ipant independently at each center. The final protocol for this 
study was reviewed and approved by the local Ethics Committee 
and the European MAGNIMS collaboration for the analysis of 
pseudonymized data.

2.2   |   MRI Data Acquisition and Processing

All participants were imaged on 3 T scanners with a brain MRI 
protocol including isotropic T1-weighted (T1w), T2-weighted 
fluid-attenuated inversion recovery (FLAIR), dMRI, and RS-
fMRI sequences. Details of the different acquisition protocols 
are provided in Supplementary Table  1, while a schematic il-
lustration of the analysis pipelines discussed below is shown in 
Figure 1.

2.2.1   |   Structural MRI and Morphological 
Covariance Networks

For PwMS, T2-hyperintense lesions were automatically seg-
mented on FLAIR images using the Lesion Segmentation 
Tool (LST) 3.0.0 (www.​stati​stica​l-​model​ling.​de/​lst.​html). 
Corresponding masks were used to fill lesions in T1w images 
with estimated white matter (WM) tissue for subsequent analy-
ses [Chard et al. 2010] and to compute total lesion volume (TLV). 
We used the Computational Anatomy Toolbox (CAT12.7, http://​
www.​neuro.​uni-​jena.​de/​cat) to segment T1w volumes into grey 
matter (GM), WM, and cerebrospinal fluid (CSF), and to par-
cellate the brain into 100 cortical regions from the Schaefer 
atlas (https://​github.​com/​Thoma​sYeoL​ab/​CBIG/​tree/​master/​
stable_​proje​cts/​brain_​parce​llati​on/​Schae​fer20​18_​Local​Global) 
[Schaefer et al. 2018]. This functional parcellation is designed to 
optimize both local gradient and global similarity measures of 
the fMRI signal [Schaefer et al. 2018]. The nodes are also associ-
ated with 7 canonical functional system labels including visual, 
somatomotor, dorsal attention, ventral attention, limbic, con-
trol, and default mode networks [Thomas Yeo et al. 2011]. We 
chose the 100-parcel version to best fit the spatial resolution of 
the available data (Supplementary Table 1). In addition, we used 
FSL-FIRST to segment 14 subcortical GM regions [Patenaude 
et al. 2011]. Throughout the diffusion and functional workflows, 
T1w images were used as reference and underwent additional 
processing steps, including cortical surface reconstruction with 
recon-all (FreeSurfer v6.0.1) [Dale, Fischl, and  Sereno 1999].

Single-subject GM networks were obtained by adapting a previ-
ously described pipeline [Jy et al. 2020]. Briefly, the volumes of 
the 114 atlas-defined GM regions were transformed into z-scores 
while adjusting for the physiological (i.e., estimated in the HC 

Summary

•	 Using a multilayer network approach, we integrated 
structural, diffusion, and resting-state functional MRI 
to portray an enriched representation of the connec-
tome's core-periphery organization in a large cohort of 
people with multiple sclerosis and healthy controls

•	 People with multiple sclerosis show significant weak-
ening of the multiplex core-periphery organization 
compared to healthy controls, correlating with the 
disease phase, physical disability, and cognition

•	 Disruption of the multiplex core-periphery struc-
ture is more sensitive than homologous single-layer 
connectivity measures to multiple sclerosis-related 
pathophysiological and cognitive changes, adding to 
conventional MRI measures
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group) effects of age, sex and total intracranial volume (TIV), 
and a 114 x 114 MC matrix was obtained where the following 
measure of shared deviation from the reference norm repre-
sented the edge weights (distributed between 0 and 1).

Joint variation between the i-th (for i = 1 to 114) and j-th (for j = 1 
to 114) GM regions = 1/exp.{[(z-transformed volume of i-th re-
gion) – (z-transformed value of j-th region)]2}.

2.2.2   |   Diffusion MRI and Structural 
Connectivity Networks

Preprocessing of diffusion MRI data was performed using 
QSIPrep 0.14.3 [Cieslak et al. 2021], which is based on Nipype 
1.6.1 [Gorgolewski et  al. 2011]. MP-PCA denoizing as imple-
mented in MRtrix3's dwidenoise was applied with a 5-voxel 
window, followed by B1 field inhomogeneity correction using 
dwibiascorrect from MRtrix3 with the N4 algorithm [Tustison 
et al. 2010] FSL (version 6.0.3) eddy was used to correct for head 
motion and eddy currents [Andersson and Sotiropoulos 2016]. 
A deformation field to correct for susceptibility distortions was 
estimated using available sequences (phase-encoding polarity 
method [Jezzard and Balaban  1995], phase-difference B0 es-
timation [Hutton et  al. 2002], or registration-based fieldmap-
less estimation [Wang et  al. 2017]) and used to calculate an 
unwarped b = 0 reference for a more accurate co-registration 
with the anatomical reference. The diffusion-weighted time-
series was then resampled to the T1w volume, producing a 
preprocessed diffusion-weighted series with 2 mm isotropic 
voxels. Then, multi-tissue fiber response functions were gener-
ated using the Dhollander algorithm [Dhollander et  al. 2019], 
and fiber orientation distributions (FODs) were estimated via 
constrained spherical deconvolution and intensity-normalized 
using mtnormalize [Raffelt et  al. 2017; Tournier, Calamante, 
and Connelly 2007]. Tractography was performed based on WM 
FODs with MRtrix3's tckgen, using the iFOD2 probabilistic 

tracking method to generate 10 million streamlines, with ana-
tomical constraints provided by a hybrid surface/volume seg-
mentation created ad hoc [Smith et al. 2012; Smith et al. 2020].

Finally, weights for each streamline were calculated using 
SIFT2 [Smith et al. 2015] and a 114 x 114 SC matrix was filled 
with the sums of weights of streamlines connecting each node's 
pair. In addition, structural connectivity matrices were log10-
transformed to better account for differences at different mag-
nitudes and to make the distribution of edges' weight more 
comparable to other layers [Buchanan et al. 2020].

2.2.3   |   Resting-State Functional MRI and Functional 
Connectivity Networks

Preprocessing of rs-fMRI data was performed using fMRIPrep 
20.2.6 [Esteban et  al. 2019] which is based on Nipype 1.7.0 
[Gorgolewski et al. 2011]. From blood oxygenation level depen-
dent (BOLD) data, a reference volume and its skull-stripped ver-
sion were generated using a custom methodology of fMRIPrep. 
Similar to dMRI processing, a deformation field to correct for 
susceptibility distortions was estimated based on available se-
quences and used to calculate a corrected EPI reference for a 
more accurate co-registration with the anatomical reference. 
The BOLD reference was then co-registered to the T1w refer-
ence using bbregister (FreeSurfer) which implements boundary-
based registration [Greve and Fischl  2009]. Head-motion 
parameters for the BOLD reference were estimated before any 
spatiotemporal filtering using mcflirt (FSL 5.0.9) [Jenkinson 
et  al. 2002], After slice-timing correction using 3dTshift from 
AFNI 20160207 [Cox 1996], the BOLD time-series were resam-
pled onto their original, native space by applying a single, com-
posite transform to correct for head-motion and susceptibility 
distortions. Several confounding time-series were calculated 
based on the preprocessed BOLD, including the identification 
of noise components using ICA-AROMA [Pruim et  al. 2015]. 

FIGURE 1    |    Schematic illustration of the analysis pipeline. SMRI, dMRI, and rs-fMRI are processed using the same brain parcellation scheme 
to obtain networks of morphological covariance, structural connectivity, and functional connectivity, respectively. Connectivity matrices are then 
merged in a multiplex network, a particular case of multilayer network where there is a one-to-one correspondence between nodes at different layers. 
The multiplex core-periphery organization is characterized in terms of regional coreness, defined as the probability of a node being part of the mul-
tiplex core and coreness disruption index (κ), quantifying the global weakening of the core-periphery structure.

 10970193, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.70107 by U
niversity D

egli Studi D
i V

ero, W
iley O

nline L
ibrary on [03/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



5 of 14

Nuisance variables were removed from preprocessed BOLD 
using Nilearn 0.8.1 [Abraham et al. 2014], following a previously 
described strategy [Chai et  al. 2012] including removal of the 
first 4 timepoints, band-pass filter (0.008–0.08 Hz), detrending, 
standardization and confound regression (nonaggressive ICA-
AROMA denoising plus removal of mean WM and CSF signal) 
[Pruim et al. 2015].

Finally, residual mean BOLD time series were obtained from the 
atlas-defined parcels, and, for each node's pair, the Pearson cor-
relation coefficient was computed and Fisher z-transformed to 
fill a 114 x 114 FC matrix. In addition, matrices were absolutized 
as inverse correlations may encode relevant information and 
most analysis strategies tend to neglect negative values [Chai 
et al. 2012].

2.2.4   |   Quality Control and Cross-Site Harmonization

MRI quality was assessed through metric-guided visual in-
spection. Scans that were marked as outliers (i.e., outside 1.5 
times the interquartile range in the adverse direction of the 
measurement distribution) according to one or more image 
quality metrics obtained via CAT12 (for sMRI), qsiprep (for 
dMRI), and mriqc 0.16.1 (for sMRI and rs-fMRI) [Esteban 
et al. 2017] were reviewed by a single investigator, a neurora-
diologist with ten-year experience in advanced neuroimaging 
(G.P.), and discarded based on visual evaluation where appro-
priate. The number of excluded scans per site is provided in 
Supplementary Table 1.

To eliminate nonbiological site-related variability, we used 
ComBat harmonization to model and remove site effects from 
brain volumes and structural and functional connectivity matri-
ces, while preserving the biological associations with age, sex, and 
disease status (PwMS vs. HC) [Johnson, Li, and Rabinovic 2007].

2.3   |   Multiplex Networks and Core-Periphery 
Organization

To correct for differences in average link weight across layers, 
MC, SC, and FC connectivity matrices underwent singular-value 
decomposition normalization before the construction of a multi-
modal multiplex, a particular case of multilayer network where 
there is a one-to-one correspondence between nodes at different 
layers [Mandke et al. 2018]. For each brain region, we extracted 
coreness using the brain network toolbox (https://​github.​com/​
brain​-​netwo​rk/​bnt), following a previously described procedure 
[Battiston et al. 2018]. Briefly, each layer is filtered by preserving 
the strongest weights for the full range of density-based thresh-
olds. At each threshold, a measure of node richness in the multi-
plex setting is computed by linearly combining node strengths in 
all layers through a vector of coefficients modulating the relative 
importance of each layer. As we did not know a priori which 
connectivity domain would be more relevant for the explored ex-
perimental settings, we imposed equal coefficients (0.5) for the 
MC, SC, and FC layers, as in Battiston et al [Battiston et al. 2018].

Multiplex richness is then fed into a core-periphery decompo-
sition procedure, and coreness is calculated as the number of 

times that each node is present in the network core across all 
explored thresholds, normalized by the maximum theoretical 
value (i.e., the total number of explored thresholds) [Battiston 
et al. 2018]. Coreness disruption index (κ) was computed as the 
slope of the linear regression model between the mean local 
coreness of the HC group at each node, taken as a reference, and 
the differential nodal coreness between that reference and the 
subject(s) under study [Termenon et al. 2016].

2.4   |   Statistical Analysis

Second-level analyses were carried out using MATLAB 
(R2020a). Significance level was set at α = 0.05 for all tests, ad-
justing for multiple comparisons when appropriate. The effects 
of biological confounders (i.e., age and sex) on variables of inter-
est (i.e., regional coreness and coreness disruption index) were 
removed using nuisance regression, with weights estimated 
in the HC group to avoid removing disease-related variance. 
Specifically, for each measure, a linear model with the confound-
ers as independent variables was fit in the HC group and used 
to generate predictions on the whole population. Confounder-
adjusted measures were obtained as the difference between raw 
and predicted values, and standardized as follows: individual 
z-score = (individual corrected value—mean of corrected values 
in the HC group) / standard deviation of corrected values in the 
HC group.

Differences between patients and HC in terms of κ and nodal 
coreness (over the full set of brain parcels) were assessed using 
two-sided permutation t tests, controlling for the false discovery 
rate with the Benjamini–Hochberg procedure [Benjamini and 
Hochberg  1995]. Additionally, to assess possible κ differences 
across clinical phenotypes (CIS vs. relapsing–remitting, RRMS 
vs. secondary-progressive, SPMS vs. primary-progressive, 
PPMS), we performed a one-way ANOVA analysis, with post 
hoc tests using Tukey's method [Field et al. 2012]. The associa-
tions between κ and levels of physical (EDSS ≥ 4 vs. EDSS < 4) 
[Confavreux and Vukusic 2006] and cognitive (impaired, SDMT 
z-score < −1.5, vs. preserved information processing speed, IPS) 
[Eijlers et al. 2019] disability were assessed using two-sided per-
mutation t tests.

To demonstrate that the findings were not driven by contingent 
factors including parcellation scheme/inaccuracy and site ef-
fects/harmonization, we conducted a set of sensitivity analyses. 
First, we replicated the analyses using an alternative cortical 
parcellation based on the Brainnetome atlas, providing a more 
fine-grained definition of functional brain subregions (210 corti-
cal and 14 subcortical parcels) [Fan et al. 2016]. Also, as brain at-
rophy is known to potentially affect the accuracy of atlas-based 
parcellations, we conducted a subset analysis on participants 
with relatively preserved global brain volume (age- and sex-
adjusted brain parenchymal fraction, BPF, z-score based on the 
distribution in HC > −1.5). Finally, we used the largest cohort for 
a single-site analysis on nonharmonized matrices.

To evaluate the added value of our multiplex approach over 
single-layer connectomic metrics, we computed κ within the 
MC, SC, and FC layers separately and looked at the ability of 
measures in different domains to discriminate between PwMS 
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and HC, as well as between different levels of physical and 
cognitive disability. Comparison was made also with other 
established conventional MRI measures of multiple sclerosis-
related brain damage (i.e., age- and sex-adjusted brain paren-
chymal fraction, BPF, and total lesion volume, TLV), used as 
a reference. First, we compared effect sizes (Hedges' g) of the 
between-groups differences for the different MRI-derived 
variables, by computing 95% bootstrap confidence intervals 
with 5000 resamples [Durlak  2009] Also, to assess whether 
connectome-based metrics added to BPF and TLV, we used 
κ in the different domains and conventional MRI measures 
to train and validate random forest models for the prediction 
of disease status (PwMS vs. HC), level of physical disability, 
and IPS impairment. Specifically, decision tree learners were 
combined with bootstrap aggregation, and relevant hyperpa-
rameters were tuned using Bayesian optimization in order to 
minimize the 10-fold CV classification error (1—accuracy) 
[Breiman 2001]. Model performance was expressed with out-
of-bag (OOB) accuracy, while the relative weight of different 
predictors was estimated using OOB permutation feature im-
portance [Breiman 2017].

3   |   Results

3.1   |   Participants

A total of 1517 participants were considered for this study. Of 
these, 33 were excluded due to poor MRI quality or image pro-
cessing failure, leading to a final population including 1048 
PwMS and 436 HC. Demographic, clinical, and conventional 
MRI characteristics of the studied population are reported in 
Table 1.

3.2   |   Multiplex Networks and Core-Periphery 
Organization

SMRI, dMRI, and rs-fMRI data were processed using the same 
brain parcellation scheme (including 100 cortical and 14 sub-
cortical regions) to obtain networks of MC, SC, and FC, respec-
tively. Average connectivity matrices in the HC group are shown 
in Supplementary Figure 1.

In the HC group, the multiplex core included on average sub-
cortical GM structures, especially the thalami and putamina, 
as well as cortical areas participating in both sensorimotor 
(somatomotor and visual) and associative (default mode, con-
trol, and attention) networks (Figure  2). Maps of average HC 
regional coreness in the single-layer domains are shown in 
Supplementary Figure 2.

3.3   |   Disrupted Multiplex Core-Periphery 
Structure in Multiple Sclerosis

PwMS showed significant deviations in regional coreness com-
pared to the HC group (Figure 3A), with the greatest effect sizes 
observed at the level of deep GM structures (reduced coreness) 
and associative areas in the medial prefrontal, cingulate, and 

lateral temporal cortices (increased coreness) (Supplementary 
Table 2).

Based on the profile of regional coreness' deviations from the 
healthy norm, coreness disruption index (κ) was computed as 
a measure of global weakening of the brain's core-periphery 
structure. In PwMS, the anatomical distribution of the ob-
served changes was such that topologically central nodes were 
generally more impacted than peripheral ones (which tended 
to have preserved or even increased coreness values), as ex-
pressed by the average κ = −0.14 (Hedges' g = 0.49, p < 0.001) 
(Figure 3B).

There was a significant effect of clinical phenotype on the 
weakening of the core-periphery structure of multimodal 
brain networks (F[3, 1044] = 3.90, p = 0.009). We observed, 
on average, progressively greater disruption in relapse-onset 
forms going from CIS to SPMS patients and intermediate κ 
values in PPMS (Figure 4). Moreover, when classifying PwMS 
according to levels of physical disability (EDSS ≥ 4, 27% vs. 
EDSS < 4, 73%) [Confavreux and Vukusic 2006] and IPS (im-
paired, IPS-I, 29% vs. preserved, IPS-P, 71%) [Eijlers et  al. 
2019], a stronger/less disrupted core-periphery organization 
was associated with both lower physical disability (Hedges' 

TABLE 1    |    Demographic, clinical, and MRI characteristics of the 
studied population.

PwMS HC

N 1048 436

Age [yr], mean ± SD 43.3 ± 11.4 38.3 ± 11.8a

Female, n (%) 695 (66.3) 250 (57.3)b

Disease duration [yr], 
mean ± SD

11.6 ± 8.9 —

Phenotype, n (%): —

CIS 41 (3.9)

RRMS 817 (78.0)

SPMS 121 (11.5)

PPMS 69 (6.6)

EDSS, median (range) 2.5 (0.0–8.0) —

SDMT [z-score], 
mean ± SD

−0.77 ± 1.36 —

DMT, n (%): yes/no 926 (88.4) / 122 (11.6) —

TLV [ml], median 
(interquartile range)

3.14 (1.06–8.00) —

BPF, mean ± SD 0.77 ± 0.05 0.80 ± 0.03c

Abbreviations: BPF = brain parenchymal fraction; CIS = clinically isolated 
syndrome; DMT = disease-modifying treatment; EDSS = Expanded Disability 
Status Scale; HC = healthy controls; PPMS = primary-progressive multiple 
sclerosis; PwMS = people with multiple sclerosis; RRMS = relapsing–remitting 
multiple sclerosis; SD = standard deviation; SPMS = secondary-progressive 
multiple sclerosis; SDMT = Symbol Digit Modalities Test; TLV = total lesion 
volume.
ap < 0.001 (permutation t test).
bp = 0.001 (Chi-square test).
cp < 0.001 (permutation t test).
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g = 0.18, p = 0.01) and preserved cognition (Hedges' g = 0.30, 
p < 0.001) (Figure 5).

A set of sensitivity analyses substantially replicated these find-
ings (Supplementary Results), demonstrating their relative ro-
bustness to the choice of the parcellation scheme (Supplementary 
Figures 3–4), brain atrophy (Supplementary Figure 5), and site 
effects/harmonization (Supplementary Figure  6). Indeed, the 
effect sizes for the coreness disruption index at the PwMS vs 
HC comparison (Hedges' g ranging from 0.40 to 0.63 vs 0.49 in 
the main analysis) and the associations with physical disability 
(Hedges' g ranging from 0.16 to 0.32, vs 0.18 in the main analy-
sis) and IPS (Hedges' g ranging from 0.27 to 0.38 vs 0.30 in the 

main analysis) were comparable to those observed in the main 
analysis.

3.4   |   Added Value of Multiplex Over Single-Layer 
Network Measures

Correlations between κ values of PwMS in the multiplex and 
single-layer domains, along with their distributions, are de-
picted in Supplementary Figure 7.

Disease status (CIS/MS vs. HC) and IPS performance (IPS-I 
vs. IPS-P) were more strongly associated with disruption of 

FIGURE 2    |    Average multiplex coreness in the healthy controls group. (A) Color-coded (teal to red) map of multiplex coreness percentile ranks 
superimposed on surface renderings of the cortex and subcortical structures. Image was obtained with the ENIGMA toolbox [Larivière et al. 2021]. 
(B) Highest 10% multiplex coreness nodes and corresponding absolute values are shown. Nomenclature of cortical areas follows the 7-network 
Schaefer-100 parcellation [Schaefer et al. 2018].

FIGURE 3    |    Differences in regional coreness between PwMS and HC and coreness disruption index. (A) Color-coded (blue to red) map of effect 
sizes (Hedges' g) of the between-group difference superimposed on surface renderings of the cortex and subcortical structures. Image was obtained 
with the ENIGMA toolbox [Larivière et al. 2021]. (B) Scatterplot showing, region-wise, the between-group difference in average regional coreness 
as a function of the average coreness in the HC group. The slope of the linear regression line corresponds to the coreness disruption index κ = −0.14. 
Each circle represents a brain region, color-coded as in panel A.
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8 of 14 Human Brain Mapping, 2025

FIGURE 4    |    Coreness disruption index and clinical phenotypes. Coreness disruption index (κ) plots are shown for (A) clinically isolated syndrome 
(CIS), (B) relapsing–remitting (RRMS), (C) secondary-progressive (SPMS), and (D) primary-progressive (PPMS) patients. (E) Violin plots showing 
the distributions of κ values, expressed as confounder-adjusted z-scores, across different phenotypes. The distribution in healthy controls is also 
shown for comparison. (**) Adjusted p < 0.01. In (A-D), for each subgroup, the difference in average regional coreness compared to HC is plotted as 
a function of the average coreness in the HC group. Each circle represents a brain region, with color encoding the magnitude of the between-group 
(MS/CIS versus HC) difference in terms of regional coreness.
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the core-periphery structure in the multiplex setting (Hedges' 
g = 0.49 [95% CI = 0.38–0.60] and 0.30 [95% CI = 0.16–0.44], re-
spectively) than with any of the single-layer measures. As for 
the level of physical disability (EDSS ≥ 4 vs. EDSS < 4), the 

effect size associated with the disruption of the multiplex core-
periphery organization (Hedges' g = 0.17 [95% CI = 0.04–0.29]) 
was not significantly higher than for homologous single-layer 
measures (Figure 6A–C).

FIGURE 5    |    Coreness disruption index and clinical variables. Violin plots showing the distribution of confounder-adjusted coreness disruption 
index (κ) z-scores in patients with (A) high (EDSS ≥ 4) and low (EDSS < 4) levels of physical disability, and (B) impaired (IPS-I) and preserved (IPS-P) 
information processing speed at the SDMT. (**) p < 0.01; (***) p < 0.001. EDSS = Expanded Disability Status Scale; SDMT = Symbol Digit Modalities 
Test.

FIGURE 6    |    Added value of multiplex over single-layer measures. For indices of coreness disruption in the multiplex and single-layer domains, as 
well as for brain parenchymal fraction (BPF) and total lesion volume (TLV), shown are (top row) the effect sizes (Hedges' g) and corresponding 95% 
confidence intervals associated with differences between (A) PwMS and healthy controls (MS/CIS vs. HC), (B) patients with high and low levels of 
physical disability (EDSS ≥ 4 vs. EDSS < 4), and (C) patients with impaired and preserved information processing speed (IPS-I vs. IPS-P); (bottom 
row) results of the random forest classifiers and corresponding predictor importance analyses for the prediction of (D) disease status (MS/CIS vs. HC), 
(E) level of physical disability (EDSS ≥ 4 vs. EDSS < 4), and (F) impaired information processing speed (IPS-I vs. IPS-P).

 10970193, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.70107 by U
niversity D

egli Studi D
i V

ero, W
iley O

nline L
ibrary on [03/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 of 14 Human Brain Mapping, 2025

Random forest models leveraging both conventional volumet-
ric and global core-periphery organization-related MRI mea-
sures reached out-of-sample accuracies of 0.72, 0.74 and 0.73 
for the CIS/MS vs. HC, EDSS ≥ 4 vs. EDSS < 4 and IPS-I vs. 
IPS-P classifications, respectively. For both disease and cogni-
tive status predictive models, disruption of the core-periphery 
structure in the multiplex domain was the only connectomic 
metric independently contributing to the classification along 
with MRI-derived volumes. On the other hand, core-periphery 
disruption in single-layer domains (i.e., MC and FC) were at 
least as important as the homologous multiplex measure in 
predicting the level of physical disability (Figure 6D–F).

4   |   Discussion

By jointly modelling three different MRI modalities in a mul-
tilayer framework, we revealed clinically relevant disruption 
of the core-periphery organization of multimodal (structural-
functional) brain networks in a large multicentric sample of 
PwMS. We showed that the degree of weakening of the multi-
plex core-periphery depends on the disease phase and is associ-
ated with physical disability and cognition, being more sensitive 
than homologous single-layer connectivity measures to multiple 
sclerosis-related pathophysiological and cognitive changes and 
adding to conventional MRI measures.

As the information conveyed by connectivity data is multivar-
iate in nature and multimodal datasets become increasingly 
available, it has been advocated that multilayer networks, 
rather than single-layer architectures, may represent the 
ideal mathematical framework to study the brain as a com-
plex system [Battiston et al. 2018; Casas-Roma et al. 2022; De 
Domenico  2017]. However, how to meaningfully model to-
gether structural and functional aspects of brain connectivity 
is still debated, with novel possible methodological solutions 
continuing to emerge [Battiston et al. 2018; Casas-Roma et al. 
2022; De Domenico 2017]. The method adopted here to detect 
the core-periphery of multiplex networks has the advantage 
of minimizing the need for a priori assumptions, reducing the 
variable degree of arbitrariness and information loss that are 
inevitably associated with the processes of, e.g., thresholding/
binarizing connectivity matrices, or explicitly modelling in-
terlayer links [Battiston et al. 2018].

In keeping with previous knowledge on the structural and 
functional cores of the human connectome [Bassett et al. 2013; 
Hagmann et al. 2008] average coreness maps in the HC group 
revealed that the SC core included the superior frontal and 
superior parietal cortex, as well as subcortical GM structures, 
while rolandic and occipital cortical regions participating in the 
somatomotor and visual networks constituted the functional 
core. On the other hand, a less pronounced core-periphery or-
ganization was observed in the MC layer, with lower absolute 
values of core nodes resulting from a more distributed coreness 
pattern. Notably, while the coreness of the multiplex network 
was strongly influenced by the SC layer, it also captured the role 
of functional hubs (e.g., in the occipital cortices) whose impor-
tance was neglected by diffusion-based networks. This confirms 
that, while being sensitive to single-layer contributions, the mul-
tiplex setting provides a unique, and potentially more accurate, 

representation of the brain core-periphery structure [Battiston 
et al. 2018].

In PwMS, the regional coreness profile deviated significantly 
from the control group, with some increases in the associative 
cortex, a prominent decrease in subcortical GM structures, 
and the greatest effect sizes observed at the level of the thal-
ami. The thalamus is widely recognized as a vulnerable site 
for multiple sclerosis-related damage, with atrophy, structural 
disconnection and functional reorganization occurring from 
the early stages, evolving with the disease course and driving 
disability progression and cognitive impairment [Schoonheim 
et al. 2015]. Hence, it is not surprising to observe how thalamic 
structural and functional modifications result in a reduced 
topological centrality in the multiplex setting. Also, the in-
creased centrality of associative areas implicated in the default 
mode, control, and dorsal attention networks can be inter-
preted as a manifestation of network reorganization and (func-
tional) rerouting phenomena [Eijlers et al. 2017; Schoonheim 
et al. 2022].

At the global level, multiple sclerosis was associated with 
the weakening of the multiplex core-periphery structure, 
with hub regions found to be more impacted than would be 
expected based solely on their reference coreness in non-
diseased subjects. From a network science perspective, this 
conceptually equates multiple sclerosis with a targeted (i.e., 
network elements are impacted according to some index of 
topological centrality), rather than a random (i.e., network 
elements are impacted with uniform probability), attack 
[Fornito, Zalesky, and Breakspear 2015]. Previous evidence 
from sMRI [Steenwijk et al. 2016], dMRI [Shu et al. 2018], and 
fMRI [the MAGNIMS Study Group et  al. 2021] studies sug-
gested that multiple sclerosis-related brain damage occurs in 
a nonrandom, network-mediated fashion, a hypothesis that 
bears great transdiagnostic relevance as it seems to apply to 
many different neurological and psychiatric disorders [Cauda 
et al. 2018]. Several mechanisms (not necessarily mutually ex-
clusive) have been proposed to explain this phenomenon, in-
cluding diaschisis/transneuronal degeneration, nodal stress, 
shared vulnerability, and propagation of toxic agents/neu-
roinflammatory response along neuronal connections [Chard 
and Miller 2016; Jandric et al. 2021]. Our multimodal analysis 
suggests that these processes are likely to impact the different 
layers of brain connectivity in a synergistic manner, as wit-
nessed by the greater sensitivity of the multimodal network 
model toward multiple sclerosis-related changes compared to 
single-layer architectures. Indeed, a disruption of the core-
periphery structure in PwMS was also evident in the SC and 
FC layers alone, correlating with multiplex κ values. These 
are also the connectivity domains with a more pronounced 
core-periphery organization in the reference HC group, whose 
disruption falls in line with the known predilection of mul-
tiple sclerosis-related brain damage for structural and func-
tional network hubs [Pontillo et  al. 2024; Schoonheim et  al. 
2022]. On the other hand, a more preserved/stronger core-
periphery organization in PwMS was observable in the MC 
domain, which might be the expression of a more distributed 
GM damage [Collorone et al. 2020]. Interestingly, while cor-
relating with alterations in the SC and FC layers, disruption of 
the core-periphery organization appeared most prominently 
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in the multiplex setting, despite the slight opposite contribu-
tion of the MC layer. This finding confirms that a multilayer 
framework can encode richer information on disease-related 
changes to the brain's core-periphery organization than 
single-layer approaches.

While our sample was largely composed of patients with relaps-
ing–remitting multiple sclerosis, an association between clini-
cal phenotype and weakening of the core-periphery structure 
was still observable. A linear trend of progressive disruption in 
relapse-onset forms suggesting that it may parallel the progres-
sion of brain damage along the disease course. Also, disruption of 
the multiplex core-periphery organization was significantly asso-
ciated with levels of physical and cognitive disability, supporting 
the clinical relevance of the observed connectomic changes.

Core-periphery disruption in multimodal, rather than single-
layer, networks contributed to the prediction of cognitive impair-
ment, adding to conventional MRI measures. This confirms that 
the information conveyed by multilayer networks is more than 
just the sum of its parts, capturing network properties that are 
relevant for cognition but not evident from single layers (alone 
or in combination). On the other hand, a noisier picture emerged 
for the prediction of physical disability, although the relatively 
limited reliability of EDSS as a method to quantify disability 
and the contribution of spinal cord damage (unexplored here) 
are likely to play an important role [Meyer-Moock et al. 2014]. 
While simpler volumetric measures were still determinant for 
clinical predictions, we observed that a single comprehensive 
connectivity-based measure (multiplex κ) was associated with 
multiple sclerosis almost as strongly as whole brain volume, and 
consistently added to conventional MRI metrics for the predic-
tion of disease status and cognition, supporting its potential as a 
clinically relevant biomarker of connectome disruption.

The present study is not without limitations. First, the proposed 
approach is only one of the many possible solutions to model mul-
tivariate brain connectivity data, with alternative methods that 
may be more appropriate according to the research question and 
the available data or resources. Also, the purely cross-sectional 
nature of our dataset limits the potential for investigating causal 
relationships and exploring the prognostic value of the observed 
connectomic changes. In addition, clinical evaluations were 
limited to only EDSS and SDMT, whose weaknesses from a 
clinimetric point of view were exacerbated by the heterogeneity 
of the studied population and the retrospective, multisite, multi-
country nature of our study [Goldman et al. 2019]. To reliably 
estimate brain–behaviour associations in this setting, along 
with the efforts to improve neuroimaging data acquisition and 
processing, attention should be drawn on the clinical side of the 
equation to quantify disability in a more refined manner by, e.g., 
assessing additional cognitive domains and specific motor func-
tions, or adopting specific denoising/harmonization strategies 
[Tiego and Fornito 2022]. Finally, we used multilayer networks 
with the mainly descriptive purpose of characterizing brain con-
nectivity modifications and their clinical correlates in multiple 
sclerosis. Future studies following a predictive approach will be 
needed to validate the proposed neuroimaging-based biomarker 
as clinically useful beyond conventional measures and drive the 
analysis of multimodal connectivity data towards translational 
clinical impact [Woo et al., 2017].

5   |   Conclusion

In conclusion, we show that multilayer networks represent a bi-
ologically and clinically meaningful framework to jointly model 
multimodal MRI data, with disruption of the core-periphery 
structure emerging as a potential biomarker for disease severity 
and cognitive impairment in multiple sclerosis.
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Appendix A

Authors are members of the MAGNIMS network (magnetic resonance 
imaging in multiple sclerosis; https://​www.​magni​ms.​eu/​), which is a 
group of European clinicians and scientists with an interest in under-
taking collaborative studies using MRI methods in multiple sclerosis, 
independent of any other organization. The group is run by a steer-
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