On the impact of cross-domain edge detection in biomedical event extraction

IT UNIVERSITY OF COPENHAGEN

Alan Ramponi^{1,2,3}, Barbara Plank², Rosario Lombardo³

- 1 Department of Information Engineering and Computer Science, University of Trento, Italy
- 2 Department of Computer Science, IT University of Copenhagen, Denmark
- 3 Fondazione The Microsoft Research University of Trento Centre for Computational and Systems Biology, Italy

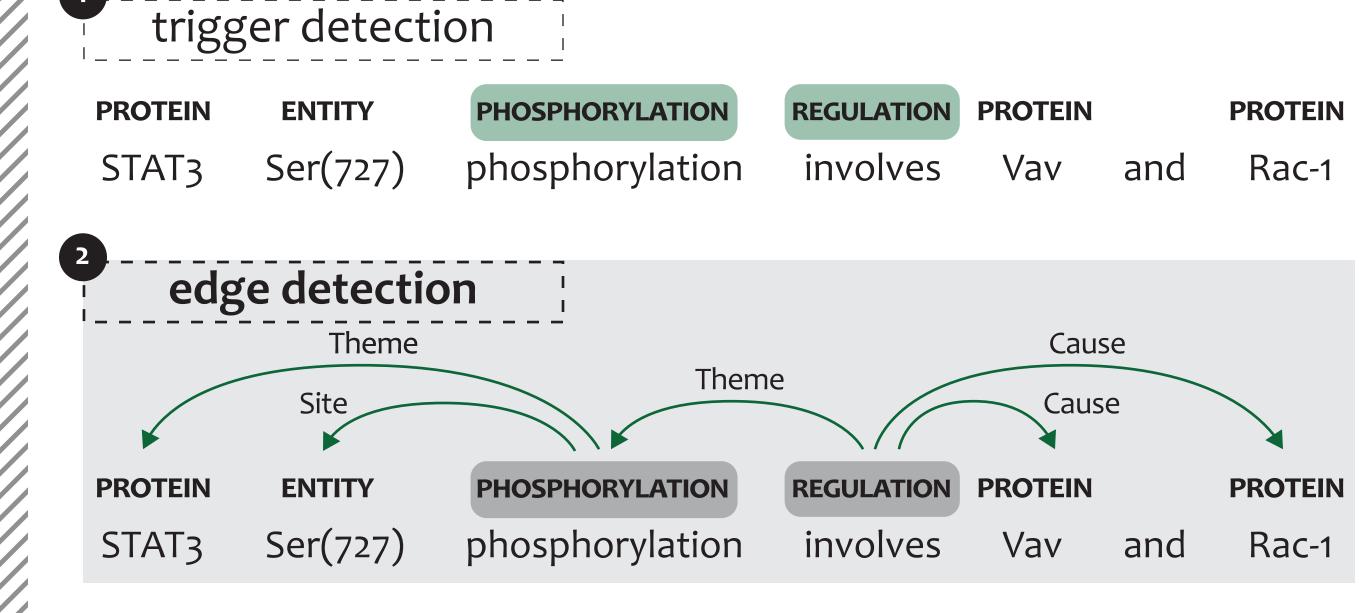
COSBI

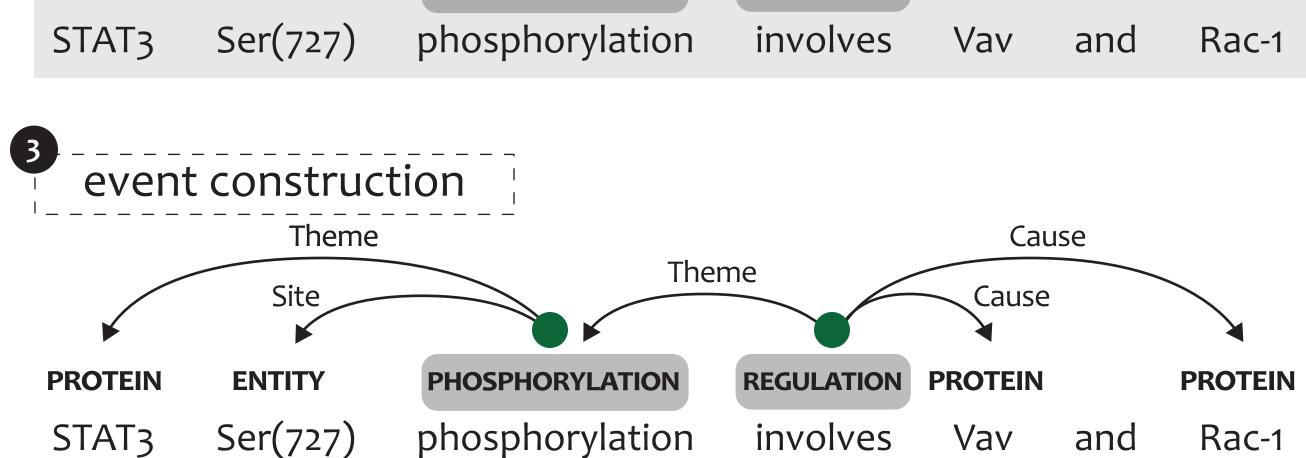
biomed word embeddings [2]

▶ biomed POS & dep. trees [3]

position embeddings [4]

Motivation


- ▶ Biomedical texts cover a diverse set of language aspects (≈ domains) [1]
- Scopic
- ► Event extraction systems for real-world applications
 - ► From in-domain to out-of-domain evaluation
 - ► Means for evaluation of single stages of the task


STAT3 Ser(727) phosphorylation involves Vav and Rac-1 NoEdge

encoding | conv + max pooling

The (sub)-task of event extraction

► Stratified: account for class imbalance

Tuned under 5-fold cross-validation:

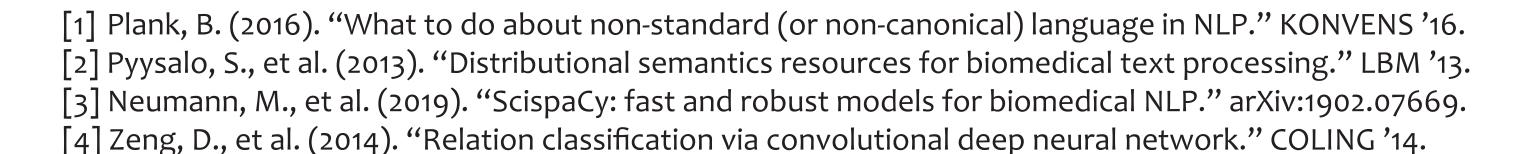
► Group: avoid sentences to fall into different splits

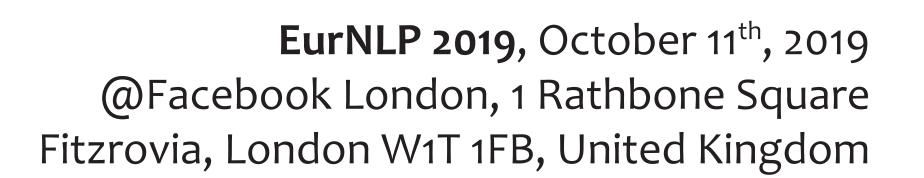
Corpora

// Methods

Gold standard data and some fuzzy language aspects

	scope	subdomain	corpus topic
GE11	full-texts	molecular biology	transcription factors in human blood cells
ID11	full-texts	infectious diseases	two-component regulatory systems
EPI11	abstracts	epigenetics	epigenetic change and modifications
PC13	abstracts	molecular biology	pathways in BioModels and PantherDB
MLEE	abstracts	physiology	angiogenesis (development of blood vessels)


Cross-domain performance of the in-domain baseline for edge detection (F1_M: macro F1, F1_m: micro F1)


$target \rightarrow$	GE11		ID11		EPI11		PC13		MLEE		Average drop	
source \place	$F1_M$	$F 1_m$	$F1_M$	$F1_m$	$F 1_M$	$F 1_m$	$F 1_M$	$F 1_m$	$F 1_M$	$F 1_m$	$F 1_M$	$F1_m$
GE11	79.84	88.21	75.74	86.88	76.81	83.89	52.90	84.56	49.61	85.47	-16.08	-3.01
ID11	60.66	79.97	69.49	89.52	51.87	71.04	50.01	81.10	50.12	83.35	-16.33	-10.66
EPI11	61.71	71.39	55.45	74.12	79.62	86.15	46.31	72.45	37.91	64.37	-29.28	-15.57
PC13	56.07	83.44	54.33	85.95	55.10	73.17	77.28	87.12	55.11	85.78	-22.18	-5.04
MLEE	56.21	81.67	56.08	87.34	54.54	71.7	61.94	85.09	76.23	<u>90.37</u>	-19.04	-8.92
Average											-20.58	-8.64

Results highlight the need for addressing the domain variance in biomedical texts. We plan to:

- ▶ Use domain adaptation (DA) methods to improve the performance of event extraction systems into the wild
- ► Release data for edge detection to the community to encourage research efforts in DA for single stages

References

