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Aquarius is a distributed theorem prover for first order logic with equality, developed for
a network of workstations. Given as input a theorem proving problem and a number n
of active nodes, Aquarius creates n deductive processes, one on each workstation, which
work cooperatively toward the solution of the problem. Aquarius realizes a number of
variants of a general methodology for distributed deduction, called deduction by Clause-
Diffusion, which appeared first in (Bonacina 1992). The subdivision of the work among
the processes, their activities and their cooperation are defined by the Clause-Diffusion
method. Aquarius incorporates the sequential theorem prover Otter, in such a way that
Aquarius implements the parallelization, according to the Clause-Diffusion methodology,
of all the strategies provided in Otter.

In this paper, we give first a brief outline of the Clause-Diffusion methodology, with
emphasis on the problem of distributed global contraction, e.g. normalization with respect
to a distributed data base. We describe the schemes for performing distributed global
contraction implemented in Aquarius, which avoid the backward contraction bottleneck
of purely shared memory approaches to parallel deduction. Then, we describe Aquarius,
its design, its features and user interface. We present a set of experiments conducted with
Aquarius and we analyze the results. We conclude with some comparison and discussion.

1. Introduction

In this paper we describe the distributed theorem prover Aquarius, which implements
a methodology for distributed automated deduction called Clause-Diffusion. Among the
features of Aquarius, we illustrate in detail its mechanisms to perform distributed global
contraction, which avoids the problem of the backward contraction bottleneck.

A theorem proving strategy C is given by a set of inference rules I and a search plan
Y. The inference rules can be further separated into two classes. The expansion inference
rules, such as resolution and paramodulation, derive new clauses from existing ones and
add them to the data base. The contraction inference rules, such as simplification and
subsumption, delete clauses or replace them by smaller ones. The search plan ¥ controls

T Supported in part by the GE Foundation Faculty Fellowship to the University of Iowa and by the
National Science Foundation with grant CCR-94-08667. E-mail address: bonacina@cs.uiowa.edu.

¥ Supported in part by grant NSC 83-0408-E-002-012T of the National Science Council of the Republic
of China. E-mail address: hsiang@csie.ntu.edu.tw.

0747-7171/95/010245 + 23 $08.00/0 © 1995 Academic Press Limited



246 M. P. Bonacina and J. Hsiang

the selection of the inference rule and the premises at each step. The repeated application
of ¥ and I generates a derivation. A derivation is successful if it reaches a solution of the
input problem. The main difficulty encountered in designing a theorem proving strategy
is the question of controlling the search. Even if a strategy is complete in theory, if too
large a portion of the search space has to be traversed before finding a proof, then it is
still incomplete in practice.

A promising approach emerged in recent years is to employ powerful contraction in-
ference rules. These inference rules are used either to delete redundant clauses or re-
place clauses by simpler ones, thus keeping the search space at a manageable level.
Contraction-based strategies are particularly effective in the presence of the equality pred-
icate. A typical example are the Knuth-Bendix type deduction methods (e.g., (Knuth and
Bendix 1970, Hsiang 1985, Hsiang and Rusinowitch 1987, Rusinowitch 1991, Bachmair
et al. 1989, Bachmair and Ganzinger 1990). We refer to (Dershowitz and Jouannaud
1990, Bonacina 1992) for more references). The effectiveness of these methods has been
amply demonstrated in a number of successful provers, e.g. Otter (McCune 1990), RRL
(Kapur and Zhang 1988) and SbReve (Anantharaman and Hsiang 1990), all of which
have obtained very impressive experimental results.

Although the ability to delete/replace data is the main reason why contraction-based
strategies are effective, it is also the major source of difficulty in parallelization. First, be-
cause data are added and deleted, parallelization cannot take advantage of pre-processing
techniques, which have been used effectively in Prolog-style deduction systems. We ana-
lyzed this and other issues in parallel deduction in (Bonacina and Hsiang 1994b), and we
reached the conclusion that coarse-grain parallelism is the most suitable for contraction-
based strategies.

The second problem is that if a datum is contracted into a simpler one, the new datum
may be used to contract other existing data. A typical example is when a rewrite rule is
simplified to another rewrite rule, and the new rule is used to simplify all existing rules
and equations. In order to keep the data base fully inter-reduced, if any equation/rule
is simplified during the process, it is used again to simplify other equations/rules. This
often results in an avalanche of contraction steps. In a shared-memory environment of
parallelization, this may cause a serious bottleneck in the contraction process, which we
call the backward contraction bottleneck. In our approach to distributed deduction, we
avoid this problem by introducing a notion of image set — an approximation of the global
data base. A number of ways of effectively using image sets to perform global contraction
are implemented in Aquarius, which we describe in this paper.

The foundation of Aquarius, the Clause-Diffusion methodology, aims at parallelizing a
strategy at the search level, by partitioning the search space among many concurrent de-
ductive processes, which search in parallel for a solution. As soon as one of them succeeds,
the whole distributed derivation succeeds. The deductive processes are asynchronous and
work in a largely independent fashion: each process has its own local data base, constructs
its own derivation and interacts with the others through message-passing. We refer to
(Bonacina and Hsiang 1995) for a full account of the Clause-Diffusion approach to dis-
tributed automated deduction.

Aquarius is built on top of the sequential theorem prover Otter. Aquarius implements
a few of the variants of the Clause-Diffusion methodology for all the theorem proving
strategies offered by Otter. Thus, Aquarius inherits most of Otter’s valuable features.
First, it exploits the high efficiency of basic operations and data structures, for which
Otter is well-known. Second, Aquarius maintains the philosophy of Otter of providing the
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user with a wealth of options to experiment with. New parameters related to distributed
execution are added to those of Otter. This flexibility allows the user to tailor the prover
to different classes of theorems, to use it to “simulate”, to some extent, other approaches
to distributed deduction such as the Team-Work method of (Avenhaus and Denzinger
1993), and to apply it to other strategies, such as Knuth-Bendix completion. Third,
Aquarius is highly portable, since it is written in C and PCN (Chandy and Taylor 1991),
under the Unix operating system, for a network of workstations. In such an environment,
each deductive process runs on a different node of the network. We ran Aquarius on a
number problems, which are reported in this paper. The experimental results are both
positive and negative. For the latter, we analyze the possible causes, especially in terms of
performance of communication, duplication of clauses and ways of partitioning the data
base. We feel that negative experimental results are important, because they highlight
the difficulties which remain to be solved and may contribute to further work.

In order to make the paper sufficiently self-contained, we decided to provide the reader
with some knowledge on the motivations behind the design of Aquarius. This is done in
Sections 2 and 3. Section 2 is a terse overview of the Clause-Diffusion methodology, which
serves as the theoretical basis for Aquarius. Section 3 discusses some of the problems
related to contraction in a distributed data base and the solutions adopted in Aquarius.
Therefore, these two sections have some overlap with part of (Bonacina and Hsiang 1995),
which is the complete description of Clause-Diffusion. The remaining four sections, and
thus the core of this paper, are devoted to Aquarius: the subtle points in its design and
implementation, the experimental results and their analysis. Related papers on different
topics are (Bonacina and Hsiang 1993), on distributed fairness, (Bonacina and Hsiang
1994a), on distributed subsumption, (Bonacina and McCune 1994), on another Clause-
Diffusion theorem prover, and (Bonacina and Hsiang 1994b), which is a survey of existing
approaches to parallel deduction.
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2. Distributed theorem proving by Clause-Diffusion

The Clause-Diffusion methodology is designed mainly for parallelizing contraction--
based strategies, although it also applies to other deduction strategies. In this section we
describe how a complete theorem proving strategy C =< I; ¥ > is executed according to
the Clause-Diffusion methodology. We consider a network of computers or a loosely cou-
pled, asynchronous multiprocessor with distributed memory. The latter may be endowed
with a shared memory component. Our methodology does not depend on a specific archi-
tecture; it can be realized on different ones. Parameters such as the amount of memory
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at each processor, the availability of shared memory and the topology of interconnection
of the processors or nodes, can vary.

The basic idea in our approach is to have a deductive process running at each node
and to partition the search space among these processes. We use p; ... p, to denote both
the deductive processes and the nodes. The search space is determined by the input
clauses and the inference rules. At the clauses level, the input and the generated clauses
are distributed among the nodes. For this purpose we use an allocation algorithm, which
decides where to allocate a clause. Once a clause ¥ is assigned to processor p;, ¥» becomes
a resident of p;. We also say that 1) belongs to p; or p; owns 1. We denote by S? the set
of residents of p; and the union of all the S¥’s forms the current global data base. Each
processor develops its own derivation by applying the inference rules in [ to its residents,
according to the search plan X.

The sets S*’s may not be disjoint, because a clause ¥ may be generated in many ways
and different copies of ¥ may appear in different sets of residents. Thus, the subdivision
into sets of residents is not a mutually exclusive partition. From the point of view of
automated theorem proving, however, no two clauses generated during a derivation are
identical. First, each clause has its own set of variables and thus copies of clauses are not
copies but variants. Second, a theorem prover typically needs to associate an identifier
to a clause and if the same clause is generated more than once during a derivation, it
gets each time a different identifier. If we keep these considerations into account, the S*’s
form a partition of the global data base, that we call the logical partition.

Since the global data base is partitioned among the nodes, no node is guaranteed to
find a proof using only its own residents. To ensure that a solution will be found when
one exists, the nodes exchange information, by sending each other their residents in form
of messages, termed inference messages. Each node uses the received inference messages
to perform inferences with its own residents. The derivation generated by a process p;
is made of all the inferences performed by p; on both residents and received inference
messages. We remark that the data base at node p; contains both the residents of p;
and the inference messages received by p;. In other words, the physical “partition” of
the data base is different from the logical partition, because a node physically stores
clauses that do not belong to it. Clearly, the physical “partition” is not a partition in the
mathematical sense of the word.

The purpose of the inference messages issued by a process p; is to let the other pro-
cesses know which clauses belong to p;, so that they can use them for inferences. In a
purely distributed system, inference messages are implemented as messages, which may
be routed or broadcast. Depending on the broadcasting algorithm, there may be several
inference messages, all carrying the same clause, active at different nodes. In a system
with a shared memory component, inference messages may be communicated through
the shared memory.

The separation of residents and inference messages is also used to partition the search
space at the inference level. Using the paramodulation inference rule as an example of
expansion step, we establish that the inference messages are paramodulated into the
residents, but not vice versa. This restriction has two purposes. First, it distributes the
expansion inference steps among the nodes. Second, it prevents a systematic duplication
of steps: if this restriction were not in place, then each paramodulation step between two
residents 1 of p; and ¥ of ps would be performed twice, once when 7 visits ps and
once when 1o visits p;. Other expansion inference rules can be treated in a similar way
(see Section 5.2).
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In a contraction-based strategy, an expansion step should be performed only if all the
premises are fully reduced. The contraction inferences to satisfy this key requirement
can be classified into forward contraction inferences and backward contraction inferences.
We call raw clause a clause newly generated from an expansion step. Input clauses are
also considered as raw clauses. Forward contraction is the reduction of raw clauses. If a
raw clause is deleted during forward contraction, it is not even added to the data base.
Backward contraction is the reduction of all the other clauses, i.e. clauses that are already
in the data base.

In a distributed contraction-based strategy, a first issue is whether contraction should
be restricted based on the ownership of clauses. In Clause-Diffusion as we developed it so
far, and in Aquarius, there is no subdivision of contraction steps based on ownership. The
rationale for this choice is that the motivation behind contraction is to keep the data base
always at the minimal and therefore it is better to allow each process to reduce as much as
possible. A second, even more important issue, is that contraction needs to be done with
respect to the global data base. Thus, Clause-Diffusion features a number of distributed
global contraction schemes to enable a node to perform contraction with respect to a
distributed set of clauses. We shall describe in part these schemes in Section 3.2 and we
refer to (Bonacina 1992) for a full account.

The distributed global contraction schemes are applied to both forward and backward
contraction. In the distributed setting, contraction of residents and inference messages
is backward contraction, while contraction of raw clauses is forward contraction. Only
after forward contraction, a raw clause is entitled to become a resident at a processor.
A clause that needs to be allocated is called a new settler. An allocation algorithm is
used to assign a new settler to a node. Every process executes the allocation algorithm
for its new settlers: it may decide either to retain a new settler or to send it to another
node. The purpose of the allocation algorithm is to partition the search space and keep
the work-load balanced as much as possible.

This is the basic working of the Clause-Diffusion methodology: expansion inferences
among residents and inference messages, distributed global contraction (both forward and
backward), which includes also the “local” contraction steps, e.g. between residents at
the same node, allocation of new settlers and mechanisms for passing inference messages.
By specifying the inference mechanism I, the search plan ¥ to schedule inference steps
and communication steps, the allocation algorithm, the distributed contraction scheme
and the mechanisms for the communication of messages, one obtains a specific strategy.
These elements are summarized in the following notion of distributed derivation: every
processor pg, 1 < k < n, computes a derivation

(S; M;CP; NS)§ H(S; M; CP; NS)¥ Lo (S M CP NS)* b

where S¥ is the set of residents, MF is the set of inference messages, C P} is the set of raw
clauses and N SF is the set of new settlers at py at stage i. The state of the derivation at
processor py and stage i is represented by the tuple (S; M; CP; N.S)%. More components
may be added if indicated by a specific strategy. A step in a derivation at a processor
pr can be either an inference step, expansion or contraction, or a communication step.
For instance, sending an inference message for 1) € S* from node pj, to an adjacent node
p; can be written as (S* U {y}, M7) F (SF U {¢}, M7 U {1}). A distributed derivation is
the collection of the asynchronous derivations computed by the nodes and it succeeds as
soon as the derivation at one node finds a proof.
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3. Contraction in a distributed data base

In distributed theorem proving, we call global contraction the task of reducing a clause
with respect to the global data base, i.e. the union of the sets of residents of the par-
allel deductive processes. In Clause-Diffusion, the global data base is distributed and
global contraction is done by the schemes for distributed global contraction introduced in
(Bonacina 1992). By allowing global contraction in distributed memory, these techniques
offer a solution to the problem of the backward contraction bottleneck, which appears
in shared memory implementations. In this section, we describe first this problem and
then the mechanisms for distributed global contraction implemented in Aquarius. More
details can be found in (Bonacina and Hsiang 1995).

3.1. THE BACKWARD CONTRACTION BOTTLENECK

We anticipated in the previous section how contraction steps can be separated into for-
ward contraction and backward contraction. Designing an effective and efficient method
for parallelizing a strategy which features backward contraction is a much more compli-
cated task than for a strategy which employs only forward contraction. Indeed, backward
contraction has turned out to be a critical problem for shared memory implementations
(Lusk and McCune 1992, Yelick and Garland 1992) of parallel theorem proving with
contraction, while some other implementations simply do not implement backward con-
traction (e.g. DARES (Conry et al. 1990) and PARROT (Jindal et al. 1992)). This
problem emerges, although with less dramatic consequences than in theorem proving,
when designing parallel implementations of the Buchberger algorithm (Chakrabarti and
Yelick 1993a, Chakrabarti and Yelick 1993b, Hawley 1991, Siegl 1990, Vidal 1990).

Forward contraction amounts to the normalization of a raw clause with respect to the
static data base of all the clauses existing when the raw clause is generated. Thus, the
task can be done once and for all when the raw clause is derived. Backward contraction
involves the normalization of any clause with respect to all the clauses which may be
generated afterwards. The normalization tasks need to be repeated as new clauses are
generated. It follows that the data base is highly dynamic and there is no read-only
data, i.e. all the items in the data base need be accessible not only for reading but
also for writing. In turn, this implies that the clauses cannot be pre-processed into fast,
specialized data structures, such as those used in approaches to parallel rewriting in
equational programs, e.g. (Kirchner and Viry 1992).

Furthermore, in contraction-based strategies, raw clauses are not used for expansion
steps. Therefore, forward contraction does not enter in conflict with expansion. But
backward contraction does, because it affects clauses that are already being used as
parents of expansion steps. Finally, a clause which is reduced by a backward contraction
step, should be tested for further contraction with respect to all the other clauses. Thus, a
single backward-contraction step may induce many. In shared memory implementations
such as (Lusk and McCune 1992, Yelick and Garland 1992), this avalanche growth of
contraction steps causes a write-bottleneck, the backward contraction bottleneck, since
all the backward contraction processes ask write-access to the shared memory, where
all the clauses are stored. Not all of them may be served and an otherwise unnecessary
sequentialization is imposed. The clauses which are supposed to be subject to backward
contraction may not be made available for other tasks, e.g. expansion steps, so that these
are delayed as well.
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3.2. MECHANISMS FOR DISTRIBUTED GLOBAL CONTRACTION

In (Bonacina 1992), we gave two classes of schemes for distributed global contrac-
tion: global contraction by travelling and global contraction at the source. In the first, we
assume that no node has access to the global data base |J_, S* and thus global con-
traction employs messages. In global contraction at the source, we assume that every
node has access to an “approximation” of the global data base, so that a raw clause can
be contracted at the node where it was generated. The choice of the appropriate global
contraction scheme depends on the available resources: global contraction by travelling
requires very fast communication, while global contraction at the source requires either
sufficiently large local memories or a shared memory component to store the global data
base. In this paper we describe a scheme called global contraction at the source by localized
image sets, which is implemented in Aquarius.

In global contraction at the source by localized image sets, we assume that the local
memory of each node p; is large enough to hold an approximated version SH* of the
global data base |J;_, S*. The SH* are called localized image sets. The name “image
set” says that such set contains “images”, i.e. copies, of the residents in the systems.
The attribute “localized” specifies that the image sets are in the local memories of the
nodes. Each process uses its localized image set as set of simplifiers to perform global
contraction of residents, raw clauses and incoming messages. (In global contraction at the
source by global image set in shared memory, a single image set of the global data base
is held in shared memory.)

The localized image sets can be built by utilizing the inference messages, that are
already in place to allow non-local expansion inferences. It is sufficient to establish that
whenever a node p; receives an inference message, it stores the clause carried by the mes-
sage in SH'. Depending on the specific strategy, only those inference messages intended
to be used as simplifiers need to be saved in the sets SH’s. The identities SHY = |J}_; S°
for all j,1 < j < n, do not hold in general, because the sets of residents S%’s keep evolving.
Thus, a localized image set is an approximation of the global data base. However, each
of the SH"’s is logically equivalent to the global data base |J!-, S%, if all the persistent
residents, i.e. those not deleted by contraction, are broadcast as inference messages.

Our global contraction schemes do not suffer from the backward contraction bottleneck,
because the clauses being rewritten by contraction are held in the local memories of the
nodes. Therefore, concurrent contractions are done independently in the local memories
at the nodes, with no need to wait to get write-access to a shared memory. An additional
advantage of image sets is that such large sets of simplifiers can be implemented as
discrimination nets (Christian 1989, Stickel 1989) for the purpose of fast simplification.

3.3. UPDATING THE IMAGE SETS WITH RESPECT TO CONTRACTION

Global contraction by image sets poses the fundamental problem of whether and how
the simplifiers in the image sets should subject themselves to contraction. The question
is whether the advantage of keeping the S H*’s fully reduced is worth the cost of updating
them. In (Bonacina 1992), we proposed several different approaches. In the following, we
apply them to global contraction at the source by localized image sets.

1 Maintenance by direct contraction:
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An obvious policy is to keep the elements in SH* fully and inter-contracted by using
SH? and S? within node p;. This solution is conceptually simple and does not involve
sophisticated record keeping. The main disadvantage is that there is redundancy
of contraction steps, since the contraction of a clause ¥ may be performed at all
nodes which have a copy of 4. The impact of such redundancy on performances
will depend on the amount and complexity of the contraction steps prescribed by
the strategy and on the efficiency of the implementation of contraction.

No contraction of image sets:

If the image sets are used only as a data base of simplifiers, one may choose to forbid
contraction on the SH%’s. Only insertion of new elements is allowed. If 1) € SH’ — 87
is reducible, it may be reduced at the node p;, such that ) € S%, and a reduced
form of v will be added to SH7 eventually. The rationale for this policy is that if
SHY is used only as a data base of simplifiers, the presence of both 1 and a reduced
form ¢’ does not represent serious redundancy. In fact, especially if the SH7’s are
implemented as discrimination nets, frequent updates of the elements in the net
may not be cost-effective. On the other hand, if the elements in SH’ are used for
expansion steps, redundant clauses in the image sets would induce the generation
of more redundant clauses. The next policy provides a mechanism to update the
SH%s with respect to contraction without resorting to the direct application of
contraction inferences.

Update by inference messages:

We associate to every resident of a node a unique identifier: for every node p; and for
every resident ¥ of p;, ¥ receives an identifier a, so that a is the unique identifier
of ¢ within the local data base S® at p;. It follows that < p;,a > is the unique
global identifier of 1 over the network. We also establish that a resident 1 at p; has
another attribute, the birth-time, i.e. the time at p;’s clock when ¢ was recorded
as a resident of p;. Overall the format of a resident is < v, a,z >€ S?, where a is
the identifier and x is the birth-time. The global identifiers of the residents can be
used to index the clauses in the image sets. An image set may be implemented as
a hash table, with the global identifier as key.

According to this labelling of residents, we assume that an inference message carries
a clause together with its global identifier and birth-time. An inference message for
a resident < 1,a,z >€ S* has the form < 1, p;,a,z >. These additional fields
allow a node to recognize that an inference message is carrying a reduced form
of a previously received clause. If a resident < 1, a,z > of p; is reduced at p; to
< ' a,y >, where z and y (y > x) are times at p;’s clock, then a new inference
message < ¢, p;, a,y > will be broadcast eventually. Whenever a node p; receives
an inference message, e.g. < ¥, p;,a,y >, it checks whether an element ¢ with
the same global identifier < p;,a > is stored in SHY. If this is the case, node Dj
compares 1 and 1)’ according to the strategy’s ordering on clauses and saves the
smaller in SH7. (Contraction-based strategies feature a well-founded ordering on
clauses used in contraction rules). If the two clauses are not comparable, the one
with most recent birth-time is saved.

Update by inference messages does not apply if < ¥, a,z >€ S is deleted, rather than
replaced, by a contraction step. No more messages with identifier < p;, a > will be issued
and therefore, localized image sets may never be updated. However, inference messages
may still help: whenever an inference message < 1, p;, a, x > is deleted at a node py, it is
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possible to check whether SH* contains any clause with identifier < p;,a > and delete it.
This is not sufficient in general to update all the localized image sets, because clause 1)
may not be deleted at pg. Then, if performance is hindered by not updating the localized
data bases with respect to deletions, one may consider broadcasting a special deletion
message with identifier < p;,a > to inform all the nodes that the resident at < p;,a >
has been deleted.

It is also possible to integrate different policies, in order to combine their positive
features. The strategies implemented in Aquarius apply first update by inference messages
and then direct contraction. Fewer direct contraction steps will be performed in general, if
direct contraction is preceeded by update by inference messages. Also, deletion messages
are not needed.

4. Clause-Diffusion strategies

In the previous sections, we briefly presented the Clause-Diffusion methodology by
describing its objectives, essential operations and various unique features. We give a
summary of operations performed by a strategy designed according to our methodology:

local expansion inferences between residents and between residents and inference
messages (resulting in the generation of raw clauses),

local contraction of residents and inference messages,
global forward contraction of raw clauses,

global backward contraction of residents,

allocation of new settlers,

communication of messages.

For most of the operations we outlined a number of possibilities. A specific Clause-
Diffusion theorem proving strategy can be formed by making specific choices from the
various options described. In other words, a Clause-Diffusion strategy is specified by
choosing

a set of inference rules,

a search plan that specifies the order of performing expansion, contraction and
communication steps at each process,

the algorithm to allocate new settlers,

the scheme for global contraction,

the mechanism for message-passing.

In (Bonacina and Hsiang 1993), we proved that the Clause-Diffusion methodology is
correct: if C =< I;¥ > is a complete sequential strategy, its parallelization by Clause-
Diffusion yields complete distributed strategies. Since in Clause-Diffusion all the con-
current processes have the given inference system I, parallelization does not affect the
completeness of the inference system. Therefore, our correctness result consisted in prov-
ing that parallelization by Clause-Diffusion preserves the completeness of the search plan,
i.e. its fairness. In the following, we describe the Aquarius theorem prover, an implemen-
tation of a specific class of Clause-Diffusion strategies.
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5. The Aquarius theorem prover

Aquarius is a distributed contraction-based theorem prover, designed according to
the Clause-Diffusion methodology. Aquarius has been developed on a network of work-
stations, so that each deductive process runs on a node of the network. Each process
executes a modified version, called Penguin (Bonacina 1992), of the code of the theorem
prover Otter (version 2.2) (McCune 1990). Therefore, Aquarius inherits the logic (first
order logic with equality), the theorem proving approach (refutational, resolution-based
theorem proving) and the strategies of Otter. The Penguin program is structured into a
communication layer and a deduction layer. The communication layer, written in PCN
(Foster and Tuecke 1991), implements the message-passing part. The deduction layer,
written in C, incorporates the code of Otter and implements the components required by
Clause-Diffusion, such as the partition of the expansion steps, the distributed contraction
scheme, the allocation algorithm, et cetera. The presentation of Aquarius in this section
is organized in three parts: the communication layer, the deduction layer and the user
interface.

5.1. THE COMMUNICATION LAYER

The communication layer is written in the language PCN (2.0) (Chandy and Taylor
1991, Foster and Tuecke 1991). PCN is a high-level language with parallel statements,
guarded commands, recursion and primitives for communication. PCN allows to invoke
C functions from within PCN functions. This makes it natural to use PCN for the
communication interface and C for the computationally intensive work, e.g. deduction.
We describe first the data structures and then the control for the communication layer.

Communication among the deductive processes is realized by using streams, a data
structure provided by PCN. A stream is a data structure that permits communication of
messages from a producer to one or more consumers. In Aquarius, streams are used to
form a fully connected virtual topology: for any two processes p; and p; there is a stream
with producer p; and consumer p; and a stream with producer p; and consumer p;. This
is implemented as an n X n matrix C of streams, where C[i, j] is the stream from node
p; to node p;.

Streams are connected by means of two PCN primitives: the merger and the distributor
(Foster and Tuecke 1991). A merger implements many-to-one communication by merg-
ing many input streams into one output stream. A distributor implements one-to-many
communication by placing the contents of one input stream onto many output streams.
Each deductive process is equipped with a merger and a distributor: the process reads
messages from the output stream of the merger and writes messages on the input stream
of the distributor. Then, for node p;, all the streams Clk, i], 0 < k < n— 1, are connected
as input streams to the merger of p;, so that p; receives all the messages from the streams
Clk,d]. All the streams C[i, k], 0 < k < n — 1, are connected as output streams to the
distributor of p;: a message emitted by p; with destination p; is sent on the stream C'i, 7],
while a message intended for broadcasting is placed on all the streams Ci, k].

Aquarius features both data messages, e.g. inference messages and new settlers, and
control messages, e.g. termination messages. The latter should have higher priority. How-
ever, PCN streams are first-in-first-out queues, so that it is not possibile to differentiate
the priority of messages placed on a stream. A simple solution is to define a second ma-
trix D and reserve D[i, j], 0 < 4,5 < n — 1 to control messages from node p; to node p;.
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Then, the streams in D are serviced with higher priority than the streams in C', thereby
ensuring that control messages have higher priority than data messages.

The communication layer is the outermost level of the Penguin program. It is struc-
tured into two main procedures, called receive and main_infer, invoked by a parallel
statement:

receive() || main_infer.

Parallel statements in PCN are executed by interleaving. Thus, each process in Aquarius
consists of some interleaving of receiving messages from the other nodes (the activity
of receive), performing deductions and sending messages (the activities of main_infer).
The receive procedure acts as a consumer on the input stream of the deductive process.
It receives both control messages and data messages and stores the clauses contained in
the received data messages in the Inbound_messages list. The main_infer procedure
invokes the deduction layer, which may return one of the following:

1 a request of sending messages: main_in fer resumes control and forward the mes-
sages generated by the deduction layer on the appropriate streams. In case of data
messages, the clauses are extracted from the Outbound_-messages list.

2 an exit code meaning that the deduction layer suspended, because its Sos (Set
of Support: see next subsection) became empty: main_infer suspends too. It will
resume, and re-start the deduction layer, as soon as the receive procedure receives
data messages, carrying clauses that will be inserted in the Sos.

3 an exit code meaning that the deduction layer found a proof: main_in fer broadcasts
a message < halt,? > and halts.

Upon receiving < halt,? >, all the other processes will halt as well. Synchronization
of termination is also ensured by using streams: each deductive processes has a status
stream for this purpose. Whenever a deductive process sends or receives a message of
the type < halt,: >, it closes its status stream. When all the status streams are closed,
Aquarius halts.

5.2. THE DEDUCTION LAYER

The deduction layer of the Penguin program inherits the inference system, the data
base organization and the basic search plan of Otter. The expansion inference rules
include binary resolution, factoring, hyperresolution (both positive and negative), unit-
resulting resolution and paramodulation. The contraction inference rules include sub-
sumption and simplification. For most of these rules a few restrictions and variations are
implemented. Different subsets of inference rules may be selected by setting appropriate
options.

The data base of clauses is divided into two main components, the Set of Support (Sos)
and the set of Usable clauses. According to the Set of Support Strategy (Wos et al. 1965),
each expansion inference step uses at least one parent from the Sos. The Demodulators
list contains the equations to be used as simplifiers and the Passive list contains clauses
to be used for forward subsumption and unit-conflict only. (A unit-conflict step is a
binary resolution step which generates the empty clause.) In addition to these lists, that
are the same as in Otter, there are the lists Inbound_messages and Outbound_messages,
that we mentioned in the previous section.
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The Aquarius program is invoked with the input file and the number of requested
deductive processes as parameters. The user also specifies on which workstations in the
network the deductive processes should be run. An input file for Aquarius has the same
format as for Otter. A typical input file contains up to four list of clauses, i.e. the initial
contents of the lists Usable, Sos, Demodulators and Passive, and the commands to set
the options. In the input phase, one deductive process, e.g. pg, reads the clauses from
the input file, inter-reduces them, executes the allocation algorithm for each input clause
and broadcasts all the input clauses to all the other processes. We remark that while all
the input clauses are physically allocated at all the nodes, they are logically partitioned
by the allocation algorithm: each clause belongs to a specific process.

The basic search plan prescribes the execution of a loop. At each iteration, a clause,
termed given clause, is selected from the Sos. Before the selection of the given clause, all
the clauses in Inbound_messages are moved to the Sos. In this way, the clauses received
as inference messages from other deductive processes enter the Sos and take part in the
deduction: the given clause can be either a resident or an inference message. Let i1, ..., iy,
be the set of active expansion inference rules. For each rule ix, 1 < k < n, the deductive
process, e.g. p;, executes two phases:

1 It generates all the clauses, ¥y ...v,, that can be derived by rule i; from the
given clause and any clause in the Usable list. Each newly generated clause, or
raw clause, is forward contracted, (“pre-processed” in the terminology of Otter),
right after having been generated. For instance, .,, 1 < m < n — 1, is forward
contracted before 1,41 is generated. If v, is not deleted by forward contraction,
the allocation algorithm is executed to determine its destination. If ¢,,,, or possibly
its reduced form, is allocated to p; itself, ¥, is appended to Sos. Otherwise, it is
appended to Outbound_-messages to be sent as new settler to its destination.

2 The clauses which have been just appended to Sos are applied to contract pre-
existing clauses (backward contraction, or “post-processing” in Otter terminology)

These two phases are performed for all expansion rules in i1, ..., 4,. If the given clause is
a resident, a copy of it is appended to Outbound_messages, so that it will be broadcast
as inference messagei. Each deductive process broadcasts only its own residents. Care
is taken to prevent repeated broadcasting of the same clause: for instance, input clauses
are not broadcast when selected as given clauses. Then the given clause is appended to
Usable and the execution proceeds with the next iteration of the loop body.

The above control is the very basic search plan of the prover. Aquarius has many
options, partly inherited from Otter, which allow the user to tailor this basic search plan
into different variations. For instance, one may choose among several criteria to sort
clauses in the Sos, criteria to retain or discard clauses, and orderings to orient equations,
just to mention a few. The advantage of this organization, i.e. a basic search plan and
many variations implemented as options, is that the user can experiment with a variety of

T Aquarius has an option, called post-process-new-settlers-before-send, that enables the new
settlers destinated to other nodes to be simplifiers for a round of backward contraction.

I An option in Aquarius controls whether the given clause should be appended to Outbound_-messages
before or after the inferences with the given clause are performed. As a default, a copy is appended to
Outbound_messages before the inferences. The clause will actually be broadcast later by the communi-
cation layer.
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strategies. For instance, since not all combinations of options yield complete strategies,
the user has the opportunity to play with incomplete strategies, which may be very
interesting, as they may turn out to be especially efficient on specific problems.

5.2.1. THE EXPANSION INFERENCES

A characterizing feature of the treatment of expansion inferences in a Clause-Diffusion
strategy is their subdivision among the deductive processes based on ownership. The sub-
division is realized by establishing that only the owner of a clause can perform paramod-
ulation steps into that clause. In other words, each process uses its residents and the
received inference messages to paramodulate into its residents, but it does not paramod-
ulate into inference messages.

This restriction can also be applied to expansion inference rules other than paramod-
ulation. For binary resolution, we call positive-literal (negative-literal) parent the clause
which provides the positive (negative) literal resolved upon, and we say that the positive-
literal parent “paramodulates into” the negative-literal parent. Thus, a process will not
resolve upon the negative literals of received inference messages. For hyperresolution, neg-
ative hyperresolution and unit-resulting resolution, we say that the satellites “paramod-
ulate into” the nucleus. Accordingly, a clause is considered as a nucleus only if it is
resident, while inference messages may serve as satellites. We recall that this partition
does not affect the completeness of the strategy. Intuitively, those inferences that a pro-
cess does not perform on inference messages are performed by the process which owns
those clauses. A proof of this result was given in (Bonacina and Hsiang 1993).

The implementation of the subdivision of expansion inferences in Aquarius utilizes the
indexing techniques for term retrieval that Aquarius inherits from Otter. All inferences
require some form of term retrieval (atoms and thus literals are regarded as terms for
this purpose). Expansion inferences require to retrieve from the data base all the terms
which are unifiable with a given term. Forward contraction inferences require to retrieve
anti-instances: when one tries to reduce or subsume a given term, one looks for more
general terms in the data base. Backward contraction inferences require to retrieve in-
stances: when trying to apply a clause i to reduce or subsume other clauses in a data
base, we look for instances of the terms of . Otter, and thus Aquarius, employs path-
indexing (Stickel 1989) for retrieval of unifiable terms and instances, and discrimination-
net-indexing (Christian 1989, Stickel 1989) for retrieval of anti-instances (McCune 1988).
(This is the default, which the user may modify by setting specific options.)

From the point of view of the implementation of inferences, the data base of clauses is
regarded as a data base of terms: all clauses are indexed, i.e. their terms are inserted in
path-indexes and discrimination nets. For each inference steps, the appropriate indexes
are consulted: for instance, when resolving with a positive literal A, the prover consults
a path-index to retrieve all the negative literals unifiable with A. Back-pointers from
literals to clauses allow one to know which clauses a retrieved literal belongs to.

In this context, ownership-based restrictions to the application of expansion inferences
can be implemented naturally by restricting accordingly the operations of clause indexing
and term retrieval. For instance, only the terms of residents are inserted in the index of
terms to be paramodulated into. For binary resolution, term retrieval will return negative
literals only if they belong to residents. Similarly, when the term retrieval procedure is
applied to search for the nucleus of an hyperresolution step, it will return only literals of
residents.
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5.2.2. THE CONTRACTION INFERENCES

Aquarius implements distributed global contraction by localized image sets (Subsec-
tion 3.2). The image sets are formed by saving the received inference messages. This
is done simply by treating the received inference messages like the residents: a received
inference message is stored in Sos, indexed, possibly appended to Demodulators and then
moved from Sos to Usable after having been extracted as given clause. In this way, we do
not add another data structure to implement the localized image set, but we implement
it through the lists of clauses and the indexes (path-indexes and discrimination nets)
that are already available. This approach keeps the code simple, by handling residents
and foreign clauses as uniformly as possible.

The localized image sets are updated by using both direct contraction and update by
inference messages (Section 3.3). The latter mechanism compares an incoming inference
message with a clause in the localized image set having the same global identifier. Either
one of the two clauses is deleted. The relative order of execution of this type of deletion
(called Discard Messages (Bonacina and Hsiang 1993)) and other contraction inference

rules is relevant to the monotonicity of the inferencest. For instance, assume that p;
stores in its localized image set the equation [ ~ 7, received as an inference message
<l ~rpjat > from p;. At a later stage of the derivation, p; receives an inference
message < | ~ 1/, p;,a,t" >, which has the same global identifier of [ ~ r and carries a
reduced form [ ~ v’ of | ~ r. If Simplification is applied before Discard Messages, [ ~ r
may reduce [ ~ ' to r ~ r’ and then [ ~ r would be deleted by Discard Messages because
of 7 ~ 7’. The result is non-monotonic, since both [ ~ r and its reduced form [ ~ r’ are
lost. The cause of the problem is that [ ~ r is applied to simplify its reduced form [ ~ 7’.
Such a phenomenon could never happen in a sequential computation, where the unique
copy of | ~ r would have been deleted upon the generation of I ~ r’. This incorrect
behaviour can be prevented by applying Discard Messages before the other contraction
rules.

A new feature of Aquarius is the implementation of Distributed Subsumption: in
(Bonacina and Hsiang 1994a), we observed how the unrestricted application of sub-
sumption may violate the fairness, hence the completeness, and the monotonicity of a
distributed derivation. The distributed subsumption inference rules of (Bonacina and
Hsiang 1994a) allows to perform subsumption, including subsumption of variants, with-
out causing these problems. We refer to (Bonacina and Hsiang 1994a) for a full treatment
of subsumption in distributed derivations.

5.2.3. THE DISTRIBUTED ALLOCATION OF CLAUSES

The basic allocation algorithm in Aquarius implements a simple idea of rotation: if
p; is the most recently selected destination, the next destination will be p;, where j =
(i + 1) mod n, for n the total number of nodes. We recall that in Clause-Diffusion there
is no centralized decision-making: the allocation algorithm is executed independently by
all processes. Thus, each process saves its most recently selected destination and picks
the next choice accordingly.

A few options allow the user to variate the basic allocation algorithm, e.g. by increasing

T Monotonicity is the dual property of soundness: an inference step is monotonic if it preserves the
set of logical consequences of the given set of clauses.
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the number of clauses that the processes allocate to themselves. For instance, the options
own-in-usable (own-in-sos) enables each process to keep as residents all the input
clauses in Usable (Sos). These two options proved to be valuable experimentally: basic
axioms, such as associativity, commutativity or distributivity, are generally given in the
input Usable and it is clearly very useful, sometimes necessary to obtain a proof in
reasonable time, that such axioms are owned by all the processes. Two more options that
apply the same philosophy, although just to special types of raw clauses, are own-factors
and own-new-function-rules. The first one induces each process to allocate to itself
the factors of its residents. The second one causes each process to keep as residents
the equations generated from its residents by the New Function Rule, i.e. “splitting” as
defined in the original paper by Knuth and Bendix (Knuth and Bendix 1970).

5.3. THE USER INTERFACE

Similar to Otter, Aquarius is not interactive during the derivation: given the input,
the program runs to completion, generally without any significant interaction with the
user. The motivation for this characteristic is that we want to obtain proofs that are
fully automated, with no human intervention during the run. Interactivity with the user
is concentrated during the preparatory phase, when the user sets the options for the
experiment. Accordingly, these provers have a very high number of options. Otter 2.2
has 96 options, which affect several components and features of the prover: the inference
mechanism, the search plan, the amount and type of the information recorded in the
log file of a run et cetera. Aquarius adds 25 new options, controlling communication,
distributed allocation of clauses, priority of communication versus deduction, criteria to
extract clauses from the Sos and more. As attested by the popularity of Otter, the high
number of options does not make these provers difficult to use. The main reason is that
given a class of problems, e.g. purely equational problems, the setting of most options
is the same for almost all the problems in the class, while the user may still play with
the more subtle options on each problem. During a typical experimental session, the user
will run the prover with a standard configuration of options, and then, depending on the
outcome, proceed to modify the configuration, usually one option at a time, and repeat
the run. Thus, even if the options are many, in practice the user needs to concentrate on
very few of them at one time. Different settings of the options define different strategies
and therefore the result, whether a proof is found and in how much time, is clearly
influenced by the selection of the options.

The user may set different options patterns, and thus different strategies, at different
deductive processes. This flexibility allows the user to induce Aquarius to reproduce inter-
esting features of other methods. For instance, by having different strategies at different
nodes, Aquarius may “simulate” to some extent the Team-Work method of (Avenhaus
and Denzinger 1993), albeit without the “referee processes” and the periodical recon-
struction of a common data base that are characteristic of the Team-Work method. The
saturation option (which is basically the knuth-bendix option of Otter) prescribes to
perform (unfailing) Knuth-Bendix completion, so that Aquarius executes Knuth-Bendix
completion in parallel. The stand-alone option induces a mode of execution where each
deductive process works by itself as a sequential prover, with no message-passing. One
purpose of this option is to try in parallel different strategies on a given problem. Another
application is to give to each deductive process a different input and have the nodes work-
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ing in parallel on different problems. For instance, one may want to give to each process
a different lemma from a large problem and have the lemmas proved independently.

6. Experiments with Aquarius

In this section we report the results of some experiments performed with Aquarius
at Stony Brook. The experiments were conducted on three Sun 4 Sparc workstations
connected by the Ethernet of the department. At the time when the experiments were
conducted, only up to three workstations were available for experiments with Aquarius.
The Sparc-stations used for our experiments were not isolated from the rest of the network
and were simultaneously used by other users. Therefore the reported run times represent
the performances under realistic working conditions.

In Table 1, Aquarius-n is Aquarius with n nodes and run times are expressed in seconds.
For Aquarius-1 the run-time is that of the best run found. For n > 1, the run-time of
Aquarius-n is the run time of the first node to succeed, which includes both inference time
and communication time. However, it includes neither the initialization time spent to set
up the PCN processes at the nodes nor the time spent to close all the PCN processes
upon termination. Thus, the turn-around time observed by a user is usually longer than
the run time. The other processes run till either they receive a halting message or also
find a proof, whichever comes first. Among the listed problems, two are propositional
(pigeon and salt), four are purely equational (lukad, robbins2, s7 (a problem in algebraic
logic) and w-sk), two are in first order logic with equality (ec and subgroup) and the
remaining ones are in first order logic.

6.1. ANALYSIS OF THE EXPERIMENTS

Table 1 shows mixed results. On problems cd12, c¢d13, cd90, ec, impl, imp2, imp3,
lukab, s7, sam lemma and subgroup, that is more than half of the tests, Aquarius shows
some speed-up. The speed-up is approximately linear, e.g. Aquarius-2 versus Aquarius-1
on problems cd12, ed13, impl, imp2, imp3, and Aquarius-3 versus Aquarius-1 on problem
s7, or even super-linear, e.g. Aquarius-2 versus Aquarius-1 on problems lukab and s7. On
the remaining problems the run-time remains approximately the same, partly because
those problems which can be solved sequentially in a few seconds are probably too easy
for the parallelization to pay off. However, in some cases where Aquarius shows some
speed-up, it happens that Aquarius-2 speeds up over Aquarius-1, but Aquarius-3 does
not improve or even worsen the run-time. Many factors contribute to these results. First,
Aquarius is a prototype, which was developed in a short five months period. Second,
Aquarius-1 is generally slower than Otter, which indicates that the overhead induced
merely by having embedded the C part in the PCN part is not irrelevant. Third, most of
the above problems are taken from the input sets for Otter and ROO (Lusk and McCune
1992) and therefore problems in first order logic prevail over problems with equality.
On the other hand, problems with equality are those where the impact of backward
contraction, the backward contraction bottleneck and its avoidance by Clause-Diffusion,
is most dramatic. In the following, we analyze in more detail the performances of Aquarius
in terms of communication, duplication and distribution of clauses.



Distributed Deduction by Clause-Diffusion 261

Table 1. Experiments with Aquarius

Problem Aquarius-1  Aquarius-2  Aquarius-3
cd12 (Lusk and McCune 1992) 104.18 50.98 47.56
¢d13 (Lusk and McCune 1992) 98.79 45.32 51.07
¢d90 (Lusk and McCune 1992) 3.10 0.63 11.87
cn (Lusk and McCune 1992) 5.04 8.63 14.50
ec 3.03 1.96 1.77
impl (Lusk and McCune 1992) 6.63 2.64 3.54
imp2 (Lusk and McCune 1992) 7.25 3.31 7.43
imp3 (Lusk and McCune 1992) 32.05 17.92 38.89
luka5 (Bonacina 1991) 844.20 299.24 1079.45
pigeon (ph4) (Pelletier 1986) 8.21 7.66 8.14
robbins2 (Lusk and McCune 1992) 21.62 22.91 24.12
s7 (Wasilewska 1993) 630.62 208.37 192.54
salt 3.89 4.45 5.49
sam’s lemma 6.35 5.40 3.90
subgroup (Wos 1988) 15.55 9.36 17.40
w-sk (McCune and Wos 1988) 3.50 3.52 3.34

6.1.1. OBSERVATIONS OF COMMUNICATION PROBLEMS IN AQUARIUS

Communication in Aquarius appears to be slow, not necessarily because the Clause-
Diffusion method generate too many messages for the network, but rather because the
implementation of message-passing in PCN appears to be slow in delivering each message.
An evidence of this is that some delay may already be observed in the broadcasting of
the input clauses, when still very few messages have been generated. Indeed, it happens
that the process which reads and broadcasts the input clauses is in many cases the first
one to succeed. Also, it happens that p; and p, have shorter run times than pg, simply
because the start of the derivations by p; and p- is delayed by the necessity of waiting for
the input clauses. Another evidence that communication is hindering the performances
is the following. Let 1) be a clause which can be derived independently at two nodes, e.g.
po and p1. In many runs, it happens that pg generates and broadcasts 1, but p; derives it
on its own, before receiving the inference message from pg. The intuitive idea of inference
messages in the Clause-Diffusion methodology is that in general the clause carried by
the message is new for the receiver. Therefore, when the above phenomenon appears in
Aquarius the purpose of the inference messages is sort of defeated.
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The performance of Aquarius is affected by the implementation of communication in
PCN in at least two ways:

1 PCN version 2.0, that was used for Aquarius, gives priority to the execution of C
code over the execution of PCN code.

2 The communication done through PCN and Unix is hampered by too many levels
of software, causing too much copying for each message.

The effect of the first problem is that no PCN message-passing will take place until the C
code completes. The producers of messages, i.e. the deduction layers of the processes, are
written in C, while the consumers, i.e. the communication layers, are written in PCN. It
follows that a consumer may not be scheduled from the active queue to get its pending
messages while the C code is being executed at the node. Therefore communication,
which is already likely to be the potential bottleneck in a distributed implementation,
is at a strong disadvantage with respect to inference. The producers generate messages
at a much faster pace than the consumers may consume them. Indeed, we observed
executions, where the inference part of the computation halts upon finding a proof and
then several pending messages are delivered all together.

We countered this problem by reducing the size of the C subprocesses, i.e. by causing
the deduction layer to suspend more frequently. If the deduction layer (which is C code)
suspends, the communication layer (PCN code) may resume and consume the pending
messages. In a first implementation of Aquarius, the deduction layer would not suspend
until it needs to send messages or it found a proof or its Sos is empty. This was modified
so that the deduction layer would suspend after processing every given clause. This
modification brought an improvement in most experiments, but it does not seem to
have been sufficient. An alternative approach is to synchronize the communication and
deduction layers within each node. Currently, they are largely asynchronous. A possible
synchronization is to let the deduction layer proceed only when all the pending messages
have been received by the communication layer.

6.1.2. DUPLICATION

After having experienced these problems with communication, we resorted to try to
reduce their impact by reducing the amount of communication, that is, by empowering
the single nodes. If communication is slow, it is better that all nodes are able to work
as independently as possible. Some of the reported experiments were done by setting
the options affecting the allocation of clauses in such a way that each node owned most
of the input clauses. In other experiments, the chosen allocation options induced each
node to retain most of its raw clauses as residents. None of the reported results, however,
refer to executions where each node could keep all the clauses: neither the stand-alone
mode nor any combination of options having the same effect were used. In all the listed
experiments, there was some partitioning of the search space.

Option patterns that reduce communication, combined with the use of localized image
sets, induce an increase in duplication. It appeared from the trace files of the experiments,
that often many of the clauses needed in the proofs were generated independently at all
nodes. For instance, in one run of the problem ¢d90, the clause P(e(e(x,y),e(x,y)))
appeared in the trace of the execution at po as follows: first, it is generated and sent as
new settler to pg; second, it is generated again and kept as resident; third, it is received
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as inference message from pg; fourth, it is generated one more time and sent as new
settler to py; fifth, it is received as new settler. Finally, P(e(e(z,y), e(x,y))) is subsumed
by P(e(x,x)). This amount of duplication is one of the causes of the lack of speed-up.

The Clause-Diffusion methodology and Aquarius are sufficiently flexible to provide
combinations of different degrees of communication and duplication. However, the Aquar-
ius prover and the option patterns used in the experiments reported here realized a
duplication-oriented version of Clause-Diffusion, which was not intended to be the main
one, since it reduces the significance of partitioning the search space. The basic idea
in the Clause-Diffusion methodology is to partition the search space. Indeed, the cases
where Aquarius-2 speeds-up significantly over Aquarius-1 are exactly those where par-
titioning the search space helps. More precisely, in most of the positive results, one of
the concurrent processes finds a shorter proof than the one found by the sequential
prover, because it does not retain some clauses. An example is ¢d90, where Aquarius-2
has super-linear speed-up over Aquarius-1. The latter finds an 8-steps proof, which uses
first P(e(e(x,y),e(x,y))) and then P(e(x,z)). Aquarius-2 finds a 5-steps proof, which
uses P(e(e(z,y),e(x,y))) and does not even generate P(e(z,x)).

6.1.3. DISTRIBUTION OF CLAUSES

The criteria for distributed allocation of clauses implemented in Aquarius try to bal-
ance the work-load by balancing the number of residents at the nodes. They keep into
account neither the contents of a message, i.e. the clause, nor the history of the deriva-
tion, in order to decide its destination. The design of more informed allocation policies,
e.g. policies which use informations about the clause being allocated and the history of
the derivation, may be an important progress. As an example, one may think of heuris-
tics of the form: if more than n clauses with property @ have been allocated to node p;,
then the next clause with property @ will (or will not, depending on @) be allocated to
p;. Such criteria, however, will be more expensive to compute and it may not be simple
to devise them. More generally, the question is how to find better ways to partition the
search space of a theorem proving problem.

6.2. COMPARISON WITH RELATED WORK

Few parallel theorem provers for contraction-based strategies have been implemented
so far. The closest to Aquarius are probably ROO (Lusk and McCune 1992) and DIS-
COUNT, that implements the Team-Work method for equational logic (Avenhaus and
Denzinger 1993). Few experiments were reported in (Avenhaus and Denzinger 1993). A
comparison of Team-Work and Clause-Diffusion is given in (Bonacina and Hsiang 1995).
Therefore, we consider here ROO, which has the same logic as Aquarius, first order logic
with equality, and was also conceived as a parallelization of Otter. ROO showed linear
speed-up on most non-equational problems, but its performances on equational problems
suffered from the backward contraction bottleneck. ROO uses parallelism at the clause
level, since each concurrent process consists in selecting and processing a given clause. A
common data base of clauses is kept in shared memory and thus the search space is not
partitioned. Such a purely shared approach to parallel theorem proving, with parallelism
at the term/clause level, does not modify the search space (and does not intend to).
Thus, the parallel prover works on a search space which is basically the same as in the
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sequential case and it is likely to find a similar proof. The parallel prover speeds-up over
the sequential one by generating faster the same proof and the results are rather regular.

Our philosophy is quite different. Because of the high degree of dynamicity of the data
base induced by backward contraction, we adopted coarse-grain parallelism. In order to
avoid the backward contraction bottleneck, we chose to work in distributed memory. In
this context, we aim at parallism at the search level by partitioning the search space.
Then, the concurrent processes deal with search spaces that may be radically different
from that of the sequential prover. For instance, in Aquarius, it is sufficient that a process
does not retain a certain clause and sends it to settle at another node to change its search
space dramatically. By considering a different portion of the search space, a shorter proof
may be found. In such cases, the distributed theorem prover speeds-up considerably.
However, if the search space turns out to be partitioned in a way that does not reveal
a shorter proof, the distributed prover is at a strong disadvantage, as it may try to
generate the sequential proof from a fragmented search space. The irregular results are
the consequence of this kind of phenomenon.

7. Discussion

In the first part of the paper, we outlined our methodology for distributed deduc-
tion by Clause-Diffusion, which is the foundation of the Aquarius theorem prover. The
basic idea of this methodology is to partition the search space of the problem among
concurrent, asynchronous deductive processes, which search for a solution in a largely
independent fashion. This approach realizes a sort of coarse-grain parallelism, that we
termed parallelism at the search level (Bonacina 1992). Our methodology does not ex-
clude the application of techniques for fine-grain parallelism, such as those employed for
parallel rewriting languages, e.g. (Kirchner and Viry 1992). While the Clause-Diffusion
methodology applies to theorem proving strategies in general, it is designed especially for
contraction-based strategies. In previous work (Bonacina and Hsiang 1995), we formu-
lated the problem of global contraction with respect to a distributed data base, clarifying
the differences between forward global contraction and backward global contraction, and
indicating in the bottleneck of backward contraction a critical problem in the shared
memory approaches to parallel automated deduction. In (Bonacina 1992), we proposed
as solutions several schemes for distributed global contraction. In this paper, we focused
on global contraction at the source by localized image sets, since it is the scheme imple-
mented in Aquarius.

In the following sections, we described Aquarius and analyzed some experiments.
Aquarius showed speed-up on most of the reported problems, especially those involv-
ing equations and requiring more than a few seconds to be solved sequentially. On the
other hand, we did not obtain speed-up on all problems and on some problems Aquarius-
2 improved over Aquarius-1, but Aquarius-3 did not. At the operational level, the main
cause for the mixed results of Aquarius is the inefficiency of communication. At least
part of the problem is related to the choice of the PCN language, which perhaps was
not designed for the parallelization of a large, computation-bound C program, such as
Otter. The problem with communication may represent evidence in favor of a less dis-
tributed version of the Clause-Diffusion methodology. Because of the use of localized
image sets, Aquarius implements a distributed duplication-oriented approach. If a shared
memory component is available, one may choose global contraction at the source by
image set in shared memory (see Section 3.2 and (Bonacina 1992)) and obtain a mized
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shared-distributed approach. This approach reduces the amount of both communication,
because exchange of messages may be replaced in part by access to the shared memory,
and duplication, because just one image set is maintained. On the other hand, if a sin-
gle image set in shared memory is used, the search spaces considered by the different
concurrent processes may turn out to be less differentiated than in the more distributed
approach of Aquarius. Thus, the results might be more regular, but also, in a sense, less
challenging than in Aquarius. The latter probed a new thinking of the parallelization
of search problems in general, whose success may require a better understanding of the
parallelization of search.

Our analysis is based on empirical observations. A theoretical analysis in terms of com-
putational complexity would be desirable in principle, but it is not possible at this early
stage of research in parallel theorem proving. In fact, a fine-grained algorithmic com-
plexity analysis is not usually done even for sequential theorem proving strategies. One
reason is that a theorem proving strategy embeds several algorithms, including match-
ing, unification, term retrieval, term replacement, term ordering, proof reconstruction,
and more, so that a fine-grained analysis should combine the complexities of all these
components. Furthermore, a theorem proving strategy is a semidecision procedure, so
that the classical concept of worst-case analysis may be applied separately to the inner
algorithms, but does not apply naturally to the strategy as a whole. Beside these techni-
cal difficulties, the main problem is that the complexity of theorem proving is in essence
complexity of search, and little work has been done yet to develop tools for the analysis
of search procedures comparable to those available for the analysis of algorithms.

Since the development of Aquarius, we implemented a second prototype for Clause-
Diffusion (Bonacina and McCune 1994) and we oriented our research on parallel search.
Partitioning effectively the search space of a theorem proving strategy is generally a
difficult problem. For contraction-based strategies, it is especially difficult and largely
unexplored. In subgoal-reduction strategies, such as Prolog technology theorem proving
methods (e.g., (Astrachan and Loveland 1991, Bose et al. 1992, Schumann and Letz
1990, Stickel 1988)), the search space is well-defined. It is formed by all the subgoals that
can be derived from the original goal by using the axioms and the inference rules, e.g.
the rules of model-elimination (Loveland 1969). The standard representation as a tree of
subgoals is satisfactory and most subgoal-reduction strategies use search plans that have
in common the effective and well-understood idea of depth-first search with iterative
deepening (Korf 1985). In strategies that do not work by reduction of the goal, the
definition and representation of the search space is not as well-defined. These strategies
have a very high variety of inference rules and search plans. In addition, in contraction-
based strategies, the deletion and replacement of clauses by contraction induces a degree
of dynamicity in the search space itself. Based on this understanding, one of the directions
in our current research aims at studying the definition and representation of search spaces
and search plans, both sequential and parallel, in the presence of contraction. One of the
goals of this type of research is to contribute toward a theoretical analysis of theorem
proving strategies.
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