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Abstract. In this paper, we present a novel computational framework for portfolio-wide risk man-

agement problems, where the presence of a potentially large number of risk factors makes traditional

numerical techniques ineffective. The new method utilises a coupled system of BSDEs for the valuation

adjustments (xVA) and solves these by a recursive application of a neural network based BSDE solver.

This not only makes the computation of xVA for high-dimensional problems feasible, but also produces

hedge ratios and dynamic risk measures for xVA, and allows simulations of the collateral account.

1. Introduction

As a consequence of the 2007–2009 financial crisis, academics and practitioners have been redefining

and augmenting key concepts of risk management. This made it necessary to reconsider many widely

used methodologies in quantitative and computational finance.

It is now generally accepted that a reliable valuation of a financial product should account for the pos-

sibility of default of any agent involved in the transaction. Moreover, the trading activity is nowadays

funded by resorting to different sources of liquidity (the interest rate multi-curve phenomenon; see,

e.g., Cuchiero et al. (2019)), so that the existence of a single funding stream with a unique risk-free

interest rate no longer represents a realistic assumption. Additionally, the increasingly important role

of collateral agreements demands for a portfolio-wide view of valuation.

These stylized facts are incorporated into the valuation equations through value adjustments (xVA).

Value adjustments are terms to be added to, or subtracted from, an idealized reference portfolio value,

computed in the absence of frictions, in order to obtain the final value of the transaction.

The literature on counterparty credit risk and funding is large and we only attempt to provide insights

on the main references as they relate to our work. Possibly the first contribution on the subject is a

model for credit risk asymmetry in swap contracts in Duffie and Huang (1996). Before the 2007–2009

financial crisis, we have the works of Brigo and Masetti (2005) and Cherubini (2005), where the concept

of credit valuation adjustment (CVA) is analyzed. The possibility of default of both counterparties

involved in the transaction, represented by the introduction of the debt valuation adjustment (DVA),

is investigated, among others, in Brigo et al. (2011, 2014).

Another important source of concern to practitioners apart from default risk is represented by funding

costs. A parallel stream of literature emerged during and after the financial crisis to generalize valua-

tion equations in the presence of collateralization agreements. In a Black-Scholes economy, Piterbarg

(2010) gives valuation formulas both in the collateralized and uncollateralized case. Generalizations to

the case of a multi-currency economy can be found in Piterbarg (2012), Fujii et al. (2010, 2011), and
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Gnoatto and Seiffert (2021). The funding valuation adjustment (FVA) is derived under alternative as-

sumptions on the Credit Support Annex (CSA) in Pallavicini et al. (2011), while Brigo and Pallavicini

(2014) also discusses the role of central counterparties for funding costs. A general approach to funding

in a semimartingale setting is provided by Bielecki and Rutkowski (2015).

Funding and default risk need to be united in a single risk management framework to account for

all possible frictions and their interplay. Contributions in this sense can be found in Brigo et al.

(2018) by means of the so-called discounting approach. Burgard and Kjaer (2011a,b) generalize the

classical Black-Scholes replication approach to include some of the aforementioned effects. A more

general backward stochastic differential equation (BSDE) approach is provided by Crépey (2015a,b)

and Bichuch et al. (2018a,b). The equivalence between the discounting approach and the BSDE-based

replication approaches is demonstrated in Brigo et al. (2018).

A common fundamental feature of such generalized risk management frameworks is the necessity to

adopt a portfolio-wide point of view in order to properly account for risk mitigation benefits arising

from diversified positions. Adopting such portfolio-wide models, as is the present market practice in

financial institutions, involves high-dimensional joint simulations of all positions within a portfolio.

Commonly used numerical techniques (see for instance Shöftner (2008); Karlsson et al. (2016); Broadie

et al. (2015); Joshi and Kwon (2016)) make use of regression approaches, based on a modification of

the Least-Squares Monte Carlo approach in Longstaff and Schwartz (2001), to alleviate the high

computational cost of fully nested Monte Carlo simulations such as those initially proposed in Gordy

and Juneja (2010); Broadie et al. (2011). We refer to Albanese et al. (2017) for a high-performance

GPU implementation of nested Monte Carlo for bilateral xVA computations in a modern set-up

including credit, margin and capital, for a large book of about 200,000 trades with 2000 counterparties.

For an application of adjoint algorithmic differentiation (AAD) to xVA simulation by regression see,

for instance, Capriotti et al. (2017); Fries (2019).

An alternative, hybrid, approach to counterparty risk computations is taken in de Graaf et al. (2014),

where standard pricing methods are applied to the products in the portfolio and outer Monte Carlo

estimators for exposures. Techniques based purely on PDEs generally suffer from the curse of dimen-

sionality, a rapid increase of computational cost in presence of high dimensional problems. A PDE

approach with factor-based dimension reduction has been proposed in de Graaf et al. (2018).

In the broader context of high-dimensional problems involving large amounts of data, machine learning

techniques have witnessed dramatically increasing popularity. Of particular interest is the concept of

an artificial neural network (ANN). From a mathematical perspective, ANNs are multiple nested

compositions of relatively simple multivariate functions. The term deep neural networks refers to

ANNs with several interconnected layers. One remarkable property of ANNs is given in the ‘Universal

Approximation Theorem’, which essentially states that any continuous function in any dimension can

be represented to arbitrary accuracy by means of an ANN, and has been proven in different versions,

starting from the remarkable insight of Kolmogorov’s Representation Theorem in Kolmogorov (1956)

and the seminal works of Cybenko (1989) and Hornik (1991). Recently, building heavily on earlier

work of Jentzen et al. (2018), the recent results by Reisinger and Zhang (2020) have proven that

deep ANNs can overcome the curse of dimensionality for approximating (nonsmooth) solutions of

partial differential equations arising from (open-loop control of) SDEs. A result to the same effect

has been shown for heat equations with a zero-order nonlinearity in Hutzenthaler et al. (2018). This

is potentially useful in the context of risk management as simple models for CVA can be expressed

in this form. For a recent literature survey of applications of neural networks to pricing, hedging and

risk management problems more generally we refer the reader to Ruf and Wang (2019).
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In this paper, we investigate the application of ANNs to solve high-dimensional BSDEs arising from

risk management problems. Indeed, in the classical continuous-time mathematical finance literature

the random behavior of the simple financial assets composing a portfolio is typically described by

means of multi-dimensional Brownian motions and forward stochastic differential equations (SDEs).

In this setting, BSDEs naturally arise as a representation of the evolution of the hedging portfolio,

where the terminal condition represents the target payoff (see, e.g., El Karoui et al. (1997)). In essence,

(numerically) solving a BSDE is equivalent to identifying a risk management strategy.

Numerical BSDE methods published recently for xVA computations for single derivatives include

Borovykh et al. (2018). The difficulty of extending these computational techniques to the portfolio

setting is alluded to in Remark 11 of Ninomiya and Shinozaki (2019).

Here, we will consider a discretized version of the BSDE and parametrize the (high dimensional) control

(i.e., hedging) process at every point in time by means of a family of ANNs. Once written in this

form, BSDEs can be viewed as model-based reinforcement learning problems. The ANN parameters

are then fitted so as to minimize a prescribed loss function.

The line of computational methods we follow has been initiated in the context of high-dimensional

nonlinear PDEs in Han et al. (2018) and further investigated in Han and Long (2020) and Fujii et al.

(2019), and has led to a class of methods for the solution of BSDEs (characterised by parametrisation

of the Markovian control by ANNs), which we will collectively refer to as the Deep BSDE Solver

for simplicity. By way of financial applications, and xVA specifically, a primal-dual extension to the

Deep BSDE Solver has been developed in Henry-Labordere (2017) and tested on stylised CVA- and

IM(Initial Margin)-type PDEs; the Deep BSDE Solver has also been applied specifically to exposure

computations for a Bermudan swaption and a cross-currency swap in She and Grecu (2017).

Our approach goes beyond these earlier works in the following regards: we

• consider a rigorous, generic BSDE model for the dynamics of xVA, including CVA, DVA, FVA

and ColVA (collateral valuation adjustment), for a derivative portfolio;

• introduce algorithms for the computation of ‘non-recursive’ xVAs – such as CVA and DVA –

and ‘recursive’ xVAs – such as FVA – by (recursive) application of the Deep BSDE Solver,

and deduce a posteriori bounds on the error of the neural network approximations;

• show how the method can be used for the simulation of xVA sensitivities and collateral,

and provide careful numerical tests, showing good (i.e., basis point) accuracy for different

adjustment computations, including an example with 100 underlying assets.

We will refer to our method as Deep xVA Solver. More recently, conditional risk measure compu-

tations (VaR and ES), based on deep learning regression, have been proposed in an xVA framework

in Albanese et al. (2021), using a similar numerical approach to the one developed independently for

BSDEs in Huré et al. (2020). Different from Han et al. (2018), this solver approximates the value

function, not the control, by means of an ANN and reconstructs it at each time step by dynamic

programming techniques. A comparison of the performance and robustness of the two approaches will

require comprehensive testing in industry-relevant settings. We see as a structural advantage of our

algorithm that it allows to obtain the xVA hedging strategy with no need of further computation (i.e.

differentiation).

The applicability of the presented methodology is largely independent of the particular choice of the

xVA framework. In particular, we do not take a position in the so-called FVA debate or on the

question of including KVA in the pricing equation. The term FVA debate here refers to the possible

overlap between the debt value adjustment (DVA) and the funding benefit adjustment (FBA). This

overlap has been addressed in Brigo et al. (2019). The inclusion of KVA is still debated, noting, for
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example, the recent criticism of KVA in Andersen et al. (2019). Our approach is general enough to

accommodate different specifications of the price decomposition. In particular, our methodology can

be applied immediately to the framework of Brigo et al. (2019).

We restrict the presentation of the method to a single counter-party – or ‘netting set’ – for simplicity,

as is routinely done in banks. There are economic grounds for extending the computation to multiple

netting sets simultaneously (see, e.g., Albanese et al. (2021)) and our method generalises accordingly.

The paper is organized as follows. The financial framework is established in Section 2. In Section

3, after shortly recalling the main features of the Deep BSDE Solver presented in Han et al. (2018),

the algorithm for xVA computation is introduced. Numerical results for a selection of test cases are

shown in Section 4, while Section 6 concludes.

2. The financial market

For concreteness, we adopt the market setup of Biagini et al. (2021) and subsequently formulate

our computational methods in the context of this model. Let us re-iterate the point elaborated in

the introduction, however, that the computational framework, which is the focus of this article, is

adaptable to a range of model specifications.

We fix a time horizon T < ∞ for the trading activity of two agents named the bank (B) and the

counterparty (C). Unless otherwise stated, throughout the paper we assume the bank’s perspective

and refer to the bank as the hedger.

All underlying processes are modeled over a probability space (Ω,G,G,Q) , where G = (Gt)t∈ [0,T ] ⊆ G
is a filtration satisfying the usual assumptions (G0 is assumed to be trivial). We denote by τB and

τC the time of default of the bank and the counterparty, respectively. Specifically, we assume that

G = F ∨ H, where F = (Ft)t∈ [0,T ] is a reference filtration satisfying the usual assumptions and

H = HB ∨HC , with Hj =
(
Hjt
)
t∈ [0,T ]

for Hjt = σ
(
Hu|u ≤ t

)
, and Hj

t := 1{τ j≤t}, j ∈ {B,C}. We set

τ = τC ∧ τB.

In the present paper we will extensively make use of the so called Immersion Hypothesis (see, e.g.,

Bielecki and Rutkowski (2004)).

Assumption 1. Any local (F,Q)-martingale is a local (G,Q)-martingale.

We consider the following spaces:

• L2(Rd) is the space of all FT -measurable Rd-valued random variables X : Ω 7→ Rd such that

‖X‖2 = E
[
|X|2

]
<∞.

• H2,q×d is the space of all predictable Rq×d-valued processes φ : Ω × [0, T ] 7→ Rq×d such that

E
[∫ T

0 |φt|
2dt
]
<∞.

• S2 the space of all adapted processes φ : Ω× [0, T ] 7→ Rq×d such that E
[
sup0≤t≤T |φt|2

]
<∞.

2.1. Basic traded assets.

Risky assets. For d ≥ 1, we denote by Si, i = 1, . . . , d, the ex-dividend price (i.e. the price) of risky

securities. All Si are assumed to be càdlàg F-semimartingales.

Let WQ =
(
WQ
t

)
t∈ [0,T ]

be a d-dimensional (F,Q)-Brownian motion (hence a (G,Q)-Brownian motion,

thanks to Assumption 1). We introduce the coefficient functions µ : R+ × Rd 7→ Rd, σ : R+ × Rd 7→
Rd×d, which are assumed to satisfy standard conditions ensuring existence and uniqueness of strong
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solutions of SDEs driven by the Brownian motion WQ. We assume thatdSt = µ(t, St) dt+ σ(t, St) dWQ
t ,

S0 = s0 ∈ Rd,
(2.1)

on [0, T ], where St = (S1
t , . . . , S

d
t ) ∈ Rd. Note that we are not postulating that the processes Si are

positive.

Throughout the paper we assume that the market is complete for the sake of simplicity.

Cash accounts. Given a stochastic return process x := (xt)t≥0, which is assumed bounded, right-

continuous and F-adapted, we define the cash account Bx with unitary value at time 0, as the strictly

positive continuous processes of finite variation

Bx
t := exp

{∫ t

0
xs ds

}
, t ∈ [0, T ].(2.2)

In particular, Bx := (Bx
t )t∈ [0,T ] is also continuous and adapted.

Defaultable bonds. Default times are assumed to be exponentially distributed random variables with

time-dependent intensity

Γjt =

∫ t

0
λj,Qs ds, t ∈ [0, T ], j ∈ {B,C},

where λj,Q are non-negative bounded processes.

We introduce two risky bonds with maturity T ? ≤ T issued by the bank and the counterparty. We

directly state their dynamics under Q. We refer to Biagini et al. (2021) for more details. The risky

bonds evolve according to

dP jt = rjtP
j
t dt− P jt− dM

j,Q
t , j ∈ {B,C},(2.3)

where M j,Q, j ∈ {B,C} are compensated Poisson random measures, see equation (3.6) in Biagini

et al. (2021).

2.2. xVA framework. We consider a family of contingent claims within a portfolio with agreed

dividend stream Am = (Amt )t∈[0,T ], m = 1, . . . ,M , and set Āmt := 1{t<τ}A
m
t + 1{t≥τ}A

m
τ−. We

let Tm ≤ T denote the maturity time of the m-th contract. The value of the single claim within

the portfolio, ignoring any counterparty risk or funding issue, that we refer to as clean values, are

denoted by (V̂ m
t )m=1,...,M and satisfy the following forward-backward stochastic differential equations

(FBSDEs), for m = 1, . . . ,M ,−dV̂ m
t = dAmt − rtV̂ m

t dt−
∑d

k=1 Ẑ
m,k
t dW k,Q

t ,

V̂ m
Tm

= 0,
(2.4)

which reads, in integral form,

V̂ m
t := EQ

[
Br
t

∫
(t,Tm]

dAmu
Br
u

∣∣∣∣∣Ft
]
, t ∈ [0, Tm],(2.5)

where r is a collateral rate in an idealized perfect collateral agreement.

For simplicity, we restrict ourselves to Europan-type contracts and, for m = 1, . . .M , denoted by the

Lipschitz function gm the payoff of the option we write Amt = 1{t≥Tm}gm(STm). In this case, with an
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abuse of notation, instead of equation (2.4) we consider−dV̂ m
t = −rtV̂ m

t dt−
∑d

k=1 Ẑ
m,k
t dW k,Q

t ,

V̂ m
Tm

= gm(STm).
(2.6)

Observe that the system (2.1) and (2.6) is decoupled, in the sense that the forward equation (2.1)

does not exhibit a dependence on the backward component.

We continue to follow the framework of Biagini et al. (2021), where the portfolio dynamics are stated

in the form of a BSDE under the enlarged filtration G. We set

Zkt :=

d∑
i=1

ξitσ
i,k(t, St), k = 1, . . . , d,(2.7a)

U jt := −ξjtP
j
t−, j ∈ {B,C},(2.7b)

f(t, V, C) := −
[
(rf,lt − rt) (Vt − Ct)+ − (rf,bt − rt) (Vt − Ct)−(2.7c)

+(rc,lt − rt)C
+
t − (rc,bt − rt)C

−
t

]
,

where

• ξi, i = 1, . . . , d, are the positions in risky assets, while ξB, ξC are the position in the bank and

counterparty bond respectively;

• rf,l, rf,b represent unsecured funding lending and borrowing rates;

• rc,l, rc,b denote the interest on posted and received variation margin (collateral);

• σi,k(t, St) is the (i, k)-th entry of the matrix σ(t, St), for i, k = 1, . . . , d;

• C+ and C− represent the posted and received variation margin/collateral and C = C+−C−.

All above processes are assumed to satisfy suitable regularity conditions ensuring existence and unique-

ness for a solution to BSDE (2.8) below. Both posted and received collateral are assumed to be

Lipschitz functions of the clean value of the derivative portfolio and we will write Ct = C(Vt).

We denote by V the full contract value, i.e. the portfolio value including counterparty risk and multiple

curves. The G-BSDE for the portfolio’s dynamics then has the form on {t < τ}
−dVt =

∑M
m=1 dĀmt + (f(t, V, C)− rtVt) dt−

∑d
k=1 Z

k
t dW k,Q

t −
∑

j∈{B,C} U
j
t dM j,Q

t ,

Vτ = θτ (V̂ , C), with

θτ (V̂ , C) := V̂τ + 1{τC<τB}(1−RC)
(
V̂τ − Cτ−

)−
− 1{τB<τC}(1−RB)

(
V̂τ − Cτ−

)+
,

(2.8)

where V̂t :=
∑M

m=1 V̂
m
t and RB, RC are two positive constants representing the recovery rate of the

bank and the counterparty, respectively.

In their Theorem 3.16, Biagini et al. (2021) show that there exists a unique solution (V,Z, U) for the

G-BSDE (2.8), and the process V assumes the following form on {t < τ}:

Vt = Br
tEQ

[
M∑
m=1

∫
(t,τ∧T ]

dĀmu
Br
u

+

∫ τ∧T

t

f(u, V, C)

Br
u

du+ 1{τ≤T}
θτ (V̂ , C)

Br
τ

∣∣∣∣∣Gt
]
.(2.9)

To prove existence and uniquencess for the G-BSDE, Biagini et al. (2021) employ the technique

introduced by Crépey (2015a) and reformulate the problem under the reduced filtration F. Stated in

such a form, the problem is also more amenable to numerical computations.
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We consider the following F-BSDE on [0, T ]:−dXVAt = f̄(t, V̂t,XVAt) dt−
∑d

k=1 Z
k
t dW k,Q

t ,

XVAT = 0,
(2.10)

where

f̄(t, V̂t,XVAt) := −(1−RC)
(
V̂t − Ct

)−
λC,Qt

+ (1−RB)
(
V̂t − Ct

)+
λB,Qt

+ (rf,lt − rt)
(
V̂t −XVAt − Ct

)+
− (rf,bt − rt)

(
V̂t −XVAt − Ct

)−
+ (rc,lt − rt)C

+
t − (rc,bt − rt)C

−
t − (rt + λC,Qt + λB,Qt )XVAt.

(2.11)

By standard results on BSDEs, see e.g. Delong (2017, Theorem 4.1.3, Theorem 3.1.1), the existence and

uniqueness of solutions (V̂ m, Ẑm) ∈ S2(R)×H2,q×1, for m = 1, . . . ,M , and (XVA, Z) ∈ S2(R)×H2,q×1

to, respectively, (2.6) and (2.10), holds under the following conditions:

rf,l, rf,b, rc,l, rc,b, r, λB,Q, λC,Q are bounded processes;

|µ(t, x)− µ(t, x′)|+ |σ(t, x)− σ(t, x′)| ≤ C|x− x′|,

|σ(t, x)|+ |µ(t, x)| ≤ C(1 + |x|).

The process XVA coincides with the pre-default xVA process. Indeed, given the pre-default value

process V such that V t1{t<τ} = Vt1{t<τ}, on {t < τ} the solution to (2.8) can be represented as

V t = V̂t −XVAt.

Moreover, defining the process r̃ = (r̃t)t∈[0,T ] as r̃ := r + λC,Q + λB,Q, it has been shown in Biagini

et al. (2021, Corollary 3.17) that the process XVA admits the representation

XVAt = −CVAt + DVAt + FVAt + ColVAt,(2.12)

where

CVAt := Br̃
tEQ

[
(1−RC)

∫ T

t

1

Br̃
u

(
V̂u − Cu

)−
λC,Qu du

∣∣∣∣Ft] ,(2.13)

DVAt := Br̃
tEQ

[
(1−RB)

∫ T

t

1

Br̃
u

(
V̂u − Cu

)+
λB,Qu du

∣∣∣∣Ft] ,(2.14)

FVAt := Br̃
tEQ

∫ T

t

(rf,lu − ru)
(
V̂u −XVAu − Cu

)+

Br̃
u

du

∣∣∣∣∣∣∣Ft
(2.15)

−Br̃
tEQ

∫ T

t

(rf,bu − ru)
(
V̂u −XVAu − Cu

)−
Br̃
u

du

∣∣∣∣∣∣∣Ft
 ,

ColVAt := Br̃
tEQ

[∫ T

t

(rc,lu − ru)C+
u − (rc,bu − ru)C−u
Br̃
u

du

∣∣∣∣∣Ft
]
.(2.16)

This representation highlights that the inclusion of different borrowing and lending rates introduces

a non-zero funding adjustment which cannot be found independently of the other adjustments. As
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a consequence, differently from CVA, DVA and ColVA, FVA presents a recursive structure1. An

algorithm to compute all valuations adjustments systematically in the ‘non-recursive’ and ‘recursive’

setting, especially with the view of potentially large portfolios, is the focus of the next sections.

3. The algorithm

In this section, we introduce the algorithm for computing valuation adjustments by neural network

approximations to the BSDE model from the previous section. We start by briefly recalling the main

features of the Deep BSDE Solver in Han et al. (2018). Then, we present the application of the solver

to valuation adjustments and its extensions to obtain financially important quantities. We first focus

on non-recursive adjustments, namely CVA and DVA, and then extend the approach to the recursive

case (see the terminology introduced at the end of the last section).

In particular, we propose to use the Deep BSDE Solver in Han et al. (2018) to approximate the

dynamics of V̂ m
u , m = 1, . . . ,M , u ∈ [t, T ], which constitute the portfolio V̂u =

∑M
i=1 V̂

m
u . Once the

portfolio value has been approximated and resulting collaterals computed, the value of the adjustment

can be obtained either by inserting the values in an ‘outer’ Monte Carlo computation for non-recursive

adjustments, or applying a second time the Deep BSDE Solver to (2.10) in the recursive case.

3.1. The Deep BSDE Solver of Han et al. (2018). For the reader’s convenience, we describe

in this section the main principles of the algorithm in Han et al. (2018) as they are relevant to our

setting. We consider a general FBSDE framework.

Let (Ω,F ,Q) be a probability space rich enough to support an Rd-valued Brownian motion WQ =

(WQ
t )t∈[0,T ]. Let F = (Ft)t∈[0,T ] be the filtration generated by WQ, assumed to satisfy the standard

assumptions. Let us consider an FBSDE in the following general form:

Xt = x+

∫ t

0
b (s,Xs) ds+

∫ t

0
a (s,Xs)

> dWQ
s , x ∈ Rd(3.1)

Yt = ϑ(XT ) +

∫ T

t
h (s,Xs, Ys, Zs) ds−

∫ T

t
Z>s dWQ

s , t ∈ [0, T ],(3.2)

where the vector fields b : [0, T ] × Rd 7→ Rd, a : [0, T ] × Rd 7→ Rd×d, h : [0, T ] × Rd × R × Rd 7→ R
and ϑ : Rd 7→ R satisfy suitable assumptions ensuring existence and uniqueness results. We denote

by (Xx
t )t∈[0,T ] ∈ S2(Rd) and (Y y

t , Zt)t∈[0,T ] ∈ S2(R)×H2,q×1 the unique adapted solution to (3.1) and

(3.2), respectively. To alleviate notations, hereafter we omit the dependency on the initial condition

x of the process Xx
· .

The above formulation of FBSDEs is intrinsically linked to the following stochastic optimal control

problem:

minimise
y, Z=(Zt)t∈[0,T ]

E
[∣∣∣ϑ(XT )− Y y,Z

T

∣∣∣2](3.3)

subject to

Xt = x+
∫ t

0 b (s,Xs) ds+
∫ t

0 a (s,Xs)
> dWQ

s ,

Y y,Z
t = y −

∫ t
0 h
(
s,Xs, Y

y,Z
s , Zs

)
ds+

∫ t
0 Z
>
s dWQ

s , t ∈ [0, T ].
(3.4)

In particular, a solution (Y, Z) to (3.2) is a minimiser of the problem (3.3). A discretized version of

the optimal control problem (3.3)–(3.4) is the basis of the Deep BSDE Solver.

1The ColVA can be recursive or non-recursive depending on the specification of the collateralizaton agreement: if the
collateral is a function of the clean value, then the ColVA term is non recursive (and this represent the situation typically
found in practice) however, if the collateral depends on the whole value of the transaction, then also this term is recursive
as the FVA.
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Figure 1. Schematic representation of a feedforward neural network with two hidden
layers, i.e. L = 3, input and output dimension d = 4, and ν = d+ 2 = 6 nodes.

Given N ∈ N, consider 0 = t0 < t1 < . . . < tN = T . For simplicity, let us take a uniform mesh with

step ∆t such that tn = n∆t, n = 0, . . . , N , and denote ∆Wn = WQ
tn+1
−WQ

tn . By an Euler-Maruyama

approximation of (3.3)–(3.4), one has

X̃n+1 = X̃n + b(tn, X̃n)∆t+ a(tn, X̃n)∆Wn, X̃0 = x,(3.5)

Ỹ y,Z̃
n+1 = Ỹ y,Z̃

n − h(tn, X̃n, Ỹ
y,Z̃
n , Z̃n)∆t+ Z̃>n ∆Wn, Ỹ y,Z̃

0 = y.(3.6)

The core idea of the Deep BSDE Solver is to approximate, at each time step n, the control process Z̃n

in (3.6) by using an artificial neural network (ANN). More specifically, in the Markovian setting, Zt is

a measurable function of Xt, which we approximate by an ANN ansatz to carry out the optimisation

above over this parametrised form. To this end, we introduce next a formalism for the description of

neural networks.

ANN approximation. We consider artificial neural networks with L+ 1 ∈ N \ {1, 2} layers. Each layer

consists of ν` nodes (also called neurons), for ` = 0, . . . ,L. The 0-th layer represents the input layer,

while the L-th layer is called the output layer. The remaining L − 1 layers are hidden layers. For

simplicity, we set ν` = ν, ` = 1, . . . ,L − 1. The input and output dimensions are both d in our case.

A feedforward neural network is a function ϕ% : Rd 7→ Rd, defined via the composition

x ∈ Rd 7−→ AL ◦ % ◦ AL−1 ◦ . . . ◦ % ◦ A1(x) ∈ Rd,

where all A`, ` = 1, . . . ,L, are affine transformations

A1 : Rd 7→ Rν , A` : Rν 7→ Rν , ` = 2, . . . ,L − 1, AL : Rν 7→ Rd,

of the form A`(x) := W`x + β`, ` = 1, . . . ,L, where W` and β` are matrices and vectors of suitable

size called, respectively, weights and biases. The function %, called activation function is a univariate

function % : R 7→ R that is applied component-wise to vectors. With an abuse of notation, we

denote %(x1, . . . , xν) = (%(x1), . . . , %(xν)) . The elements ofW` and β` are the parameters of the neural

network. We can regroup all parameters in a vector ρ ∈ RR where R =
∑L

`=0 ν`(1 + ν`).

As indicated earlier, we use ANNs to approximate the control process Zt. More specifically, let R ∈ N
as before and let ξ ∈ R, ρ ≡ (ρ1 . . . , ρR) ∈ RR be R + 1 parameters. We introduce a family of

neural networks ϕρn : Rd → Rd, n ∈ {0, . . . , N} parametrized by ρ and indexed by time. We denote
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Zρn = ϕρn(X̃n) and consider the following parametrized version of (3.6)

Yξ,ρn+1 = Yξ,ρn − h(tn, Xn,Yξ,ρn ,Zρn)∆t+ (Zρn)>∆Wn, Yξ,ρ0 = ξ,(3.7)

meaning that, at each time step, we use a distinct neural network to approximate the control process.

The Deep BSDE Solver by Han et al. (2018) considers the following stochastic optimization problem

minimise
ξ∈R, ρ∈RR

E
[(
ϑ(X̃N )− Yξ,ρN

)2
]

subject to (3.5)–(3.7).(3.8)

Observe that, in practice, one simulates L ∈ N Monte Carlo paths (X̃
(`)
n ,Yξ,ρ,(`)n )n=0...N for ` = 1, . . . , L,

using (3.5)–(3.7) with N i.i.d. Gaussian random variables (∆Wn)n=0,...,N−1 with mean 0 and variance

∆t. Replacing the expected cost functional by the empirical mean, (3.8) becomes

minimise
ξ∈R, ρ∈RR

1

L

L∑
`=1

(
ϑ(X̃

(`)
N )− Yξ,ρ,(`)N

)2
subject to (3.5)–(3.7).(3.9)

This minimization typically involves a huge number of parameters and it is performed by a stochastic

gradient descent-type algorithm (SGD), leading to random approximations. For further details on

this point we refer the reader to Section 2.6 in Han et al. (2018). We will denote by I the maximum

number of SGD iterations. To improve the performance and stability of the ANN approximation, a

batch normalization is also considered, see Ioffe and Szegedy (2015).

The accuracy of the solution is determined by the number of timesteps, number of samples, the chosen

network architecture, and the quality of the optimiser found by the chosen optimisation routine. Our

practical experience shows that quantifying and controlling the errors resulting from the latter two

contributions is particularly difficult. Therefore, certain a posteriori error bounds as found in Bender

and Steiner (2013) for decoupled FBSDEs, Han and Long (2020) for partially coupled FBSDEs, and

in Reisinger et al. (2020) for fully coupled BSDEs are particularly valuable. Specifically, in Han and

Long (2020, Theorem 1’) the authors show that under suitable assumptions on the coefficients of the

FBSDE (3.1)–(3.2), namely, in the decoupled case (see their Assumption 3, 2.), the uniform Lipschitz

continuity in space, uniform 1/2-Hölder continuity in time of b, a, h and the Lipschitz continuity of ϑ)

one has, for ∆t sufficiently small,

(3.10) sup
t∈[0,T ]

E|Yt − Y ξ,ρ
t |2 +

∫ T

0
E|Zt − Zρt |2 dt ≤ C

(
∆t+ E

[ (
ϑ(X̃N )− Yξ,ρN

)2 ])
,

where C is a constant independent of ∆t and d possibly depending on the starting point x of the

forward process and, given (Yξ,ρn ,Zρn)n=0,...,N from (3.7), Y ξ,ρ
t = Yξ,ρn and Zρt = Zρn for t ∈ [tn, tn+1).

In Han and Long (2020, Theorem 2’), a priori estimates on the term E[(ϑ(X̃N ) − Yξ,ρN )2] appearing

in the right hand side of (3.10) are also provided. However, the obtained bounds depend on the

(unknown) approximation capacity of the considered ANN.

In addition to the combined error bound on the Y and Z approximations in (3.10), we can bound the

error for Y in terms of the error for Z, as shown in Appendix A:

(3.11) sup
t∈[0,T ]

E|Yt − Y ξ,ρ
t |2 ≤ C

(
E|Y0 − ξ|2 +

∫ T

0
E|Zt − Zρt |2 dt

)
,

for a constant C that only depends on the model parameters (but not ξ or ρ). The controls of the Deep

BSDE Solver directly influence the terms on the right-hand side by choice of ξ and ρ. The numerical

tests in Section 4 indicate that in our applications ξ can typically be determined more easily and

accurately than ρ, and that the errors in Y and Z are of similar magnitude.
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Remark 3.1. Let us comment on our use of the the Deep BSDE Solver.

• The new and distinctive feature of our approach consists in employing the deep solver to

perform scenario simulations, i.e. simulations of the evolution of the mark-to-market of a

portfolio of claims. This shows, for the first time, that the deep solver can be successfully

used to solve risk-management problems such as the calculation of xVAs and risk measures

(e.g. Value-at-Risk, Expected Shortfall).

• Our use of the Deep BSDE Solver provides an alternative to nested Monte Carlo simulations

and their competitors such as regression Monte Carlo (see Longstaff and Schwartz (2001)).

Indeed, for the calculation of xVAs we are not only interested in the initial value of the

BSDE solution (which is the optimal ξ given as output by the Deep BSDE Solver), but we

need the ability to simulate the evolution of the conditional expectations representing the

mark-to-market of the portfolio.

• We also observe that our algorithm is interesting in comparison to, e.g., the commonly used

regression approaches because we do not only solve for the evolution of the value function (i.e.

the portfolio value), but we also obtain the control (i.e., the hedging strategy), which is linked

to the sensitivies of the value function. This is of paramount importance in order to calculate

many risk measures such as initial margin according to the ISDA Simm methodology. This

feature means that our use of the Deep BSDE Solver is useful also in a low dimensional setting,

where traditional numerical techniques suffering from the curse of dimension are still viable.

3.2. The Deep xVA Solver for non-recursive valuation adjustments. In our setting, the Deep

BSDE Solver is first employed in the approximation of the clean values of the portfolio, i.e., the

processes V̂ m
t for m = 1, . . . ,M , which are the solutions of (2.6) with underlying forward dynamics

given by S in (2.1). More precisely, in the notation of the previous section, we take

Xt = St and Yt = V̂ m
t for m = 1, . . . ,M.

For simplicity, let us assume Tm = T, ∀m = 1, . . . ,M . We now describe the algorithm for computing

CVA and DVA given by formulas (2.13) and (2.14), respectively. A unifying formula for CVA and

DVA can be written as

(3.12) EQ
[∫ T

t
Φu(V̂u) du

∣∣∣∣Ft] ,
where

• Φu(v) = (1−RC)
Br̃

t

Br̃
u

(v − C(v))− λC,Qu for CVA;

• Φu(v) = (1−RB)
Br̃

t

Br̃
u

(v − C(v))+ λB,Qu for DVA.

Here, Φu(v) indicates that Φ is a random field. One can easily observe that, thanks to the boundedness

of the processes r̃ and λj , j ∈ {B,C}, Φu(v) is uniformly Lipschitz continuous in v. We denote by LΦ

its Lipschitz constant.

Given a time discretization (uniform, for simplicity) with time step ∆t, the integral in (3.12) can be

approximated by a quadrature rule, i.e., taking t = t0 = 0,∫ T

0
Φu(V̂u) du ≈

N∑
n=0

ηnΦtn(V̂tn).
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For instance, one may consider the rectangle rule, i.e. ηN = 0, ηn = ∆t n = 0, . . . , N − 1,

(3.13)

∫ T

0
Φu(V̂t) dt ≈

N−1∑
n=0

Φtn(V̂tn)∆t.

Denoting for any m = 1, . . . ,M by
(
V̂m,ξ

∗
m,ρ
∗
m,(p)

n

)
n=0,...,N,p=1,...,P

the approximation of P paths of the

process (V̂ m
tn )n=0,...,N obtained by means of the parameters (ξ∗m, ρ

∗
m) resulting from the Deep BSDE

Solver optimization (3.9) and

V̂ ∗,(p)n :=
M∑
m=1

V̂ m,ξ∗m,ρ∗m,(p)n , n = 0, . . . N,

the adjustment is then approximated by the following formula:

1

P

P∑
p=1

N∑
n=0

ηnΦtn(V̂ ∗,(p)n ).

Here, P denotes the number of Monte Carlo paths used for estimating the outer expectation in (3.12)

which are typically different from the L paths generated for training the NN. Algorithms 1 and 2

summarize the main steps of the method. In what follows we will also denote by V̂ m,ξ∗m,ρ
∗
m the

piecewise constant interpolation of V̂m,ξ∗m,ρ∗m .

Algorithm 1: Deep algorithm for exposure simulation

Set parameters: N,L,B. . N time steps, L paths for inner Monte Carlo loop, B batch size
Fix architecture of ANN. . intrinsically defines the number of parameters R
Deep BSDE Solver (N ,L, B):

Simulate L paths (S̃
(`)
n )n=0,...,N , ` = 1, . . . , L of the forward dynamics.

Define the neural networks (ϕρn)n=1,...,N .
for m = 1, . . . ,M do

Minimize over ξ and ρ

1

L

L∑
`=1

(
gm(S̃

(`)
N )− V̂m,ξ,ρ,(`)N

)2
,

subject to

(3.14)


V̂m,ξ,ρ,(`)n+1 = V̂m,ξ,ρ,(`)n + rtnV̂m,ξ,ρ,(`)n ∆t+ (Ẑm,ρ,(`)n )>∆W (`)

n ,

V̂m,ξ,ρ,(`)0 = ξ,

Ẑρ,(`)n = ϕρn(S̃(`)
n ).

Save the optimizer (ξ∗m, ρ
∗
m).

end
end

Under reasonable assumptions, we can derive the following a posteriori bounds for the error associated

with this approximation of the valuation adjustments in [0, T ], starting from (3.10). The derivation

is given in Appendix B. We note that these adjustments can also be obtained from the more general

framework in Section 3.3, however, we provide a simpler numerical procedure here and derive error

estimates for these approximations by a more explicit computation.
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Algorithm 2: Deep xVA Solver for non-recursive valuation adjustments

Apply Algorithm 1
Set parameters: P . . P paths for the outer Monte Carlo loop

Simulate, form = 1 . . .M ,
(
V̂ m,ξ

∗
m,ρ
∗
m,(p)

n

)
n=0...N,p=1...P

by means of (3.14) with(ξ, ρ) = (ξ∗m, ρ
∗
m).

. approximation of the clean values

Define V̂ ∗,(p)n :=
∑M

m=1 V̂
m,ξ∗m,ρ

∗
m,(p)

n for n = 0 . . . N , p = 1 . . . P .
. approximation of the clean portfolio value

Compute the adjustment as

1

P

P∑
i=1

(
N∑
n=0

ηnΦtn(V̂ ∗,(p)n )

)
.

Let V̂t =
∑M

m=1 V̂
m
t with V̂ m

t given by (2.6), and V̂ ∗n =
∑M

m=1 V̂
m,ξ∗m,ρ

∗
m

n (n = 0, . . . , N) its approxi-

mation from the Deep BSDE Solver. Consider the running assumptions of this paper together with

uniform Hölder continuity in t of b and σ, and assume estimate (3.10) for equation (2.6).2

Moreover, consider the specific forms of Φ above, assuming E[(λj,Qs −λj,Qt )2] ≤ C(t−s) for 0 ≤ s ≤ t ≤ T
and j ∈ {B,C}.3

Then, for Φ as above, there exists a constant C ≥ 0 depending only on the model inputs and the

constants coming from (3.10) (in particular not on ∆t and the ANN parameters), such that∣∣∣∣E[ ∫ T

0
Φt(V̂t) dt

]
− E

[N−1∑
n=0

∆tΦtn(V̂ ∗n )
]∣∣∣∣ ≤ C(∆t+

M∑
m=1

E
[
|gm(ST )− V̂ m,ξ

∗
m,ρ
∗
m

N |2
])1/2

.(3.15)

MC standard errors for the second expectation in (3.15) should be added to obtain a complete bound.

3.3. The Deep xVA Solver for recursive valuation adjustments. The procedure of the previous

section is sufficient to perform the estimation of CVA and DVA according to (2.13) and (2.14) at time

zero by means of a standard Monte Carlo estimator, given the pathwise solutions of the BSDEs for

clean values. Typically, however, the bank needs to also compute risk measures on the CVA, such as

Value–at–Risk. Moreover, if we consider the xVA BSDE (2.10), we observe that FVA terms introduce

a recursive structure through the driver, so that a time t estimate of the process XVA requires the

use of a numerical solver for a BSDE. Finally, let us observe that the bank is not only interested in

computing the xVA at time t, also hedging the market risk of xVA is important, meaning that one

also needs sensitivities of valuation adjustments with respect to the driving risk factors.

All above considerations motivate us to propose a two-step procedure, where we first employ the Deep

BSDE Solver to estimate the clean values V̂ m, m = 1, . . . ,M , according to Algorithm 1 and then,

using the simulated paths of the M clean BSDEs obtained from the first step, we apply again the Deep

BSDE Solver to numerically solve the xVA BSDE (2.10). The procedure is outlined in Algorithm 3.

Similar to Section 3.2, we can quantify the error of the Deep xVA Solver in the recursive case a

posteriori. Let (XVAt, Zt) be the solution of (2.10), (X̃VA
γ,ζ

t , Z̃ζt ) the corresponding approximation

2 This is a straightforward extension of Han and Long (2020, Theorem 1’) in the case of deterministic rs in (2.6) which
is Hölder-1/2 in s, by replacing their assumption on the uniform Hölder-1/2 continuity of f by |f(t, v) − f(s, v)| ≤
C|t − s|1/2|v| for all 0 ≤ s ≤ t ≤ T and all v. For stochastic rates, a more substantial extension to their analysis is

needed for a direct application of Euler-Maruyama, due to the non-Lipschitz term rtV̂t in (2.6) and accounting for the
discretisation of the rates process. However, the simple transformation (B.2) from the appendix can eliminate this drift.
We hence directly assume (B.1) for this analysis.
3This is immediate for deterministic Hölder-1/2 functions and a standard property of Itô diffusions with Lipschitz
coefficients (see Zhang (2004, Lemma 2.4, (2.10))), but also holds, e.g., for the Cox-Ingersoll-Ross process (as follows e.g.
from Hutzenthaler et al. (2014, Corollary 2.14)).
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Algorithm 3: Deep xVA Solver

Apply Algorithm 1.
Set parameters: P . . P paths for outer Monte Carlo loop
Fix architecture of ANN.

. intrinsically defines the number of parameters R̄ (in general R̄ 6= R)
Deep XVA-BSDE solver (N ,P ):

Simulate P paths (V(p)
n )n=0,...,N , p = 1, . . . , P , of the portfolio value.

Define the neural networks (ψζn)n=1,...,N .

Minimize over γ and ζ

1

P

P∑
p=1

(
X γ,ζ,(p)N

)2
,

subject to

(3.16)


X γ,ζ,(p)n+1 = X γ,ζ,(p)n − f̄(tn, V̂(p)

n ,X γ,ζ,(p)n )∆t+ (Zζ,(p)n )>∆W (p)
n ,

X γ,ζ,(p)0 = γ,

Zζ,(p)n = ψζn(V̂(p)
n ).

end

from the Deep BSDE Solver with parameters γ, ζ, with V̂ in (2.10) replaced by V̂ ξ,ρ given by the

solver with parameters ξ, ρ. We note that the result of Han and Long (2020) can be extended to

multi-dimensional BSDEs (see the comment at the start of Section 2 there), or that our system is a

special case of the fully-coupled McKean–Vlasov FBSDEs analysed in Reisinger et al. (2020) (where

the monotonicity condition H.1.(1) imposed there is not needed here in the weakly coupled case).

Take the running assumptions of this paper. Moreover, let for simplicity all rates and intensity pro-

cesses be bounded, uniformly 1/2-Hölder continuous deterministic functions of time and the functions

µ, σ, f̄ be uniformly 1/2-Hölder continuous in time. Then there exists a constant K ≥ 0 depending

only on the model inputs (in particular not on ∆t and the ANN parameters) such that

sup
t∈[0,T ]

E
[ ∣∣∣XVAt − X̃VA

γ,ζ

t

∣∣∣2]+ E
[∫ T

0
|Zt − Z̃ζt |2 dt

]

≤ K

(
∆t+

M∑
m=1

E
[
|gm(ST )− V̂ m,ξm,ρmN |2

]
+ E

[
|X̃VA

γ,ζ

T |2
])

.

It should be possible to derive similar results for bounded or even unbounded stochastic rates, but

care would have to be taken with the discretisation in the case of non-Lipschitz coefficients, such as

the CIR model.

3.4. Calculation of risk measures. An important benefit of the deep xVA solver is given by the

ability to compute risk measures as a by-product without additional numerical burden and to do so

for any time horizon within the simulation time grid. More specifically, let P denote a process of

interest, which could represent either the clean value V̂∗,(p) as estimated via Algorithm 1 or the xVA

correction X ∗,(p) as produced by Algorithm 3. Given time points tn, n = 1, . . . , N , we can define the

loss process

Ltn := − (Ptn − Pt0) .
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The above defined discrete time stochastic process L can then be used to compute risk measures at

each point in time over the simulation grid. To provide examples, we can compute e.g.

• Value at Risk:

VaRα(Ptn) : = inf { l ∈ R|Q (Ltn > l| Ft0) ≤ 1− α} ,

• Expected Shortfall:

ESα(Ptn) := E [Ltn |Ltn ≥ VaRα(Ltn),Ft0 ] ,

both on the clean value and, more importantly, on the xVAs. Notice that the computation of risk

measures, e.g. on the CVA, does not require the use of nested simulations. We simply simulate the

trajectories of the BSDE satisfied by the value adjustment and evaluate the risk measure over the

simulated paths. This is demonstrated in Section 4.3, where we compute the Value at Risk on the

CVA of a 100-dimensional basket option.

3.5. Pathwise simulation of sensitivities. One interesting feature of our approach to xVA compu-

tations is that we can easily estimate several sensitivities (i.e., partial derivatives) of pricing functions.

Let us recall that, in the present Markovian setting, the control Z associated with a FBSDE of the

general form (3.1)–(3.2) satisfies

Zt =
∂Y

∂X
(t,Xt)a(t,Xt),(3.17)

so that we can easily reconstruct the gradient of the pricing function with respect to all risk factors

simply by multiplying each (vector-valued) neural network by the inverse (assuming it exists) of the

matrix a(t,Xt). This becomes particularly interesting in view of Algorithms 1 and 3, where we

can obtain hedge ratios both for the clean value and for the valuation adjustments without further

computations.

Obtaining second order sensitivities, which may also be important for hedging purposes, is also fea-

sible in our setting, because feedforward neural networks are compositions of simple functions and

computation of gradients of neural network functions has become standard in that community. Using

the notation of Section 3.1, we can write

(3.18)
∂Zρn
∂Xn

=
∂ϕ%(Xn)

∂Xn
,

with ϕ%(Xn) = AL(ρ(AL−1 . . . ρ(A1(Xn)))). Since (A`)`=1,...,L are affine functions, their Jacobians are

given by the weight matrices, i.e.

JA`
(·) =W`, ` = 1, . . . ,L.

Moreover, one also has the Jacobian of ρ,

J%(·) = diag
(
%′(·)

)
,

where, for x ∈ Rν we denote %′(x) = (%′(x1), . . . , %′(xν)). In the present paper, we choose %(x) =

ReLU(x) = max{x, 0} so that the first derivative can be defined as

%′(x) = ReLU′(x) =

{
1 if x > 0

0 otherwise

}
= sgn(ReLU(x)).
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Finally, we deduce that the following explicit differentiation formula holds:

∂Zρn
∂Xn

=WL diag
(
%′(AL−1(. . .A1(Xn)))

)
. . . diag

(
%′(A1(Xn))

)
W1.

Given the availability of the derivative of Zρn we can then obtain the Hessian of Y from (3.17).

4. Numerical results

To test our algorithm, we start by studying two very simple examples with a similar computational

structure as CVA and DVA, and for which we can easily provide reference solutions. We will then give

a higher-dimensional example and illustrate further practically relevant features of the method, such

as recursive xVA computations and simulation of the collateral account. The codes for the proposed

experiments are available at https://github.com/AlessandroGnoatto/Deep-xVA-Solver.

Let S be the price of a single stock described by a Black-Scholes dynamics,

dSt = rSt dt+ σSt dWQ
t , S0 = s0,

and V̂ a European-style contingent claim with value

V̂t = EQ
[
e−r(T−t)g(ST )|Ft

]
.

In particular, V̂ solves the following BSDE:−dV̂t = −rV̂t dt− Ẑt dWQ
t ,

V̂T = g(ST ).
(4.1)

The discounted expected positive and negative exposure of V̂ are defined, respectively, by

DEPE(s) = EQ
[
e−r(s−t)

(
V̂s

)+
∣∣∣∣Ft] ,(4.2)

DENE(s) = −EQ
[
e−r(s−t)

(
V̂s

)−∣∣∣∣Ft] .(4.3)

In order to take into account the randomness of the algorithm (through the inner and outer Monte

Carlo estimation and stochastic gradient descent), in the plots below we report with solid lines the

average DEPE (in blue) and DENE (in red) obtained after 100 runs of the algorithm and the gray

region represent the obtained standard deviation from the average value.

4.1. A forward on S. In this case, we consider

g(ST ) = ST −K

with K = s0. The pathwise exposure V̂ at time s ∈ [t, T ] is given by

V̂s = EQ
[
e−r(T−s)(ST −K)

∣∣∣Fs] = Ss −Ke−r(T−s).

Substituting in (4.2), one has

DEPE(s) = StΦ(d1)−Ke−r(T−t)Φ(d2),(4.4)

DENE(s) = StΦ(−d1)−Ke−r(T−t)Φ(−d2),(4.5)

where Φ(·) denotes the standard normal cumulative distribution function and, as usual,

d1 =
ln
(
er(t−s) St/K

)
+
(
r + σ2/2

)
(s− t)

σ
√
s− t

and d2 = d1 − σ
√
s− t.

https://github.com/AlessandroGnoatto/Deep-xVA-Solver
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σ K T
0.25 100 1

Table 1. Parameters used in numerical experiments.

Figure 2. Forward contract: approximated exposure (left) and DEPE, DENE (right).
Parameters used: outer MC paths P = 2048, inner MC paths L = 1024, batch size
B = 64, internal layers L − 1 = 2, nodes of each internal layer ν = d + 20 = 21, I =
4000, time steps N = 200.

Figure 3. The hedging strategy for the forward contract on 10 simulated scenarios:
exact (left) and approximated (right).

We report in Figure 2 the plot of the numerical results obtained by Algorithm 2 using the parameters

in Table 1 and r = 0. In particular, on the left we plot the simulated pathwise exposure, i.e. the

paths tn → V̂∗,(p)n for p = 1, . . . , P obtained by a single run of the algorithm, while on the right we

compare the approximated DEPE and DENE (solid lines) with the exact expected exposures given

by (4.4)–(4.5) (dashed lines). The maximum difference between the approximated expected exposure

and the exact one is 8.1 bps for the DEPE and 12 bps for the DENE (in both cases achieved at the

terminal time T ) with a maximal standard deviation of 0.3647.

We asses the performance of the solver in the reconstruction of exposure trajectories computing the

average terminal square error on the exposure, i.e. 1
P

∑P
p=1(V̂∗,(p)N − (S

(p)
T −K))2 which, for a chosen

single run of the algorithm, is found to be 0.1883 (comparable with the loss function given by the

solver, which is 0.1664). Moreover, in this special case, we can also compare Ẑρ∗ with the exact

hedging strategy Ẑt = σSt. We display in Figure 3 the exact and approximated hedging strategy, for

which we obtain an L2-norm of the error equal to 0.1759. The CPU time is 503 s.
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Figure 4. DEPE and DENE for a European call option (left) and a European basket
option with 100 underlyings (right). Parameters used: outer MC paths P = 2048,
inner MC paths L = 1024, batch size B = 64, internal layers L− 1 = 2, nodes of each
internal layer ν = d+ 20 = 21 (left) and ν = d+ 10 = 110 (right), iterations I = 4000
(left) and I = 10000 (right), time steps N = 200 (left) and N = 100 (right).

4.2. A European call option. In this case we consider

g(ST ) = (ST −K)+ ,

where we set K = s0. The pathwise exposure V̂ at time s ∈ [t, T ] is given by the Black-Scholes formula

V̂s = EQ
[
e−r(T−s) (ST −K)+

∣∣∣Fs] = SsΦ(d1)−Ke−r(T−s)Φ(d2) > 0.

It follows immediately that

DEPE(s) = EQ
[
e−r(s−t)V̂s

∣∣∣Ft] = V̂t,

and

DENE(s) = 0.

The average terminal square error on the exposure computation, for a chosen run of the algorithm,

is given by 0.7894 (comparable with the loss function given by the solver 0.7779). In this case, the

exact hedging strategy is Ẑt = σΦ(d1)St, from which we can compute the L2-norm of the error with

the approximated control Ẑρ∗ which is equal to 0.1496. We report in Figure 5 the exact and the

approximated hedging strategy.

The results obtained using Algorithm 2 with the parameters in Table 1 and r = 0.01 are reported in

Figure 4 (left). The exact European call price is 10.4036, while the approximation of the positive and

negative exposure obtained by the solver and reported in Figure 4 (left) take values, for t ∈ [0, T ],

within the interval [10.4072, 10.4963] and [−0.1692, 0], respectively. The accuracy of the time zero

option value for this architecture and simulation parameters is hence 0.36 bps, and that of DEPE and

DENE in the worst case (over s) is 9.3 bps and 17 bps, respectively. The CPU time is 543 s.

We also report in Figure 6 the approximation of the Value at Risk (VaRα(V̂t), with α = 0.05)

computed as explained in Section 3.4. Comparing with the exact values of the VaR (dashed line in

Figure 6), one can observe a good fit. We point out that for the VaR approximation we imposed the

positivity of the value V̂ , since without this condition precision was lost close to maturity.

4.3. A basket call option. Let us now consider the case of several underlying assets (S1, . . . , Sd):

dSit = riSit dt+ σiSit dWQ,i
t , Si0 = si0 > 0, i = 1, . . . , d,
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Figure 5. The clean value (top row) and hedging strategy (bottom row) for the call
option on 10 simulated scenarios: exact (left) and approximated (right).

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

8

10 VaR
VaRExact

Figure 6. Approximation of the VaR(V̂t) for t ∈ [0, T ]. Parameters used: see the
caption of Figure 4 (left).

whereWQ = (WQ,1, . . . ,WQ,d) is a standard Brownian motion in Rd with correlation matrix (ρi,j)1≤i,j≤d.

We set d = 100. A European basket call option is associated with the payoff

g(S1
T , . . . , S

d
T ) =

(
d∑
i=1

SiT − d ·K

)+

.

The results obtained by Algorithm 2 using the parameters in Table 1 with σi = σ for all i = 1, . . . , d,

zero correlation, si0 = 100 for all i = 1, . . . , d and ri = r = 0.01 are reported in Figure 4 (right).

The distinctive feature of the present example is the high dimension of the vector of risk factors. While

the two previous one-dimensional examples mainly served as a validation for the methodology, the
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present example highlights the ability of the proposed methodology to provide an accurate numerical

approximation in a high-dimensional context. For this example, we used the feedforward neural

network with two layers and d + 10 nodes, with a ReLU activation function. The approximation

parameters used are reported in the caption of Figure 4 (right). We increase the number of nodes ν

roughly linearly with the dimension d, which turned out to be a useful rule-of-thumb for consistent

accuracy across dimensions in this case.

For a detailed study of deep learning values of basket derivative (on six underlying asses) from simu-

lated values, not based on BSDEs, see Ferguson and Green (2018).

For the case of the basket call option, we observe that the exposure profile corresponds to the present

value of the contract. As a consequence, we obtain a simple method to validate the exposure profile by

computing an estimate of the basket call option price by means of a standard Monte Carlo simulation

with 105 paths. We regard this as the ‘exact’ price. The Monte Carlo price we obtained is 157.99

with confidence interval [157.63, 158.34]. The average values of the expected exposures produced by

the deep solver reported in Figure 4 (right) vary with time between the values 156.98 and 161.24 in

the positive case, and 0 and −2.9824 in the negative one, achieving at the terminal time t = T the

maximum distance 3.25 to the Monte Carlo price in the first case and 2.98 to the exact zero solution

in the second case. The accuracy of the time 0 option price is therefore 1bp, and hence of the same

order of magnitude as for the single underlying. The CPU time is 1287 s.

Remark 4.1. It is noticeable that the error of DEPE and DENE approximation is relatively low at

time zero and eventually increases with time. This is because the time zero value is determined solely

by the obtained optimiser for ξ, which is decoupled from the harder optimisation problem for ρ. The

optimal ξ which minimises the idealised objective function without time stepping and sampling error is

the expected payoff, while ρ determines the ANN hedge which minimises the variance. A suboptimal

ANN leads to larger hedging errors, and hence increasing DEPE and DENE, as time increases.

One could use this observation to set ξ to be an accurate MC estimator for the option price, and then

minimize over ρ only. This by construction gives accurate time zero values for DEPE and DENE, but

from our tests (not reported here) leads to similar results to above for larger t.

In relation to (3.11), this shows that the first term on the right-hand side can be made negligible

compared to the second term. In these examples, the error of Y and Z are indeed of similar magnitude.

This is supported by (A.1) in the appendix.

For this product, next, we also perform an xVA calculation with the objective to validate Algorithm

2 and Algorithm 3 in a case where both are applicable. To perform this comparison, we need the xVA

BSDE to be non-recursive: this can be achieved by assuming that there is a unique risk-free interest

rate, so that FVA and ColVA are identically zero, i.e., xVA consists only of the CVA and DVA term.

The idea is then to compare a Monte Carlo estimate of xVA according to Algorithm 2 with the initial

value of the BSDE as produced by a full application of Algorithm 3.

We assume that the default intensities of the bank and the counterparty are λC,Q = 0.10 and λB,Q =

0.01, respectively. For the recovery rates we set RC = 0.3 and RB = 0.4, while the unique risk-free

interest rate is r = 0.01. Using the same network setting (see again the caption of Figure 4, right),

the Deep xVA Solver produced an xVA estimate of 0.8952 by means of Algorithm 3 (CPU = 3098

s), whereas the estimate produced by Algorithm 2 is 0.8947 with an associated confidence interval

[0.8927, 0.8968] (CPU = 1379 s).

As pointed out in Section 3.4, Algorithm 3 can also be used to compute risk measures for xVAs. In

Figure 7 (right) we report the plot of the Value at Risk (VaR, with α = 0.05) of the xVA, i.e. we
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Figure 7. Simulated paths of the loss process Lt = −(XVAt − XVA0) (left) and
approximation of the VaR(XVAt) for t ∈ [0, T ] (right).

compute VaRα(XVAt) taking Lt = −(XVAt − XVA0), for t ∈ [0, T ], as loss process (simulated paths

of the loss are reported in Figure 7 (left)). Considering the same discretization parameters as the

test above the required computational time is 3425 s, which confirms that after a single application

of Algorithm 3 to solve the xVA BSDE, risk measures can be obtained at a very low cost just by

simulating the associated BSDE trajectories. We acknowledge that the computation of risk measures,

which focuses on tails of the distribution of the value process, poses some challenges to our method:

we faced numerical instabilities due to the representation of floating point numbers in Python that we

addressed by exploiting the fact that both the clean value and the xVA are homogenous functions of

order one with respect to the notional. We multiply the terminal condition of the clean value BSDE

by a scaling factor which we later compensate back after the simulation of the paths of the trained

model has been performed. We compute the value at risk for every point in the simulation time grid

and we observe a smooth curve that converges towards the terminal value at risk. At time T the loss

degenerates to −(XVAT − XVA0) = XVA0 ∼ 0.8952 due to the fact that the xVA BSDE has a zero

terminal condition, hence we have again a test value against which we can compare our estimate given

by VaR(XVAT ) = 0.9097.

4.4. Recursive FVA computation. In this section, we provide an FVA calculation that serves as a

further validation of Algorithm 3 for recursive valuation adjustments. For the sake of illustration, we

simplify the framework of Biagini et al. (2021) so that we recover the funding equations of Piterbarg

(2010). More specifically, we assume that there is no default risk, i.e. τC = τB = +∞. We consider

the case of a bank trading a forward on a single underlying stock, in line with Example 4.1. We set

rc,b = rc,l = r = 0.02, and rf,b = rf,l = 0.04. Due to the different interest rates for funding and

collateral, the clean value of the contract is not at par. For the moment we assume that the claim

is perfectly uncollateralized, i.e. Ct ≡ 0 dQ ⊗ dt-a.s. In this case, as first shown in Piterbarg (2010)

and then Biagini et al. (2021) among others, one can employ a risk neutral valuation formula where

the discount rate is given by the unsecured funding rate rf = rf,b = rf,l. Precisely, we can write the

solution of the pricing problem as

Vt = V̂t − FVAt, where

FVAt = Br
tEQ

∫ T

t

(rfu − ru)
(
V̂u − FVAu

)
Br
u

du

∣∣∣∣∣∣Ft
 .
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rf 0.04 0.08 0.12
Solver 0.0395 0.1155 0.1897
Exact 0.0392 0.1153 0.1884

Table 2. Numerical solution for the FVA for different levels of the unsecured funding
rate rf . Parameters used: outer MC paths P = 2048, inner MC paths L = 1024, batch
size B = 64, internal layers L − 1 = 2, nodes of each internal layer ν = d + 20 = 21,
iterations I = 4000, time steps N = 100.

The analytic computation of the clean value of the forward contract at time t yields V̂ exact
0 = 1.9801.

The claim is however uncollateralized, hence, by applying a risk neutral valuation formula where

the discounting rate is now rf , we obtain V exact
0 = 1.9409. The difference between the two analytic

computations provides us with the exact value of the FVA, i.e. FVA
exact
0 = 0.0392. For this experiment

we apply Algorithm 3 with the following parameters that are the same both for the estimation of the

clean value and the FVA: we use N = 100, L = 64, P = 2048 and I = 4000 . We use two neural

networks for the clean value and the FVA both having 2 hidden layers with d+20 nodes. We then apply

Algorithm 3 to the xVA BSDE associated with FVA and obtain an initial value of FVA0 = 0.0395,

thus a validation of our proposed numerical procedure. We evaluate the performance of the solver

in the reconstruction of exposure trajectories computing the average terminal square error on the

FVA, i.e. 1
P

∑P
p=1(X ∗,(p)N )2 which, for a chosen single run of the algorithm, is found to be 3.36× 10−5

(comparable with the loss function 3.11× 10−5 given by the solver ).

To further assess the reliability of the algorithm we test the FVA as a function of the unsecured

funding rate rf : as this rate increases, the funding spread has a higher magnitude, meaning that we

expect the FVA to increase. Table 2 provides evidence in this regard.

We also tested the performance of Algorithm 3 with the increasing of the number of risk factors.

In Table 3 we report the computational time required by Algorithm 3 for computing the FVA for a

forward contract written on a basket of d underlyings, for different value of d. The parameters used

in the numerical tests are reported in the caption of the table. We observe that the numerical error

is below 1% at least up to dimension 200.

d Deep XVA Sol. Exact Sol. Error CPU(s)
1 0.03950 0.03920 0.0003 605
10 0.39199 0.39209 0.0001 753
25 0.97568 0.98023 0.0046 803
50 1.9439 1.9605 0.0166 960
100 3.8976 3.9209 0.0233 1410
150 5.8603 5.8813 0.0210 3085
200 7.8159 7.8418 0.0258 3918

Table 3. Comparing the computational time and the error for the approxima-
tion of the FVA for a forward written on a basket of d underlyings, with d =
1, 10, 25, 50, 100, 150, 200. Parameters used: outer MC paths P = 2048, inner MC
paths L = 1024, batch size B = 64, internal layers L − 1 = 2, nodes of each internal
layer ν = d+ 20, iterations I = 4000, time steps N = 100.

4.5. Adding collateral. A useful feature of our proposed approach consists in the possibility of

performing realistic simulations of the collateral account without resorting to simplifying assumptions.
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4.5.1. Realistic simulation of the collateral account. We can in fact compute the overall outstanding

exposure between the bank and the counterparty by the following steps. Algorithm 1 allows us to

simulate paths for all processes V̂ m, m = 1, . . . ,M . Such paths can then be aggregated so as to

produce a simulation of the portfolio process V̂ =
∑M

m=1 V̂
m, that corresponds to the pre-collateral

exposure. After this, we compute the value of the collateral balance C corresponding to the simulated

paths of V̂ , which in turn allows us to compute the post-collateral exposure process V̂ −C that enters

the xVA formulas.

For illustration, we consider M = 1 and the equity forward from the first example. We introduce

a simple example of a collateral agreement where collateral is exchanged between the counterparties

at every point in time (a margin call frequency that does not coincide with the simulation time

discretization can of course be treated as well). Collateral is exchanged only in case the pre-collateral

exposure is above (below) a receiving (posting) threshold which are both set equal to 5, i.e.

Ct := C(V̂t) = (V̂t − 5)+ − (V̂t + 5)−.

An illustration for a single path is provided in Figure 8.
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Figure 8. Pathwise simulation of a collateralized exposure. Left: V̂ .Middle: C.

Right: V̂ − C. Posting and receiving threshold are 5 EUR.

4.5.2. Recursive FVA computation in presence of collaterals. We provide further evidence on the

algorithm by studying the impact of collateral more closely. Let us assume that the collateral account

is parametrized as follows:

C(V̂ ) = (1− α)[(V̂ − 10α)+ − (V̂ + 10α)−], α ∈ [0, 1]

so that the case α = 0 corresponds to perfect collateralization and α = 1 to the uncollateralized case.

We compute the FVA of a forward on a basket of underlyings, i.e. we consider the terminal condition

g
(
S1
T , . . . , S

d
T

)
=

(
d∑
i=1

SiT − d ·K

)
,

for K = 100 where the underlying assets evolve as in Section 4.3 and we keep the same choices for the

model parameters. We make use of Algorithm 3 assuming CVA = DVA = ColVA ≡ 0.

The results are reported in Table 4. We observe, in line with our expectations that in the presence of

collateral the FVA becomes numerically negligible. The magnitude of the FVA increases as the level of

collateralization decreases. Also we observe that, in the uncollateralized case, the numerical solution

provided by the solver closely matches the exact solution for the FVA irrespective of the dimension of

the basket of underlying.
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d α = 0 α = 0.5 α = 1 Exact Sol. Uncoll.
1 4.8408× 10−5 0.02222 0.03950 0.03920
10 2.8100× 10−5 0.21164 0.39199 0.39209
25 −7.8600× 10−6 0.48184 0.97568 0.98023
50 1.2700× 10−5 0.72473 1.9439 1.9605
100 −6.5900× 10−6 0.91248 3.8976 3.9209

Table 4. Computation of the FVA for a forward written on a basket of d underlyings.
α = 0 means full collateralization, where α = 1.0 means no collateralization. In the
last column we report the exact solution for the no collateral case.

5. Comparison with other recent approaches

In this section, we compare our methodology with other recently developed approaches for portfolio-

wide xVA computations from the literature.

5.1. Gaussian process regression. In Crépey and Dixon (2020), a Gaussian process regression

approach is proposed to perform the computation of derivative portfolio values in the context of (non-

recursive) CVA valuation. The Gaussian process approximation of the pricing functional is trained on

a set of model implied prices, i.e., for a given set of model parameters, a sample of prices is generated

for different combinations of contract characteristics (e.g. strike price and maturity). It is clear that,

to generate training data, an efficient numerical scheme is needed; for example, for the Heston model,

in their Section 3.1, the COS method of Fang and Oosterlee (2009) is employed to generate training

data. Once the regression has been trained, efficient pricing and sensitivities computations are possible

even if the portfolio contains a large number of derivatives. The generation of the training data set

appears to be a restrictive aspect of using this methodology, especially in the case where individual

derivatives are exposed to a large number of risk factors, such as the 100 dimensional basket example

we consider. In that case, the generation of gridded price data (the mark-to-market cube) over time

and all underlying factors is not possible, as remarked in their Section 3.3, and a small number of

samples may have to be chosen.4 A divide and conquer approach allows a significant speed-up through

GPU or CPU parallelisation in cases where the portfolio is split up into (asset) classes with a restricted,

low number of risk factors.

Another limitation emerges when the Gaussian process regression approach is employed to estimate

the Value at Risk of the CVA. To estimate such risk measure, one needs to generate a sample of

the random variable CVAt+∆t − CVAt, representing the change in value of the CVA between t and

t+ ∆t, ∆t > 0. The application of Gaussian process regression results in a nested loop, which results

in a quadratic complexity in terms of the number of simulated scenarios: for P simulated paths,

the complexity of the CVA VaR computation of Crépey and Dixon (2020) is P 2. Instead, with our

Algorithm 3, we directly attack the CVA BSDE and we learn how to simulate trajectories of the

CVA, even in high dimension. To estimate the Value at Risk at every possible time horizon within

the simulation time grid, we simulate the CVA BSDE with a fixed sample size so that the numerical

complexity of our algorithm is lower by one order: we need to simulate only P paths of the clean value

and P paths of the CVA BSDE.

5.2. Different deep learning-based BSDE solvers. Within our framework, the Deep BSDE Solver

of Han et al. (2018) can be directly substituted by other solvers, provided they give approximations

to the backward solution and control processes along sample trajectories of the forward process.

4One could indeed consider using the deep BSDE solver for this scenario generation.
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The solver developed by Huré et al. (2020). This is a regression based scheme for PDEs that runs

backward in time making use of dynamic programming arguments. The authors study two versions

of the algorithm, one where at each point in time two separate neural networks approximate the

value function and the control of the BSDE associated to the PDE, and another one where only the

value process is approximated by a neural network whereas the control is recovered by automatic

differentiation. For each point in time, a neural network is instantiated, and this is common to our

methodology. A study of their implementation of the algorithm reveals a problematic point, which is

also stated in the text of their paper, that at each point in time, a new Tensorflow session is started

and a new computational graph needs to be created, which represents a time consuming operation.

Also note that, in order to use their approach for xVA computation, we would need to store each

instance of the Tensorflow session on disc so that we can perform the simulation of the exposures

after the training is completed. This appears to us as a further bottleneck of the application of this

methodology to our setting. A possible advantage that Huré et al. (2020) identify for their approach is

that only local-in-time optimisation problems have to be solved, compared to the global optimisation

problem of the Deep BSDE Solver. The advantage of good initial values for the optimisation available

from previous timesteps appears to compete against the error accumulation from projecting the value

function onto neural networks in each timestep.

The approach of Albanese et al. (2021). This framework uses a regression-based algorithm close in

spirit to Huré et al. (2020), coupled with Picard iterations for recursive xVA computations and quantile

estimation. The authors present a numerical study for the xVA of a swap portfolio with several

counterparties and positions exposed to a total of 40 risk factors. As the single contracts that constitute

the portfolio are relatively plain vanilla instruments depending on a low number of risk factors, by a

divide and conquer approach the computation of single contracts can be split among several GPU/CPU

cores. In principle the regression approach can be extended to cases where individual products depend

on a high-dimensional vector of risk factors, such as our high dimensional example for the basket

option.

A comparison of the performance of all these approaches and variants to different practically relevant

situations would be of interest, but goes beyond the scope of this paper.

6. Conclusions and extensions

The proposed xVA algorithm exploits two useful complementary aspects of the Deep BSDE Solver of

Han et al. (2018). First, the formulation as an optimisation problem over a parametrisation of the

(Markovian) control of the xVA BSDE, which is carried out by SDE discretisation and path sampling,

directly gives both the hedge ratios in approximate functional form and model-based derivative prices

along the sample paths. This is amenable to the simulation of exposure profiles, the computation

of higher-order Greeks by pathwise differentiation, and allows for the computation of funding and

margin variation adjustments as well as xVA hedging. A second aspect of the Deep BSDE Solver is

the use of neural networks specifically as parametrisation for the Markovian control. A key advantage

results from the approximation power of neural networks in high dimensions, which has the potential

to make risk management computations on portfolio level feasible. Moreover, the simple functional

form allows standard pathwise sensitivity computations.

Our numerical examples provide a proof of concept, but further systematic testing in realistic appli-

cation settings is needed. An additional difficulty arises from the non-linear, non-convex parametric
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form, which, combined with the large number of parameters, leads to challenging optimisation prob-

lems. The expression power of the ANN and the practicalities of the learning process, are extremely

active research areas and further developments of the proposed Deep xVA Solver will be informed by

the rapidly developing understanding of neural networks in a broader sense.

The application of our proposed scheme is not restricted to the chosen xVA framework. For example,

one could in principle apply our methodology to the balance-sheet based model computed in Albanese

et al. (2021). In this case, the xVA computation involves multiple recursive valuations (illustrated

succinctly in Abbas-Turki et al. (2018, Figure 1)), which can be approached by means of multiple

applications of the Deep xVA Solver.

We also emphasise that the Deep xVA Solver can be combined with an existing analytics library: the

computation of the mark-to-market cube (i.e., the simulation of all possible scenarios for the clean

values over different points in time) represents a classical numerical problem to be solved in order to

compute traditional risk figures such as Value-at-Risk or Expected Shortfall (this is often referred to

as “Monte Carlo full revaluation approach”). Since most products individually depend on a limited

number of risk factors, it may be best to use a traditional numerical scheme, such as a finite difference

solver, for at least some of the more vanilla products, and then revaluate the products over different

Monte Carlo paths by means of a look-up table over the pre-computed numerical solution. This

provides an alternative route with respect to our Algorithm 1 for the simulation of the clean values.

However, once we aggregate all mark-to-markets, we end up with an object that depends on a high

number of risk factors, so for the computation of xVA our proposed methodology provides a useful

tool which allows the recursive computation of valuation adjustments, their hedging strategy, and

simulation of collateral.

Also, let us stress that our Algorithm 1 returns not only the clean value but also the sensitivies with

respect to the forward SDE. The availability of sensitivities is fundamental in order to hedge exposures

and also to perform the calculation of initial margin according to the market standard approach (ISDA

Simm). In this sense, Algorithm 1 represents a useful alternative to the above mentioned classical

approaches in view of the increased demand of advanced analytics by regulators.

Appendix A. Error bounds for Y in terms of Z

We consider the error between the BSDE solution (Y, Z) and its approximation (Y ξ,ρ, Zρ) from the

Deep BSDE Solver, satisfying

Yt = Y0 −
∫ t

0 h (s,Xs, Ys, Zs) ds+
∫ t

0 Z
>
s dWQ

s , t ∈ [0, T ],

Y ξ,ρ
t = ξ −

∫ t
0 h
(
s,Xs, Y

ξ,ρ
s , Zρs

)
ds+

∫ t
0 (Zρs )> dWQ

s , t ∈ [0, T ],

respectively. Taking the difference and squaring, by elementary inequalities

|Yt − Y ξ,ρ
t |2 ≤ 3

{
|Y0 − ξ|2 + t

∫ t

0

∣∣∣h (s,Xs, Ys, Zs)− h
(
s,Xs, Y

ξ,ρ
s , Zρs

)∣∣∣2 ds

+

(∫ t

0
(Zs − Zρs )> dWQ

s

)2
}
.

Taking expectations, using for the second term the Lipschitz continuity of h in Y and Z, with constants

LY and LZ , respectively, and Itô isometry for the last term,

E|Yt − Y ξ,ρ
t |2 ≤ 3

{
E|Y0 − ξ|2 + 2tL2

Y

∫ t

0
E
∣∣∣Ys − Y ξ,ρ

s

∣∣∣2 ds+ (2tL2
Z + 1)

∫ t

0
E |Zs − Zρs |

2 ds

}
.
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By Gronwall’s inequality,

E|Yt − Y ξ,ρ
t |2 ≤

{
E|Y0 − ξ|2 + (2tL2

Z + 1)

∫ t

0
E |Zs − Zρs |

2 ds

}
3 exp(6t2L2

Y ),

which proves (3.11) for a C that only depends on T , LY and LZ .

Although the inequality is generally not sharp, the order 2 strong error of Yt is typically close to the

L2 error (in t and Q) of Z, as seen numerically in the option pricing examples. This is supported by

the following simple calculation. We assume here that Y0 = ξ, justified by the observation that Y0,

the option price at time 0, can be accurately found by Monte Carlo estimation. Then it follows from

Yt = Y0 + r

∫ t

0
Ys ds+

∫ t

0
Zs dWQ

s ,

using an integrating factor exp(−rs) and similar steps to above,

(A.1) E|Yt − Y ξ,ρ
t |2 =

∫ t

0
exp(2r(t− s))E|Zs − Zξ,ρs |2 ds.

Appendix B. A posteriori error estimates for non-recursive adjustments

The estimates provided in Han and Long (2020) can be applied as follows to the adjustment compu-

tation in Subsection 3.2, Algorithm 2. We assume the existence of some constant C such that

(B.1) sup
t∈[0,T ]

E
[
|V̂t − V̂ ξ,ρ

t |2
]
≤ C

(
∆t+

M∑
m=1

E
[
|gm(ST )− V̂ m,ξm,ρm

T |2
])

,

where V̂ ξ,ρ
t is the ANN approximation associated with parameters ξ = (ξ1, . . . , ξM ) and ρ = (ρ1, . . . , ρM )

(and extended to [0, T ] by piecewise constant interpolation) of the clean portfolio value V̂t.

Under the assumed conditions on Φ (uniformly Lipschitz with constant LΦ), one directly obtains the

following estimates∣∣∣∣E[ ∫ T

0
Φt(V̂t) dt

]
− E

[ N∑
n=0

ηnΦtn(V̂ ξ,ρ
tn )

]∣∣∣∣
≤
∣∣∣∣E[ ∫ T

0
Φt(V̂t) dt−

N∑
n=0

ηnΦtn(V̂tn)

]∣∣∣∣+

∣∣∣∣E[ N∑
n=0

ηn

(
Φt(V̂tn)− Φtn(V̂ ξ,ρ

tn )
)]∣∣∣∣

≤
∣∣∣∣ ∫ T

0
E
[
Φt(V̂t)

]
dt−

N∑
n=0

ηnE
[
Φtn(V̂tn)

]∣∣∣∣+

∣∣∣∣ N∑
n=0

ηnE
[(

Φt(V̂tn)− Φtn(V̂ ξ,ρ
tn )

)]∣∣∣∣
≤ Q(∆t) +

( N∑
n=0

|ηn|2
)1/2( N∑

n=0

∣∣∣E [Φtn(V̂tn)− Φtn(V̂ ξ,ρ
tn )

]∣∣∣2 )1/2

≤ Q(∆t) + LΦ

( N∑
n=0

|ηn|2
)1/2( N∑

n=0

E
[
|V̂tn − V̂

ξ,ρ
tn |

2
] )1/2

,

where Q(∆t) is the error associated with the quadrature rule for the function ϕ(t) := E[Φt(V̂t)]. The

function ϕ can be proven to be 1/2-Hölder continuous. Indeed, for Φt(V̂t) = (Br̃
t )
−1Ψ(V̂t)λ

C,Q
t (the

CVA case, and similar for DVA), denoting Ψ(V̂t) = (1−RC)(V̂t − C(V̂t))
− Lipschitz in V̂t,

|φ(t)− φ(s)| ≤

E
[∣∣∣(Br̃

t )
−1Ψ(V̂t)

(
λC,Qt − λC,Qs

)∣∣∣+
∣∣∣(Br̃

t )
−1
(

Ψ(V̂t)−Ψ(V̂s)
)
λC,Qs

∣∣∣+
∣∣∣((Br̃

t )
−1 − (Br̃

s)
−1
)

Ψ(V̂s)λ
C,Q
s

∣∣∣]
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≤ C

{
E[(λC,Qt − λC,Qs )2]1/2 + E[(V̂t − V̂s)2]1/2 + E

[(
1− exp

(
−
∫ t

s
r̃u du

))2]1/2
}
,

for some constant C, using the boundedness of r, λC,Q, λB,Q, and of E[(Ψ(V̂t))
2]. The first and last

term are of order |t− s|1/2 by the assumptions made, and it remains to estimate the middle term.

Recalling that V̂t =
∑M

m=1 V̂
m
t with V̂ m

t the solution of the FBSDE (2.1), (2.6), under the regularity

assumptions on the coefficients µ and σ of the forward SDE one gets∣∣∣ϕ(t)− ϕ(s)
∣∣∣ ≤ C(|t− s|1/2 +

M∑
m=1

E
[∣∣V̂ m

t − V̂ m
s

∣∣2]1/2)

≤ C
(
|t− s|1/2 +

M∑
m=1

E
[
|gm(ST )|2|t− s|+

∫ t

s
|Ẑmu |2 du

]1/2)

≤ C
(
|t− s|1/2 + |t− s|1/2

M∑
m=1

E
[
|gm(ST )|2 + 1 + sup

u∈[s,t]
|Su|2

]1/2)
≤ C|t− s|1/2.

To obtain the estimates for the increment of the BSDE solution and of the control in terms of the

forward process, in the second and third line, respectively, we can apply Zhang (2004, Lemma 2.4,

(2.11)) and Zhang (2017, Theorem 5.2.2(i)) to the equivalent BSDE

dṼ m
t = Z̃mt dWQ

t , Ṽ m
T = gm(ST ), where Ṽ m

t = V̂ m
t Br

T /B
r
t , Z̃mt = Ẑmt B

r
T /B

r
t .(B.2)

Above and in the following, we do not keep track of constants and C denotes any non-negative constant

depending only on T,M, s0 and the regularity constants of the coefficients.

Then, if we consider the rectangle quadrature rule we get

(B.3) Q(∆t) ≤ C∆t1/2.

Therefore, observing that ( N∑
n=0

|ηn|2
)1/2

≤ ∆tN1/2

and using (B.1) and (B.3), one has∣∣∣∣E[ ∫ T

0
Φ(t, V̂t) dt

]
− E

[N−1∑
n=0

∆tΦ(tn, V̂
ξ,ρ
tn )

]∣∣∣∣
≤ C∆t1/2 + C∆tN1/2N1/2

(
sup

n=0,...,N−1
E
[
|V̂tn − V̂

ξ,ρ
tn |

2
] )1/2

≤ C∆t1/2 + TC
(

∆t+

M∑
m=1

E
[
|gm(ST )− V̂ m,ξm,ρm

T |2
])1/2

,

from which the claim (3.15) follows just taking ξ = (ξ∗1 , . . . , ξ
∗
M ) and ρ = (ρ∗1, . . . , ρ

∗
M ).

Appendix C. Hyperparameters tuning

The aim of this section is to test the response of our algorithm with respect to changes in the hyper-

parameters. In particular, we will study the behaviour of the solution and of the loss function with

respect to the variation of the number of iterations I, the number of hidden layers L−1 and the value

of the learning rate used in the stochastic gradient descent algorithm.

We focus on the cases of the forward contract and the call option for which we can provide exact
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solutions as benchmarks. Table 5 shows the impact of increasing the number of iterations on the loss

function. We observe a substantial reduction of the loss as the number of iterations increases from

100 to 10000. We point out that the increse in the number of iterations has to be coupled with a

suitable schedule of the learning rate. The computational time of course increases, showing that the

reduction of the loss comes at a non-negligible cost in terms of computational time. In Figures 9 and

10 we can qualitatively observe that the exposure profile produced by the solver is in good agreement

with the analytical one even for I = 500, a relatively low number of iterations. In the numerical tests

in Section 4 we used I = 4000.

I loss CPU(s)
100 4.6802e+02 103
200 2.1080e+01 135
500 4.3487e+00 163
1000 2.9029e+00 283
4000 1.6640e-01 503
10000 3.2899e-02 765
40000 6.7284e-03 3194
60000 5.5881e-03 4874

I loss CPU (s)
100 2.8109e+02 144
200 5.7360e+01 157
500 1.2659e+01 241
1000 1.1770e+01 284
4000 7.7790e-01 543
10000 5.6281e-01 798
40000 4.9823e-01 3267
60000 4.0948e-01 5124

Table 5. Variation in the loss function for different values of the number I of iterations
for the forward contract (left) and the call option (right). Parameters used: outer MC
paths P = 2048, inner MC paths L = 1024, batch size B = 64, internal layers L−1 = 2,
nodes of each internal layer ν = d+ 20 = 21, time steps N = 200

The next investigations involve the architecture of the network. We firstly progressively increased

the number of hidden layers from 1 up to 8. We performed the test for the call option since in the case

of the forward contract a single layer is sufficient to provide a very good fit. The results are reported

in Table 6. We experienced a moderate reduction of the loss when increasing the number of hidden

layers beyond 2. The loss can be further reduced by coupling the increase of the number of layers

with a higher number of iterations (see right-hand table). Secondly, we increased the number of nodes

from d+ 20 = 21 to d+ 200 = 201, fixing 2 hidden layers. The results reported in Table 7 show again

a small reduction of the loss. We tested two different numbers of iterations (I = 4000 and I = 40000,

top row) and batch sizes (B = 64 and B = 256, bottom row), obtaining a further loss reduction from

increasing I and B.

L − 1 loss CPU (s)
1 2.5790e+00 356
2 7.7790e-01 543
4 6.3602e-01 781
8 6.8549e-01 1486

L − 1 loss CPU (s)
1 2.1964e+00 2053
2 4.9823e-01 3267
4 4.8404e-01 5388
8 4.2942e-01 10434

Table 6. Call option. Variation of the loss function for different number L − 1 of
hidden layers. Parameters used: outer MC paths P = 2048, inner MC paths L = 1024,
batch size B = 64, nodes of each internal layer ν = d+ 20 = 21, time steps N = 200,
iterations I = 4000 (left) and I = 40000 (right).
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Figure 9. Exposure profile for the forward contract for different numbers of iterations.
Parameters used: outer MC paths P = 10000, inner MC paths L = 1024, batch size
B = 64, internal layers L − 1 = 2, nodes of each internal layer ν = d+ 20 = 21, time
steps N = 200

ν loss CPU (s)
21 7.7790e-01 543
201 6.4578e-01 1741

ν loss CPU (s)
21 4.9823e-01 3267
201 4.2650e-01 10425

B = 64, I = 4000 B = 64, I = 40000

ν loss CPU (s)
21 5.6281e-01 798
201 5.0817e-01 2922

ν loss CPU (s)
21 4.0739e-01 1481
201 3.5423e-01 9654

B = 64, I = 10000 B = 256, I = 10000

Table 7. Call option. Variation of the loss function for different number of nodes ν.
Parameters used: outer MC paths P = 2048, inner MC paths L = 1024, time steps
N = 200, internal layers L − 1 = 2. Top row: batch size B = 64, iterations I = 4000
(left) and I = 40000 (right). Bottom row: batch size B = 64 (left) and B = 256
(right), iterations I = 10000 .

We then study the impact of changing the learning rate. Remember that the learning rate represents

the step size of the parameters updates during the training procedure. In our algorithm, we employ a

so-called step decay, meaning that the learning rate is piecewise constant over the number of iterations.

In the next experiments, we use a learning rate schedule of the form [lr1, lr2], with two values lr1, lr2,

where lr1 is used for the first half of the iterations, whereas lr2 is used for the remaining iterations.

From the tests reported in Table 8 and Table 9, we deduce that the choice of a too high learning rate

may negatively affect the results, while for low learning rates a higher number of iterations is required
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Figure 10. Exposure profile for the call option for different numbers of iterations.
Parameters used: outer MC paths P = 10000, inner MC paths L = 1024, batch size
B = 64, internal layers L − 1 = 2, nodes of each internal layer ν = d+ 20 = 21, time
steps N = 200

to ensure sufficient training of the network. In the numerical tests in Section 4 we have chosen the

schedule [5e− 2, 5e− 3], which was generally observed to provide a good fit both for a high and a low

number of iterations.

Finally, Figure 11 shows the convergence in terms of time discretization and batch size for the call

option. We observe that increasing the batch size improves the convergence behavior. When the batch

size reaches 256, the error levels off so that a further increase does not give a significant improvement,

keeping in mind also the associated increase in the execution time of the algorithm. The right panel

shows the effect of refining the time discretization. We observe that, as we increase the number of time

steps up to 200, the numerical error is reduced, while further increases do not bring further reductions

of the loss. This is possibly due to the significant increase in the number of neural network parameters

to be estimated (one network per timestep), while I and L are not modified in these tests.

Figure 11. Call option. Left: convergence with respect to batch size B, parameters
used: iterations I = 4000, time steps N = 200. Right: convergence with respect to the
number of time steps N , parameters used: iterations I = 4000, batch size B = 64. .
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l.r. loss CPU(s)
[1e-3,1e-4] 4.7649e+01 469
[5e-3,5e-4] 1.5160e+00 445
[1e-2, 1e-3] 5.6159e-01 476
[5e-2,5e-3] 1.6640e-01 503
[1e-1,1e-2] 1.7459e-01 423
[5e-1,5e-2] 1.3840e+01 434

l.r. loss CPU (s)
[1e-3,1e-4] 1.1080e+01 392
[5e-3,5e-4] 8.2645e-01 399
[1e-2, 1e-3] 6.1086e-01 462
[5e-2,5e-3] 7.7790e-01 543
[1e-1,1e-2] 1.0811e+00 498
[5e-1,5e-2] 1.0183e+01 420

Table 8. Effects of changes of the learning rate for the forward contract (left) and
the call option (right). Parameters used: outer MC paths P = 2048, inner MC paths
L = 1024, batch size B = 64, iterations I = 4000, number of hidden layers L− 1 = 2,
nodes of each internal layer ν = d + 20 = 21, time steps N = 200. The first value of
the learning rate is used for the first 2000 iterations.

l.r. loss CPU(s)
[1e-3,1e-4] 1.2445e+00 1523
[5e-3,5e-4] 4.3438e-02 1539
[1e-2, 1e-3] 1.0684e-01 1565
[5e-2,5e-3] 7.8567e-02 1516
[1e-1,1e-2] 1.6278e-01 1666
[5e-1,5e-2] 1.4697e+01 1691

l.r. loss CPU (s)
[1e-3,1e-4] 6.4950e-01 1769
[5e-3,5e-4] 5.6589e-01 1815
[1e-2, 1e-3] 6.0227e-01 1903
[5e-2,5e-3] 6.6738e-01 1767
[1e-1,1e-2] 8.9118e-01 1732
[5e-1,5e-2] 5.1818e+01 1824

Table 9. Effects of changes of the learning rate for the forward contract (left) and
the call option (right). Parameters used: outer MC paths P = 2048, inner MC paths
L = 1024, batch size B = 64, iterations I = 20000, number of hidden layers L−1 = 2,
nodes of each internal layer ν = d + 20 = 21, time steps N = 200. The first value of
the learning rate is used for the first 10000 iterations.
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